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Abstract
In standard models of ambiguity, receiving information is theo-

retically predicted to dilate ambiguity. This study experimentally
investigates whether this dilation property can be observed. Subjects
placed bets on colors in ambiguous urns before and after observing a
draw, revealing their certainty equivalents. Our observations contra-
dict the theoretical prediction, which suggests decreasing values after
information for ambiguity-averse subjects and increasing values for
ambiguity-seeking subjects. We examined the possibility that par-
ticipants perceived a correlation between pre- and post-observation
draws, finding that in a two-stage updating experiment, more partic-
ipants reported feeling confused after the second update compared to
a single-stage update. While direct evidence of the dilation property
was not observed, our findings suggest that individuals in ambiguous
settings may, when given information, integrate decisions and con-
sider joint probabilities, possibly serving as an indirect indication of
the dilation property.
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1 Introduction
When a decision maker faces an ambiguous situation in multiple periods,

the range of conditional probabilities becomes wider compared to those from
previous periods (Nishimura and Ozaki 2017; Kato, Nishimura, and Ozaki
2019; Shishkin and Ortoleva 2023). This phenomenon is called the ’dila-
tion property.’The concept of dilation was first introduced by Seidenfeld and
Wasserman (1993), who explored how uncertainty in probability assessments
can expand with the acquisition of new information.

Although several applications appear (Bose and Renou 2014, Beasuch-
ene, Li and Li 2019), whether this property is empirically true received little
attention. One exception is the experiment in Shishkin and Ortoleva (2023),
which tests dilation property by asking subjects certainty equivalents of bets
on colors of picked balls from urns before and after ambiguous information
is shown and investigating differences of them called information premium.
They discover that for ambiguity averse and neutral subjects there is no ro-
bust relation between ambiguity attitude and information premium, namely,
dilation property is not observed though ambiguity seeking ones exhibit pos-
itive information premium, which accords with dilation property.

Our paper aims to investigate, following the foundational motivation of
Shishkin and Ortoleva (2023), whether the dilation property exists across a
wide range of ambiguity attitudes. To achieve this, our experiment includes
urns R,A,A_b, and A_w, which we will explain in detail later.

Urn R is a risk urn that contains two colors, red and yellow, in equal
quantities. An ambiguous urn contains up to two colors of balls, but the
proportions of these colors are unknown. To help subjects distinguish the
urns, the ambiguous urn contains blue and/or white balls.

From Urn A, a ball is drawn only once, and the subject receives a reward
only if the color of the ball matches the one specified by the experimenter.

To observe dilation under ambiguity, we elicit differences in subjects’
certainty equivalents for the ambiguous urn, both without and with receiving
information from drawing one ball. The ambiguous urn without information
is referred to as Urn A, which is equivalent to a single draw without any
updates or prior knowledge.

The dilation property involves observing how the prior belief about the
composition of colors in an ambiguous urn changes with updates. To test this,
we include an operation where a ball is drawn from an urn containing blue
and white balls and then returned. Subjects must form priors corresponding
to each state in the set Ω = {BB,BW,WB,WW}.

We compare a case where the subject does not receive information about
the color of the first ball drawn to one where they do. In the latter case, the
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prior belief is updated conditionally based on the information received, while
in the former, it remains unchanged.

To evaluate how ambiguity preferences influence updating based on infor-
mation, by observing the difference between certainty equivalent of lotteries
tied for the draw of Urn A with and without information. Theoretical predic-
tions suggest that the certainty equivalent for ambiguity-averse individuals
should be lower after receiving information, a proposition we test in our
experiment.

Following Shishkin and Ortoleva (2023), we define an individual as ambi-
guity averse if their certainty equivalent of a risky urn, R, is larger than that
of an ambiguous urn, A; as ambiguity seeking if the difference is positive;
and as ambiguity neutral if the certainty equivalent of urn R is equal to that
of urn A.

Subjects are asked for their certainty equivalent of ambiguous urns in the
different way in the first and second experiment.

In the first experiment, all ambiguous urns are created transparently after
subjects make their decisions. This is an approach that avoids any perception
of manipulation by experimenter in the composition of the urns, which could
influence subjects’ rewards. The compositions of the ambiguous urns are
determined using the method of Hayashi and Wada (2010), which employs
multiple dice and complex rules, making it practically impossible for subjects
to calculate the probabilities.

Since the composition of ambiguous urn A is determined and physically
created only after the experiment, we ask for the certainty equivalent of the
ambiguous urn conditionally: subjects are asked to imagine that a ball (either
blue or white) is drawn and then returned to the original ambiguous urn A,
preserving the color composition. We denote this urn as A_b (if a blue ball
is imagined) or A_w (if a white ball is imagined).

The dilation property is identified by the sign of the difference between
the certainty equivalent of a lottery tied to a single draw from the ambiguous
urn A and that tied to the second draw from the ambiguous urn. A negative
difference implies that subjects dilate their range of priors.

