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Abstract

As networks continue to increase in size, current methods must be capable of han-
dling large numbers of nodes and edges in order to be practically relevant. Instead of
working directly with the entire (large) network, analyzing sub-networks has become
a popular approach. Due to a network’s inherent inter-connectedness, sub-sampling is
not a trivial task. While this problem has gained attention in recent years, it has not
received sufficient attention from the statistics community. In this work, we provide
a thorough comparison of seven graph sub-sampling algorithms by applying them to
divide-and-conquer algorithms for community structure and core-periphery (CP) struc-
ture. After discussing the various algorithms and sub-sampling routines, we derive the-
oretical results for the mis-classification rate of the divide-and-conquer algorithm for
CP structure under various sub-sampling schemes. We then perform extensive experi-
ments on both simulated and real-world data to compare the various methods. For the
community detection task, we found that sampling nodes uniformly at random yields
the best performance. For CP structure on the other hand, there was no single winner,
but algorithms which sampled core nodes at a higher rate consistently outperformed
other sampling routines, e.g., random edge sampling and random walk sampling. The
varying performance of the sampling algorithms on different tasks demonstrates the
importance of carefully selecting a sub-sampling routine for the specific application.

1 Introduction

Graphs, or networks1, provide a simple and intuitive model for interconnected systems where
objects or entities are represented as nodes and their relationships are denoted as edges.
Graphs have been applied to many real-world applications, ranging from friendships (Girvan
and Newman, 2002) to brain connectivity (Telesford et al., 2011). As their popularity has
grown, so too has their size: it is not uncommon for researchers to now work with thousands,
millions, or even billions of nodes and edges (e.g., Backstrom et al., 2006; Rozemberczki et al.,
2019). Thus, modern network analysis methods must scale to such large datasets if they are
to be practically useful.

1We will use these terms interchangeably in this work.
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One popular approach for working with large data sets in general, and large graphs
in particular, is sub-sampling. The idea is simple: first the researcher divides the data into
smaller sub-sets before performing analyses on the sub-sets. The analyses are then combined
to give a result on the original (larger) data set. Generally, performing an analysis multiple
times on smaller data sets is much faster than applying it once to the entire dataset. While
sub-sampling and divide-and-conquer approaches have found great success across various
statistical, machine learning and computer science tasks (Jordan, 2012), there are some
unique challenges to applying these techniques to graph-valued data. The main difficulty is
that the nodes and edges which make up the graph are, by their very nature, dependent. As
a graph can have a highly complex topology, it is unclear if these features will be preserved in
the sub-graphs, and if not, it is unclear how that affects the analysis. Thus, it is paramount
to understand the effect of the graph sub-sampling routine on the task of interest.

Despite its importance, graph sampling is still an open-problem, and, in particular, has
received less attention from the statistics community. Leskovec and Faloutsos (2006) study
the similarity between various measures computed on the original graph and their sub-graphs,
including: clustering coefficients, degree distributions, largest eigenvectors and more. The
authors find that while edge sampling performs poorly and random node sampling performs
surprisingly well, random walk and forest fire samplers yield sub-networks most similar to the
original network. Recently, Rozemberczki et al. (2020) develop a package to easily implement
various sub-sampling routines. The new package is then applied to a variety of tasks, from
computing average degrees to node classification. To our knowledge, their are not any works
studying the effects of graph sub-sampling from a statistical angle, nor specifically studying
their effect on divide-and-conquer algorithms.

In this work, we seek to close this gap by comparing graph sub-sampling methods on
divide-and-conquer algorithms. We focus on two of the most important meso-scale struc-
tures: community structure (Newman, 2006), where nodes cluster into highly connected
groups, and core-periphery structure (Yanchenko and Sengupta, 2023), where nodes are ei-
ther in the densely-connected core or sparsely-connected periphery. Our main contribution
is a thorough comparison, both theoretically and empirically, of seven sub-sampling routines
on the performance of divide-and-conquer algorithms for identifying these structures. After
introducing the methods, we recap the theoretical results from Mukherjee et al. (2021) before
deriving novel theoretical results for the CP method of Yanchenko (2022). In particular, we
derive the general mis-classification rate of the algorithm and give specific results for several
sub-sampling methods. Finally, we apply these methods to various synthetic and real-world
networks. We find that random node and random node neighbor yield the best community
structure identification results, while routines which sample core nodes with a high proba-
bility, e.g., edge sampling and random walk, perform the best for the CP identification task.
Indeed, the sub-sampling routines that perform well for one task, generally did not perform
as well on the other, underscoring the importance of carefully choosing the sub-sampling
algorithm for the specific problem.

The layout of the rest of the paper is as follows. In Section 2 we introduce the divide-
and-conquer algorithms as well as the various sub-sampling routines. Section 3 is devoted
to theoretical results while Sections 4 and 5 apply the methods to simulated and real-world
networks, respectively. Finally, we share concluding thoughts in Section 6.
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2 Methodology

We begin by discussing the divide-and-conquer algorithms for community structure and CP
structure, followed by presenting seven graph sub-sampling algorithms.

2.1 Divide-and-conquer for community structure

Mukherjee et al. (2021) propose PACE, a divide-and-conquer algorithm to identify community
structure in networks. The algorithm randomly samples sub-graphs, and then applies a
community detection algorithm to each sub-graph. This step repeats many times before
the more challenging step of “stiching” together the results from the sub-samples. Since
community labels are not identifiable, this combining step is non-trivial. To avoid this
problem, the authors propose an estimate of the clustering matrix C instead of directly
estimating the community labels as the clustering matrix is unique. This clustering matrix
can then be used to extract the community labels.

More specifically, let A be the n × n adjacency matrix corresponding to graph G with
m total edges.2 Let Z ∈ {0, 1}n×K correspond to the true community labels where Zik = 1
if node i is in cluster k for k = 1, . . . , K communities. We assume that K is known. We
can define C = ZZT ∈ {0, 1}n×n as the clustering matrix where Cij = 1 if nodes i and
j are in the same community and 0 otherwise. Notice that C does not depend on the
exact community labels (which are equivalent up to permutation) but only on the pair-wise
relationship between nodes.

PACE begins by randomly sampling a sub-graph Sb of graph G with qn nodes where
q ∈ (0, 1) is the proportion of nodes in the sub-sample. With sub-sample in hand, we can
apply any community detection algorithm to this sub-sample, e.g., spectral (Ng et al., 2002),
modularity maximization (Girvan and Newman, 2002), semi-definite programming (Cai and
Li, 2015), etc. The resulting membership vectors of these clustering algorithms will allow us

to construct Ĉ(b) ∈ {0, 1}n×n where Ĉ
(b)
ij = 1 if both nodes i and j appear in sub-graph Sb

and were assigned to the same community and 0 otherwise. We repeat this process for B
sub-graphs, yielding Ĉ(1), . . . , Ĉ(B).

