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Abstract

We consider a dynamic model in which a principal decides what information to release

about a product of unknown quality (e.g., a vaccine) to incentivize agents to experiment

with the product. Assuming that the agents are long-lived and forward-looking, their

incentive to wait and see other agents’ experiences poses a significant obstacle to social

learning. We show that the optimal feedback mechanism to mitigate information free-

riding takes a strikingly simple form: the principal recommends adoption as long as she

observes no bad news, but only with some probability; once she does not recommend at

some point, she stays silent forever after that. Our analysis suggests the optimality of

premature termination, which in turn implies that: (i) false positives (termination in the

good state) are more acceptable than false negatives (continuation in the bad state); (ii)

overly cautious mechanisms that are biased toward termination can be welfare-enhancing.
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1 Introduction

The COVID-19 pandemic presented an unprecedented challenge, compelling governments around

the world to navigate through uncertainties and introduce many new, often untested, measures

to cope with it. Consider the uptake of mRNA vaccines as an example. While this radically

new technology had been known for years and considered safe among medical scientists, it had

never been widely used before the pandemic, and politicians and citizens alike were not entirely

sure about its possible adverse consequences. Amid this uncertainty, a potential impediment

to widespread adoption is citizens’ unwillingness to be among the first to try out the new tech-

nology: Hamel, Lopes and Brodie (2021) document that “31% of the public say that when an

FDA-approved vaccine for COVID-19 is available to them for free, they will ‘wait until it has

been available for a while to see how it is working for other people’ before getting vaccinated

themselves.” Those who stand to gain less from the vaccine may choose to wait and see others’

experiences, but this kind of wait-and-see attitude slows down the adoption process, resulting

in a loss of surplus that can be substantial.

The presence of information free-riding is in fact ubiquitous in many instances of policy

experimentation that require the voluntary participation of citizens; examples include technol-

ogy adoption in a variety of sectors such as healthcare, education, and manufacturing. In close

inspection, two aspects of this experimentation process are particularly noteworthy. First,

experimentation of this kind is often “feedback-based” in that uncertainty regarding the net

value of a new policy is revealed gradually through the feedback of the citizens who have em-

braced the experimentation. Second, it is also often “large-scale,” involving a large number of

citizens who interact anonymously, such that they do not directly observe what others have

experienced on the whole, e.g., the frequencies of severe side effects, and must instead rely on

the information released by central authorities. The first aspect makes incentivizing the citi-

zens to experiment a central problem for the government, whereas the second aspect provides

a potentially viable tool to achieve this goal. Along with the fact that contingent monetary

transfers are often not feasible in this type of environment, these two aspects give rise to a new

class of information-design problems in which the government determines what information to

disseminate to the public, with the aim of overcoming information free-riding and facilitating

social learning.

To address this issue, we consider a collective experimentation environment that consists

of a principal (e.g., a government) and a continuum of long-lived and forward-looking agents

(e.g., citizens). The principal has a product to be consumed (or a technology to be adopted) by

the agents who are heterogeneous with respect to their valuations of the product. The quality
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of the product is initially unknown to anyone and gradually revealed via the arrival of news

whose arrival rate is proportional to the measure of agents who consume the product. However,

reflecting the large-scale nature of the experimentation, news is observable only to the principal,

who therefore faces a problem of what information to disseminate to the agents. Formally, the

principal designs and commits to a feedback mechanism that specifies the distribution of the

sequence of beliefs subject to the Bayes plausibility. Given some feedback mechanism, each

agent independently decides when, if ever, to adopt the product based on his expectation of

how the belief evolves as dictated by the mechanism in place.

We start by analyzing a bad-news case with a benevolent principal, i.e., the case where

bad news (a “breakdown”) arrives only when the state is bad, and the principal maximizes the

discounted sum of the payoffs of all agents. We first observe that in the environment described

above, the amount of adoption under full disclosure is generally insufficient compared to its first-

best level. This observation stems from the free-rider problem that has been well documented

in the strategic experimentation literature (Bolton and Harris, 1999; Keller, Rady and Cripps,

2005): because information is a public good whose benefits are not fully internalized by the

agents, each agent has an excessive incentive to wait and see the experimentation outcomes of

other agents. However, in large-scale experimentation where the agents have no direct access

to the outcomes, the extent of the free-rider problem depends crucially on what information

the principal disseminates to the agents. This point can be seen most clearly if we consider an

extreme measure of no disclosure: if the principal commits to revealing no information, there

is no point in waiting for news, and the free-rider problem dissipates completely. Of course,

revealing no information is never optimal because that would imply entirely giving up the gains

from additional information gleaned from the experimentation. The principal thus needs to

strike the right balance between exploiting the gains from the experimentation on one hand

and managing the free-rider incentive on the other.

The principal’s problem is potentially complicated because the set of mechanisms is large

in our dynamic context, with a myriad of choices available for the principal. Specifically,

the principal can choose not only what information to disclose in a given period but also

when to do so: for instance, she may withhold favorable information by garbling signals in

some period and deliver it later with a delay. Despite this potential complication, we show

that the optimal feedback mechanism to mitigate information free-riding takes a strikingly

simple form: the principal recommends adoption as long as she observes no news, but only

with some probability; once she stops recommending, she will never recommend again even

if she has observed no news. Owing to this result, the principal’s problem effectively reduces

to an optimal-stopping problem, and the resulting optimal mechanism can be characterized
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thoroughly by a sequence of the continuation probabilities conditional on having observed no

news.

This characterization result is a consequence of two observations, which we label as termina-

tion and caution for clarity. The termination property suggests that if the principal suspends

the adoption process for a period, she will never resume the process again, even if she has

received no bad news. This property alternatively implies that there is no strategic gain from

withholding information to slow down adoption, and the optimal mechanism entails no delayed

information release, which enables us to substantially reduce the set of mechanisms we need to

consider. The caution property suggests that the optimal mechanism should exercise caution

by being fully revealing when the principal is relatively pessimistic while randomizing when

she is relatively optimistic. This latter result pertains to the fact that the value of information

varies across agents with different valuations: information that distinguishes small risk and

no risk is crucial for agents with lower valuations but irrelevant for those with higher valua-

tions. The optimal mechanism can mitigate the free-rider problem and achieve the optimal

outcome because it provides no useful information for agents with higher valuations, similar to

the no-disclosure policy, but still provides enough information to improve the welfare of those

with lower valuations. Both of these properties are largely detail-free and robust to various

alterations to the underlying setup, as a consequence of which our main characterization result

holds under a more general objective function that accommodates a wider range of social goals

(Section 6.1) as well as in an alternative good-news scenario where news (a “breakthrough”)

arrives only when the state is good (Section 6.2).

An important economic insight of our analysis is the optimality of premature termination,

i.e., it is welfare-enhancing for the principal to occasionally terminate the adoption process even

when she has observed no bad news and is still relatively optimistic. This finding provides some

practical implications for how the government should structure its decision-making process—

the process in which it collects and analyzes data to produce evidence and transforms it into a

recommendation. First, the optimality of premature termination suggests that false positives

(termination in the good state) are more acceptable than false negatives (continuation in the

bad state). This finding in turn implies that if the government can design its experiments to

determine the precision of the information-generating process, it should direct more resources

to minimizing false negatives while accepting false positives to some extent. Second, the

optimality of premature termination also points to a virtue of overly cautious mechanisms that

are excessively biased toward termination. It is worth noting that we obtain this conclusion

even though all the concerned parties are assumed to be risk-neutral.
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Literature. Our model lies at the intersection of strategic experimentation (Bolton and Harris,

1999) and information design (Kamenica and Gentzkow, 2011). Our learning environment

builds on the exponential-bandits model of Keller et al. (2005).1 A crucial departure from this

strand of literature is that we consider large-scale collective experimentation that involves a

large number of agents, where each individual agent cannot directly observe the experimen-

tation outcomes of other agents and must instead rely on the information released by the

principal. This aspect of our model draws a clear contrast to canonical models of strategic

experimentation that typically focus on a relatively small group of agents and assume that each

agent can directly observe the experimentation outcomes of other agents (Keller et al., 2005;

Bonatti and Hörner, 2011). The fact that only the principal can observe the experimentation

outcomes gives her some leeway to control the agents’ belief formation process, amounting to

a new class of information-design problems as noted above.

Our analysis is in spirit most closely related to Kremer, Mansour and Perry (2014), Che

and Hörner (2018), and Knoepfle and Salmi (2024) in that they all explore ways to facilitate

social learning, with emphasis on agents as both consumers and generators of information.2

Kremer et al. (2014) consider a social-learning environment à la Bikhchandani, Hirshleifer and

Welch (1992) and characterize the optimal disclosure policy to mitigate information herding.

Che and Hörner (2018) consider a similar feedback-based information structure to ours in

which information arrives at a rate proportional to the amount of adoption and study how a

recommender system can improve the incentives for early exploration. In both of these models,

however, agents are assumed to be myopic and make once-and-for-all adoption decisions. By

contrast, in our setting, agents are forward-looking and strategically choose their timing of

adoption.3 Within this framework, we focus on a different incentive issue—free-riding stem-

ming from the option to wait and see others’ experiences—and explore the optimal feedback

mechanism to alleviate this problem. Knoepfle and Salmi (2024) consider forward-looking

agents as we do but focus their attention on the optimal timing of disclosure, while we study

optimal information design. Also, agents are heterogeneous with respect to discount rates in

their model, while with respect to valuations in our model. The differences are crucial, as

the two papers deliver different insights focusing on different aspects of an otherwise similar

1More precisely, our baseline model follows the bad-news (“breakdown”) specification of Keller and Rady
(2015), although we later extend our analysis to the good-news (“breakthough”) case.

2Baccara, Levy and Razin (2024) consider an environment in which there are two risky “fields” to choose
from, and each agent can irreversibly join either field or wait for more information. In this framework, they
also assume that the rate of information arrival in each field depends on the measure of agents who joined that
field.

3Frick and Ishii (2024) also study social learning by forward-looking agents but without information design.
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environment.4 In this sense, their analysis and ours are complementary to each other.

Several works explore how to incentivize experimentation via monetary transfers. To name

a few, Manso (2011) analyzes a moral-hazard problem with unknown success probability and

shows that the optimal incentive contract exhibits substantial tolerance for early failure. Halac,

Kartik and Liu (2016) consider a model of long-term contracting with both moral hazard and

adverse selection and obtain a characterization of optimal menu contracts. Halac, Kartik and

Liu (2017) consider both monetary rewards and information disclosure (about whether success

had occurred or not) in a contest environment where multiple agents compete for a prize. We

view our analysis as complementary to this strand of literature, where we focus exclusively on

the use of information to motivate agents to take a risky alternative without monetary rewards.