In the first experiment, subjects express the certainty equivalent of lot-
teries tied to the risky urn, R, and three ambiguous urns: A, A_b, A_w.
For A_b and Aw, subjects are payed 1500 yen only when the second draw
results in blue. In the first experiment, these ambiguous urn’s compositions
are independently made by web-dice after the decision making, partly be-
cause we hypothesize that individual’s ambiguity preferences is constant for
any ambiguous urn and partly because subjects expressed their certainty
equivalence only conditionally and it is impossible to see the dilation di-
rectly. Two lotteries are selected to be rewarded. Certainty equivalents of
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all urns are measured using the methodology developed by Becker, DeGroot,
and Marschak (1964) (hereafter BDM mechanism), which is a well-known
truth-telling mechanism.

Despite testing the theory that dilation should be observed among ambiguity-
averse individuals, our results, obtained in a different experimental setting,
align with Shishkin and Ortoleva (2023), showing that dilation occurs only
among ambiguity seekers.

The possible interpretation is that some subjects integrate each bet and
expect that there is a correlation between probabilities of drawn colors before
and after observation in which the same colors are likely or unlikely to be
drawn.

Let the blue color be the winning bet. When a subject considers that the
blue color is likely to be drawn after the blue is observed, they tend to reveal
high certainty equivalent of A_b, and when blue is expected to be drawn
after the white is drawn, the high A_w is observed. That feature makes
the results liable to the opposite ones. On the other hand, the subjects who
consider no correlation are unlikely to exhibit the opposite result compared to
those who expect such correlation. These hypothesis are tested statistically.

Based on the aforementioned reasons, we conducted a second experiments
in which an ambiguous urn was actually created in front of the subjects before
their eliciting the certainty equivalents of all urns. Additionally, we drew
a ball twice from the ambiguous urn, asking for the certainty equivalents
of each urn after observing the color at each draw. Furthermore, we also
posed qualitative questions to the subjects, such as how they felt about the
bets after each observation. The quantitative results were largely consistent
with the previous experiments: the certainty equivalents for ambiguity-averse
subjects tended to increase, with similar patterns observed for ambiguity-
seeking and ambiguity-neutral subjects.

Although theoretically dilation increases as the drawing accumulates, ex-
pansion of ambiguity is not observed statistically. On the other hand, the
answers to qualitative questions exhibit ‘more confused’ on the bets after sec-
ond observation than first observation, which indirectly suggests expansion
of ambiguity.

Mathematically, dilation property arises if a decision maker is unsure
about probability defined on the product of each marginal state space. We
call this usual kind of ambiguity ‘joint ambiguity’. On the other hand, if
each marginal state space is treated separately and the marginal probability
on each state is ambiguous, dilation property does not occur when the de-
gree of ambiguity in each marginal probability is the same (e.g. the number
of balls whose color is unknown is the same in each urn). We name this
sort of ambiguity ‘independent ambiguity’. To expect a correlation of prob-
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ability on each state implies that the subjects consider a situation as joint
ambiguity. Although dilation property is not directly observed, agents tend
to integrate each decision and envisage a set of joint probabilities, which is
indirect manifestation of dilation property.

In summary, while the dilation property was not directly observable, our
findings suggest an implicit presence of dilation through decision patterns
reflecting joint ambiguity and participants’ increasing confusion with sub-
sequent draws. Therefore, it is possible that the dilation property is not
pronounced enough to be directly observed, but it might still exist implic-
itly.

This paper is organized as follows. The next section explains the content
of experiment providing the theory based on ε-contamination and its predic-
tion on the result of our experiment. In the third section, the procedure and
results of experiment are presented. The fourth section discusses additional
experiments. The fifth concludes the paper.

2 Theory
In this section, we explain the content of experiment and provide mathe-

matical background of it. Let the prize be set as 1500 yen, Japanese monetary
unit, if the bet on the color of a ball drawn from a urn is correct and let the
prize be zero otherwise. Consider the urn containing balls that could be
either red or yellow. Formally, envition drawing a ball consecutively twice
from the urn in which the first ball is returned before the second draw. Then
the state space can be described as Ω = {RR,RY, Y R, Y Y } and its parti-
tion is denoted by {E1, E2} for E1 := {RR,RY } (a red ball is drawn first),
E2 := {Y R, Y Y } (a yellow ball is drawn first). We describe the choices of
a decision maker by employing the idea of ε-contamination (Nishimura and
Ozaki 2017, Kato, Nishimura and Ozaki 2019). Let p0 denote a probability
on Ω that decision makers specify with (1− ε)× 100% confidence, which we
call principal probability. Define ε-contamination of p0 by{

p0
}ε

:=
{
(1− ε)(p01, p

0
2, p

0
3, p

0
4) + ε(q1, q2, q3, q4)

∣∣ (q1, q2, q3, q4) is any probability on Ω
}
.