The key step in this algorithm is combining the results from the B sub-graphs. Let Nij

be the number of times that both nodes i and j were chosen in the same sub-sample. Then
the combined estimator Ĉ ∈ [0, 1]n×n of the clustering matrix is defined by

Ĉij = I(Nij > β)

∑B
b=1 Ĉ

(b)
ij

Nij

(1)

where 1 ≤ β ≤ B is a tuning parameter. The combined estimator Ĉ is the proportion of
sub-samples where nodes i and j were both sampled and assigned to the same community.
We compute this quantity, however, only for the node pairs which were sampled a sufficient
number of times (> β times), otherwise the estimate is set to 0. Lastly, we can apply a
clustering algorithm, e.g., k-means, to Ĉ in order to obtain the final community membership
vector. The full algorithm is reported in Algorithm 1.

2In this work, we only consider undirected, unweighted networks without self-loops, but the ideas can
easily be generalized.
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Algorithm 1 PACE for community structure

Result: Community membership vector ĉ
Input: n× n adjacency matrix A, number of communities K, proportion of nodes to sub-
sample q, number of sub-samples drawn B, sub-sampling scheme S, clustering algorithm A,
tuning parameter β
for B times do

Randomly sample sub-network S(b) using S
Apply A to S(b)

Obtain clustering matrix Ĉ(b) ∈ {0, 1}qn×qn

end
Compute N where Nij is the number of times nodes i and j were sampled together in a
subgraph.

Compute Ĉ where Ĉij = I(Nij > β)
∑B

b=1 Ĉ
(b)
ij

Nij

Perform k-means clustering on Ĉ to get final community membership vector ĉ ∈ {1, . . . , K}n

The key advantage of this algorithm is that it estimates C, the clustering matrix, instead
of directly estimating the community memberships Z, as the clustering matrix is independent
of label permutations. Moreover, the estimate of Ĉij is intuitive, namely the number of times
nodes i and j were assigned to the same community divided by the number of times they were
sampled together, given they were sampled together a sufficient number of times. Checking
if Nij > β acts as a smoothing step by discarding the estimates for node pairs which only
appeared in a few sub-graphs. Of course, β is a tuning parameter that must be chosen by
the user. As suggested by the authors, we set β to be the 40th percentile of Nij.

The main focus of this paper is the sub-sampling step of the divide-and-conquer algo-
rithm, a topic that the authors of PACE give some attention too (see Section 2.3 of Mukherjee
et al. (2021)). In particular, they suggest randomly sampling nodes, finding h-hop neighbors,
onion neighborhoods or sub-graphs with roots at high degree nodes as possible sub-sampling
schemes, but for nearly all experiments, they simply use random node sampling. Finally,
note that Mukherjee et al. (2021) also propose another divide-and-conquer algorithm, GALE,
but for simplicity we will only consider PACE. Indeed, in general the authors showed the
superior performance of PACE compared to GALE, as well as GALE performing best with
random node sampling.

2.2 Divide-and-conquer for core-periphery structure

We now turn our attention to the divide-and-conquer algorithm for detecting CP structures
in large networks proposed by Yanchenko (2022).

2.2.1 Core-periphery metric

Before presenting the divide-and-conquer algorithm, we first discuss the metric from Borgatti
and Everett (2000) (BE) used to quantify the CP structure of a network. The authors find
the correlation between the observed network and a network with “ideal” CP structure. Let
A again be the adjacency matrix for the observed network and c ∈ {0, 1}n be the CP labels
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where ci = 1 if node is in the core, and 0 otherwise. Then the BE metric is

ρ(A, c) = Cor(A,∆c) (2)

where Cor(A,B) is the Pearson correlation of the vectorized upper-triangles of matrices A
and B, and ∆c represents the ideal CP structure with (∆c)ij = ci + cj − cicj. In words,
(∆c)ij = 1 if either node i or j is in the core, and 0 otherwise. The metric in (2) can be
optimized using the greedy algorithm proposed in Yanchenko (2022) to approximate

c̃ = arg max
c∈{0,1}n

Cor(A,∆c). (3)

2.2.2 Divide-and-conquer algorithm

With a metric to quantify the CP structure of a network, we can present the divide-and-
conquer algorithm. We slightly modify the algorithm in Yanchenko (2022) for reasons that
will be plain later. The idea is to find the CP structure on small sub-networks of the
network and then combine these results together to yield the CP labels on the entire network.
Specifically, let A be the adjacency matrix with n nodes, q ∈ (0, 1) be the proportion of nodes
to sub-sample and B the number of sub-sample to draw. First, we sample a sub-graph with
qn nodes using some graph sub-sampling routine, and find the optimal CP labels from (3).
We repeat this process B times and output ĉ ∈ [0, 1]n where ĉi is the number of times node i
was assigned to the core over the total number of samples B. The full algorithm is presented
in Algorithm 2.

Algorithm 2 Divide-and-conquer for core-periphery structure

Result: Core-periphery proportions ĉ
Input: n × n adjacency matrix A, proportion of nodes to sub-sample q, number of sub-
samples drawn B, sub-sampling scheme S
Initialize x = 0n where xi is the number of times node i is assigned to the core for i = 1, . . . , n
for B times do

Randomly sample sub-network S(b) using S with nodes V = {v1, . . . , vqn}
Obtain CP labels of S(b), ĉ(b) ∈ {0, 1}qn
xvi = xvi + 1 if ĉ

(b)
i = 1

end

ĉi = xi/B = # of times node i was assigned to core / # of sub-samples

This algorithm is slightly different from the original paper. Originally, the output was
the number of times node i was assigned to the core, divided by the number of times that
node i was sampled. Indeed, this approach more closely resembles the stitching routine of
the PACE algorithm. The reason that PACE divides by the number of times that nodes i
and j were sub-sampled together, Nij, and then only keeps the estimate if Nij > β is that

the estimate Ĉij would be unreliable if it was based only on a few sub-samples. For the
CP task, however, if a node is sub-sampled infrequently, this gives us more information,
rather than less. Indeed, core nodes are those that are more central or influential in the
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network. Therefore, if a node is sampled infrequently, then it is unlikely to be important
and also unlikely to be a part of the core. Thus, dividing by the total number of samples
will decrease the estimate of ĉi for infrequently sampled nodes. Implicitly, this means we
should favor sub-sampling methods which have a high probability of sampling core nodes.
As we will see, this small change not only makes proving theoretical statements easier, but
also improves the empirical performance of the algorithm.