Our analysis is more applicable to situations where contingent monetary transfers are either

unconventional or infeasible due to institutional factors, as is often the case in the context of

policy experimentation.

Finally, we also aim to contribute more broadly to the literature on dynamic information

design. There are several recent works that analyze information disclosure in dynamic environ-

ments where an agent makes stopping decisions (Au, 2015; Ely, 2017; Nikandrova and Pancs,

2018; Che and Mierendorff, 2019; Ely and Szydlowski, 2020; Orlov, Skrzypacz and Zryumov,

2020).5 There are two notable differences from this strand of literature. First, while those

previous works generally focus on single-agent cases, we consider an environment where the

principal attempts to persuade a continuum of agents who are heterogeneous with respect to

their valuations. Second, and more importantly, the principal’s information structure in our

setting is endogenous in that the precision of the information she acquires depends on the

agents’ adoption decisions. This aspect of our model stands in sharp contrast to the standard

setting where the information structure is exogenously given and fixed over time.

4They find that it is optimal to promptly disclose conclusive bad news and terminate the adoption process
(but delay disclosure of conclusive good news); unless the principal observes bad news, the adoption process
continues. On the contrary, we find that, when the agents are sufficiently forward-looking, it is optimal to
terminate the adoption process with some probability even if no bad news has arrived. This caution property
is key to incentivizing agents to contribute to social learning in earlier periods who otherwise may free-ride
on others, and this cannot be implemented simply by timing the disclosure of bad news as in Knoepfle and
Salmi (2024). Aside from the fact that they restrict attention to the timing of disclosure, the difference in the
nature of agent heterogeneity also plays a major role: our optimal mechanism exploits differences in adoption
thresholds stemming from the heterogeneity in valuations, which is not considered in Knoepfle and Salmi (2024)
where the agents are assumed to possess the same valuation.

5Ball (2023) and Correia da Silva and Yamashita (2024) consider information disclosure in repeated inter-
actions.
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2 Illustrative example

We first provide a simple example with two periods and two agent types to highlight the main

ideas. Suppose a government attempts to introduce a new vaccine to a continuum of citizens

with unit measure. Each citizen can take the vaccine in either period or can choose to abstain

from it altogether. The quality of the vaccine, which is initially unknown to anyone, can be

either good (ω = 0) or bad (ω = 1), where the common prior probability that the vaccine is

bad is m ∈ (0, 1). The citizens are divided into two preference types, where a half of them

have low valuation (v = vℓ) and the other half have high valuation (v = vh > vℓ). If a citizen

with valuation v chooses to take the vaccine, his payoff is v−ω; if not, his payoff is normalized

to 0. We assume vh < 1 so that even the high-valuation citizens would not take the vaccine if

they knew that the vaccine is bad. For simplicity, we assume that there is no time discounting

between the two periods.

The quality of the vaccine is partially revealed via the arrival of news at the end of period 1.

Here, we consider a bad-news scenario where news (e.g., the occurrence of severe side effects)

arrives only when the state is bad. We make two crucial assumptions regarding the information

structure. First, as news reflects the aggregate outcome, it is observable only to the government

but not to each citizen. Second, conditional on the state being bad, the likelihood of news

arriving depends on and is increasing in the measure of citizens who choose to take the vaccine.

Specifically, after a measure n of citizens take the vaccine in period 1, the government observes

bad news with probability p(n)ω, where p : [0, 1] → [0, 1] is some increasing function. Let µp
2

denote the government’s belief (that the state is bad) in period 2. If bad news is observed,

the government learns that the vaccine is bad for sure, and hence µp
2 = 1. If not, taking n as

given, the government’s belief is updated to

µp
2 = µ(n) :=

m(1− p(n))

m(1− p(n)) + 1−m
,

which is lower than the initial prior for any n > 0, i.e., “no news is good news.”

The government’s problem is to determine the distribution of period-2 beliefs of the citizens

subject to the Bayes plausibility, so as to maximize the sum of the payoffs of all citizens. Let

µ2 denote the citizens’ period-2 belief that the vaccine quality is bad, i.e. ω = 1, based on the

information released by the government. Since period 2 is the last period, the problem faced

by the citizens in that period is straightforward: given some belief µ2, a citizen with valuation

v takes the vaccine if v ≥ µ2. Taking this as given, in period 1, a citizen with valuation v takes
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the vaccine if

v −m ≥ Eµ[max{v − µ, 0}]. (1)

Each citizen’s decision in period 1 depends on the continuation payoff, which in turn depends

on the distribution of period-2 beliefs. For illustration, assume 1 > vh > m > vℓ > µ(0.5), so

that the low-valuation citizens would never take the vaccine in period 1 but could be persuaded

to do so in period 2 if enough information were generated in period 1.

To illustrate the value of information design in this context, we begin with two extreme cases

as benchmarks. We first consider the full-disclosure policy where the government mechanically

reveals everything it observes (so that µ2 = µp
2 with probability 1). In this case, if a high-

valuation citizen waits until period 2, he takes the vaccine in period 2 if and only if no news is

observed, which occurs with probability m(1− p(n∗)) + 1−m. The expected payoff of taking

the vaccine in this contingency is vh − µ(n∗), where n∗ is the equilibrium measure of agents

who take the vaccine in period 1. Since the expected payoff of taking the vaccine in period 1

is vh −m, the IC constraint for the high-valuation citizens to take the vaccine in period 1 can

be written as

vh −m ≥ [m(1− p(n∗)) + 1−m](vh − µ(n∗))

= [m(1− p(n∗)) + 1−m]vh −m(1− p(n∗)),

taking n∗ as given.6 It is easy to verify that the IC constraint does not hold for any n∗ > 0

for any high-valuation citizen, and therefore, it does not hold for any low-valuation citizen

either. As such, no one chooses to take the vaccine in period 1 under full disclosure. This

is a manifestation of the free-rider problem, and as a consequence, the opportunity for social

learning is entirely lost, leading to a suboptimal outcome.7

In a sense, the full-disclosure policy fails because it is too informative, giving the high-

valuation citizens an excessive incentive to wait for news. This implies that the optimal feed-

back mechanism must be somewhat more obscure than the full-disclosure policy. To illustrate

this point, we now turn to the opposite case of no disclosure where the government commits to

revealing no additional information (so that µ2 = m with probability 1). In this case, there is

clearly no point in waiting for news, and it is (weakly) optimal for the high-valuation citizens

6Throughout the analysis, we assume that an agent chooses to adopt if he is indifferent.
7Although we consider a simple binary-type distribution and no time discounting, the observation that the

amount of adoption is insufficient can be extended to any (continuous) type distribution and discount rate. See
Appendix B for a more formal argument.
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to take the vaccine in period 1,8 resulting in the maximum amount of information that can be

generated in this environment. However, this no-disclosure policy is also suboptimal because

none of the low-valuation citizens could be induced to take the vaccine in period 2, given

µ2 = m. This argument suggests that the government must find a middle ground between the

two extreme policies.

So, what is the optimal way to disclose information in this environment? To achieve the

optimal outcome, the government must induce (i) the high-valuation citizens to take the vaccine

in period 1 and (ii) the low-valuation citizens to do so in period 2 occasionally (in case no news

is observed). We have already observed that the no-disclosure policy achieves (i) but not (ii).

Note that the no-disclosure policy is effective for (i) because it provides no valuable information

to the high-valuation citizens in that their behavior does not depend on the information released

in period 2. This reasoning suggests, however, that any mechanism that has this feature can

achieve (i) as well. Specifically, we modify the no-disclosure mechanism by applying a mean-

preserving spread to m and splitting it into µ(0.5) and vh. This modified mechanism gives

the high-valuation citizens the same continuation payoff and hence continues to achieve (i)

because the support of the belief distribution lies entirely to the left of their indifference point

vh; in other words, the extra information provided by the mean-preserving spread is irrelevant

for the high-valuation citizens. It is, however, beneficial for the low-valuation citizens because

the support spans over their indifference point µ2 = vℓ, allowing them to make more informed

decisions in period 2. Figure 1 graphically illustrates this situation.

This argument suggests that the government must provide the most accurate information,

i.e., µ2 = µ(0.5), whenever it chooses to continue (recommending the low-valuation citizens to

adopt) in period 2. This in turn implies that the government must surely terminate if it has

observed bad news. If it has observed no news, it may continue with some probability less than

1 (given that full disclosure is not optimal in this example). To sum up, the government can

alleviate information free-riding and achieve the optimal outcome by the following mechanism:

• If the government observes bad news, it terminates with probability 1;

• If the government observes no news, it continues with some probability β ∈ (0, 1) and

terminates with the remaining probability.

This proposed mechanism is characterized by the continuation probability β, which measures

the degree of transparency with β = 1 (β = 0) corresponding to full (no) disclosure. It is fully

8The high-valuation citizens are indifferent between taking the vaccine and waiting for news because of no
time discounting. The incentive can be made strict if they discount future payoffs even slightly.
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period-2 belief

period-2 payoff

Figure 1: The dashed line at the top represents the value function of the high-valuation citizens,
and the dotted line at the bottom represents the value function of the low-valuation citizens. A
mean-preserving spread of m into µ(0.5) and vh raises the expected payoff of the low-valuation
citizens while keeping the expected payoff of the high-valuation citizens constant.

revealing when the government is pessimistic (has observed bad news) but randomizes when

it is optimistic (no news). The reason why such a mechanism works pertains to the fact that

the value of information differs across different preference types: more precise information at

the low end of the belief distribution is valuable for the low-valuation citizens but is irrelevant

for the high-valuation agents. Since the government must persuade the high-valuation citizens

to adopt early to generate the information necessary to persuade the low-valuation citizens,

a mechanism that is precise at the low end but obscure at the high end works to achieve the

optimal outcome. Remarkably, this observation can be extended to any (continuous) type

distribution and any number of periods as we will detail below, even though the problem

becomes substantially more complicated.

This illustrative example is simple enough to explicitly obtain the optimal mechanism. We

now consider an arbitrary discount factor δ ∈ (0, 1] and let p(n) = 1 − e−λn for concreteness.

Since the low-valuation citizens always benefit from more information, the optimal mechanism

is such that it provides the most accurate information to the extent that it does not affect

the incentive of the high-valuation citizens. This implies that the high-valuation citizens must

be held indifferent between adopting and waiting. If we let β∗ be the optimal continuation
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probability, it must solve

vh −m = δ[β∗(me−0.5λ + 1−m)vh −me−0.5λ].

