NONPARAMETRIC REGRESSION UNDER CLUSTER SAMPLING

YUYA SHIMIZU

ABSTRACT. This paper develops a general asymptotic theory for nonparametric kernel regres-
sion in the presence of cluster dependence. We examine nonparametric density estimation,
Nadaraya-Watson kernel regression, and local linear estimation. Our theory accommodates
growing and heterogeneous cluster sizes. We derive asymptotic conditional bias and variance,
establish uniform consistency, and prove asymptotic normality. Our findings reveal that under
heterogeneous cluster sizes, the asymptotic variance includes a new term reflecting within-cluster
dependence, which is overlooked when cluster sizes are presumed to be bounded. We propose
valid approaches for bandwidth selection and inference, introduce estimators of the asymp-
totic variance, and demonstrate their consistency. In simulations, we verify the effectiveness
of the cluster-robust bandwidth selection and show that the derived cluster-robust confidence
interval improves the coverage ratio. We illustrate the application of these methods using a

policy-targeting dataset in development economics.

1. INTRODUCTION

Nonparametric regression is widely used in economics for its flexibility. Typically, data are
assumed to be independently and identically distributed; however, in reality, observations may
exhibit dependence within a group structure called a cluster. Examples of clusters are class-
rooms, schools, families, hospitals, firms, industries, villages, regions, and so on. The cluster
sampling framework assumes independence between observations from different clusters but al-
lows dependence within each cluster.

The previous literature on nonparametric regression under cluster sampling assumes a bounded
and homogeneous number of observations per cluster. This assumption may not hold in real data
due to heterogeneous cluster sizes. To fill this gap, this paper studies nonparametric kernel re-
gressions that accommodate heterogeneous cluster sizes, including those that grow to infinity
asymptotically. Our approach is general, allowing for both bounded and growing clusters simul-
taneously, and includes cluster-level regressors.

We develop a comprehensive asymptotic theory for nonparametric density estimation, Nadaraya-
Watson kernel regression, and local linear estimation. Our results on asymptotic conditional bias
and variance, uniform consistency, and asymptotic normality enable us to propose valid methods

for bandwidth selection and inference.
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For clusters of growing sizes, the asymptotic variance contains a novel term for within-cluster
dependence, which does not appear under the assumption of bounded cluster sizes. This term
becomes significant due to the potential for a cluster to contain a growing number of observations
within a local neighborhood, making cluster dependence non-negligible asymptotically. We pro-
pose consistent estimators of the asymptotic variance that account for cluster dependence and
validate its importance through simulation. Our cluster-robust confidence interval achieves im-
proved coverage ratios, while conventional confidence intervals could suffer from under-coverage
in our simulated datasets.

Nonparametric regression, while significant on its own, also serves as an intermediate tool for
other estimators, such as regression discontinuity design, nonparametric auction estimation, and

semiparametric models under cluster sampling. Our results could extend to these areas as well.

Related literature. There is a substantial body of literature on cluster sampling in econo-
metrics. C. Hansen (2007) provides an asymptotic theory for parametric regression with ho-
mogeneous cluster sizes. Djogbenou, MacKinnon and Nielsen (2019) and B. Hansen and Lee
(2019) extend this theory to heterogeneous cluster sizes. Bugni, Canay, Shaikh and Tabord-
Meehan (2022) considers heterogeneous and random cluster sizes for cluster-level randomized
experiments. For further literature on parametric models under cluster sampling, the reader can
refer to Cameron and Miller (2015) and MacKinnon, Nielsen and Webb (2022).

Conversely, the theory on nonparametric regression under cluster dependence, even with ho-
mogeneous cluster sizes, is limited. Lin and Carroll (2000) and Wang (2003) examine local
polynomial and local linear regressions, assuming fixed and homogeneous cluster sizes and focus-
ing primarily on asymptotic efficiency. Bhattacharya (2005) offers an asymptotic theory for local
constant estimators under multi-stage samples, analogous to cluster sampling. When the number
of first-stage strata is set to one, his setup becomes a standard cluster sampling with fixed and
homogeneous cluster sizes. He puts a similar structure on error terms as this paper, but the fixed
cluster sizes render the term reflecting within-cluster dependence asymptotically negligible. For
the regression discontinuity literature, Bartalotti and Brummet (2017) has derived asymptotic
theories for local polynomial regression under bounded and homogeneous cluster sizes.

Menzel (2024) proposes a method for estimating nonparametric regressions in the presence
of cluster dependence, aiming to extrapolate treatment effects across clusters. He considers
independent but not identical observations between clusters, with a fixed number of clusters
exhibiting uniformly growing size. Our approach differs by incorporating general dependence
within a cluster and allowing for both bounded and growing cluster sizes simultaneously, leading
to distinct asymptotic results and theories.

To the best of our knowledge, there is no literature on nonparametric models with growing
and heterogeneous size clusters. Our paper adopts the same cluster size framework as Djog-
benou et al. (2019) and Hansen and Lee (2019). The presence of clusters with growing sizes
complicates the proofs for asymptotic theories, as cluster dependence becomes non-negligible.
Consequently, this paper introduces new technical results for nonparametric regressions under

cluster sampling, notably developing Bernstein’s inequality for cluster sampling to demonstrate
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uniform consistency. These novel contributions are believed to offer valuable theoretical tools for
future research.

This research also sheds new light on the literature regarding nonparametric regressions with
dependence. Following the foundational work on i.i.d. datasets (e.g., Stone, 1982, Fan, 1992,
Ruppert and Wand, 1994), the results have been extended to time series (Robinson, 1983, Hansen,
2008, Kristensen, 2009, Vogt, 2012, Vogt and Linton, 2020) and spatial datasets (Robinson, 2011,

Lee and Robinson, 2016), as well as to the cluster dependence framework discussed above.