2.3 Sub-graph sampling

Finally, we discuss seven sub-sampling algorithms. We select a variety of sampling schemes
including: node-based (random and proportional to degree); edge-based (random) and ex-
ploration (breadth-first search, depth-first search, random node-neighbor and random walk).

Random Node (RN): The simplest sampling method is to randomly sample nodes with-
out replacement. Each node has an equal probability of being selected, and once all qn nodes
are chosen, then the edges between these nodes make up the sub-graph. This method was
originally considered in both Mukherjee et al. (2021) and Yanchenko (2022).

Degree Node (DN): In this method, nodes are again sampled at random, but now their
probability of being sampled is proportional to their degree. Once the qn nodes are sampled,
then the sub-graph is completed with all associated edges between sampled nodes. Math-
ematically, this means sampling without replacement from a distribution with probability
mass function P(Z = j) = dj/

∑
k dk where dj is the degree of node j.

Random Edge (RE): Instead of randomly sampling nodes, this approach samples edges
uniformly at random. Edges are drawn with equal probability and the two nodes connected
by the sampled edge are added to the sub-graph. This process continues until qn nodes have
been sampled, at which point the remaining edges between sampled nodes are also added.
Adding the remaining edges between sampled nodes is sometimes called the Induction Step
(Ahmed et al., 2013) and will be used in all remaining algorithms as well. While edges can
be selected with equal probability, if the graph has edge weights than this could be used to
for a sampling scheme analogous to DN.

Breadth first search (BFS): The previous three methods randomly sampled nodes or
edges. For the remaining methods, we will consider graph exploration approaches. The BFS
algorithm begins by sampling a node at random. Then all neighbors of this sampled node
are included in the sub-graph as well. Next, all neighbors of the neighbors are also included
in the sub-sample. This process continues until we have sampled qn nodes.

Depth first search (DFS): DFS can be considered as the complement of a BFS algo-
rithm. This method also begins by randomly sampling a starting node. Then instead of
including all neighbors of this starting node, it randomly chooses one neighbor. From there,
it randomly chooses one neighbor of the neighbor. The process continues until qn nodes
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are sampled, or the search terminates as there are no more nodes to traverse. If the latter
happens, a new node is sampled to start the process again until qn nodes have been reached.

Random node-neighbor (RNN): This approach shares similarities to BFS. As in BFS,
a node is sampled at random and then all of its neighbors as also added to the sub-graph.
Instead of looking at the neighbors of neighbors as in BFS, RNN then samples a new node
and includes all of the new node’s neighbors. This continues until qn nodes have been
sampled.

Random walk (RW): In our final algorithm, we traverse the network through a random
walk. Specifically, we begin by sampling a node uniformly at random. Then from this node,
one of its neighbors is sampled at random, and this process continues until the walk has
traversed qn nodes.

3 Theoretical Results

In this section, we present theoretical results for each algorithm. As this paper’s focus is
on the sub-sampling step, we will primarily focus on the role of the sampling scheme on the
theoretical results. Additionally, Mukherjee et al. (2021) devoted significant attention to the
theoretical properties of PACE, so we only briefly discuss these before devoting the majority
of the space to new theoretical results on the CP divide-and-conquer algorithm.

3.1 PACE algorithm

The goal of the theoretical results for PACE is to show that the estimated clustering matrix
Ĉ, is “close” to the true clustering matrix C which generated the network. To formalize this
notion, let δ̃(C∗, Ĉ) be the difference between the true matrix C∗ and estimate Ĉ where

δ̃(C,C ′) =
1

n2
||C − C ′||2F

and || · ||F is the Frobenius norm. Thus, δ̃(C, Ĉ) is the mis-clustering rate of the PACE
algorithm. In the following theorem, the authors bound the expectation of this term under
a general community detection algorithm and sampling scheme.

Theorem 3.1 from Mukherjee et al. (2021): Given some network A with K communities
where the largest community has pmaxn nodes, and some sampling scheme S, let S be a
randomly chosen sub-graph of the network. Moroever, let Ĉ be the estimated clustering
matrix returned by PACE. Then the expected mis-clustering rate, Eδ̃(C, Ĉ) can be bounded
by:

Eδ̃(C∗, Ĉ) ≤ B

βn2
E||Ĉ(S) − C(S)||2F + pmaxmax

i,j
P(Nij < β) (4)

where Ĉ(S) and (C∗)(S) are the estimated and true clustering matrices, respectively, restricted
to sub-graph S.
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See Mukherjee et al. (2021) for the proof of this result. There are two main parts to the bound
in (4). The first term quantifies the performance of the community detection algorithm on
a randomly chosen sub-graph S which is mainly a function of the clustering algorithm. On
the other hand, the second term measures how well the graph is covered by the sub-samples,
and depends only on the sub-sampling procedure.

As our interest is on the sub-sampling step, we focus on this second term. Indeed, the
authors of PACE provide two special cases of the results under the RN sampling scheme and
Ego neighborhoods. As we do not discuss ego neighborhoods, we omit discussion of this
result. The following gives the results for RN sampling.

Corollary 3.1 from Mukherjee et al. (2021): Assume that nodes are chosen uniformly
at random to construct the subgraphs. Then

pmaxmax
i,j

P(Nij < β) = O(e−κBp) (5)

where p = q2(1 + o(1)), β = θBp for θ ∈ (0, 1) and κ = (1− θ)2/2.

This result shows that the mis-clustering error coming from the sub-sampling step decreases
exponentially with B, the total number of sub-samples drawn, as well as q, the proportion
of nodes in each sub-graph. As the authors note, deriving the specific result for other sub-
sampling routines is difficult, so we do not consider them here.

3.2 CP algorithm

Using similar ideas to that of Mukherjee et al. (2021), we present novel theoretical results for
the CP divide-and-conquer algorithm. Similar to the previous sub-section, we are interested
in bounding the expected mis-classification error.