Thus, the optimal continuation probability is given by

β∗ = min

{
vh −m(1− δe−0.5λ)

δ(me−0.5λ + 1−m)vh
, 1

}
.

Some useful observations can be drawn from this.

1. A higher δ (more patience) leads to less transparency.

2. A lower vh leads to less transparency.

3. An increase in λ (more efficient feedback) leads to less transparency.

4. A higher m (more pessimistic outlook) leads to less transparency.

As is intuitively clear, anything that aggravates the free-rider problem—more patience, low

valuations, more efficient feedback, and a more pessimistic outlook—makes the optimal mech-

anism less transparent (a lower β∗). Whenever we have β∗ < 1, although lowering the con-

tinuation probability in the optimistic state necessarily entails a loss of surplus, the gain from

alleviating information free-riding is more than enough to compensate for the loss.

3 Model

Environment. Consider the same experimentation environment in which a principal (e.g., a

government) has a product to be consumed by a continuum of agents (e.g., citizens). Time is

discrete and denoted by t = 1, . . . , T where T is the terminal period. In each period t, each

agent decides whether to “adopt” the product or “wait” for news; if an agent chooses to adopt,

he immediately leaves the game. The cost of adopting the product is determined by the state

of nature ω ∈ {0, 1}, which is initially unknown to anyone, where ω = 0 denotes the good

(low-cost) state while ω = 1 denotes the bad (high-cost) state. The common prior of the state

being bad is m ∈ (0, 1).

Information. The true state is gradually revealed via the arrival of a signal (news). We

primarily consider a bad-news (“breakdown”) case where a signal arrives only when the state

is bad; in Section 6.2, we extend the analysis and consider the opposite case where a signal (or
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a “breakthrough”) arrives only when the state is good.9 Let st ∈ {b,∅} be the signal realized

at the end of period t, where st = b indicates bad news while st = ∅ indicates no news. The

probability of receiving signal b at the end of period when the state is ω and the measure of

agents who adopt in period t is nt is given by

P[st = b | ω, nt] = 1− e−λωnt .

This suggests “no news is good news.” We assume that only the principal can observe signals

while the agents do not. At the beginning of each period t, the principal updates her belief

(that the state is bad) upon observing st−1 which we denote by µp
t with µp

1 = m.

Mechanism. The principal designs and commits to a feedback mechanism P at the outset of

the game. The mechanism specifies the distribution of the sequence of beliefs µt subject to the

Bayes plausibility and her own information structure, where µt denotes the agents’ period-t

belief. The public history of the game at the beginning of period t can be summarized by the

sequence of realized beliefs up to that point, which we denote by µt−1 := (µ1, . . . , µt−1). The

mechanism can then be written as P = (Pt(· | µt−1))Tt=1, where Pt(· | µt−1) is the probability

mass function of period-t beliefs conditional on the history of the game. LetMt(µ
t−1) denote the

support of Pt(· | µt−1), i.e., Mt(µ
t−1) is the smallest set M such that

∑
µt∈M P (µt | µt−1) = 1.

Payoffs. Each agent is characterized by his valuation v ∈ [0, 1], which is distributed according

to some distribution F with full support over [0, 1]. Let f denote the corresponding density. If

an agent with valuation v (hereafter, simply agent v) adopts in period t, he earns v − ωc and

leaves the game; if not, his payoff for the period is normalized to 0. Throughout the analysis,

we maintain the following assumption to focus our attention on relevant cases.

Assumption 1 c ≥ 1 > mc.

The first inequality ensures that learning is essential for all agents,10 while the second inequality

rules out the trivial case where no agents adopt. The agents maximize the discounted sum of

expected payoffs with a discount factor δ ∈ (0, 1). For now, we assume that the principal is

benevolent and maximizes the discounted sum of the payoffs of all agents, which we call the

total surplus for clarity, with the same discount factor δ; in Section 6.1, we extend the analysis

9We focus on the bad-news case because it is more relevant in many instances of policy experimentation.
For instance, in the context of vaccine uptake, it is more likely that the government would receive feedback
when the vaccine is of bad quality.

10If c < 1, it is optimal for agents v ∈ [c, 1] to adopt regardless of the state. The optimal decision for those
agents is hence trivial in that they always adopt immediately in period 1 in any mechanism.
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to incorporate a more general objective function that can capture other factors such as payoff

externalities and the welfare of third parties (e.g., firm profit).

4 Analysis

In the two-period example, there is only one possible history, which is µ1 = m, and any

disclosure mechanism is entirely summarized by a single distribution of period-2 beliefs P2(· |
m). By contrast, when there are more than two periods, the problem becomes substantially

more complicated because the set of possible histories could expand exponentially over time.

In the general setting, we need to consider how the current distribution of beliefs potentially

affects their future evolution in the continuation game, thereby giving rise to a much wider

array of feedback mechanisms.

4.1 Preliminaries

Before we proceed to the general analysis, we first provide a more detailed account of three key

constraints in this general setup: IC constraint, Bayes plausibility, and consistency. Let v∗t be

the threshold type who is indifferent between adopting and waiting in period t and let v∗0 = 1.

Once a mechanism P is given, we can pin down a non-increasing sequence of thresholds up to

period t for any given history µt. More precisely, fix a mechanism P and let Hs
t be the set of

all subsequences µt,t+s := (µt+1, . . . , µt+s) such that v∗t+s < v∗t = v∗t+s−1 under P . Then, for a

given history µt and the corresponding sequence of thresholds up to period t−1, the threshold

type in period t is determined by

v∗t − µtc =
T−t∑
s=1

∑
µt,t+s∈Hs

t

δsPt+1(µt+1|µt) · · ·Pt+s(µt+s|µt+s−1)(v∗t − µt+sc), (2)

if a solution v∗t ∈ [0, v∗t−1) exists. If no solution exists in [0, v∗t−1), no agents are induced to

adopt in period t, and we let v∗t = v∗t−1. In what follows, we call (2) the IC constraint for

clarity.

The principal’s problem is restricted by two conditions in our setting. First, as usual,

the Bayes plausibility requires that the expectation of posteriors must coincide with the prior

conditional on µt−1, i.e., ∑
µt∈Mt(µt−1)

µtPt(µt | µt−1) = µt−1. (3)
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Second, any feasible mechanism must also be consistent with the principal’s private informa-

tion. Specifically, at any point in time, the principal is in either one of the two information

states: pessimistic (has observed bad news) or optimistic (has observed no news). In the

bad-news case, the principal’s belief is always µp
t = 1 in the pessimistic state, and

µp
t = µ(v∗t−1) :=

me−λ(1−F (v∗t−1))

me−λ(1−F (v∗t−1)) + 1−m

in the optimistic state. Since the principal mixes these two information states to generate a

belief, any feasible belief must be bounded between µ(v∗t−1) and 1. For later use, we write this

consistency restriction more generally as

Mt(µ
t−1) ⊂ [µ(v∗t−1), µ(v

∗
t−1)], (4)

where µ(v∗t−1) = 1 for all v∗t−1 ∈ [0, 1) in the bad-news case.11

4.2 Main result

The principal’s problem is to determine the distribution of the sequence of beliefs to maximize

the expected total surplus subject to the three constraints noted above. Define Wt(µt, x, y) as

the principal’s continuation payoff (or simply the continuation surplus) in period t when the

belief is µt and agents v ∈ [x, y) adopt in period t. Given some mechanism P , the continuation

surplus is given by

Wt(µt, v
∗
t , v

∗
t−1) =

∫ v∗t−1

v∗t

(v − µtc)dF (v)

+
T−t∑
s=1

∑
µt,t+s∈Hs

t

δsPt+1(µt+1|µt) · · ·Pt+s(µt+s|µt+s−1)Wt+s(µt+s, v
∗
t+s, v

∗
t ).

The principal’s problem is then defined as

max
P

W1(m, v∗1, 1),

subject to the Bayes plausibility (3) and consistency (4), where (v∗t )
T
t=1 is a non-increasing

sequence determined by the IC constraint (2) whenever v∗t < v∗t−1. Recall that since the prin-

cipal has no additional information over and above the prior in period 1, the Bayes plausibility

11We use this slightly more general notation to make it applicable to the good-news case we consider later.
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requires P1(m) = 1. Our focus is therefore on period 2 and beyond.

A few more notations would be helpful in formally stating the main result. First, for t ≥ 2,

we divide the support Mt(µ
t−1) into two disjoint sets MA

t (µ
t−1) and MN

t (µt−1), where

MA
t (µ

t−1) := {µt ∈ Mt(µ
t−1) : v∗t < v∗t−1},

MN
t (µt−1) := {µt ∈ Mt(µ

t−1) : v∗t = v∗t−1},

with M1(µ
0) = MA

1 (µ
0) = {m}. We say that the game is in the adoption phase in period t

if µt ∈ MA
t (µ

t−1) and in the no-adoption phase in period t if µt ∈ MN
t (µt−1). Also, for the

subsequent analysis, let

q(v∗t , v
∗
t−1) := µ(v∗t−1)e

−λ(F (v∗t−1)−F (v∗t )) + 1− µ(v∗t−1)

denote the probability of receiving no news in period t conditional on being optimistic. Given

this, for any β ∈ [0, 1], let µ̃(v∗t−1, v
∗
t−2; β) denote the belief that satisfies the Bayes plausibility

in period t when the mechanism assigns µt = µ(v∗t−1) with probability βq(v∗t−1, v
∗
t−2) and

µt = µ̃(v∗t−1, v
∗
t−2; β) with the remaining probability conditional on µt−1 = µ(v∗t−2). Formally,

it is given by the solution to the following equation:

βq(v∗t−1, v
∗
t−2)µ(v

∗
t−1) + (1− βq(v∗t−1, v

∗
t−2))µ̃(v

∗
t−1, v

∗
t−2; β) = µ(v∗t−2).

Definition 1 A mechanism P is a binary-message termination mechanism (or, simply, a

binary-message mechanism) if for each t = 2, . . . , T ,

(a) for any µt−1 ∈ MA
t−1(µ

t−2), there is βt ∈ [0, 1] such that

Pt(µt | µt−1) =


βtq(v

∗
t−1, v

∗
t−2) if µt = µ(v∗t−1),

1− βtq(v
∗
t−1, v

∗
t−2) if µt = µ̃(v∗t−1, v

∗
t−2; βt),

0 otherwise,

(b) for any µt−1 ∈ MN
t−1(µ

t−2), the mechanism assigns all the probability on µt−1, i.e.,

Pt(µt | µt−1) =

1 if µt = µt−1,

0 otherwise,

where (v∗t )
T
t=1 is the induced sequence of thresholds when the game stays in the adoption phase
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for all t.12

The following facts are useful for interpreting binary-message mechanisms. Throughout the

paper, all the proofs are relegated to Appendix A.