The set of first marginal probabilities is written by

P1 := { (p1 + p2, p3 + p4) | (p1, p2, p3, p4) ∈
{
p0
}ε }

and the set of conditional probabilities is denoted by

P
∣∣
E1

:=
{ ( p1

p1 + p2
,

p2
p1 + p2

) ∣∣∣ (p1, p2, p3, p4) ∈
{
p0
}ε

}
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and
P

∣∣
E2

:=
{ ( p3

p3 + p4
,

p4
p3 + p4

) ∣∣∣ (p1, p2, p3, p4) ∈
{
p0
}ε

}
.

Let u : R → R be a utility function. So u(1500) represents the utility
gotten from winning the bet and u(0) is obtained when losing the bet. In the
following subsections, we explain each part of experiment as in Introduction.

2.1 The urn R (single risk)
Consider the urn consisting of balls that could be either red or yellow

but the composition of color is known (set up as twenty red balls and twenty
yellow ones). When the winning bet is the case that a red ball is drawn. Its
value is expressed by

(p01 + p02)u(1500) + (p03 + p04)u(0). (A)

The certainty equivalent of the above is written (for abusing a little bit of
notation) by A, namely u(A) = (p01 + p02)u(1500) + (p03 + p04)u(0).

2.2 The urn A (single ambiguity)
Set up the urn consisting of red or yellow balls totaling forty balls where

the composition of color is unknown. Suppose that red is the winning color.
For ambiguity averse subject we have

min
(p1+p2, p3+p4)∈P1

[
(p1 + p2)u(1500) + (p3 + p4)u(0)

]
= (1− ε)(p01 + p02)u(1500) + {(1− ε)(p03 + p04) + ε}u(0) =: u(B). (B-a)

because it holds that

(1− ε)(p01 + p02) = min
(q1,q2,q3,q4)

(1− ε)(p01 + p02) + ε(q1 + q2)

which is attained by (q1, q2) = (0, 0) and q3 + q4 = 1,

(1− ε)(p03 + p04) + ε = max
(q1,q2,q3,q4)

(1− ε)(p03 + p04) + ε(q3 + q4)

with (q3, q4) = (1, 0) or (0, 1) and q1 + q2 = 0. Note that B means (again
abusing the notation ) the certainty equivalent of the value of the urn B.
For ambiguity seeking subjects, min is replaced with max and the similar
arguments follow. For ambiguity seeking subject we have

max
(p1+p2, p3+p4)∈P1

[
(p1 + p2)u(1500) + (p3 + p4)u(0)

]
= {(1− ε)(p01 + p02) + ε}u(1500) + (1− ε)(p03 + p04)u(0) =: u(B). (B-s)
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2.3 The urn A_b and A_w (the two way representation
of the second ambiguity urn)

The colors in our experiment are randomized to prevent subjects from
developing a preference for a specific color. In this step, we change the colors
from the red and yellow to the blue and white (so the state space becomes Ω =
{BB,BW,WB,WW} and its partition is represented by E1 = {BB,BW}
and E2 = {WB,WW} ).

In the first experiment, subjects make their decisions before the urns
are constructed. The rules for constructing the ambiguous urn are clearly
explained in advance, ensuring there is no room for manipulation or decep-
tion. However, it is not possible to ask questions after observing the color
of the ball drawn from the urn, so information updates cannot be realisti-
cally incorporated. To address this limitation, we define two conditional urns
(cond.-urn): A_b represents the scenario where a blue ball is drawn and re-
turned to the urn, and A_w represents the scenario where a white ball is
drawn and returned. Once the ambiguous urn’s composition of blue and/or
white balls is determined, the experimenter draws a ball and shows its color
to the subjects. This color determines which of the two conditional urns is
relevant for the bet. Afterward, subjects receive payment based solely on
the color of the second draw, and they take a comprehension test before the
experiment begins to ensure they understand the setup.

For ambiguity averse subjects, the value of the urn after blue is drawn is
described as

min(
p1

p1+p2
,

p2
p1+p2

)
∈P|E1

( p1
p1 + p2

u(1500) +
p2

p1 + p2
u(0)

)
and the value after white is represented by

min(
p3

p3+p4
,

p4
p3+p4

)
∈P|E2

( p3
p3 + p4

u(1500) +
p4

p3 + p4
u(0)

)
where E1 = {BB,BW} (The blue is firstly drawn) and E2 = {WB,WW}
(The white is firstly drawn). Concerning the urn after blue, we can see that

min(
p1

p1+p2
,

p2
p1+p2

)
∈P

∣∣
E1

(
p1

p1 + p2
u(1500) +

p2
p1 + p2

u(0)

)

=
(1− ε)p01

(1− ε)(p01 + p02) + ε
u(1500) +

(1− ε)p02 + ε

(1− ε)(p01 + p02) + ε
u(0) = u(Ab)

(A_b-a)
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because it holds that

(1− ε)p01
(1− ε)(p01 + p02) + ε

= min
(q1,q2)

(1− ε)p01 + εq1
(1− ε)(p01 + p02) + ε(q1 + q2)

with (q1, q2) = (0, 1), and

(1− ε)p02 + ε

(1− ε)(p01 + p02) + ε
= max

(q1,q2)

(1− ε)p02 + εq2
(1− ε)(p01 + p02) + ε(q1 + q2)

with the same (q1, q2) = (0, 1) noticing that

(1− ε)p02 + εq2
(1− ε)(p01 + p02) + ε(q1 + q2)

is increasing with respect to q2.