The remainder of this paper is organized as follows: Section 2 introduces the cluster sampling
framework under consideration. Sections 3-5 discuss asymptotic theories for nonparametric den-
sity estimators, Nadaraya-Watson estimators, and local linear estimators, respectively. Section 6
demonstrates uniform convergence of these estimators. Section 7 provides guidelines for selecting
bandwidth in nonparametric regressions. Section 8 addresses cluster-robust inference. Section 9
presents Monte Carlo simulations for bandwidth selections and inference. Section 10 illustrates
our methods with an application in development economics using a dataset by Alatas, Banerjee,
Hanna, Olken and Tobias (2012). The paper concludes with Section 11. All proofs, technical

lemmas, technical discussions, and additional simulation results are included in the Appendix.

2. CLUSTER SAMPLING

The researcher observes (Y;, X;) € R x RY for i = 1,...,n, with cluster sizes given by
ng € {1,2,---} for ¢ = 1,...,G. Here, Y; represents a dependent variable, and regressors
X, are continuous random variables with the Lebesgue density f(z). Assume that each ob-
servation can be grouped into one cluster.! Thus, the total number of observations is n =
25:1 ng. To explicitly represent the cluster structure, we also use the notation (Yy;, X,;) for
g=1,...,G and j =1,...,ny. We treat cluster size ny, as nonrandom and possibly heteroge-
neous across clusters. We assume that observations belonging to different clusters are mutually

independent but permit general dependence within the same cluster. We decompose X,; into

. T .
Xgj = (X ;ljnd)T7 XéCIS)T) € RY where X é;nd) € R%na represents individual-level regressors and

Xéds) € R represents cluster-level regressors. We assume that the regressors contain at least

one individual-level regressors, dinq > 1. By construction, d = dj,q + dcis holds.

We denote X, = (Xgl, e ,Xgng) and aim to estimate the nonparametric regression model:
Ygj = m (Xgj) + egj, (1)
Eleg; | Xq] = E[eg; | Xg5] = 0. (2)

We also assume

E[ef; | Xg] =E[e}; | Xg5] = 0% (Xg), (3)
ind ind cls
Elegieqe | Xg] = E [egjegg | Xg(j ),Xg(e );ng 1 )}
ind ind cls .
:a<X!§j ), g(e );Xg(1)> for j # 4. (4)

Formally, we assume that for any 4, we know a function g(@) €{1,---,G}.
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The model specified through (1)-(4) exhibits greater flexibility than initially apparent. The
constraint imposed by (3) is that the conditional variance of the error term for an individual
is dependent only on the individual’s own regressors, both at the individual and cluster levels.
Additionally, (4) states that the conditional covariance of the error terms between any two
individuals within the same cluster is a function only of their individual-level regressors and
shared cluster-level regressors. This framework accommodates the inclusion of cluster random

effects in ey; and allows for the dependence of regressors within clusters.

Assumption 1. We assume the following data-generating process:
(i) The pairs (Yg;, Xg5) and (Yg/g,Xg/g) are mutually independent for any g # ¢', j =
L ng, and £ =1,--- ,ng.
(ii) The data is generated according to the model described through (1)-(4).
(iii) The variables Xg4; are identically distributed across all g and j, possessing a common

marginal density f(z). For any n, € {2,3,4}, and for any cluster g with ng > ng,

(ind) (ind), - (cls)
Xop o ’ng@g + Xg
Jts s ng with a common joint density represented by:

fa, (xgindx o glind), x<c1s>> ,

-9

the random vector ( ) 1s identically distributed across all g and

Remark 1. The conditions in Assumption 1 (iii) for f(z) and fs (azgmd),xgnd); m(ds)) are sufficient

for their consistent estimation. On the other hand, since we are not interested in estimating

f3 <x§ind), :cgnd), xgnd);a:(ds)> and f (xgind) , xgnd),xgind), xflind); x(ds)>, the associated conditions

in Assumption 1 (iii) could be weakened. For a detailed discussion, refer to Appendix C.

Remark 2. In nonparametric regressions, unobserved cluster heterogeneity is equivalent to a
mixture structure. Consider a scenario where the true data-generating process is defined as

follows:
Ygj = m (Xgj, Ug) + €gj,
Eleg; | Xg,Ugl =0,
where U, is an unobserved cluster-level variable. The critical condition here is that U, and egy;

are separable, and Uy is exogenous. Under these conditions, the estimand, derived through the

law of iterated expectations, is expressed as:
m(Xg;) = E[Yy; | Xg] = E[E[Yy; | Xy, Ug] | X
=B (X3, Up) | X,) = [ 1 (X,5.0) fpx, Uy | X)U,

This formulation implies that m (Xg;) is essentially a mixture of m (X5, Uy), integrated over the
unknown conditional density fy, x,(Uy | X4). Additionally, the condition E[eg; | Xy, Ug] = 0
ensures E[eg; | X4] = 0, allowing us to treat m (Xg;) as homogeneous across clusters without
loss of generality.

Similarly, consider a scenario where the true density of Xg; exhibits cluster heterogeneity, repre-

sented by the marginal density fx v, (Xgj, V;), with V;, being an unobserved cluster-level variable.
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In this context, our estimand becomes a mixture of fx v, (Xg;,Vy), which can be formally ex-

pressed as:
FX) = [ T, (X V) FV),.
This integral representation implies that the regressors possess identical marginal distributions

across clusters. Analogously to the treatment of marginal densities, cluster heterogeneities within

joint densities can be conceptualized as mixture structures.

Remark 3. Although the majority of research on cluster sampling treats cluster sizes as deter-
ministic, as does this paper, Bugni et al. (2022) treat cluster sizes as a random variable in a
cluster-level randomized experiment setup. Their investigation primarily focuses on estimating
treatment effects across clusters of varying sizes and developing inference methods that account
for the randomness of cluster sizes. This methodological divergence stems from differing concepts
of the data-generating process. Bugni et al. (2022) address scenarios where researchers sample
clusters in an experiment, viewing cluster sizes as one of the attributes. Conversely, we consider
cases where researchers sample individuals with given cluster sizes. Abadie, Athey, Imbens and
Wooldridge (2023) propose an alternate sampling framework wherein clusters are sampled from a
larger population of cluster, followed by the sampling of individuals from these selected clusters’

subpopulations.