Lemma 1 In a binary-message termination mechanism,

(i) µ(v∗t−1) ∈ MA
t (µ

t−1) and µ̃(v∗t−1, v
∗
t−2; βt) ∈ MN

t (µt−1) if µt−1 = µ(v∗t−2) ∈ MA
t (µ

t−2),

(ii) µt ∈ MN
t (µt−1) if µt = µt−1 ∈ MN

t−1(µ
t−2),

where (v∗t )
T
t=1 is the induced sequence of thresholds when the game stays in the adoption phase

for all t.

Along with Lemma 1, Definition 1 provides two essential properties, which we call termi-

nation and caution for clarity. First, part (b) of the definition states the termination property

where if the game is in the no-adoption phase for a period, it will never revert back to the adop-

tion phase; as such, µt ∈ MN
t (µt−1) indicates permanent termination of the adoption process.

Second, part (a) requires the principal to provide the most accurate information µt = µ(v∗t−1)

with some probability in period t if the game is in the adoption phase in period t− 1. This al-

ternatively implies that the principal must be optimistic whenever the game is in the adoption

phase.13 Given this, when the game is in the adoption phase in period t − 1 (implying that

the principal is optimistic in period t− 1), she remains optimistic (by observing no news) with

probability q(v∗t−1, v
∗
t−2), in which case she randomizes between continuation (with probability

βt) and termination (with probability 1 − βt). With the remaining probability, the principal

turns pessimistic (by observing bad news), in which case she surely terminates the adoption

process. We refer to this as the caution property, because such a mechanism is biased towards

termination in that it terminates surely in the pessimistic state but may also terminate with

some probability in the optimistic state (where the principal has received no bad news).

Any binary-message mechanism is characterized solely by a sequence (βt)
T
t=1, where each βt

admits an economically meaningful interpretation: βt = 1 corresponds to full disclosure while

βt = 0 corresponds to no disclosure. The following statement is the main characterization

result of this paper.

Theorem 1 There exists an optimal mechanism that is a binary-message termination mech-

anism.
12Under Definition 1, there is a unique sequence of thresholds as long as the game stays in the adoption

phase.
13To realize the lowest possible belief, the principal must send a fully separating message in the optimistic

state. The conclusion then follows since µt ∈ MA
t (µt−1) if and only if µt = µ(v∗t−1) by Lemma 1 .
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4.3 Sketch of the proof

The proof of Theorem 1 is lengthy, and we relegate its technical details to Appendix A. Be-

low, we provide a sketch of the proof to summarize the key steps towards establishing our

characterization result and to build intuition for it.

The proof proceeds in two steps. The first step is to show that there is no gain from

adopting a more complicated “stop-and-go” mechanism that switches back and forth between

the adoption phase and the no-adoption phase. This can be seen most clearly by inspecting a

three-period example. Consider a mechanism P that induces the lowest possible belief, which

we denote by µ, with probability β2q(v
∗
1, 1) in period 2 and the belief µ̃(v∗1, 1; β2) leading to no

adoption with the remaining probability. Suppose further that in the history with v∗1 = v∗2 (no

adoption in period 2), P induces the lowest possible belief µ3 = µ with probability γ3q(v
∗
1, 1)

in period 3. The total surplus attained by this mechanism is then given by

W1(m, v∗1, 1) =

∫ 1

v∗1

(v −mc)dF (v) + β2q(v
∗
1, 1)δW2(µ, v

∗
2, v

∗
1)

+ (1− β2q(v
∗
1, 1))γ3q(v

∗
1, 1)δ

2W3(µ, v
∗
3, v

∗
1),

where the IC constraint in period 1 is

v∗1 −mc = β2q(v
∗
1, 1)δ(v

∗
1 − µc) + (1− β2q(v

∗
1, 1))γ3q(v

∗
1, 1)δ

2(v∗1 − µc).

On one hand, the IC constraint is unaffected as long as β2q(v
∗
1, 1) + (1− β2q(v

∗
1, 1))γ3q(v

∗
1, 1)δ

is fixed. On the other hand, we have W2(µ, v
∗
2, v

∗
1) ≥ W3(µ, v

∗
3, v

∗
1) because in period 2, the

principal could always replicate what she would do in period 3 (by providing no information

in period 3). This means that we can improve the original mechanism by reducing γ3 and

increasing β2 in a way to keep β2q(v
∗
1, 1) + (1 − β2q(v

∗
1, 1))γ3q(v

∗
1, 1)δ constant. In the end,

this implies γ3 = 0, i.e., it is optimal to front-load all the information. This argument directly

implies the termination property that substantially reduces the class of mechanisms we need

to consider.

Given this, the next step is to show that we can always improve the total surplus by applying

a mean-preserving spread to any interior belief. Intuitively, such an operation is beneficial for

the agents because their value functions are convex; it is in fact relatively straightforward

to establish this when there are only two periods. However, when there are more than two

periods, the situation becomes more complicated because the game continues after the period

in which we apply a mean-preserving spread. To illustrate this point, suppose we start from
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some interior belief µt ∈ (µ(v∗t−1),
v∗t−1

c
) at which a positive measure of agents adopt in period

t < T . To improve the payoffs of those agents by providing more information, their behavior

must be contingent on the new information. This alternatively implies that we must split

the belief µt into two outer beliefs such that they choose to adopt at the lower belief but

not to adopt at the higher belief. While this operation clearly benefits those agents who are

induced to adopt in period t, it necessarily lowers the continuation probability (more frequent

termination), which could adversely affect the remaining agents who may adopt in some future

periods.

Despite this complication, we can still show that the benefit of more precise information

always dominates the cost of more frequent termination. Specifically, we establish this result

by considering a mean-preserving spread that splits an interior belief µt ∈ (µ(v∗t−1),
v∗t−1

c
) for

t ≥ 2 into a slightly lower belief µt− ε and the highest possible one µ(v∗t−1) (which equals 1 for

any v∗t−1 < 1) and showing that it is Pareto-improving.14 This observation directly implies that

the principal must provide the most accurate information in the adoption phase by terminating

surely in the pessimistic state while randomizing in the optimistic state. The reason why this

caution property holds is the same as in the two-period example: more precise information at

the low end of the belief distribution helps agents with lower valuations make more informed

decisions but is irrelevant for those with higher valuations. The principal can exploit this fact

to alleviate the free-rider problem and achieve the optimal outcome.

In any period t, the principal is either pessimistic with µp
t = 1 or optimistic with µp

t =

µ(v∗t−1). The caution property suggests that whenever the game is in the adoption phase,

it must induce the lowest possible belief, i.e., MA
t (µ

t−1) = {µ(v∗t−1)}, which implies that the

principal surely terminates in the pessimistic state. When the game switches to the no-adoption

phase, the mechanism can specify any beliefs resulting in no adoption, but the termination

property suggests that we can merge all these beliefs into a single one without loss of generality,

i.e., MN
t (µt−1) = {µ̃(v∗t−1, v

∗
t−2; βt)}. The resulting mechanism uses only two messages, one

indicating the continuation of the adoption process and the other indicating its permanent

termination, which amounts to a simple binary-message termination mechanism.

14In the proof, we exploit the fact that the highest possible belief is 1 (for any v∗t < 1) in the bad-news case,
at which point there is no potential loss of surplus (because the state is bad for sure). As it turns out, though,
this property also holds in the good-news case where the highest possible belief is strictly less than 1. We
expand on this point in Section 6.2.
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4.4 When information design matters

Given Theorem 1, the principal’s problem can now be substantially simplified. Note that the

principal’s objective function can be written as

W1(m, v∗1, 1) =
T∑
t=1

δt−1Bt

(
me−λ(1−F (v∗t−1))

∫ v∗t−1

v∗t

(v − c)dF (v) + (1−m)

∫ v∗t−1

v∗t

vdF (v)

)
,

where Bt := Πt
s=1βs. Let r(v

∗
t , v

∗
t−1) denote the joint probability of state being bad and receiving

no news in period t conditional on being optimistic. Formally,

r(v∗t , v
∗
t−1) := µ(v∗t−1)e

−λ(F (v∗t−1)−F (v∗t )).

Then, the IC constraint in each period t is simplified to

v∗t − µ(v∗t−1)c = δβt+1(q(v
∗
t , v

∗
t−1)v

∗
t − r(v∗t , v

∗
t−1)c). (5)

From these, the principal’s problem is redefined as

max
(βt)Tt=1

W1(m, v∗1, 1),

subject to (5).

Observe that the principal has no private information and has no choice but to set P1(m) =

1, which implies β1 = 1. For t ≥ 2, a change in βt affects v
∗
t−1 and also v∗t , . . . , v

∗
T through its

effect on v∗t−1. Taking derivative with respect to βt yields

δ1−t∂W1

∂βt

=
T∑
s=t

δs−tBsλr(v
∗
s−1, 1)f(v

∗
s−1)

∂v∗s−1

∂βt

∫ v∗s−1

v∗s

(v − c)dF (v)

+
T∑
s=t

δs−tBs+1

βt

q(v∗s−1, 1)

∫ v∗s−1

v∗s

(v − µ(v∗s−1)c)dF (v). (6)

Notice that the second term in this expression is always positive. Thus, if there in an interior

solution for the optimal βt, then the first term must be negative. This illustrates the key

trade-off faced by the principal: lower transparency, i.e. a lower βt, makes the agents more

willing to experiment now (as captured by the first term) but leads to more distortion and

more premature termination (as captured by the second term). It is easy to see that the first

term of (6) disappears as βt → 0 while the second term is unaffected. Therefore, it is never
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optimal to set βt = 0 (no disclosure) for any t.

By contrast, there may be cases where it is optimal to fully disclose all the information

by setting βt = 1, despite the fact that the amount of adoption is generally insufficient due

to the free-rider problem. This is because the principal must respect the IC constraint and,

in some cases, cannot do any better than fully disclosing all the information; formally, this

occurs when we have a corner solution for some period (i.e., βt = 1 for some t ≥ 2), in which

case information design is of no use for that period. To illustrate this possibility, consider

the problem of choosing βT . Given that v∗T = µ(v∗T−1)c, the derivative with respect to βT is

obtained as

δ1−T ∂W1

∂βT

= βTλr(v
∗
T−1, 1)f(v

∗
T−1)

∂v∗T−1

∂βT

∫ v∗T−1

µ(v∗T−1)c

(v − c)dF (v)

+ q(v∗T−1, 1)

∫ v∗T−1

µ(v∗T−1)c

(v − µ(v∗T−1)c)dF (v) (7)

where, by (5),

∂v∗T−1

∂βT

=
δ(q(v∗T−1, v

∗
T−2)v

∗
T−1 − r(v∗T−1, v

∗
T−2)c)

1− δβT [λr(v∗T−1, v
∗
T−2)(v

∗
T−1 − c) + q(v∗T−1, v

∗
T−2)]

.