Note A_b represents, again abusing the notation, the value (certainty
equivalent) of the urn A_b. Similarly let A_w denote the value of the urn
A_w. We can also calculate the value after white is drawn by

min(
p3

p3+p4
,

p4
p3+p4

)
∈P|E2

( p3
p3 + p4

u(1500) +
p4

p3 + p4
u(0)

)
=

(1− ε)p03
(1− ε)(p03 + p04) + ε

u(1500) +
(1− ε)p04 + ε

(1− ε)(p03 + p04) + ε
u(0) = u(A_w).

(A_w - a)

The objective function of ambiguity ‘seeking’ one is defined by replacing ‘min’
operator with ‘max’. Thus for ambiguity seeking subjects the value of A_b
is written as

max(
p1

p1+p2
,

p2
p1+p2

)
∈P|E1

( p1
p1 + p2

u(1500) +
p2

p1 + p2
u(0)

)
=

(1− ε)p01 + ε

(1− ε)(p01 + p02) + ε
u(1500) +

(1− ε)p02
(1− ε)(p01 + p02) + ε

u(0) = u(A_b)

(A_b - s)

and the value of A_w is

max(
p3

p3+p4
,

p4
p3+p4

)
∈P|E2

( p3
p3 + p4

u(1500) +
p4

p3 + p4
u(0)

)
=

(1− ε)p03 + ε

(1− ε)(p03 + p04) + ε
u(1500) +

(1− ε)p04
(1− ε)(p03 + p04) + ε

u(0) = u(A_w).

(A_w - s)
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The following theorem, which states the prediction of the experiment, can
be seen. The proof of which is delegated to Appendix.

Theorem 1. Assume that the principal probability is symmetry: p0i , i =
1, 2, 3, 4 are the same (so A_b = A_w =: A). If a subject is ambiguity
averse, we should observe

R > A > A_b = A_w

if ambiguity seeking it follows that

R < A < A_b = A_w

and if neutral one has R = A = A_b = A_w.

2.4 The procedure and results of the experiment
In order to elicit the certainty equivalents of bets on all urns, we applied

BDM mechanism as follows. Each subject answers their values x such that
they get y yen if y ≥ x for uniformly randomly determined value y ∈ [0, 1000]
and faces the bet on specific color drawing from the urn R, A, A_b, A_w
if y < x. Subjects are explained the x is selling price of lotteries tied for
the risky and ambiguous urns for the experimenter and y shows the experi-
menter’s buying prices of these lotteries. For each subject, their own buying
prices are given.

Subjects are tested to determine whether they understand how to express
their selling price for the lotteries, and the experiment begins only when all
subjects pass the test. Each procedure is clearly explained to all subjects.

The concrete instruction is as follows.

1. You are asked to provide the selling prices for lotteries
that will be assigned to you. Although you need to set
selling prices for four lotteries, you will acquire only
three of them. Among these three lotteries, two will be
paid if your selling prices are equal to or lower than
the buying prices offered by the experimenter. The buying
prices are randomly determined by the computer.

2. If your lottery is bought by the experimenter, you will
receive the experimenter’s buying price and will not draw
the lottery. The color of the ball drawn from the urn
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will not affect your reward in this case. However, if
the lottery is not bought by the experimenter and remains
with you, you must draw the lottery. If the color drawn
from the urn matches the winning color, you will receive
1,500 yen. If it does not, you will receive nothing other
than the 500 yen participation fee.

3. Now I, the experimenter, am going to fill the urn with
20 red balls and yellow balls in front of you. Let the
winning bet be on red balls. After all of you decide on
the selling price of the lottery tied to the draw from
urn R, the assistant of the experimenter will draw a ball
without looking inside.

4. The composition of urn A will be determined in the following
way, after you decide on the selling price of the lottery
associated with this urn. You can simulate this process
on the website by yourself from now on, and try it as
many times as you like.
When you click the button, the computer program will randomly
select a number α ∈ {1, 2, 3, 4, 5, 6}. If α is odd, it will
randomly select a number a ∈ {1, 2, · · · , 12}, if α is even,
it will randomly select a number a ∈ {1, 2, · · · , 8}. Next,
it will randomly pick a number b ∈ {1, 2, · · · , 10}.
If a×b > 40 define d := a×b−40n∗ where n∗ := max {n ∈
N | (a× b− 40n) ≤ 40 }, if a× b ≤ 40 let d := a× b.
If d is odd, urn A will contain d red balls and 40−d
yellow balls. If d is even, it will contain 40−d red
balls and d yellow balls. The winning bet will be on the
red balls.

5. Please indicate the minimum price at which you are willing
to sell these lotteries to the experimenter. At the end
of the experiment, the final composition of the urn A
will be determined for all of you in this laboratory by
the experimenter's assistant, who will click the button
in front of everyone to set it. The actual urn A will
be physically constructed in front of all of you, and
the assistant will them draw a ball from it while all
of you watch.