3.2.1 General mis-classification result

First, we derive the expression for the general mis-classification rate. Recall from Algorithm
2 our core estimates ĉ, where

ĉi =
1

B

B∑
b=1

ĉ
(b)
i

and ĉ(b) are the CP labels from sub-sample b, i.e., ĉ
(b)
i = 1 if node i was assigned to the core

in sub-sample b, and 0 otherwise. Then we define

δ(ĉ, c∗) =
1

n
||ĉ− c∗||22 =

1

n

n∑
i=1

(ĉi − c∗i )
2

to quantify the mis-clustering of the algorithm. The following result is analogous to Theorem
3.1 from Mukherjee et al. (2021).
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Theorem 3.2: Given some network A and sampling scheme S, let S be a randomly chosen
sub-graph. Let ĉ be estimated CP labels using the CP divide-and-conquer algorithm. Then
the expected mis-clustering rate, Eδ(ĉ, c∗) can be bounded by

Eδ(ĉ, c∗) ≤ 1

n

(
E||ĉ(S) − (c∗)(S)||22 − E

n∑
i=1

y
(S)
i

)
(6)

where ĉ(S), (c∗)(S) ∈ {0, 1}qn are the estimated and true CP labels, respectively, restricted to

sub-graph S and y
(S)
i = 1 if node i is in the core and was not sampled in sub-graph S, and 0

otherwise.
Please see the Supplemental Materials for all proofs in this sub-section. Similar to the

results of PACE, our error bound has two terms; the first which primarily depends on the
CP algorithm, and the second which only depends on the sub-sampling routine. Indeed, if
the expected fraction of mis-classified nodes and the expected fraction of core nodes that are
not sampled both go to 0 for large n, then this entire term will converge to 0.

We focus on the second term which is the expected number of core nodes which are not
sampled in a given sub-graph. First, this term shows the importance of using a sub-sampling
routine which samples core nodes with high probability. Indeed, if the probability of a core
node being sampled increases, then this term decreases. Secondly, this term notably differs
from the analogous term in the PACE theory. The CP algorithm divides the estimates by B,
the total number of sub-samples, instead of the number of sub-graphs for which a node was
sampled as in the PACE algorithm. Because of this, an error is guaranteed if a core node is
not sampled. This choice will make the theory easier to derive, but puts us at risk of greater
error. The key observation is that in real-world networks, the number of the core nodes is
typically much smaller than the number of peripheral nodes. Indeed, in practice we found
that dividing by B instead of the number of times a node was sub-sampled led to improved
performance.

3.2.2 Specific sub-sampling results

The results of Theorem 3.2 are agnostic to the network-generating model, CP detection
algorithm, and sub-sampling scheme. By assuming a particular model, we can find the
analytic expression for the second term in (6) for the majority of the sub-sampling schemes
in Section 2.3.

We assume networks are generated with a CP structure from the stochastic block model

(SBM) (Holland et al., 1983). For adjacency matrix A, let Aij
ind.∼ Bernoulli(ϱnPij) where

P corresponds to a SBM that does not depend on n, and ϱn → 0 is a sparsity-inducing
parameter. Furthermore, if c∗ correspond to the true CP labels, then

Pij =


p11 c∗i = c∗j = 1

p22 c∗i = c∗j = 0

p12 otherwise

.

If p11 > p12 > p22, then this model generates networks with a CP structure, so we call it the
CP-SBM. We may also assume that αn = k/n, the proportion of core nodes, goes to zero to
model the empirical observation that the core is typically smaller than the periphery.
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In the following Corollary, we find an analytic expression for the expected number of core
nodes that are not sampled in each sub-graph. We assume that n is large enough such that
the probability of sampling the same node twice is negligible. The result is in Corollary 3.2
with proof in the Supplemental Materials.

Corollary 3.2: Let A be generated from a CP-SBM with n nodes and k core nodes. Let
S be a sub-graph of A of size qn where 0 ≤ q ≤ 1 sampled using S where S is one of the
sub-sampling schemes from this paper. If y

(S)
i is the event that node i is a core node and not

sampled in S, then

E
1

n

n∑
i=1

y
(S)
i = (1− qξ(S)n )

k

n
(7)

where ξ
(S)
n takes the expression listed in Table 1.

S ξ
(S)
n limn→∞ ξ

(S)
n

RN 1 1

DN n{(k−1)p11+(n−k)p12}
k(k−1)p11+2k(n−k)p12+(n−k)(n−k−1)p22

p12
p22

RE n{(k−1)p11+(n−k)p12}
k(k−1)p11+2k(n−k)p12+(n−k)(n−k−1)p22

p12
p22

RNN 1+(k−1)p11+(n−k)p12
1+ k

n
{(k−1)p11+(n−k)p12}+n−k

n
{kp12+(n−k−1)p22}

p12
αnp12+p22

RW * *

Table 1: Theoretical results for sub-sampling scheme in CP divide-and-conquer algorithm.

The expression for RW (*) appear in the Supplemental Materials.

The proof carefully computes the expected number of cores nodes that are sampled in
each sub-graph. For RN, DN and RE, we express the number of core nodes sampled as a
hyper-geometric distribution. For RNN, the number of core nodes sampled is conditional on
whether the first node drawn is from the core or periphery, so we consider these two cases.
Lastly, we use a recursive relationship to model the RW case.

In (7), we see the general result for the average number of core nodes that are not sampled
in a given sub-graph. As expected, as size of the sub-graphs increases (q), this term decreases.
Moreover, this expression depends on k/n = αn. Assuming that the periphery dominates the
core, this entire term will go to zero regardless of the sampling scheme which theoretically
validates our decision to divide the core estimates by B. Of course, the sub-sampling routine
will still affect the performance for finite n.

In Table 1 we present the form of the expression in (7) for five of the seven routines

from Section 2.3. From (7), the overall error is smaller when ξ
(S)
n is larger so large values

of ξ
(S)
n are to be preferred. BFS and DFS are difficult to analyze so these are omitted, and
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RW has a complicated expression that we relegate to the Supplemental Materials. For the
other sub-sampling schemes, we first notice that DN and RE yield identical expressions.
This means that these sampling schemes are equivalent in terms of the number of core nodes
that are expected to sample in each sub-graph when the network is generated from a CP-
SBM. This does not mean that they will perform identically as the sub-sampling scheme
affects the topology of the sub-graph S which may affect the first term in (6). Next, the

exact expressions for ξ
(S)
n are a bit cumbersome, so it is helpful to look at the asymptotic

expression. Indeed, for DN and RE, this becomes p12/p22, the ratio of the core-periphery edge
probability to the periphery-periphery edge probability. In a CP-SBM, we have p12 > p22
so p12/p22 > 1. This means that DN and RE have a uniformly smaller expected error than
RN. Additionally, as the strength of the CP structure of the network increases, the error
will decrease because p12/p22 increases. In other words, we expect a lower error rate if
the network exhibits a stronger CP structure. Finally, for the asymptotic results of RNN,
p12/(αnp12+p22 < p12 < p22. Thus, DN and RE are expected to have a lower error than that
of RNN. Moreover, if (1 − αn)p12 < p22, then RNN is also expected to have a worse error
rate than that of RN.