3. NONPARAMETRIC DENSITY ESTIMATION

In this section, we show the consistency of nonparametric density estimators. In this paper,

we will use kernel functions satisfying the following definitions.

Definition 1. A univariate kernel function k : R — R is defined to satisfy the following criteria:
(1) 0 < k(u) <k < c0.
(ii) k(u) = k(—u).
(iif) 7 k(u)du = 1.
) kp = [

(iv) ke = [ w?k(u)du < oo and [ u*k(u)du < cc.

Definition 2. A multivariate kernel function K : R — R is constructed as the product of

univariate kernel functions across dimensions,
d
K (x)=]]* (X@) ,
q=1
where k(-) is a univariate kernel function and X (@) is the g-th component of X. The upper bound
of the multivariate kernel is K (X) < B =K2
The kernel density estimator for f(z) is:

o= >y (B, )

g=1j=1
where h > 0 is a bandwidth.

2Without loss of generality, we assume k > 1.
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~

Remark 4. The kernel density estimator given in (5) can be rewritten as f(z) = ﬁ Y K (X’h_ L )

as in the i.i.d. case. Thus, at least for the estimation, we can use a standard software package.

This also applies to nonparametric regression.

For the sake of simplicity, our discussion will focus on scenarios where a single bandwidth
is used for all components of X. However, our theory can be generalized to accommodate
multivariate bandwidths by substituting A with a bandwidth matrix, as discussed by Ruppert
and Wand (1994).

Assumption 2.

(i) nh? — oo.
(ii) h — 0 and (maxy<g ng) h%nd = O(1).
(iii) There exists some neighborhood N of z = (x(i“d)T,x(dS)T)T such that f(x) is twice

continuously differentiable and fs (m(ind), x(ind);x(ds)) is continuously differentiable.

Remark 5. Assumption 2 (ii) notably extends the i.i.d. case to cluster-dependent settings, in-
troducing a novel condition for bandwidth in the presence of cluster heterogeneity. This con-
dition necessitates a more cautious selection of bandwidth under cluster sampling, balancing
the need for nh? — oo against the constraint of (max,<gmng)h%nd = O(1). The condition
(maxgy<g ng) h%nd = O(1) requires that the maximum cluster size is not growing faster than the
shrinking speed of the h neighborhood for the individual-level regressors.

Furthermore, Assumption 2 (iii) underscores the importance of smoothness in both marginal and
joint densities within clusters, emphasizing the need for careful examination of density shapes
affecting within-cluster observation relationships.

To be precise, Assumption 2 (iii) means that f(Z) is twice continuously differentiable at any
T € N and fy <§§ind),%gnd);§(ds)) is continuously differentiable at any (Egind)T,f(Cls)T)T’

, T
<§glnd)T,§(°ls)T> € N. Assumption 2 (iii) limits our analysis to interior points. Although

we focus on interior points z, the results could be extended to boundary points.

Remark 6. nh? — oo and (maxy<gngy)h%nd = O(1) together imply that (max,<gn,)/n —
0, which is a key assumption of Hansen and Lee (2019) for parametric models under cluster
sampling. Moreover, (maxy<gng) /n — 0 implies G — oo. Thus, our theory requires G — oo
implicitly. If we only have the bounded size of clusters maxy<gngy = O(1), then, n has the same

asymptotic order as G.

Theorem 1. (Pointwise consistency) Suppose that Assumptions 1 and 2 hold. Then, f(:z:) LS

().

Remark 7. Beyond pointwise consistency, it is possible to derive expressions for the asymptotic
conditional bias and variance, as well as establish the asymptotic normality of f(:):) These
derivations, while omitted for brevity, follow directly from analogous proofs for the Nadaraya-

Watson estimator discussed subsequently.
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4. NADARAYA-WATSON ESTIMATOR

In this section, we derive an asymptotic theory for the Nadaraya-Watson estimator (a.k.a. local
constant estimator) for estimating the conditional expectation E [Y,; | Xg4; = x]. The estimator

is:

S5 e K (R4 vy
Sy K (Sy)

(6)

Mpw () =

Assumption 3.

(i) The density function is strictly positive at x, f(z) > 0.

(ii) There exists some neighborhood N of x = (;c(ind)T,x(dS)T)T such that m(z) and f(x)
are twice continuously differentiable, fo (x(ind),x(md);a:(ds)) is continuously differen-
tiable, and f; (z070), p(nd)_z(nd); 7(@)) £, (p(nd) glind) 5Gnd) z(0d); 1(5)) | 52(z), and

o (x(md), x(md);m(ds)) are continuous.

Remark 8. Assumption 3 (i) is standard for the Nadaraya-Watson estimator. Assumption 3 (ii)
generalizes the assumption for the i.i.d. case. It requires smoothness for joint densities of obser-
vations within the same cluster and the conditional covariance as well as the marginal density

and the conditional variance.

Theorem 2. (Asymptotic bias) Suppose that Assumptions 1-3 hold. Then,

R 1
E [ (z) | X1, -+, Xa] = m(z) + h*Buw(z) + 0p (h?) + O, ( nh”) ,
where

_m§j( Opgn(a) + a) 00 (@)0m(2) ).

Ouf (x) = 0f (x) /02D, dym(x) = Im(x)/02D, and dygm(x) = 8*m(x)/0d (x(q))2.
We use the following assumption to derive the asymptotic variance.

Assumption 4. (l Z? " g) hdind — X € [0, 00).

Remark 9. ( Zf 1 g) hdina = O(1) is implied by (max,<g ng) h4nd = O(1) since 25:1 ng = N.