2.5 Results and interpretation of the first experiment
In January 2024, a total of 66 undergraduate students participated in the

study at Keiai University.
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Results for A−R, the difference between the certainty equivalent of the
ambiguous urn A and the risky urn R, showed that 17 subjects (28%) reported
a negative value (ambiguity averse), 35 (53%) a positive value (ambiguity
seeking), and 14 (21%) a zero value (ambiguity neutral).

Theory predicts a positive relationship between A−R and both Ab−A and
Aw − A. However, the observed relationships are opposite. In the following
sections, figures and tests are conducted using Python.

An OLS regression finds a negative relationship between A−R and Ab−A
(t = −4.919, p = 0.000) and between A − R and Aw − A (t = −4.016, p =
0.000).

In Figure 1, the horizontal axis (ambiguity1) represents A − R, and the
vertical axis (ambiguity2) represents Ab−A. Figure 2 similarly shows A−R
on the horizontal axis and Aw − A on the vertical axis.

Interpretation: Prediction crucially depends on the symmetry of the
principal probability, especially

(p01 + p02, p
0
3 + p04) = (p01/(p

0
1 + p02), p

0
2/(p

0
1 + p02)) = (p03/(p

0
3 + p04), p

0
4/(p

0
3 + p04))

Some subjects may integrate each bet and assume a correlation between
the probabilities of consecutively drawn colors, expecting that the same color
is either more or less likely to be drawn. If a subject believes that blue is likely
to be drawn after observing blue, then p01 > p02, leading to a high certainty
equivalent for Ab. Alternatively, if blue is expected after white, a high Aw

is observed, with p03 > p04. This feature can lead to outcomes opposite to
theoretical predictions.

Among the subjects, 30 (about 45%) responded with Ab = Aw =: A
(no correlation), 14 (about 21%) with Ab < Aw, and 22 (about 33%) with
Ab > Aw.

Within the group of subjects who answered Ab = Aw =: A, 18 out of
30 (60%) answered either A − R ≥ 0 and A_b − A ≥ 0’ or A − R ≤
0 and As − A ≤ 0’. Conversely, among those who answered Ab 6= Aw,
9 out of 36 (25%) provided responses that satisfy either A − R ≥ 0 and
min{A_b− A,A_w − A} ≥ 0’ or A−R ≤ 0 and maxAb − A,Aw − A ≤ 0’.

We tested whether the two proportions differ statistically using a χ-square
test, which yielded a domain value of 8.292 and a p-value of 0.003, indicating
a statistically significant difference between the proportions.

Subjects who consider no correlation are unlikely to produce results op-
posite to theory, compared to those who assume correlated principal prob-
abilities. Thus, outcomes contrary to theoretical predictions tend to arise
from subjects expecting correlated principal probabilities.
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Figure 1: The relation between A−R (ambiguity1) and A_b−A (ambiguity2)

Figure 2: The relation between A−R (ambiguity1) and A_w−A (ambigu-
ity2)
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Mathematically, the dilation property arises if a decision maker is uncer-
tain about probabilities defined on the product of each marginal state space.
We call this type of ambiguity ‘joint ambiguity’. Conversely, if each marginal
state space is treated separately and the marginal probability on each state
is ambiguous, the dilation property does not occur when the degree of am-
biguity in each marginal probability is the same (e.g., when the number of
unknown-colored balls is the same in each urn). We refer to this kind of
ambiguity as ‘independent ambiguity’.

To illustrate this, let p0 be the product of identical marginal probabilities
defined by p00 over B,W , namely,

(p01, p
0
2, p

0
3, p

0
4)

= (p00(B)p00(B), p00(B)p00(W ), p00(W )p00(B), p00(W )p00(W ))

and define{
p0
}ε

:=

{(
((1− ε)p00(ω1) + εqω1)((1− ε)p00(ω2) + εqω2)

)
ω1,ω2∈{B,W}∣∣∣∣ ∑

ω1∈{B,W}

qω1 =
∑

ω2∈{B,W}

qω2 = 1

}
.

We easily see that
P1 = P

∣∣
E1

= P
∣∣
E2
.

Hence it follows that
A = A_b = A_w,

which does not exhibit the dilation property. Therefore, expecting a correla-
tion of probabilities across states implies that subjects perceive the situation
as joint ambiguity. Although the dilation property is not directly observed,
agents tend to integrate each decision and envision a set of joint probabilities,
which indirectly manifests the dilation property.

3 The second experiment: Twice withdraw-
ing and qualitative questions

We conduct an additional experiment in which an ambiguous urn is con-
structed in front of participants before asking questions. The urn is created
by a randomly selected participant in a specific way, completely eliminating
any potential manipulation by the experimenter. Details on how concrete
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ambiguity is maintained will be explained later. After withdrawing a ball
twice from the ambiguous urn, we ask subjects for their certainty equivalents
of lotteries tied to each urn, depending on the color of the drawn balls after
each observation. In this experiment, subjects elicit their certainty equiva-
lents of lotteries using a multiple price list. Subjects are asked in a binary
manner whether they would prefer to receive a specified amount of cash or
each lottery.