Note that
∂v∗T−1

∂βT
→ 0 as δ → 0, and hence the first term of the left-hand side of (7) disappears.

Since the second term is always strictly positive, we end up with a corner solution when δ

is sufficiently small. Intuitively, when the agents are almost myopic, there is no information

free-riding problem, and therefore, there is no gain from lowering transparency.

As we have shown, no disclosure is never optimal but full disclosure can sometimes be

optimal. Against this backdrop, an economic question of practical importance is when full

disclosure is not optimal. As one might expect from our discussions so far, full disclosure is not

optimal when the agents are more forward-looking because they wait more patiently for news,

thereby aggravating the free-rider problem. To see this, suppose the principal sets βt+1 = 1 for

some t and let δ → 1. The period-t IC constraint then converges to

v∗t − µ(v∗t−1)c = q(v∗t , v
∗
t−1)v

∗
t − r(v∗t , v

∗
t−1)c. (8)

Provided that c > v∗t , the only solution that can satisfy this is v∗t = v∗t−1,
15 i.e., no agents

15To see, note that r(v∗t , v
∗
t−1) = q(v∗t , v

∗
t−1) + µ(v∗t−1)− 1. Substituting for r(v∗t , v

∗
t−1) and rearranging, the

only solution that can satisfy this equation when c > v∗t must have q(v∗t , v
∗
t−1) = 1. This is only possible when

v∗t = v∗t−1.
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adopt in period t, resulting in an extreme form of procrastination that produces no useful

information along the way. We can then show that setting βt+1 = 1 is not optimal for the

same reason employed in establishing the termination property. This observation suggests that

there is always room for information design to improve welfare when the agents are sufficiently

forward-looking.

Theorem 2 In the optimal mechanism, for t = 2, . . . , T ,

(i) no disclosure is never optimal, i.e, βt > 0,

(ii) partial disclosure is optimal when the agents are sufficiently patient, i.e., βt < 1, if δ is

sufficiently close to 1.

4.5 Asymptotic outcome and the limit of social learning

We have thus far observed that the optimal disclosure mechanism exercises caution and occa-

sionally terminates even when the principal has observed no news and is relatively optimistic

as a result. One way to illustrate the trade-off generated by the caution property is to look at

the asymptotic outcome as T tends to infinity. To this end, we start with the full-disclosure

policy. It is easy to observe that social learning never ceases under full disclosure as long as

no bad news is observed.16 When the state is bad, the game continues indefinitely until bad

news arrives, and the true state is eventually identified. When the state is good, the principal’s

belief when she is optimistic converges to 0, albeit very slowly, and so does the threshold type.

This means that the true state can be identified almost surely under full disclosure, suggesting

that there is no inherent upper limit of social learning in the bad-news case.

The fact that the true state can be identified asymptotically under full disclosure clarifies

a distortion introduced by the optimal mechanism. For the sake of argument, suppose δ is

close to 1, so that βt < 1 for some t. By the same argument as in the previous paragraph

and also the termination property, social learning never ceases in the optimal mechanism as

long as the adoption phase continues. Therefore, when the state is bad, the adoption process

terminates almost surely as under full disclosure, though at a faster rate. However, when the

state is good, the adoption process may terminate prematurely, so that the true state may

not be fully identified even asymptotically; this is an obvious distortion associated with the

caution property, giving rise to the essential trade-off between the cost of premature termination

16A strictly positive measure of agents adopt in period t if v∗t−1−µ(v∗t−1)c > δ(q(v∗t , v
∗
t−1)v

∗
t−1−r(v∗t , v

∗
t−1)c).

As v∗t−1 → v∗t , this reduces to v∗t−1 > µ(v∗t−1)c if δ ∈ [0, 1), which holds for any v∗t−1 that satisfies the IC
constraint.
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and the gain of faster social learning. As we can see from Theorem 2, the cost arising from

this distortion is always outweighed by faster social learning when the agents are sufficiently

forward-looking.

5 Policy implications

Our analysis suggests that it is ex ante optimal to terminate the adoption process with some

probability, even when the principal has observed no news. There are, however, some concep-

tual issues in implementing this outcome in practice. First, it may be deemed inappropriate,

or even unethical, for the government to knowingly manipulate information; this is especially

so in health-related issues such as vaccine uptake. Second, the implementation of this outcome

requires credible randomization, but it is certainly inappropriate for the government to flip a

coin to determine when to terminate.

In the context of collective experimentation, it is more reasonable to interpret our model

environment as the one in which the principal designs and commits to the way she collects

and analyzes data to produce evidence and transforms it into a binary recommendation at

the outset of the game. More precisely, in our model, we assume that the principal observes

conclusive bad news with some probability in each period, but in reality, such conclusive

news is often prohibitively costly or simply infeasible to attain; in most cases, the principal

must evaluate various pieces of evidence with varying degrees of precision to form a belief.

The information-design problem of our analysis can be regarded as a reduced form of this

complicated deliberation process. If it is costly to acquire more accurate information, it may

be inevitable to admit some statistical errors in the decision-making process. The relevant

questions to ask are then what type of statistical error—type I (false positive) or type II (false

negative)—should be condoned and to what extent.

Formally, consider a decision-making process in which the principal designs the information

structure that determines how stochastic signals are generated and a decision rule that maps

the observed signal into a binary recommendation. Given that decision rules that involve

randomization are hard to implement in practice, we here only consider pure (deterministic)

decision rules. Below, we build on this framework to explore ways in which to achieve the

(second-best) optimal outcome and highlight two practical implications of our analysis.17

17In the following argument, we abstract away from the cost of making the information structure more
accurate to illustrate the key insights. If it is costly to raise the precision of the information structure, the
principal must trade off the benefit of information design against the cost, but even then, the same insights
should follow.
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False positives versus false negatives. To illustrate what type of statistical error should be more

tolerated, consider the two-period example with an augmented information structure. Suppose

the signal distribution is now given by

P[s1 = b | ω, v∗1] = εIe
−λω(1−F (v∗1)) + (1− εII)(1− e−λω(1−F (v∗1))).

The efficiency of the information structure is measured by (εI , εII), where εI is the probability

of a type I error and εII is interpreted loosely as representing the probability of a type II error.

The information structure in the baseline model corresponds to the one with εI = εII = 0.

Under this specification, the probability of observing no signal, denoted by q̂(v∗1), is

q̂(v∗1) = 1−m[εIe
−λ(1−F (v∗1)) + (1− εII)(1− e−λ(1−F (v∗1)))]− (1−m)εI

= (1− εI)q(v
∗
1, 1) + εIIm(1− e−λ(1−F (v∗1))).

Similarly, define r̂(v∗1) such that

r̂(v∗1) = m[1− εIe
−λ(1−F (v∗1)) − (1− εII)(1− e−λ(1−F (v∗1)))]

= (1− εI)r(v
∗
1, 1) + εIIm(1− e−λ(1−F (v∗1))).

Since there are only two signals, the only non-trivial (pure) decision rule is to continue

after s1 = ∅ and terminate after s1 = b. Given this decision rule, the principal designs the

information structure by choosing (εI , εII) at the outset of the game. Observe that the IC

constraint becomes

v∗1 −mc = δ(q̂(v∗1)v
∗
1 − r̂(v∗1)c).

for a given (εI , εII). We argue that the principal can implement any outcome that is achievable

by a binary-message mechanism. To this end, let v∗(β) be the threshold (in the two-period

model) when β2 = β, i.e., the threshold that satisfies

v∗(β)−mc = δβ(q(v∗(β), 1)v∗(β)− r(v∗(β), 1)c),

The principal’s goal is to implement v∗1 = v∗(β). To achieve this outcome, we must have

q̂(v∗(β)) = βq(v∗(β), 1) and r̂(v∗(β))
q̂(v∗(β))

= µ(v∗(β)) = r(v∗(β),1)
q(v∗(β),1)

, which together imply r̂(v∗(β)) =

βr̂(v∗(β)). Note that these conditions can be satisfied if and only if εI = 1 − β and εII = 0.

This argument suggests that false positives (termination in the good state) are more acceptable
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than false negatives (continuation in the bad state) in that the optimal information structure

must occasionally admit false positives but no false negatives.

Virtue of overly cautious mechanisms. We extend the same idea further by introducing a

second signal that is not fully informative. Suppose s1 ∈ {b, w,∅}, and consider the following

signal distribution:

P[s1 | ω, v∗] =

(1− ε̃)(1− e−λω(1−F (v∗))) if s1 = b,

εIe
−λω(1−F (v∗)) + ε̃(1− e−λω(1−F (v∗))) if s1 = w,

where we suppose for illustration that ε̃ is fixed due to some exogenous factors. In this speci-

fication, the strong signal s1 = b is still conclusive, corresponding, e.g., to a catastrophic event

that unambiguously reveals that the state is bad and leads to immediate termination. By

contrast, the weak signal s1 = w represents the ambiguous state that requires the principal’s

judgment.18 Let µw(v
∗) be the principal’s belief associated with the weak signal, which is given

by

µw(v
∗) =

m[εIe
−λ(1−F (v∗)) + ε̃(1− e−λ(1−F (v∗)))]

m[εIe−λ(1−F (v∗)) + ε̃(1− e−λ(1−F (v∗)))] + (1−m)εI
.

In this setting, the principal can achieve the optimal outcome by setting εI at 1 − β (while

ε̃ ∈ (0, 1) can be arbitrary) and terminating after s1 ∈ {b, w}.
Note that µw(v

∗) may take any value between µ(v∗) and 1 and is strictly decreasing in ε̃.

As ε̃ gets smaller, therefore, the weak signal becomes almost equivalent to no news. Under

the optimal decision rule, however, the principal is still instructed to terminate the adoption

process upon observing s1 = w. The decision rule considered above is thus overly cautious

(when ε̃ is relatively small) in the sense that the principal “overreacts” to insignificant events

that are hardly informative. Alternatively, this argument points to a possibility that when

it is not feasible to commit to a decision rule ex ante, delegating decision-making authority

to a cautious leader can work as a compromised solution; this can be done by appointing

someone who is known to be cautious or by institutional design to punish failures severely and

somewhat excessively. In either case, our analysis suggests a virtue of mechanisms that may

appear overly cautious, even though we assume that all the concerned parties are risk-neutral.