It is important to highlight that these results and discussion apply only to the second
term in (6). It is possible that a sub-sampling method may not sample core nodes as often,
but has a lower mis-classification rate on the sub-graph, leading to a smaller value of the
first term in (6), or vice-versa. Studying this term is more difficult, especially for methods
besides RN, so we leave this as an avenue of future work.

4 Simulation Study

In this section, we carry out extensive simulations of both divide-and-conquer algorithms.
The goals of this section are to compare the performance of the algorithms under different
sub-sampling schemes and see if there exists an optimal sub-sampling method. Additionally,
we also hope to empirically validate the CP theoretical results. All experiments in this and
the subsequent section were carried out in R on a MacBook Pro with Apple M3 chip, 16
GB of memory parallelized using 10 cores. All code is available on the author’s GitHub:
https://github.com/eyanchenko/subsamp.

4.1 Community detection simulations

We begin by comparing the performance of PACE with different sub-sampling algorithms.
By generating networks with a known community structure, we can compare the outputted
membership vectors with the true clusters.

4.1.1 Settings

There are six simulations settings. In each, we generate networks, apply Algorithm 1 and
compare the estimated membership vector with the true labels using the adjusted rand index
(ARI). ARI provides a measure of concordance between true and estimated labels with 1
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Setting n p11 κ1 B qn
1 5000 (0.02,0.10) 0.75 1000 250
2 (1000,10,000) 0.04 0.75 1000 250
3 (1000,10,000) 0.04 0.75 1

2
n 250

4 5000 0.04 (0.50,0.95) 1000 250
5 5000 0.04 0.75 (100,10,000) 250
6 5000 0.04 0.75 1000 (100,500)

Table 2: Simulation settings for PACE divide-and-conquer algorithm. n is the number of
nodes in the network; p11 is the intra-community edge probability; κ1 is the proportion of
nodes in community 1; B is the number of sub-graphs sampled; and qn is the number of
nodes per sub-graph. The parameters which vary are highlighted in bold.

being the largest value and indicating a perfect match (up to permuting the label names).
We repeat this process for 100 MC iterations and record the average ARI.3

We generate networks with a community structure by using a K = 2-block SBM. Recall
from Section 3, if A is the corresponding adjacency matrix with data-generating model P ,

then Aij
ind.∼ Bernoulli(Pij) where Pij = pci,cj . We take p11 = p22 > p12 to generate networks

with assortative community structure where p11 = p22 and p12 represent the intra-community
and inter-community edge probabilities, respectively. We set p12 = 0.01 for all experiments
in this sub-section.

An overview of the simulation settings is available in Table 2. Setting 1 looks at the effect
of the intra-community edge probability where larger values indicated stronger community
structure. Settings 2 and 3 increase the number of nodes in the network with B held fixed and
increasing with n, respectively. The proportion of nodes in one community is the subject
of setting 4 where greater imbalance in the community sizes should make the task more
difficult. Finally, settings 5 and 6 look at the hyper-parameters in the PACE model, namely
the number of sub-graphs drawn and size of sub-graphs, respectively. For all experiments,
we use the fast greedy algorithm (Clauset et al., 2004) as our base community detection
algorithm as in Zhang et al. (2022).

4.1.2 Results

The results are in Figure 1. In Setting 1, save BFS and DFS, all methods yield an increasing
ARI as p11 increases. When p11 ≤ 0.04, RNN has the largest ARI while RN does the
best when p11 > 0.04. BFS improves at first before quickly dropping off, while DFS yields
extremely low ARI values. Indeed, in all settings, it is clear that DFS performs poorly.
Turning to setting 2, most methods’ ARI increases with n until n = 5000 before decreasing.
By n = 9000, these methods experience a steep drop off in performance. When B also
increases with n as in setting 3, DN, RE, RN, RNN and RW all have increasing ARI, with
no clear distinction.

3The run-time was also recorded but we do not report it. As some sub-sampling routines used optimized
functions from R packages while others are written by hand, it is not a fair comparison. In general, the
exploration-based sub-sampling methods will be slower.
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The effects of the distribution of nodes between communities is evident in setting 4.
Indeed, as the nodes are more disproportionately allocated between groups, each method
decreases in performance with RN being the most negatively affected. As B increases in
setting 5, all methods, save DFS, have an improvement in performance. Interestingly, while
RN and RNN plateau at an ARI of 1, DN, RE, RW and BFS all begin to yield slightly
decreasing values of ARI for B > 2500. Finally, setting 6 shows that as the number of nodes
in the sub-samples increases, the communities are easier to detect for all methods except
BFS and DFS. RN has the largest ARI followed by RNN for most values of q.

4.1.3 Discussion

From the results of these simulations, it appears that RN and RNN perform the best with
RW, RE and DN also yielding good results. Even more clearly, the results demonstrate
that BFS and DFS are poor samplers to use with the PACE algorithm. Setting 2 reveals
the importance of increasing the number of sub-samples as n increases, even though the
theoretical results depend on a fixed B. Settings 5 and 6 show that B and q must be
carefully chosen, where small values can severely hinder performance. Finally, all methods
suffer when the nodes are unequally distributed between communities. This is not surprising
as the identification problem is much more challenging in this setting. Indeed, the presence
of small communities likely requires the increase in the number of nodes per sub-sample in
order to capture the structure.

4.2 Core-periphery detection simulations

Similar to the previous sub-section, we now compare the performance of the various sub-
sampling routines from Section 2.3 on the CP divide-and-conquer algorithm.

4.2.1 Settings

We again look at six simulation settings. For each setting, we generate a network, apply Algo-
rithm 2 and compute the AUC between the outputted proportions and true labels. We vary
different aspects of the data-generating model as well as the algorithm hyper-parameters.
All networks are generated from a CP-SBM. The networks are generated the same as in the
community detection simulations except now p11 > p12 > p22 where p11, p12, p22 represent
the core-core, core-periphery, and periphery-periphery edge probabilities, respectively. Each
setting is repeated for 100 MC replications and the average AUC is reported.

The simulation settings are summarized in Table 3. For each setting, we fix p22 = 0.001
and set p12 = 1

2
p11. In setting 7, we vary p11 where larger values correspond to a greater

strength of a CP structure. Settings 8 and 9 look at the effect of increasing the network size
where the former fixes B while the latter allows B to increase with n. The effect of the core
size is studied in setting 10. Choice of hyper-parameters are investigated in settings 11 and
12, varying the values of B and q, respectively.
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Figure 1: Community detection simulation results. The number in the upper-left corner
corresponds to the simulation setting (1-6).
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Setting n p11 αn B qn
7 5000 (0.002,0.020) 0.01 1000 100
8 (1000,10,000) 0.004 0.01 1000 100
9 (1000,10,000) 0.004 0.01 1

2
n 100

10 5000 0.004 (0.002,0.30) 1000 100
11 5000 0.004 0.01 (100,10,000) 100
12 5000 0.004 0.01 1000 (50,500)

Table 3: Simulation settings for CP divide-and-conquer algorithm. n is the number of nodes
in the network; p11 is the core-core edge probability; αn is the proportion of nodes in the
core; B is the number of sub-graphs sampled; and qn is the number of nodes per sub-graph.
The parameters which vary are highlighted in bold.