Assumption 4 guarantees its convergence.
Theorem 3. (Asymptotic variance) Suppose that Assumptions 1-4 hold. Then,

Var [y (z) | X1, , Xg]

dels in ind). ,.(cls in ind). ,.(cls
_ RZO—2(x) n )\Rkl f2 (x( d)7$( d)’:[;( 1))0—(1‘( d),fU( d)’x( 1)) _|_0p L 7 (7)
f(z)nhd f(z)2nhd nhd

where Ry = f_oo k (u)2 du. In particular, if A =0,

Rlo?
Var [fiun (z) | X1, , X = W + 0p (nlhd> :
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In the special case of A = 0, the asymptotic conditional variance is equivalent to the i.i.d.
case. A sufficient condition for A = 0 is (maxy<gng) h%nd = o(1). In a finite sample, it is
more precise to consider A > 0. The sign of the second term of (7) depends on the sign of
o (x(ind),x(ind);x(ds)). In economic applications, it usually takes a positive value, indicating
positive conditional covariance of error terms within clusters. Neglecting this term will lead to

under-coverage in empirical applications.

Remark 10. The pivotal condition for this theorem is Assumption 4. Note that we can calculate
(1 25:1 ng) hnd directly. The part (l Zle ng) can be interpreted as follows. Although we

n n
are considering deterministic cluster sizes ng, the value % Zle ng = (é Ele n§> / (%) can be
interpreted as the second moment of the cluster sizes over the first moment of the cluster sizes

“R, [ng] JE [ng]”, where expectations are taken over {ng}?zl_

Remark 11. In the following two special cases, the second term of (7) has a simpler form. Firstly,
if we assume the conditional independence fo (x(ind),:v(ind) | x(ds)) =f (as(i“d) | x(ds))2, (7) sim-
plifies to )\RZCISU (x(ind),m(ind); x(ds)) / ( f (x(ds)) nhd). Secondly, if we assume the independence
between individual and cluster-level regressors (or assume that there are no cluster-level regres-
sors, des = 0), (7) simplifies to
/\chlsa (x(ind)jx(ind); x(cls)) f (x(ind) | x(ind))
f (x) nhd

(or Ao (z(ind) z(nd)) ¢ (g (ind) | g (nd)) /(£ (3(nd)) npd) | respectively).

Theorem 4. (Pointwise consistency) Suppose that Assumptions 1-3 hold. Then,

i (2) 2 m (). (8)

Assumption 5.

(i) There exists some r > 2 such that
(a) for any x = (5(ind)T, f(CIS)T)T eN,

E[lel | X = 7] <?* < o0, (9)

(b) for some constant C' > 0,

1/r
()
(c) and
1
(ii) We also assume
nh?** = 0(1), (12)

RIf(2)0(x) + )\Rzlclsfé (x(ind)7 x(ind);m(cls)> o (x(ind),x(ind); x(cls)) >0,

and
4

n
max —2 — 0 (13)
9g<G n
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asn — oo.
Theorem 5. (Asymptotic Normality) Suppose that Assumptions 1-5 hold. Then,
nhe (Mny () — m(z) — h? Buw (7))
e (0, Rgaz(x) . )\chlsfé (x(ind),x(ind);x(cls)) o (x(ind),x(ind);x(cls))> )

f(x) fx)?

The asymptotic distribution has the same bias and the same convergence rate as in the i.i.d.
case. The asymptotic variance is a scaled value of the primal terms of asymptotic conditional
variance that include the conditional covariance term due to the cluster dependence. Our simu-
lation in Section 9 shows the importance of considering this term in inference.

The asymptotic variance in the previous literature with bounded cluster sizes (e.g., Bhat-
tacharya, 2005) has only the first term of (14). Under bounded cluster sizes, cluster dependence
is asymptotically negligible since an observation in the g-th cluster has a negligible number of
observations belonging to the same cluster around the local neighborhood. On the other hand,
under growing cluster sizes ny, — 00, the observation could have a non-negligible number of
neighboring observations belonging to the same cluster. Thus, the conditional covariance of

error terms matters in our general setup.

Remark 12. Conditions (9) and (12) are standard in the kernel regressions. Replacing (12)
by nh?*t* = o(1) eliminates the asymptotic bias (undersmoothing). Conditions (10) and (13)

require smaller cluster sizes than conditions in Hansen and Lee (2019). Indeed, they require

1/r
(Z§:1 ng) /nt/? < C < 0o and maxy<g ng/n — 0, which are implied by (10) and (13).
Condition (11) is not strict if regressors have small dimension d. For example, the AIMSE-
optimal bandwidth in Section 7 satisfies nh%t is bounded away from zero. In this case, (11) is

always satisfied if d < 4 and equivalent to r < 2d/(d —4) if d > 4.

5. LOCAL LINEAR ESTIMATOR

In this section, we consider the local linear estimator

G ng
s (2) = Y K (Xg5, @) Yyj, (15)

g=1 j=1

where

Kuip (u,2) = ef (ijxxm) [ ] Ky (u—1),
u—a
0 1 (Xl—x)T Kh (Xl—:c) O
€1 = . ; XCC = ’ WI = .
~— : ~~ ~~
(d+1)x1 . nx (d+1) 1 (X,—a)" nxn 0] Ky (X, — )

and K, (1) = h—ldK (ﬁ) We will assume an additional condition for the simplicity of proofs.

Assumption 6. K has a compact support.
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Remark 13. Assumption 6 is a standard technical assumption for local linear estimators. It can

be replaced by a tail decay assumption for K (see e.g., Fan and Gijbels, 1992).

We can establish similar asymptotic theories for local linear estimators as we derived for
Nadaraya-Watson estimators. As in the i.i.d. case, the asymptotic bias of a local linear estimator

does not include the term of first-order derivatives.

Theorem 6. (Asymptotic bias) Suppose that Assumptions 1-3 and 6 hold. Then,

E [ (2) | Xy, -+, Xa] = m(x) + h2Buu(z) + op (h%),

where

d
Bi(z) = % 3" Oggm(a).
q=1

Theorem 7. (Asymptotic variance) Suppose that Assumptions 1-/ and 6 hold. Then,

Var [mLL(x) | le T 7XG]
| Blo) | ML (0052 ) 0 (200, 0000 20) 1y
F(z)nhd f(z)?nhd nhd
In particular, if A =0,

dO.Q T
Var [ (z) | Xy, X¢g] = W + 0p <n1hd> :

Theorem 8. (Pointwise consistency) Suppose that Assumptions 1-3 and 6 hold. Then,
mrr (2) B m (x). (16)
Theorem 9. (Asymptotic normality) Suppose that Assumptions 1-6 hold. Then,
nhd (T?LLL(J:) —m(z) — hQBLL(x))

i> o Rgo’z(ﬂj‘) N )\Rchsfz ({L‘(ind),.l?(ind); x(cls)) o (:E(ind), x(ind); x(cls)) 17)
W) FoP !