18As before εI corresponds to type I error when the decision rule is to terminate after any signal.
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6 Extensions

In the main body of the analysis, we deliberately consider the simplest setting to illustrate

the key insights in a transparent manner. As it turns out, though, our main characterization

result, Theorem 1, is robust to various alterations to the underlying setup and hence holds

more generally. Below, we discuss two possible extensions—one on the principal’s objectives

and the other on the information-generating process—to ensure that our framework can be

applied widely to a range of situations of practical importance.

6.1 More general objective function

So far, we have considered a benevolent principal whose goal is to maximize the sum of the

payoffs of all agents. In practice, however, the principal’s objective can be more diverse and

include benefits that are not fully internalized by the agents. For instance, in the case of vaccine

uptake, one major social goal is to achieve herd immunity, the benefit of which can be shared

equally among all citizens irrespective of their vaccination decisions. The vaccination process

also involves third parties, such as pharmaceutical companies, and the government may have

some interest in their well-being as well.

To capture this situation, we now suppose that the principal’s objective function includes

an additional term that depends on past thresholds. Specifically, suppose that the principal’s

payoff in period t is now more generally given by∫ v∗t−1

v∗t

(v − µtc)dF (v) + αH(v∗t−1, v
∗
t ),

where H : [0, 1]2 → R+. In this specification, H(v∗t−1, v
∗
t ) measures the external benefit that is

contingent on the current and previous thresholds, and α ≥ 0 is the welfare weight given to the

external benefit with our baseline model corresponding to a special case with α = 0. Note that

1−v∗t represents the stock of agents who have adopted up to period t while v∗t−1−v∗t represents

the flow of agents who adopt in period t. This extended specification of the objective function

can thus accommodate a range of goals that depend on the stock and the current flow in a

flexible manner: for instance, the level of herd immunity should be positively correlated with

the stock of citizens who have been vaccinated, whereas a pharmaceutical firm’s profit in a

given period should be positively correlated with the flow of citizens who get vaccinated in

that period. In what follows, we make the following assumption on the form of the external

benefit.
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Assumption 2 The following conditions are satisfied:

(a) H2(v
∗
t−1, v

∗
t ) ≤ 0 for any (v∗t−1, v

∗
t );

(b) H2(v
∗
t−1, v

∗
t ) +H1(v

∗
t , v

∗
t+1) ≤ 0 for any (v∗t−1, v

∗
t , v

∗
t+1).

In any period t, an increase in the current threshold v∗t implies a decrease in the stock and

the flow. It is therefore reasonable to assume H2 ≤ 0. By contrast, since an increase in the

previous threshold v∗t−1 implies an increase in the flow, it is a priori difficult to determine the

sign of H1. Note that the previous threshold itself was a current threshold in the previous

period. Taking this into account, in part (b) of Assumption 2, we assume that the overall

impact of an increase in v∗t is weakly negative. An implication of this assumption is that for

any two sequences (v∗s , . . . , v
∗
s′) and (v̂∗s , . . . , v̂

∗
s′) such that v∗s = v̂∗s , v

∗
s′ = v̂∗s′ , and v∗t ≥ v̂∗t for

all t = s+ 1 . . . s′ − 1,

s′−1∑
t=s

δt−sH(v̂∗t , v̂
∗
t+1) ≥

s′−1∑
t=s

δt−sH(v∗t , v
∗
t+1),

i.e., if we have two sequences that start from and end at the same thresholds, the one that is

consistently lower (i.e. the one that has faster adoption rate) yields a weakly higher surplus.19

For instance, Assumption 2 is satisfied if the external benefit is given by

H(v∗t−1, v
∗
t ) = η(v∗t−1 − v∗t ) + h(v∗t ),

where η > 0 is a weight given to the flow and h : [0, 1] → R+ is some decreasing function that

captures the impact of the stock. We can show that our main characterization result holds in

this extended setup.

Theorem 3 Theorem 1 holds for any α > 0 under Assumption 2.

6.2 Good-news case

In the baseline model, we focus on the case where the principal may observe bad news (a

“breakdown”) when the state is bad. Here, we consider the opposite case where the principal

19To see this, if there is an infinitesimal increase in v∗t (while fixing all other thresholds constant), the change
in the surplus is H2(v

∗
t−1, v

∗
t ) + δH1(v

∗
t , v

∗
t+1). Since the first term is positive by assumption, the change must

be nonnegative for any δ ∈ [0, 1].
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may observe good news (a “breakthrough”) when the state is good. Specifically, let st ∈ {∅, g},
and assume

P[st = g | ω, nt] = 1− e−λ(1−ω)nt

where nt is the measure of agents who adopt in period t. The principal’s belief jumps down to

0 once she observes good news so that µ(v∗t−1) = 0 for any v∗t−1 ∈ [0, 1]. In the absence of good

news, the principal’s belief is given by

µp
t = µ(v∗t−1) :=

m

m+ (1−m)e−λ(1−F (v∗t ))
,

which is the highest possible belief that can be induced in period t. The consistency restriction

is then defined in the same way, except that µt must now be bounded between 0 and µ(v∗t−1).

Note that in the good-news case, the optimistic state is when the principal has observed

good news while the pessimistic state is when she has observed no news. Given this, the

caution property is still the same, where a binary-message mechanism terminates surely in the

pessimistic state, whereas it randomizes and continues with some probability in the optimistic

state. With abuse of notation, redefine

q(v∗t , v
∗
t−1) := (1− µ(v∗t−1))(1− e−λ(1−F (v∗t )))

as the probability of observing good news in period t, where

µ(v∗t−1) =

m if v∗t−1 = 1,

0 if v∗t−1 < 1.

With this modified definition, in a binary-message mechanism, the probability that the game

stays in the adoption phase is still βtq(v
∗
t−1, v

∗
t−2) as in the bad-news case.20

Before we state the result, it is worth noting that the good-news case is not the mirror

image of the bad-news case. In the proof of Theorem 1, we consider a mean-preserving spread

that splits an interior belief into a slightly lower belief and the highest possible one. As noted

in Section 4.3, while this mean-preserving spread provides more accurate information and

benefits the agents who adopt now, it could be detrimental to the remaining agents who might

adopt in the future because it necessarily lowers the continuation probability. In the bad-news

case, however, the highest possible belief is always 1, in which case the state is bad for sure.

20As we will see below, the game always ends in two periods, so that βt for t ≥ 3 is actually irrelevant.
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Therefore, the decrease in the continuation probability, induced by a mean-preserving spread,

entails no loss of surplus, and we can take a more direct route to show that such an operation

benefits all agents. This same argument cannot be applied to the good-news case because the

highest possible belief is always bounded away from 1. In this situation, terminating in the

pessimistic state (after no news) entails a loss of potential surplus and yields the aforementioned

trade-off, which forces us to explore a different route to establish the characterization result.

As it turns out, though, the gain from alleviating the free-rider incentive always dominates

the loss of surplus due to the decrease in the continuation probability, such that the same

principles—termination and caution—still hold in this alternative scenario.

Theorem 4 Theorem 1 holds in the good-news case.

The theorem states that the caution property continues to hold in the good-news case. As a

consequence, the period-2 belief is either µ2 = 0 (the optimistic state) or µ2 = µ̃(v∗1, 1; β2) >
v∗1
c

(the pessimistic state). If µ2 = 0, the state is good for sure, and all remaining agents adopt

in period 2. If not, no agent will adopt after period 2 by the termination property. In either

case, therefore, social learning ceases in two periods. This feature of our model draws a clear

contrast with Che and Hörner (2018) who also look at the good-news case in their baseline

specification. In their model, the optimal mechanism always recommends adoption after good

news and also with some probability after no news. The strategy of mixing good news with

no news can extend the learning process even after no news and is valuable in their setting.

In our framework where agents are forward-looking, however, the same strategy would not

work because that would intensify the incentive to wait for news. Although terminating the

adoption process after no news implies a loss of surplus because the principal’s belief is still

bounded away from 1, it is nonetheless part of the optimal mechanism to deter information

free-riding, and the principal cannot fare any better than this.

The fact that social learning cannot extend beyond the second period also suggests that

there is a natural upper bound of social learning in the good-news case. In the best case,

the true state can be discovered with a breakthrough, but this occurs only with probability

(1 − m)(1 − e−λ(1−F (v∗1))), which is strictly bounded away from 1. In case no news arrives,

the principal’s belief goes down slightly, but she must still terminate the adoption process

altogether, and there is no feasible way to incentivize exploration beyond this point, no matter

how large T becomes. This asymptotic property of the good-news case is clearly different from

that of the bad-news case where there is no such limit, and increasingly more information can

be acquired as T gets larger. The crucial difference is that news that leads to termination

(i.e., bad news) takes a form of conclusive bad news in the bad-news case, so that the true

27



state is precisely revealed when the adoption process terminates under full disclosure. In the

good-news case, by contrast, the adoption process terminates after inconclusive news (i.e., no

news), making it inherently infeasible to fully identify the true state even asymptotically.

Finally, it is also worth noting that although there is an upper limit of social learning, the

free-rider problem tends to be less severe in the good-news case because of the way information

is generated in this case. In the bad-news case, the arrival of news indicates that the state is

bad for sure. Since no one has an incentive to adopt when the state is bad, this information

is valuable for all agents regardless of their valuations. This is not necessarily the case in the

good-news case where the principal’s belief is bounded away from 1 in the pessimistic state

(no news). In this case, additional information may not be informative enough for agents

with sufficiently high valuations for whom there is no free-rider incentive. Although we do not

analyze this aspect in depth as it is outside the scope of this paper, it is of some interest, at

least theoretically, to explore the difference between the bad-news and good-news cases from

this perspective.