4.2.2 Results

The results are in Figure 2. In setting 7, as p11 increases, all sub-sampling schemes have
an increasing AUC. BFS, DN, RE, and RW all perform nearly identically with DFS also
performing the same once p11 ≥ 0.005. On the other hand, RN and RNN clearly yield worse
results. Next, it is helpful to compare settings 8 and 9 together since they both look at
increasing n. Similar to setting 7, DFS yields the best results with BFS, DN, RE, and RW
yielding similar performance, while RN and RNN consistently yield the lowest AUC values.
In addition, we notice that if B is fixed and n increases (setting 8), the AUC values start
to decrease for larger n, most notably for RN and RNN. In setting 9, however, where B
increases with n, all methods save RNN have generally monotonically increasing AUC with
increasing n.

Moving to setting 10, the performance of DFS drastically decreases as the core size
increases. All other methods have roughly constant AUC values. In setting 11, we see that
increasing the number of sub-sampled nodes beyond one or two thousand yields minimal
returns for DFS, BFS, DN, RE, and RW. RN, however, has monotonically improving AUC
with increasing B while RNN also improves with larger B. These trends are similar in setting
12. Increasing the number of nodes in the sub-samples only seems to noticeably improve RN
and RNN; the other methods remain relatively unchanged, especially once qn > 50.

4.2.3 Discussion

There are several takeaways from these simulation settings. First, it is clear that BFS, DN,
RE, and RW are the best sub-sampling methods for CP identification. DFS also performs
well but its behavior for increasing core size is somewhat concerning. On the other hand,
RN and RNN display the worst performance. Since the mis-classification rate is lower when
core nodes are sampled more frequently, the best methods will have a higher probability of
sampling core nodes. Indeed, both RN and RNN sample core nodes less frequently than
BFS, DN, RE, and RW. This also aligns with the theoretical results which showed that
RE and DN should perform similarly, and that both of these methods should outperform
RN. Continuing on a theoretical thread, we note that the theory in Section 3 assumes that
the number of sub-graphs, B, is fixed. In Setting 8, however, we saw that this assumption
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Figure 2: Core-periphery simulation results. The number in the upper-left corner corre-
sponds to the simulation setting (7-12).
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can lead to poor performance empirically. Indeed, settings 8 and 9 seem to indicate that
B must be increased in larger networks, as there are more nodes to sample. Lastly, these
results have implications on the choice of hyper-parameters. In settings 11 and 12, we found
that increasing B and q only leads to marginal gains in performance, particularly for BFS,
DN, RE, and RW. This means that these values can be set relatively small, increasing the
computational speed. RN and RNN require larger B and q to match the other method’s
performance, further demonstrating their weakness for this task.

5 Real-data analysis

In this section, we implement both divide-and-conquer algorithms on various real-world
networks.

5.1 Community detection

We apply the PACE algorithm to two different real-world networks. This first is Political
Blogs (Adamic and Glance, 2005) (n = 1490,m = 16, 715) where nodes represent blogs
and edges arise if one blog references another. The blogs are divided between liberal and
conservative, so we set K = 2, and keep only the largest connected component, yielding
n = 1222. The second is Facebook (Leskovec and Mcauley, 2012) (n = 4039,m = 88, 234)
where nodes are users connected with an edge if they are friends. This is an ego network with
ten egos so we set K = 10. We remove all edge weights and directions as well as self-loops
for both networks.

We apply the PACE algorithm to each network and report the size of the largest commu-
nity as well as the modularity of the returned node membership vector where a large value
indicates a better community assignment. Since we have the ground truth labels (which we
call the Oracle) for the Political Blogs network, we can also compute the ARI between the
true and estimated labels. Finally, we set q = 250/n for each network, and B = 1000 and
5000 for Political Blogs and Facebook, respectively.

The results are in Table 4. For Political Blogs, RN yields both the largest modularity
value as well as most similar labels to the ground-truth. RNN does the next best, with RE
also performing similarly. On the other hand, DFS yields substantially lower modularity and
ARI values, likely due to its much greater imbalance in community labels. The results are
similar for Facebook, where RN has the largest modularity and RNN provides the second-
largest. In this example, both BFS and DFS provided imbalanced class labels, leading to
lower modularity values.

5.2 Core-periphery detection

We now compare the sub-sampling routines using the CP divide-and-conquer algorithm on
real-world networks: Airport (Csardi, 2013) is a network where nodes correspond to airports
and edges to flights between airports (n = 755, m = 4623); and Twitch (Rozemberczki et al.,
2019; Leskovec and Krevl, 2014) has nodes which are users and edges represent friendships
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Political Blogs Facebook
Method Size Q ARI Size Q
Oracle 0.52 0.405 – – –
RN 0.53 0.425 0.810 0.46 0.743
DN 0.63 0.403 0.430 0.57 0.625
RE 0.66 0.414 0.495 0.64 0.550
BFS 0.62 0.388 0.463 0.86 0.041
DFS 0.90 0.075 0.061 0.99 0.003
RNN 0.63 0.419 0.584 0.66 0.694
RW 0.62 0.406 0.454 0.72 0.546

Table 4: Real data analysis results for PACE community structure divide and conquer
algorithm.

(n = 168, 11, m = 6, 797, 557). Edge weights and directions were again removed, along with
self-loops.

For each network, we report the size of the core and corresponding BE metric value for
the optimal core returned by the algorithm. In the simulation settings, we simply used the
core proportions as a measure of a node’s coreness, but for the real data, we want binary CP
labels. To convert the core proportions to binary labels, we sort the nodes in descending order
of their proportions. Then one by one, starting with the node with the largest proportion,
we add this node to the core and compute the BE metric. We continue this process and
select the core corresponding to the largest BE metric.

While the airport network is relatively small, this allows us to also find the CP labels
using the vanilla BE metric algorithm without the divide-and-conquer step. We label this
as “Full” in our results, and this allows us to compare both the core nodes and BE metric
returned by the divide-and-conquer algorithm. Finally, we note the following values of q and
B that we used for each network: Airport, q = 100/n and B = 5000; and Twitch, q = 500/n
and B = 25, 000.