3.1 Theory
Theoretically, dilation becomes larger as observations accumulate (Kato

et al. 2019). We demonstrate this as follows. Under the state space Ω :=
{B,W}3 and the principal probability p0 defined on it, we define the ε-
contamination of p0 as:

{
p0
}ε

:=
{
(1− ε)(p0a1a2a3)(a1,a2,a3)∈Ω + ε(q0a1a2a3)(a1,a2,a3)∈Ω∣∣∣where (q0a1a2a3)(a1,a2,a3)∈Ω is any probability on Ω

}
.

The set of first marginal probabilities (blue or white probabilities at the
first draw) is written by

P1 :=
{

(
∑

(a2,a3)∈{B,W}2
pBa2a3 ,

∑
(c2,c3)∈{B,W}2

pWa2a3)
∣∣∣ (pa1a2a3)(a1,a2,a3)∈Ω ∈

{
p0
}ε

}
and the set of conditional probabilities after the first observation is blue is
denoted by

P
∣∣
EB

:=

{ ( ∑
a3∈{B,W} pBBa3∑

(a2,a3)∈{B,W}2 pBc2c3

,

∑
ca∈{B,W} pBWa3∑

(a2,a3)∈{B,W}2 pBa2a3

) ∣∣∣ (pa1a2a3)(a1,a2,a3)∈Ω ∈
{
p0
}ε

}
where EB := {B} × {B,W}2. The set of conditional probabilities after the
first observation is white, P

∣∣
EW

, is defined similarly. The set of conditional
probabilities after twice observation, say blue and blue, is defined by

P
∣∣
EBB

:=

{ ( pBBB∑
a3∈{B,W} pBBa3

,
pBBW∑

a3∈{B,W} pBBa3

) ∣∣∣ (pa1a2a3)(a1,a2,a3)∈Ω ∈
{
p0
}ε

}
where EBB := {B} × {B} × {B,W}. The other cases P

∣∣
EBW

, P
∣∣
EWB

and
P

∣∣
EWW

are defined similarly.
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Let the winning prize be 2000 yen. For ambiguity averse subjects, the
value of the urn after blue A_b is drawn is described as

min
(x, 1−x )∈P1

[
xu(2000) + (1− x)u(A)

]
= (1− ε)

∑
(a2,a3)∈{B,W}2

p0Ba2a3
u(2000) +

{
(1− ε)

∑
(a2,a3)∈{B,W}2

p0Wa2a3
+ ε

}
u(0) =: u(B′).

(A_b-a)

For ambiguity seeking case, similar definition to the previous one applies.
The value after the first observation, say blue, is written by

min
(y,1−y)∈P|EB

[
yu(2000) + (1− y)u(0)

]
=

(1− ε)
∑

a3∈{B,W} p
0
BBa3

(1− ε)
∑

(a2,a3)∈{B,W}2 p
0
Ba2a3

+ ε
u(2000) +

(1− ε)
∑

a3∈{B,W} p
0
BWa3

+ ε

(1− ε)
∑

(a2,a3)∈{B,W}2 p
0
Ba2a3

+ ε
u(0)

= u(A_b). (A_b-s)

The white case A_w for ambiguity averse and for ambiguity seeking case
is defined in the same way, the similar argument proceeds. Let A_α, α =
{bb, bw, wb, ww} denote the urn after twice withdrawing. Its betting value
for ambiguity averse ones, sayblue and blue, is written by

min
(z,1−z)∈P|EBB

[
zu(2000) + (1− z)u(0)

]
=

(1− ε)p0BBB

(1− ε)
∑

a3∈{B,W} p
0
BBa3

+ ε
u(2000) +

(1− ε)p0BBW + ε

(1− ε)
∑

a3∈{B,W} p
0
BBa3

+ ε
u(0)

= u(A_bb). (A_bb-a)

The other cases, A_a2a3, (a2, a3) ∈ {B,W}, are also defined the same way,
and for ambiguity seeking case, the similar argument applies. Since

(1− ε)
∑

a3∈{B,W} p
0
BBa3

(1− ε)
∑

(a2,a3)∈{B,W}2 p
0
Ba2a3

+ ε
>

(1− ε)p0BBB

(1− ε)
∑

a3∈{B,W} p
0
BBa3

+ ε

the following theorem holds.

Theorem 2. Assume that the principal probability p0 is symmetry. Thus
A_b = A_w =: A and A_bb = A_bw = A_wb = A_ww =: A. If a subject
is ambiguity averse, we should observe

R > A > A_b = A_w > A_bb = A_bw = A_wb = A_ww
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if ambiguity seeking it follows that

R < A < A_b = A_w < A_bb = A_bw = A_wb = A_ww

and if neutral one has

R > A = A_b = A_w = A_bb = A_bw = A_wb = A_ww

.