7 Conclusion

Social learning is often hampered by citizens’ desire to wait and see others’ experiences. In this

paper, we explore optimal ways to resolve this issue via information design and characterize

the optimal feedback mechanism to deter information free-riding. The optimal mechanism

is cautious in the sense that it certainly terminates when the principal is pessimistic and

terminates with some probability even when she is optimistic. The key driving force of this

mechanism is the observation that the value of information varies across agents with different

valuations: more precise information at the low end of the belief distribution is beneficial

for agents with lower valuations but irrelevant for those with higher valuations. As such,

a mechanism that is consistently more precise at the low end but obscure at the high end

can induce agents with higher valuations to adopt earlier, thereby alleviating the free-rider

problem, while still enabling those with lower valuations to make more informed decisions. We

show that the optimal mechanism takes a simple form, which effectively reduces the principal’s

problem to an optimal stopping problem. We also show that the key principles identified in

this paper are robust to various alterations in the underlying setup and can be applied to a

range of social situations.
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Appendix A: Proofs

Proof of Lemma 1. (i) We consider the incentive of the threshold agent v∗t−1, given that

µt−1 = µ(v∗t−2) ∈ MA
t−1(µ

t−2). First, suppose on the contrary that µt = µ(v∗t−1) ∈ MN
t (µt−1).

Then, by part (b) of the definition, the belief stays at µ(v∗t−1) for all future periods, meaning

that there are no gains from waiting. Therefore, if the threshold agent deviates and chooses

to wait in period t − 1, he must choose to adopt in period t given that
v∗t−1

c
≥ µ(v∗t−2) >

µT = µ(v∗t−1). However, this is a contradiction because µt = µ(v∗t−1) ∈ MN
t (µt−1). Given this,

we next show µ̃(v∗t−1, v
∗
t−2; βt) ∈ MN

t (µt−1). Suppose otherwise. Then, the threshold agent

must adopt in period t with probability 1 if he deviates. This is a contradiction because the

threshold agent would strictly prefer to adopt in period t− 1.

(ii) We again consider the incentive of the threshold agent v∗t−1. If µt−1 ∈ MN
t (µt−2), we

have v∗t−1 = v∗t−2 by definition. Also, by part (b), the belief stays constant for all future periods.

Therefore, if it is not optimal for the threshold agent to adopt in period t− 1, it is not optimal

for him to adopt in period t.

Proof of Theorem 1. The proof consists of two properties, which we label as termination

and caution. These two properties together imply the optimality of binary-message termination

mechanisms.

Termination. We show that if there is no adoption in period t (v∗t = v∗t−1), then there will be no

adoption in any future period as well (v∗s = v∗t with probability 1 for all s > t). Consider some

mechanism P that pauses the adoption process for one period and then resumes after that.21

Fix some history µt−1 and let v∗t−1 denote the threshold following µt−1. Also, let v∗t (µt) and

v∗t+1(µt, µt+1) be the thresholds following (µt−1, µt) and (µt−1, µt, µt+1), respectively. We then

have some µ′
t ∈ Mt(µ

t−1) and µ′
t+1 ∈ Mt+1(µ

t−1, µ′
t) such that v∗t+1(µ

′
t, µ

′
t+1) < v∗t (µ

′
t) = v∗t−1.

We now propose an alternative mechanism P̂ that modifies P following µt = µ′
t (while keeping

everything else the same). Specifically, suppose the modified mechanism splits µ′
t into all

µt ∈ Mt+1(µ
t−1, µ′

t) and µ′
t such that P̂t(µt | µt−1) = δPt(µ

′
t | µt−1)Pt+1(µt | µt−1, µ′

t) for

all µt ∈ Mt+1(µ
t−1, µ′

t) and P̂t(µ
′
t | µt−1) = (1 − δ)Pt(µ

′
t | µt−1). Moreover, (i) following

any µt ∈ Mt+1(µ
t−1, µ′

t) in period t, P̂ implements the same allocation as P and induces no

adoption in period T ; (ii) following µ′
t in period t, P̂ induces no adoption for all subsequent

periods. Note that this modified mechanism keeps the continuation payoffs of all remaining

agents, and hence the continuation surplus, unchanged (while the allocation following µt = µ′
t

21The same argument applies for a mechanism that pauses for multiple periods.
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is clearly suboptimal). It is therefore without loss of generality to front-load all the information

by setting Pt(µ | µt−1) = 0.

This argument suggests that there is no need to consider temporary suspension of the

adoption process, as we can always split this into continuation and permanent termination in

a profitable way. Alternatively, if v∗t = v∗t−1 for some t, that must mean permanent termination

(v∗s = v∗t with probability 1 for all s > t).

Caution. We show that we can increase the total surplus by stretching out any interior belief

µt ∈ (µ(v∗t−1),
v∗t−1

c
) into two outer points. Alternatively, this suggests that it is not optimal to

assign a positive probability to any interior belief. We establish this result via induction.

We begin with the period-T surplus which can be written as

WT (µT , µT c, v
∗
T−1) =

∫ v∗T−1

µT c

(v − µT c)dF (v).

Taking derivative of WT with respect to µT then yields −c(F (v∗)−F (µT c)), which is increasing

in µT , i.e., the period-T surplus is convex in µT . This ensures the caution property for period

T . In the following, we show that if this property holds for all periods s > t, it also holds for

period t.

Consider some arbitrary history µt−1 and an interior belief µt = µ′
t ∈ (µ(v∗t−1),

v∗t−1

c
), where

v∗t−1 is determined by µt−1. Let v∗t = v∗ denote the threshold following (µt−1, µ′
t). Under the

induction hypothesis, the IC constraint is given by

v∗ − µ′
tc = δPt+1(µ(v

∗) | µt−1, µ′
t)(v

∗ − µ(v∗)c).

The Bayes plausibility, along with the consistency restriction, implies that there is an upper

bound P t+1(µ(v
∗
t ) | µt) of the probability that can be assigned to the lowest possible belief. To

obtain the upper bound, let ν be the probability that the principal is uninformed for a given

µt, which must satisfy

νµ(v∗t−1) + 1− ν = µt.

Solving this then yields ν = 1−µt

1−µ(v∗t−1)
. Since the principal observes no news in period t with
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probability q(v∗t , v
∗
t−1), the upper bound is obtained as

P t+1(µ(v
∗
t−1) | µt−1, µ′

t) =
1− µ′

t

1− µ(v∗t−1)
q(v∗t , v

∗
t−1)

= (1− µ′
t)
µ(v∗t−1)e

−λ(F (v∗t−1)−F (v∗t )) + 1− µ(v∗t−1)

1− µ(v∗t−1)

= (1− µ′
t)
me−λ(1−F (v∗t )) + 1−m

1−m
, (9)

which is determined independently of v∗t−1.

We now consider a modified mechanism P̂ that applies a mean-preserving spread to µ′
t as

in the two-period example. In the general case, however, we need to adopt a different strategy

because the way we split a belief may affect the continuation probability due to the upper

bound constraint. Specifically, we let P̂ split µ′
t into µ′

t − ε and µ′′
t > v∗

c
with probabilities

µ′′
t −µ′

t

µ′′
t −µ′

t+ε
and ε

µ′′
t −µ′

t+ε
, respectively, where ε > 0 is some arbitrarily small number, and moreover

mix µ′′
t with the highest belief on the support of Pt(· | µt−1). Denote the higher belief by µ̂.

Since the resulting mechanism P̂ is arbitrarily close to P , all the past thresholds up to period

t − 2 (if t ≥ 3) are unaffected by this modification. For t > 1, this modification increases

the continuation payoff of agent v∗t−1, raising the threshold slightly. Let v∗t−1 = v̂∗t−1 be the

threshold after the modification and v∗t = v̂∗ the threshold following µt = µ′
t − ε.

To make the situation directly comparable, it is convenient to combine two contingencies

(µt = µ′
t−ε and µt = µ̂) to represent the IC constraint. Since agent v̂∗ adopts after µt = µ′

t−ε

but not after µt = µ̂, given the induction hypothesis, the IC constraint combining the two

contingencies can be written as

µ′′
t − µ′

t

µ′′
t − µ′

t + ε
[v̂∗ − (µ′

t − ε)c] = δR̂t+1(v̂
∗ − µ(v̂∗t )c). (10)

where

R̂t+1 :=
µ′′
t − µ′

t

µ′′
t − µ′

t + ε
P̂t+1(µ(v̂

∗
t ) | µt−1, µ′

t − ε).

From (9), the upper bound for the modified mechanism is given by

P̂t+1(µ(v̂
∗) | µt−1, µ′

t − ε) ≤ (µ′′
t − µ′

t + ε)
me−λ(1−F (v̂∗)) + 1−m

1−m
,
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from which the upper bound for R̂t+1 is obtained as

R̂t+1 ≤
µ′′
t − µ′

t

µ′′
t − µ′

t + ε
(µ′′

t − µ′
t + ε)

me−λ(1−F (v̂∗)) + 1−m

1−m
= (µ′′

t − µ′
t)
me−λ(1−F (v̂∗)) + 1−m

1−m
.

Note that the upper bound depends on and is increasing in µ′′
t . To ensure maximum flexibility,

we set µ′′
t = 1, so that the upper bound is given by

R̂t+1 ≤ (1− µ′
t)
me−λ(1−F (v∗)) + 1−m

1−m
= P t+1(µ(v

∗) | µt−1, µ′
t),

when v̂∗ = v∗. Note also that since

1− µ′
t

1− µ′
t + ε

[v∗ − (µ′
t − ε)c] > v∗ − µ′

tc,

R̂t+1 must be set higher than Pt+1(µ(v
∗) | µt−1, µ′

t) to implement the same threshold as in P .

There are two cases to consider, depending on whether the upper bound is binding. We start

with the case where Pt+1(µ(v
∗) | µt−1, µ′

t) < P t+1(µ(v
∗) | µt−1, µ′

t), so that the upper bound is

not binding. In this case, we can find R̂t+1 ∈ (Pt+1(µ(v
∗) | µt−1, µ′

t), P t+1(µ(v
∗) | µt−1, µ′

t)) that

can implement the same threshold as P . With the same threshold, the modified mechanism

P̂ can implement the same allocation as P for all future periods following µt+1 = µ(v∗). The

only difference is that µt+1 = µ(v∗) is now realized with a higher probability so that agents

v ∈ [0, v∗) are better off. In addition, agents v ∈ [v∗, v̂∗) also benefit from the modification.

Next, consider the case where Pt+1(µ(v
∗) | µt−1, µ′

t) = P t+1(µ(v
∗) | µt−1, µ′

t), so that the

upper bound is binding. In this case, since R̂t+1 cannot be raised any further, we have a lower

threshold v̂∗ < v∗ such that

1− µ′
t

1− µ′
t + ε

[v̂∗ − (µ′
t − ε)c] = δR̂t+1(v̂

∗ − µ(v̂∗)).