6. UNIFORM CONVERGENCE

If we impose further assumptions, our pointwise consistency result can be strengthened to
uniform consistency. Before proving uniform consistency for nonparametric estimators, we will
show uniform consistency for the generic function

G ng

P = Y K (AT wy (19)

g=1j=1

to its expectation, where X ; € R? and Wy € R.

We assume the cluster samples {Wy;, X,;} satisfy the following assumptions.

Assumption 7. There erists a constant V such that

sup Var (@ (1’)> < nvhd
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for sufficiently large n.

Assumption 8. For everyi=1,...,n and for some s > 2, we have
E[[W;[’] < B1 < o0 (19)
and
supE[|[W;]° | X; = 2] f (z) < Bg < 0. (20)
X

We also assume that
(maxy<qg ng)?logn
n1—2/s) pd

= 0(1). (21)

Remark 14. The conditions are standard to establish uniform convergence except for (21). Equa-
tion (21) has an additional component (maxy<c ng)2 in cluster sampling. If we focus on bounded
size clusters, (21) can be reduced to the standard assumption for the i.i.d. case.

For some applications, W; has a bounded support. In this case, Assumption 8 is satisfied with

s = oo after rescaling W; € [—1,1].
We also require a further assumption on the kernel function.

Assumption 9. For some 0 < L < oo, K has a compact support, that is, K(u) = 0 for
llul|| > L. Furthermore, K is Lipschitz, i.e., for some constant A < oo and for all u,u’ € R,
K (u) — K (u)] < Afju— |

Theorem 10. (Uniform consistency for the general estimator) Suppose that {Wg;, X4i}

satisfies Assumption 1 and Assumptions 7, 8, and 9 hold.

en=0 ((Ignga(};( ng)Q/d (logn)Y/ d) (22)

logn 1/2
an = nhd ) (23)

{b\(x) converges in probability to E |:121\ (x)} uniformly on ||z|| < ¢y, i.e.,

Then, for any

and

sup
lzll<cn

b (@) ~E[$@)]] = 0 (an), (24)

as nh? — oo, h — 0, and (max,<gngy) h¥nd = O(1).

The proof for Theorem 10 relies on the following cluster sampling version of Bernstein’s in-
equality, which could be of independent interest.
Lemma 1. (Bernstein’s inequality for cluster sampling)
G
For random variables under cluster sampling {{ng}?il} ) with bounded ranges [—B, B] and
g:

ZETO MEans,

- - 1 g2
P ‘Y 1Y ‘ <2exp{—-=
[ 14+ Ye >€} - exp{ 2v+(maxg<Gng)Be/3}
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for every e > 0 and v > Var (Yl +-+ Yg>, where Y = Z?il Yy;.

Based on Theorem 10, we will show the uniform consistency of the nonparametric density
estimator and nonparametric regressions. It requires the following conditions, including uniform

smoothness.
Assumption 10.

(i) nh? — co.

(ii) h — 0 and (maxy<g n,) hdnd = O(1).

(iii) m(z) and f(x) have uniformly continuous second-order derivatives and they are uni-
formly bounded up to second-order derivatives, fo (x(ind),x(ind);x(ds)) has uniformly
continuous first-order derivative and is uniformly bounded up to first-order deriva-
tive, and fy (z(nd), z0nd) z(nd), 1)) £ (plind) ynd) z(nd) y(ind). 2(€9)) | 52(z), and

o (x(ind), w(ind);x(ds)) are uniformly continuous and uniformly bounded.

Theorem 11. (Uniform consistency for the nonparametric density estimator) Suppose

that Assumptions 1, 9, and 10 hold. We also assume that

(maxy<g ng)? logn B
nhd N

Then, for any sequence ¢, satisfying the condition (22),

0(1).

swp | (@) = f (@)] = Oy (an + 1?). (25)

llzll<en
Theorem 12. (Uniform consistency for the Nadaraya- Watson estimator) Suppose that
the assumptions for Theorem 11 hold. We also also assume that Assumption 8 holds for the cluster

observations {Yyj, Xgi}. If cn is a sequence satisfying the condition (22),

and
5, " (an + h?) = o(1),
then,
sup | () —m (2)] = Op (0,1 (an + h7)) (27)
lzll<en

for mu(z) = Myw(z) or mpy(x).

The range {z : ||z]| < ¢,} expands slowly to R? since our condition (22) can cover a sequence
{cp} such that ¢, — oo slowly as n — oo. This expansion is useful to establish asymptotic
theories for semiparametric estimation with a nonparametric kernel estimator in the first-stage.

Suppose that ¢, = ¢ (constant) and d,, is far away zero. Then, the uniform convergence rate
for kernel regressions is a,, + h? = (log n/(nhd))1/2 + h2. By choosing h = (log n/n)l/(d+4), the

)2/ (d+4)

optimal rate (logn/n is attained. This convergence rate is equivalent to Stone (1982)’s

optimal rate in the i.i.d. case.
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7. BANDWIDTH SELECTION

In this section, we provide guidelines for selecting bandwidth in nonparametric regressions. We
suggest three types of methods: the asymptotic integrated mean squared error (AIMSE) optimal

bandwidth selection, the cluster-robust rule-of-thumb, and the cluster-robust cross-validation.