In Table 5, we report the core size and BE metric for the detected cores, and in Figure 3,
we compare the cores returned by the different algorithms. Specifically, for each sub-sampling
pair, we compute the Jacaard coefficient (JC) between the core sets. The more similar the
cores are, the larger the JC will be. For Airport, RE returns the most similar core as that of
the full algorithm. All other methods have similar core sizes and BE metric values. Indeed,
Figure 3 shows that each core is not only a comparable size, but the core nodes returned
by each sub-sampling method have significant overlap. For Twitch, RE and RW yield the
largest BE values, with RN, BFS and RNN also being similar. DN yields a vastly different
core size and BE value, while DFS does not perform as well. For this network, RW and RE
have the most similar cores.

6 Conclusion

Graph sub-sampling has long been recognized as an important task by network scientists and
computer scientists, but it has yet to draw as much attention from statisticians. In this work,
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Airport Twitch
Method k BE k BE
Full 33 0.236 – –
RN 29 0.236 275 0.077
DN 31 0.233 164 0.004
RE 31 0.233 170 0.079
BFS 35 0.234 88 0.076
DFS 27 0.225 155 0.066
RNN 30 0.234 91 0.076
RW 32 0.235 141 0.079

Table 5: Real data analysis results for core-periphery divide and conquer algorithm. k is the
number of nodes assigned to the core and BE is the value of the Borgatti and Everett metric
corresponding to the optimal labels.
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Figure 3: Comparison of cores returned using different sub-sampling algorithms. The color
of the square corresponds to the Jacaard coefficient between the two core sets with lighter
color meaning more similarity.

19



we offer an empirical and theoretical comparison of seven graph sub-sampling algorithms
from a statistical angle by applying these methods to divide-and-conquer algorithms for two
important meso-scale network features: community structure and core-periphery structure.

Based on our findings, we recommend random node sampling when trying to detect
community structure. This method had some of the best performance in the simulated
networks, as well as in the real-world networks. Moreover, random node sampling was
studied theoretically in Mukherjee et al. (2021) and is the easiest sub-sampling method to
implement. The reason for this good performance could be because random node sampling
can easily sample across the network without getting “stuck” in any one part. Of course,
random node sampling, as well as the other methods, will suffer if there are communities with
only a few nodes. In this case, it is important to increase the size of the sub-graphs and/or
the number of iterations. Randomly sampling nodes proportional to their degree as well as
random node neighbor sampling also provided good results on the synthetic and real-world
networks. Breadth-first and depth-first search algorithms, however, should be avoided for
this task.

As for core-periphery identification, there was no clear winner, but samplers which se-
lected core nodes with a higher probability consistently performed the best. Random edge
sampling and random walk both yielded good results across the simulated and real-world
data. On the other hand, random node sampling and random node neighbor performed
quite poorly in these settings, aligning with our theoretical results. Finally, the real-data
results show that many different cores can yield similar objective function values, implying
the objective function surface is relatively “flat.”

The contrasting performance of sub-sampling routines on the different identification task
is revealing. Random node and random node neighbor sampling performed the best for the
community detection problem, but were the two weakest methods for core-periphery iden-
tification. On the other hand, breadth-first and depth-first searches are good approaches
for identifying core-periphery structure, but not for community structure. These results
highlight the importance of tailoring the choice of sub-sampling algorithm to the particular
problem. Indeed, our CP theory revealed the optimal feature for a sampler is a high probabil-
ity of sampling core nodes. Deriving similar theory for future problems will help researchers
choose the best methods, or even may even drive them to derive novel sub-sampling schemes
for the specific problem.
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Supplemental Materials

Theoretical proofs

Proof of Theorem 3.2: Let c∗ be the true CP labels. Let ĉ be the estimated labels from
divide-and-conquer procedure where

ĉi =
1

B

B∑
b=1

ĉ
(b)
i

where ĉ(b) is the CP labels returned from the bth sub-sample. Note that ĉ
(b)
i is 1 if the node

was sampled and assigned to the core and 0 otherwise. Now, notice that

ĉi − c∗i =

(
1

B

B∑
b=1

ĉ
(b)
i

)
− c∗i =

1

B

B∑
b=1

(ĉ
(b)
i − c∗i ).

Thus,

δ(ĉ, c∗) =
1

n

n∑
i=1

{
1

B

B∑
b=1

(ĉ
(b)
i − c∗i )

}2

By Cauchy-Schwarz, we then have

δ(ĉ, c∗) ≤ 1

nB

n∑
i=1

B∑
b=1

{ĉ(b)i − c∗i }2 =
1

nB

B∑
b=1

n∑
i=1

{ĉ(b)i − c∗i }2

Now,
1

n

n∑
i=1

{ĉ(b)i − c∗i }2 =
1

n

n∑
i=1

I(ĉ(b)i ̸= c∗i )

is the mis-classification error of the algorithm on a single sub-graph. We can get an error
here from one of two ways. First, if our sub-graph contains node i but incorrectly classify
it. Second, if we don’t sample node i and it’s in the core. Thus,

1

n

n∑
i=1

{ĉ(b)i − c∗i }2 =
1

n
||ĉ(b) − c(b)∗||22 +

1

n

n∑
i=1

y
(b)
i

where c(b)∗ is the true core labels restricted to sub-graph b and y
(b)
i = 1 if node i is in the

core and was not sampled in b, and 0 otherwise. Thus,

δ(ĉ, c∗) ≤ 1

nB

B∑
b=1

(
||ĉ(b) − c(b)∗||22 +

n∑
i=1

y
(b)
i

)
Since each term in the sum is independent and identically distributed, we find

Eδ(ĉ, c∗) ≤ 1

n
(E||ĉ(S) − c(S)∗||22 − E

n∑
i=1

y
(S)
i ) (8)

where S is a randomly chosen sub-graph from our sub-sampling routine. This gives us the
desired result.
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Proof of Corollary 3.2: Here, we present the specific error for each of the sub-sampling
routines. First, let Y (b) be the number of core nodes drawn in sub-sample b, i.e.,

Y (b) = k −
n∑

i=1

y
(b)
i .

Without loss of generality, assume that the first k nodes in the network are the core nodes.

Random Node: For the random node sampling scheme, each node is equally likely to
be selected. Thus, Y (b) has a hyper-geometric distribution with a total population of size
n,“success” states in the population k, and draws qn, so

EY (b) =
qnk

n
= qk.