With a lower threshold, we can induce a belief lower than µ(v∗). This means that we can

implement the same allocation following µt = µ′
t − ε by inducing µt+1 = µ(v∗) (instead of the

lowest possible belief). Since this modification, though suboptimal, gives the same payoff to

all agents v < v̂∗ following µt+1 = µ(v∗), it is weakly beneficial for those agents. Moreover,

since µt+1 = µ(v∗) is still realized with probability P t+1(µ(v
∗) | µt−1, µ′

t), we have

1− µ′
t

1− µ′
t + ε

[v − (µ′
t − ε)c] > δP t+1(µ(v

∗) | µt−1, µ′
t)(v − µ(v∗)c),

32



for agents v ∈ [v̂∗, v∗), meaning that they are also better off. Finally, it is easy to see that

the payoffs of agents v ∈ [v∗, v̂t−1) increase while the payoffs of agents v ∈ [v̂∗t−1, 1] remain

unchanged. This argument shows that the proposed modification is Pareto improving and

hence increases the total surplus.

Proof of Theorem 2. Since we have already established part (i) in the main text, here we

focus on part (ii). We first show βT < 1 as δ → 1. To this end, it is important to observe

that if βT = 1, v∗T−1 converges to v∗T−2 as δ → 1, i.e., no agents adopt in period T − 1, and

agents v ∈ [µT−1c, v
∗
T−2) adopt in period T . However, the same allocation can be implemented

a period earlier by setting βT = 0, in which case agents v ∈ [µT−1c, v
∗
T−2) adopt in period T −1

(while no agents adopt in period T ). As δ → 1, these two allocations are equivalent and yield

the same continuation surplus. The existence of an interior solution (βT < 1) is then implied

by part (i) which states that it is never optimal to set βT = 0.

This argument suggests that v∗T−1 is bounded away from v∗T−2 as δ → 1. Let v∗T−1 = v∗a and

v∗T = v∗b be the optimal thresholds in the limit where v∗T−2 > v∗a > v∗b . Now consider period

T − 1 and suppose βT−1 = 1 in the optimal mechanism as δ → 1. Then, in the limit, v∗T−2

converges to v∗T−3 (where v∗0 = 1 if T = 3), and hence the period-T − 2 surplus converges to 0.

However, the principal can instead implement the same allocation a period earlier by inducing

v∗T−2 = v∗a and v∗T−1 = v∗T = v∗b . Observe that the implemented allocation is suboptimal be-

cause we must have v∗T < v∗T−1 in the optimal mechanism. We thus conclude βT−1 < 1 in the

optimal mechanism if δ is sufficiently close to 1. We can then apply this argument repeatedly

to establish the proposition.

Proof of Theorem 3. Recall that we establish the termination property by showing that if

the game is in the no-adoption phase in one period and moves back to the adoption phase in

the next, we can always implement the same allocation a period earlier by a modified mech-

anism. Since the modified sequence is entirely lower than the original sequence, Assumption

2 ensures that the principal’s payoff is still weakly higher in the modified mechanism, and the

termination property continues to hold. Note also that the caution property holds for a fixed

sequence of thresholds if the upper bound defined in the proof of Theorem 1 is not binding. If

it is binding, we consider a modified mechanism (a mean-preserving spread) that implements a

threshold slightly lower than the original one in period t and the same allocation after period

t. Again, Assumption 2 ensures that the principal’s payoff is weakly higher in the modified

mechanism, and the caution property continues to hold. This proves Theorem 1 for any α > 0.
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Proof of Theorem 4. Observe that the termination property is independent of the under-

lying information-generating process and holds as it is. Below, we thus focus on establishing

the caution property, i.e., MA
t (µ

t−1) contains only the lowest possible belief µ(v∗t−1) = 0 when

the game is in the adoption phase. To this end, we first note that MA
t (µ

t−1) = [µ(v∗t−1),
v∗t−1

c
)

and MN
t (µt−1) = [

v∗t−1

c
, µ(v∗t−1)] in any optimal mechanism satisfying the termination property.

Alternatively, we need to show that v∗t < v∗t−1 if and only if µt ∈ [µ(v∗t−1),
v∗t−1

c
). The necessity

is obvious because it is strictly better to wait for all agents v ∈ [0, v∗t−1) if
v∗t−1

c
≤ µt. To

show the sufficiency, suppose on the contrary that v∗t = v∗t−1 even if
v∗t−1

c
> µt. Then, by the

termination property, the belief stays constant in all future periods. In period T , agents whose

valuations are arbitrarily close to v∗t−1 have an incentive to adopt because v
c
> µT = µt for v

arbitrarily close to v∗t−1. As this is a contradiction, we must have MA
t (µ

t−1) = [µ(v∗t−1),
v∗t−1

c
)

and MN
t (µt−1) = [

v∗t−1

c
, µ(v∗t−1)] in an optimal mechanism.

Given this, we next establish the following result.

Lemma 2 In the optimal mechanism, either {0} ∈ MA
t (µ

t−1), {µ(v∗t−1)} ∈ MN
t (µt−1) or both.

Proof. We show that if MA
t (µ

t−1) ̸= {0} and MN
t (µt−1) ̸= {µ(v∗t−1)} in some mechanism P , we

can construct a modified mechanism P̂ that can improve upon P for a given history µt−1. First,

observe that we can merge all the beliefs in [
v∗t−1

c
, µ(v∗t−1)] into a single one without affecting

the thresholds. Therefore, it is without loss of generality to focus on mechanisms that have

only one element, say µH , in MN
t (µt−1). Pick some µL ∈ MA

t (µ
t−1) \ {µ(v∗t−1)} and apply a

mean-preserving spread to µH , so that µH is split into µL and µH +ε for some arbitrarily small

ε > 0. This operation raises the payoff of agent v∗t−1 and thus (slightly) raises the threshold in

period t−1 to some v̂∗t−1 > v∗t−1. Note that with a higher threshold v̂∗t−1, µ(v̂
∗
t−1) is smaller than

µ(v∗t−1) but is still higher than µH + ε. In period t, some agents adopt if µt ∈ (0,
v̂∗t−1

c
) while no

agents adopt if µt ∈ [
v̂∗t−1

c
, µ(v̂∗t−1)). Note that v̂∗t−1 > v∗t−1, P̂t(µL | µt−1) > Pt(µL | µt−1), and

P̂t(µH + ε | µt−1) < Pt(µH | µt−1). Therefore, the probability that µt lies in (0,
v̂∗t−1

c
) becomes

weakly higher, leading to an increase in the continuation probability. This means that the

payoffs of agents adopting in period t and after increase while the payoffs of those adopting

before period t remain the same, suggesting that the modification is Pareto-improving.

Given the lemma, we now show MA
t (µ

t−1) = {0}, which allows us to establish the theorem.

To this end, suppose there is some interior belief µt > 0 in MA
t (µ

t−1) for some µt−1 and t ≥ 2.

We then claim that for any history that follows µt−1, there must be some period s > t such

that MA
s (µ

s−1) = {0} (where s is the earliest period that has this feature). Suppose otherwise.
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We then have some history µT−1 such that MA
T (µ

T−1) includes some interior belief µT > 0 or

is empty. If MA
t (µ

T−1) includes an interior belief, since this is the last period, we can split

this into µ(v∗T−1) and
v∗T−1

c
and improve the payoffs of all types. In period T , therefore, we

either have MA
T (µ

T−1) = {µ(v∗T−1)} or MA
T (µ

T−1) = ∅. If there is a history µT−1 such that

MA
T (µ

T−1) = ∅, then period T − 1 is effectively the last period, and we can apply the same

argument to show that MA
T−1(µ

T−2) = {µ(v∗T−2)} or MA
T−1(µ

T−2) = ∅. We can apply this

argument repeatedly to provide the claim.

Given this, in period s− 1, we have

v∗s−1 − µs−1c = δPs(0 | µs−1)v∗s−1,

from which we obtain

δPs(0 | µs−1) =
v∗s−1 − µs−1c

v∗s−1

.

Note that the continuation payoff of agent v ∈ (0, v∗s−1) is

δPs(0 | µs−1)v =
v∗s−1 − µs−1c

v∗s−1

v.

Now consider a mean-preserving spread that splits µs−1 into
v∗s−2

c
with probability µs−1c

v∗s−2
and

0 with the remaining probability. Note that this mean-preserving spread does not affect the

payoff of agent v∗s−2 but raises the payoffs of agents v ∈ [v∗s−1, v
∗
s−2]. Also, with this modifi-

cation, agents v ∈ (0, v∗s−1) adopt in period s − 1 when the belief is 0 and obtain
v∗s−2−µs−1c

v∗s−2
v,

which is larger than the payoff in the original mechanism because v∗s−2 > v∗s−1. Therefore,

MA
t (µ

t−1) = {0} for all t as long as the game is in the adoption phase, which proves that

Theorem 1 holds in the good-news case.

Appendix B: Free-rider incentive in collective experimen-

tation

In this appendix, we show that the amount of adoption under full disclosure is generally

insufficient compared to the first best for any (continuous) type distribution and any discount

factor δ ∈ (0, 1]. Consider a two-period model in which each agent’s valuation v ∈ [0, 1] is
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distributed according to some distribution function F with full support. The payoff to agent

v of adopting is v − ωc, where c ≥ 1 is some constant.

Let v∗F be the threshold under full disclosure that solves

v∗F −mc = δ(q(v∗F )v
∗
F − r(v∗F )c). (11)

Here, we use q(v∗) := m(1− p(1− v∗)) + 1−m and r(v∗) := m(1− p(1− v∗)) to save notation

where p : [0, 1] → [0, 1] is a strictly increasing function. The total surplus for a given threshold

v∗ in the two-period case can be written as

W1(m, v∗, 1) =

∫ 1

v∗
(v −mc)dF (v) + δ

∫ v∗

µ(v∗)c

(q(v∗)v − r(v∗)c)dF (v),

where µ(v∗) = r(v∗)
q(v∗)

is the principal’s belief when she is uninformed. Now consider a social

planner who can unilaterally impose v∗ to maximize the total surplus. The first-order condition

is then given by

∂

∂v∗
W1(m, v∗, 1) = −[v∗ −mc− δ(q(v∗)v∗ − r(v∗)c)]f(v∗) + δmp′(1− v∗)

∫ v∗

µ(v∗)c

(v − c)dF (v).

(12)

Observe that the first term is simply the IC constraint that must equal 0 at v∗F . Evaluating

(12) at v∗ = v∗F thus yields

∂

∂v∗
W1(m, v∗F , 1) = δmp′(1− v∗F )

∫ v∗F

µ(v∗F )c

(v − c)dF (v).

The threshold under full disclosure is too high if ∂W1

∂v∗
< 0. A sufficient condition for this is

v∗F ≤ c, which always holds because it is optimal for any agent to adopt in period 1 if v ≥ c.
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