7.1. AIMSE-optimal bandwidth. Let B.(x) = By (x) or Brp(z). The asymptotic integrated

mean squared error of the estimator m, (x) is

/ h'B,(x)%f(z)w(z)dz
R4

d .2 )\Rdcls (ind) ,.(ind). ,.(cls) (ind) ,.(ind). ..(cls)
v {%3523* Ll et e e St
Rd
1 G 2
_ Rig? wDge1 M 1
v 0 ) (), g

where w(z) is some integrable weight function which ensures that B = [p4 By (2)%f(z)w(z)dz,
72 = [pao*(z)w(z)dz, and
f2 (x(ind)’ x(ind);x(cls)) o ($(ind),$(ind); x(cls))

R4 f(z)

Ocls =

w(z)dz

are finite. We define

Riz?
nhd
as an objective function for bandwidth selection since the third term in (28) does not depend on

AIMSE = h*B +

(29)

h and the fourth term in (28) is asymptotically negligible.

Theorem 13. The AIMSE-optimal bandwidth that minimizes the AIMSE (29) is

deEQ 1/(d+4)
ho :( 4% > p /() (30)

Our asymptotic theorems rely on the assumption (max,<g n,) h%nd = O(1).
When (maxg<g ng)n_di“d/(d+4) — oo, the AIMSE-optimal hg does not satisfy this order. In
this case, the AIMSE-optimal bandwidth does not make sense since the AIMSE criterion itself
relies on the assumption (maxy<g ngy) h%nd = O(1). Thus, when the largest cluster size is large
compared to the sample size n, we recommend using the cross-validation criterion (see Section
7.3).

7.2. Rule-of-thumb. In practice, it is not easy to compute the AIMSE-optimal bandwidth
since (30) contains unknown parameters. As suggested by Fan and Gijbels (1996, Section 4.2)
for the i.i.d. case, we provide a cluster-robust Rule-of-Thumb (CR-ROT) bandwidth choice for a
one-dimensional individual-level regressor z € R. This bandwidth could be a crude estimator of
the AIMSE-optimal bandwidth, but the primary purpose of it is to give a guess of the bandwidth

requiring little computational effort. Let

iM_g(w) = do,—g + -+ da_ga (31)
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be a fitted 4th-order global polynomial regression leaving out the g-th cluster. Given this para-
metric model and a user-specified integrable weight function w(z), the CR-ROT bandwidth is
calculated by

d =2\ 1/(d+4)
dRryo > p1/(d+4) (32)

hcr- = :
CR-ROT (4B

where

B = iz{ )}2w<ng>

g=1j=1
G ng
= —ZZ{O@ g+ 303 _¢Xg; + 6044 gj} w (Xgj),
g=1j=1
G ng
= Iyye, / (2)d,
g=1j=1

and é,; = Yy; —1m_g (Xgy;). In words, B and 52 are computed by the parametric model (31) and
the homoskedastic standard error assumption for local linear estimators. For Nadaraya-Watson
estimators, we also assume that X has a uniform distribution for simplicity. Then, we have
f'(z) = 0 and can compute B as for local linear estimators by Bpy(z) = Brr(z). A common
choice of w(z) is an indicator function of some interval.

Equation (32) is different from the standard Rule-of-Thumb (ROT) bandwidth choice by Fan
and Gijbels (1996) since it uses m_g4(z) instead of m(x), which is estimated by the full sample.
We use m_g(x) to eliminate dependence between the estimator m_g4(-) and (Yy;, Xg4;). This

modification should provide a better estimation of out-of-sample prediction error.

7.3. Cross-validation. A heuristic cross-validation function for clustered sampling is

G ng

Ccv Z Z €gj (h w Xgj) s (33)

g 1j=1
where eg; = Yy — m_g(Xg;,h), and m_g4 (Xg4j, h) is the leave-one-cluster-out nonparametric
estimator computed with bandwidth h and without cluster g. For example, Hansen (2022a, p.693-
695) suggests this form of cross-validation, but he does not provide any theoretical guarantees.
For Nadaraya-Watson estimators, the leave-one-cluster-out nonparametric estimator is defined
by

n, s X 1.—x
g Sy K (F) Ve
n,s X /. —x :
24 Zji1K< “h )

Similarly, for local linear estimators, the leave-one-cluster-out nonparametric estimator is defined
by

M, —g (2, h) = (34)

myL,—g (2, h) ZZKLL -9 gj737)YfJ’jv (35)

g'#gj=1
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where

1

— X

~1
Kip,—g(u,x) = el (X;,gW%_gX%_g) [ y ] Kp (u—x),

Xz,—g and W, _, are defined by the same way as X, and W, but without using the variables

in the g-th cluster. We will show that this cross-validation criterion works appropriately.
Theorem 14. Let 52, = E [egjw (Xg')} = E [02 (Xg;) w (Xgj)] and w(x) be some integrable

weight function. Under Assumption 1, we can decompose the expectation of the cross-validation

function over {Yg,Xg}gG:1 as

E[CV(h)] =72, + IMSEg_1(h) (36)

where .
IMSEg_1(h) = Z %E,g [ y {m(z) —m_g (x, W)} f () w (z) dz|, (37)

g=1

and the last expectation is taken over the sample except for the g-th cluster (Y_g,X_4) =
(Yo Xg} gy

Since @2, does not depend on h, minimizing E[CV(h)] on h is equivalent to minimizing
IMSEg_1(h), which is a sum of the expected mean squared errors weighted by cluster sizes.
Thus, this theorem justifies the use of the leave-one-cluster-out cross-validation. We can choose
the bandwidth by minimizing a cluster-robust cross-validation function CV(h) over some finite
grid points H = [hy,--- , hy],

hcr.cy = argmin CV(h). (38)
heH

Note that the decomposition theorem holds for finite samples and does not rely on assumptions

d:
such as (maxy<g ng) h%nd = O(1).
8. A NEW CLUSTER-ROBUST VARIANCE ESTIMATION

Since the asymptotic variance of (14) contains the joint density f (m(ind),x(ind);x(ds)), the
conditional variance o?(z), and the conditional covariance o (:c(md),w(ind);x(ds)), we need to
estimate each of them for inference. Alternatively, Calonico, Cattaneo and Farrell (2019) and
Hansen (2022a) propose to use a finite sample conditional variance of m (Xg;) with estimated
error terms as an estimator of the asymptotic variance. To the best of our knowledge, there is no
theoretical guarantee of their methods, and this paper is the first research providing asymptotic
theories of inference for nonparametric regressions under general cluster sizes.