Another way to see this is that the probability of a core node being drawn is k/n and we
draw qn nodes so we get the qk. Thus, the expected number of core nodes which are not
sampled is simply

k − qk = (1− q)k

Therefore,

E
1

n

n∑
i=1

y
(b)
i = (1− q)

k

n
. □

For the following derivations, we note that m =
∑

i<j Aij is highly concentrated around
its mean,

∑
i<j Pij, and the error bound for m is much smaller than that of the other

(appropriately scaled) random variables. Therefore, in what follows, we will ignore the
randomness of m and consider it to be approximately equal to its expectation, i.e., if the
data comes from a CP-SBM, then

2m ≈ E2m = k(k − 1)p11 + 2k(n− k)p12 + (n− k)(n− k − 1)p22.

We also assume that the network is large enough such that the probability of sampling the
same node twice is negligible.

Degree Node: For Random Node, each node had a 1/n probability of being selected. Now,
a nodes’ the probability of being drawn is proportional to its degree. We can model this as
drawing from an urn with 2m balls where there are di balls labeled for node i, where di is
the degree of node i. Then Y (b) has a hyper-geometric distribution where now there are 2m
population elements,

∑k
i=1 di success states, and qn draws. Thus,

EY (b) = EE(Y (b)|di) = E
qn
∑k

i=1 di
2m

=
qnk{(k − 1)p11 + (n− k)p12}

k(k − 1)p11 + 2k(n− k)p12 + (n− k)(n− k − 1)p22

since
Edi = (k − 1)p11 + (n− k)p12
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if node i is in the core. Thus,

E
1

n

n∑
i=1

y
(b)
i =

[
1− qn{(k − 1)p11 + (n− k)p12}

k(k − 1)p11 + 2k(n− k)p12 + (n− k)(n− k − 1)p22

]
k

n

For large n, this simplifies to (
1− q

p12
p22

)
αn. □

Random Edge: We can again imagine an urn filled with balls where now the balls are
labeled with edges instead of nodes. For each ball that we draw, we sample the two nodes
which connect this edge, so we only make qn/2 draws. There are two types of edges that we
are interested in: a core-core edge where both nodes are in the core, and a core-periphery
edge, where one node is from the core. If M

(b)
cc and M

(b)
cp are the number of core-core and

core-periphery edges drawn in sub-sample b, respectively, then

EY (b) = 2EM (b)
cc + EM (b)

cp .

Letmcc andmcp be the observed number of core-core and core-periphery edges in the network.

Then M
(b)
cc has a hyper-geometric distribution with population size m, mcc success states and

qn/2 draws. Similarly, M
(b)
cp has a hyper-geometric distribution with population size m, mcp

success states and qn/2 draws. Thus,

EY (b) = 2EE(M (b)
cc |mcc) + EE(M (b)

cp |mcp)

= 2E
mccqn

2m
+ E

mcpqn

2m
=

k(k − 1)p11qn

2m
+

k(n− k)p12qn

2m

Therefore,

E
1

n

n∑
i=1

y
(b)
i =

[
1− qn{(k − 1)p11 + (n− k)p12}

k(k − 1)p11 + 2k(n− k)p12 + (n− k)(n− k − 1)p22

]
k

n

which is the same result as in Degree Node. Again, for large n, this simplifies to(
1− q

p12
p22

)
αn. □

Random Node Neighbor For Random Node Neighbor, we randomly sample a node and
then include that node as well as all of its neighbors in the sub-graph. First, let’s find
the expected number of core nodes per draw. The expected number of core nodes drawn
for a single iteration of this sampler depends on whether the initial node as in the core or
periphery. Thus, assuming an SBM,

E(core nodes|core node)P(core node) + E(core nodes|periphery node)P(periphery node)

= {1 + (k − 1)p11}
k

n
+ kp12

n− k

n
= Cn

24



So for each draw, we expect to include Cn core nodes in the sub-graph. But how many draws
do we make? For each draw, the expected number of nodes sampled again depends on the
first draw.

E(nodes|core node)P(core node) + E(nodes|periphery node)P(periphery node)

= 1 + {(k − 1)p11 + (n− k)p12}
k

n
+ {kp12 + (n− k − 1)p22}

n− k

n
= Tn

where the first 1 is from the node we initially drew. Thus, if we want to sample qn nodes,
then we expect to make qn/Tn draws. And for each draw, we expect to sample Cn core
nodes. Thus, the expected number of core nodes in our sub-graph is

qn
Cn

Tn

= qn
{1 + (k − 1)p11} k

n
+ kp12

n−k
n

1 + {(k − 1)p11 + (n− k)p12} k
n
+ {kp12 + (n− k − 1)p22}n−k

n

Therefore,

E
1

n

n∑
i=1

y
(b)
i =

[
1− qn

{1 + (k − 1)p11} 1
n
+ p12

n−k
n

1 + {(k − 1)p11 + (n− k)p12} k
n
+ {kp12 + (n− k − 1)p22}n−k

n

]
k

n
.

For large n, this simplifies to

E
1

n

n∑
i=1

y
(b)
i =

(
1− q

p12
αnp12 + p22

)
αn. □

Random WalkWhile the calculations are much more involved, we can also find the expected
number of core nodes that aren’t sampled for Random Walk. Let El be the expected number
of core nodes traversed on a random walk through a CP-SBM. Then, depending on whether
the first node selected is a core or periphery node we have

El =
k

n
(1 + xl−1) +

n− k

n
yl−1

where xl and yl are the expected number of core nodes traversed if the starting node is in the
core and periphery, respectively. We can set up a coupled recurrence relationship to solve
for these terms. Again, the key observation is that the expectation just depends on whether
the next step is to a core or peripheral node:

xl =
(k − 1)p11

(k − 1)p11 + (n− k)p12︸ ︷︷ ︸
α

(1 + xl−1) +
(n− k)p12

(k − 1)p11 + (n− k)p12︸ ︷︷ ︸
β

yl−1

yl =
kp12

kp12 + (n− k − 1)p22︸ ︷︷ ︸
γ

(1 + xl−1) +
(n− k − 1)p22

kp12 + (n− k − 1)p22︸ ︷︷ ︸
δ

yl−1
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with initial conditions
x1 = 1 and y1 = 0.

So we can simplify this as

xl = αxl−1 + βyl−1 + α

yl = γxl−1 + δyl−1 + γ

This can be written in matrix notation as

vl = Avl−1 + c

where vl = (xl, yl)
T , c = (α, γ)T and

A =

(
α β
γ δ

)
where v1 = (1, 0)T . This has a general solution of

vl = Alv1 +
l−1∑
i=1

Aic.

Then we just need to plug these solutions into our equation for El, noting that we have
l = qn for the length of our random walk.
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