3.2 Procedure of the second experiment
We explain the procedure of the additional experiment.
All questions focus on the certainty equivalents of bets and are conducted

as binary comparisons using a Multiple Price List (MPL). This list presents
choices between receiving ‘x yen for sure’ versus ‘the bet on the urn α’,
with values x = 100, 200, . . . , 1100 in increments of 100 yen, where α =
A,A_b, A_w,A_bb, A_bw,A_wb,A_ww, as described above.

The steps to construct the ambiguous urn are as follows.

• On the day of the experiment, participant numbers are assigned by
lottery, so neither the experimenter nor the subjects know in advance
who will be selected to create the ambiguous urn.

• We prepare transparent bags, each containing either 5 blue balls or 5
white balls. A total of 40 bags (20 with blue balls and 20 with white
balls) are shown to the subjects. All bags, except one containing blue
balls and one containing white balls, are placed into a large transparent
box. Afterward, the balls from the two remaining bags are removed and
placed directly into the box to establish an initial known composition
of 5 blue balls and 5 white balls.

• The box is then covered with black paper and further concealed with
a black cloth to prevent any visibility from above.

• Six subjects are randomly selected by lottery on the day of the ex-
periment. Each selected subject, while blindfolded and assisted by an
experimenter, reaches into the box, opens a randomly chosen bag, and
scatters its balls into the box. Afterward, they display the empty plas-
tic bag to confirm it is empty.

• This process continues until a total of 30 balls (from six bags with 5
balls each) are added to the box. Note that selected subjects practice
this procedure before the actual experiment.

16



• This process results in an ambiguous urn with possible distributions of
balls: (B,W ) = (5, 35), (10, 30), (15, 25), (20, 20), (25, 15), (30, 10), (35, 5).
Subjects are fully informed of these probabilities and required to answer
quizzes to confirm their understanding. The experiment only begins
once all subjects provide correct answers.

We prepare transparent bags each containing either 5 blue balls or 5 white
balls. We show subjects 20 such bags and place them into one large urn and
cover the urn with a black plastic board. First, each color’s bags are opened,
and all balls are placed into the covered urn, so that 5 blue and 5 white
balls exist in the urn. Secondly six subjects are randomly selected and each
subject is required to come to the urn, open one bag and scatter balls in it
into the urn while wearing an eye-mask. After that, let them take off the
empty transparent bag and show it to everyone. Then 30 balls (6 subjects
open one bag containing 5 balls) are added in the urn to the end. Note that
selected subjects practice this conduct before execution. It turns out that the
balls taken out of bags create an ambiguous urn with possible distributions:
(B,W ) = (5, 35), (10, 30), (15, 25), (20, 20), (25, 15), (30, 10), (35, 5).

1 Subjects are clearly informed of this fact and are required to complete
quizzes to confirm their understanding; the experiment begins only once all
subjects answer correctly. Each step is clearly explained to all participants.

• The risky urn R consists of twenty red and yellow balls, with the com-
position known to all subjects. The winning bet is set to red balls.
A ball is drawn without looking inside, and the color is shown to the
subjects.

• The ambiguous urn A is constructed as described above.

• A ball is drawn by the assistant without looking inside, reaching behind
them, and the color is shown to the subjects.

• In the previous step, if a blue ball is drawn, urn A_b is created by
returning the ball to urn A. If a white ball is drawn, urn A_w is created
by returning the ball to urn A. The assistant then draws another ball,
again reaching behind without looking inside, and shows the color to
the subjects.

• One of the urns, A_bb or A_bw, is created by returning the blue ball
drawn from urn A_b, or one of the urns, A_wb or A_ww, is created

1From the construction, the probabilities of each possible combination (5+5k, 35−5k)
are 6Ck/2

6 for k = 0, 1, 2, . . . , 6. The highest probability is 6C3/2
6 at (20, 20), making the

probability of drawing a blue ball 1/2.
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by returning the white ball from urn A_w. The assistant then draws
another ball, again without looking inside and reaching behind them,
and shows the color to the subjects. Subjects are able to recognize
which urn is realized.

• Additionally, we ask qualitative questions regarding how subjects per-
ceive the composition of the urns, allowing them to select their re-
sponses from provided options.

3.3 Results and interpretation of the second Experi-
ment

Results: The result for A − R, the value of the certainty equivalent of
urn B minus that of urn A, shows that 21 subjects (about 51%) answered
negative (ambiguity averse), 20 (about 49%) positive (ambiguity seeking),
and 0 (0%) zero (ambiguity neutral).

In step (2), a blue ball was drawn, so we consider the urn C after observing
blue, labeled as A_b. In step (3), a blue ball was drawn again, so the
ambiguous urn after two blue draws is labeled A_bb. According to theoretical
predictions, both the relationship between A−R and A_b−A and between
A_b− A and A_bb− A_b should be positive.

However, the results are opposite. In the following analyses, figures and
tests are conducted using Python. An OLS regression between A − R and
A_b−A reveals a negative relationship (t = −4.937, p = 0.000), as does the
relationship between A_b− A and A_bb− A_b (t = −4.188, p = 0.000).