For the joint density estimation, we propose to use

P (x(ind)7 p(ind), x(cls))

1
Ndeind +deis

)T 5 (ind) T X(cls)T>T B (x(ind)T’x(ind)T’x(cls)T)T

<y ZK(”’“’Q - .(39)

ging>21<j<l<ng




NONPARAMETRIC REGRESSION UNDER CLUSTER SAMPLING 16

where b is a bandwidth and N = Zg:nQZQ ng(ng —1)/2.
The expression (39) can be interpreted as a standard nonparametric density estimator. We es-

4 : T
timate the density using (2di,q + deis)-dimensional regressors (X (ind)T (md)T, X éClS)T> , thus

g3 1 “gl

we have b?dmdtdas in the denominator in (39). For clusters larger than 2 (i.e., n, > 2), there

are » i <t<n, 1 = ng(ng — 1)/2 possible combinations of X;jnd) and Xéiend). Each cluster has

a ng(ng — 1)/2 effective size observations, and we have the N =} ., ~,ng(ng — 1)/2 effective

size sample in total. In these senses, (39) is a standard nonparametric density estimator for

(2ding + deis)-dimensional regressors and ng(ng — 1)/2 size clusters.

Remark 15. Note that we use the kernel K

stead of K ( 9’71) K <X9i_x). The latter is the kernel to estimate fo (245, xgg)\(

14 .
g 5 in-

(Xéij“d)T,X(md)T (cls)T> Ti(m(ind)T a(ind)T 7w(cls)T)T >

Tgjtee)=(T,x)’

which is not continuous around (z4;, ¢¢) = (2, ). Indeed, this joint density is degenerate in coor-

dinates of cluster-level regressors since we can rewrite for (2g5, £g0) = for (Tgj, Tge) 1 {x

(cls) _ (cls)
9i T }’

. T . T
where z,; = (x(ulad)'l"w(c‘ls)'l') g = (l‘(md)T x(cls)T) Cand x(c'ls) _ x(cls) _ (cls) by the defi-

nition.

97 97 gt 1 gl 97 gl

We make the following assumptions to estimate the joint density consistently.

Assumption 11. Define ¢2 (Xg5) =E [e;}j | Xg:| =E [eéj | Xg]} and

c < x(ind) x(ind) X(md) X(md X(cls)) legieoteoteqs | Xql

9]

(i)
(ii)
(iii) f:

)

(iv

9]

d ind ind .
=FE [eg]eggegtegs ’ X ind) Xélen )’X;n )’Xélsnd);Xécls)] .

Np?dinatdas o0,
b—0 and (maxg<gn ) b?hina = O(1).
(m(‘nd z(ind). x(ds)) > 0.
There exists some neighborhood N of x = ( (ind) T :Jc(ind)T)T such that 02 (), o (x(ind), x(ind);x(ds)),
and fo (x(md), g(ind). x(ds)) are twice continuously differentiable, fs (:c(ind), g(ind) 4 (ind). a:(ds))

and fy (x(ind),x(md),x(md),x(ind);x(ds)) are continuously differentiable, and ¢ (x) and

'S (x(ind), glind) g (ind) x(ind);x(ds)) are continuous. Also, joint densities of up to 8 individual-

level regressors and cluster-level regressors within the same cluster follow common dis-

tributions, and these joint densities

15 ( (ind) ;(ind) ,(ind) (ind) x(md);x(ds)> o

fs (x(ind)’ $(ind)’ :E(ind)’ :L,(ind)7 x(ind)’ x(ind)’ m(ind)7 x(ind); l,(ds))

are continuous on the neighborhood N .
There exits some sequence {c,} satisfying the condition (22) such that for any g =
,G and for any j = 1,--- ,ng, we have || Xg;| < ¢, with probability approaching

one.
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Remark 16. Assumption 11 (i) and (ii) correspond to nh? — oo, h — 0, and (max,<g n,) hdnd =
O(1) in the marginal density estimation. Assumption 11 (iii) and (iv) are stronger than Assump-

) i T
tion 3 so that we can cover regressors (X ;}nd)T, X;lgnd)T, XédS)T>

tions Xy; and Xgp. A sufficient condition for Assumption 11 (v) is E || X ;|| < oo since Markov’s

constructed by two observa-

inequality implies
Pr ([| Xg;ll > en) < E[| Xyl fen — 0

if we choose ¢,, — 0.

Theorem 15. (Consistency of the joint density estimator) Suppose that Assumption 11
holds. Then,

f2 ( (ind) ;.(ind), ;. Cls) f2< (ind) . (ind). x(ds)) '

Next, we will consider conditional variance and covariance estimation. We only provide
Nadaraya-Watson type estimators, but they can be easily extended to local linear type ones.
Since the goal here is to estimate o%(z), we can estimate it as we did for m(z). The infeasible

Nadaraya-Watson estimator is
—z\ o
o YDRD Il ( g )egj
nw (IIZ) = g i
>, z:jle( )

This estimator is infeasible because ey; is unknown. We can replace it by e4; = Yy; — ma (Xg;)

with my(x) = Mmpw(x) or my(z). The feasible variance estimator of the conditional variance is
2\
Zg 1 Z ( Y ) g]
= .
O zjil K (%47)

The following theorem shows 52, (x) is a consistent estimator.