In Figure 3, the horizontal axis (ambiguity1) represents A − R, and the
vertical axis (ambiguity2) represents A_b − A. Figure 4 shows ambiguity2
(A_b − A) on the horizontal axis and ambiguity3 (A_bb − A_b) on the
vertical axis. Despite these negative correlations, one might expect a positive
correlation between A− R and A_bb− Ab. However, as shown in Figure 5,
this is not the case (OLS regression: t = 0.464, p = 0.646). Table 1 presents
the sign patterns for A−R, A_b−A, and A_bb−Ab, with notable instances
of ‘zigzag’ changes in sign.

We also asked subjects qualitative questions about their perception of the
urns A_b (after the first observation) and A_bb (after the second observa-
tion). Note that, due to a limited sample size, only the urns A_b, A_bw, and
A_bb were actually observed during the experiment.2 The specific questions
and corresponding responses are shown in Table 2. Notably, the number of
subjects who chose ”Observing the color made it harder to predict” increased

2We plan to continue this experiment to observe all possible cases.
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The sign pattern The number of subjects
−−− 0
−−+ 6
−+− 10
−++ 5
+−+ 13
+−− 4
++− 3
+++ 0

Table 1: From left: the sign of A−R, A_b− A and A_bb− A_b

significantly, indirectly suggesting that ambiguity perception increases after
each observation.

Interpretation: The implications of this additional experiment are simi-
lar to the previous one, with a notable feature being the ‘zigzag’ type changes
in certainty equivalents (see Figures 3, 4, and Table 1). In the qualitative
responses, many subjects selected the option ‘The opposite color to the pre-
viously observed one would be more likely to appear’, which aligns with the
tendency for subjects to predict outcomes by integrating the urns.

Selected Options as Closest Feel-
ings about the Urns

A_b A_bb &A_bw

Observing the color and prediction are
unrelated

21 17

Observing the color made it harder to
predict

1 9

The opposite color to the previously ob-
served one would be more likely to ap-
pear

16 12

The same color as the previously ob-
served one would be more likely to ap-
pear

2 3

Other thought 1 0

Table 2: Qualitative questions and the corresponding number of subjects
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Figure 3: The relation between A−R (ambiguity1) and Ab−A (ambiguity2)

Figure 4: The relation between A_b − A (ambiguity2) and A_bb − A_b
(ambiguity3)
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Figure 5: The relation between A − R (ambiguity1) and A_bb − A_b (am-
biguity3)

4 Conclusion
This paper experimentally investigates the observability of the dilation

property in ambiguity. Subjects were asked to bet on colors in two ambigu-
ous urns consecutively and to reveal their certainty equivalents. Although
theoretical predictions suggest that certainty equivalents should decrease for
ambiguity-averse subjects and increase for ambiguity-seeking ones, our ex-
perimental results show the opposite.

A possible interpretation is that some subjects integrate each bet and
perceive a correlation between the probabilities of consecutively drawn colors,
anticipating that certain colors are more or less likely to reappear. Our
findings show that subjects who perceive no correlation do not exhibit the
opposite result as strongly as those who expect such correlation. While
the dilation property is not directly observed, subjects tend to integrate
each decision and consider joint probabilities, which serves as an indirect
indication of the dilation property. The additional experiments align with the
primary findings, and responses to qualitative questions suggest an increasing
difficulty in prediction, further supporting the indirect presence of dilation.
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Appendix

Proof of Theorem. We only proved the ambiguity averse case. R > A is
obviously seen because(

p01 + p02, p03 + p04
)
(

(
(1− ε)(p01 + p02), (1− ε)(p03 + p04) + ε

)
.

In what follows, we show A > A_x. x = {b, w}.
Under the symmetry, (p01 + p02, p

0
3 + p04) = (p01/(p

0
1 + p02), p

0
2/(p

0
1 + p02)) =

(p03/(p
0
3 + p04), p

0
4/(p

0
3 + p04)), it holds that

(1− ε)p01
(1− ε)(p01 + p02) + ε

=

(
1− ε

(1− ε)(p01 + p02) + ε

)
p01

p01 + p02
< (1− ε)(p01 + p02)

and

(1− ε)p02 + ε

(1− ε)(p01 + p02) + ε

=

(
1− ε

(1− ε)(p01 + p02) + ε

)
p02

p01 + p02
+

ε

(1− ε)(p01 + p02) + ε

> (1− ε)(p01 + p02) + ε = (1− ε)(p03 + p04) + ε

because
ε

(1− ε)(p01 + p02) + ε
> ε.

Hence we proved

(
(1−ε)(p01+p02), (1−ε)(p01+p02)+ε

)
(

(
(1− ε)p01

(1− ε)(p01 + p02) + ε
,

(1− ε)p02
(1− ε)(p01 + p02) + ε

)
,

and(
(1−ε)(p03+p04), (1−ε)(p03+p04)+ε

)
(

(
(1− ε)p03

(1− ε)(p03 + p04) + ε
,

(1− ε)p04
(1− ε)(p03 + p04) + ε

)
.

That leads to the conclusion. �
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