(40)

Theorem 16. (Consistency of the variance estimator) Let €g; = Yy — my (Xg;) and
My (x) = Mpw(z) or myy(x). Suppose that the assumptions for Theorem 12 and Assumption 11
hold. Then,

62 (x) D o? (x). (41)

Similar to the joint density estimator, we can construct a Nadaraya-Watson type estimator for

) . T
the conditional covariance using (2dinq + dejs)-dimensional regressors ( X;}nd)T7 Xélgndﬁ, XéCIS)T>

" (a:““d), zind); SU(CIS))

nw

X(ind)T )((i“d)—r X(CIS)T)T_(Z,(ind)T’x(ind)T7x(Cls)T)T
€gj€gt

( 93 gl g
Zg:nQZQ Zl§j<€§ng K ( b

(nd)T +(ind) T ~-(cls)T) "
(<X”‘ X XET) -

Zg:ng22 Zl§j<5§ng K b

(l.(ind)T (nd)T g (cls) T ) T )
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2%

Because e,; is unknown, it is infeasible as 52 (x). The feasible version of G2 is estimated by

replacing eg; with eg; = Yy — my (Xg5),

G (x(ind)’ x(ind); x(cls))

X<ind)T’X(iend)T7Xécls)T> T_(x(ind)'l'7I(ind)T7x(cls)T)T
p PN
€gj€gt

2ging>2 21<j<t<n, K << — ;

- (ind) T (ind)T (cls) T\ " (ind)T - (ind)T (cls)T) T ’ <42)
S e el B G A >>

Zg:ngz2 Zl§j<fgng K ( b

Theorem 17. (Consistency of the covariance estimator) Let eg; = Yy; — my (Xg5) and

M (x) = Maw(z) or myL(x). Suppose that the assumptions for Theorem 12 and Assumption 11
hold. Then,
G (w(ind)7x(ind);x(cls)) LA (x(ind)’w(ind); l,(cls)) . (43)

Corollary 1. Let A = (% 25:1 ng) hiind . Let My (x) = Muw(x) and By(r) = Buyw(x) (or
m«(z) = myyL(x) and Bi(x) = Bpr(z)). Suppose that the assumptions for Theorem 5 (or
Theorem 9, respectively), Theorem 16, and Theorem 17 hold. Then,

—1/2
R%a}gw (x) }:Rgcls]/(; (x(ind)’ x(ind); x(cls)) G (x(ind)’ :E(ind);x(cls))
= + — 5
f(@) (F@)
xVnhd (i (z) — m(z) — h*B.(z))
4, N(0,1). (44)

Corollary 1 suggests to use

\/T RZ”&%W (z) . XRZCBJ% (w(ind)7 g (ind). x(ds)) Gow (w(ind)7 g (ind) x(cls))
= —~ 2
nhy - F@) (F)

as a standard error. The estimator /)\\Ridsfz (:J:(i“d), z(ind). ac(ds)) Onw (x(ind), z(ind). x(ds)) / (f(x)) ’
could be too difficult to estimate in practice for the following two main reasons. First, it contains
fg (x(ind), x(md);x(ds)) and Oy (a:(ind), z(ind). :c(ds)), which put most kernel weights for observa-
tions that X ;ijnd)
observations could be rarely observed, and these estimators could be imprecise. Second, it

(45)

and Xéiénd) are both in the neighborhood of (). In a finite sample, such

contains a density ratio fg (m(ind),x(ind);x(ds)) / f(z), which is difficult to estimate, especially
nonparametrically.

To overcome these difficulties, we provide a parametric compromise under additional assump-
tions. We assume that fo (w(ind),x(ind); x(ds)) follows a multivariate normal distribution, (4

(cls)

and x are independent or there are no cluster-level regressors (see also Remark 11), and the
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conditional covariance is homoskedastic. Then, we can simplify

B\\des]/c\z (x(ind)7x(ind); l,(cls)) G nw (x(ind)7 m(ind); CC(cls))

(F)”
R P o (ind) ‘ .’L'(ind),//j\, i
— )\RZCIS % Z Z égj égf — ) , (46)

ging>21<j<f<n, f(z)

where €4 = Yy —m_g (Xg5), m_g (x) is estimated by the global polynomial regression as (31),
and p (z1 | x2, i, ) is a conditional density function of z1 given xo with the joint distribution
S S
12 S

sample moments. Note that the expectation 17 and the variance matrix in are the same for x1

(21, :BQT)T ~ N (u, ). We can estimate 7 = (117 , ﬁlT)T and & = ( > easily by using

and xo since we initially assumed identical marginal densities in Assumption 1.

In practice, we can estimate o2 (z) and o (l‘(ind) , z(ind). x(ds)) by using clustered-level jackknife
estimators. Hansen (2022b) shows that for parametric linear regressions, clustered-level jackknife
variance estimators are better than conventional variance estimators with respect to the worst-
case bias. Clustered-level jackknife variance estimators o2, (x) and Gy (x(i“d),x(ind); x(ds)) are
estimated by replacing eg; with eg; = Yy; — m_g (Xg;), where m_g (-) is a nonparametric es-
timator estimated leaving out the g-th cluster observations. In the simulation section, we will
compare coverage ratios of confidence intervals constructed by the conventional standard error

~2

52 (x) and the cluster-robust standard error 52, ().

nw

o~

Remark 17. The theorems use the same bandwidth h for . (z), f(z), and 52, (x), and the same
bandwidth b for fg ($(ind),x(ind);x(ds)) and Opnw ($(ind),x(ind);x(ds)) for notational simplicity.
However, we can easily extend these results to the case where different bandwidths are used
(denoted by Ay, by, hy2,by, by) as long as by, by, hy2 and by,, by have the same asymptotic orders

as h and b, respectively.

Remark 18. Because the estimator must be centered by the unknown bias h%B, () as well as
the true value m(x) in (44), the bias term should be considered in inference. There are three
main ways to handle it. The first way is to ignore it. This ignorance could be justified by
an undersmoothing assumption nh?t* = o(1). It is the simplest way but not ideal since the
bias exists in a finite sample. Second, in the context of RDD, Calonico, Cattaneo and Titiunik
(2014) suggest estimating B, (x) nonparametrically and using a new standard error to take the
randomness due to the bias estimation into account. Third, Armstrong and Kolesar (2018)
characterize finite sample optimal confidence intervals with the worst-case bias correction for
i.i.d. observations. Comparing these procedures in the cluster dependence case is important,

though it is outside of the scope of this paper.

9. MONTE CARLO SIMULATION

In this section, we will check the validity of bandwidth selections and confidence intervals in

simulated datasets under cluster sampling. For both simulation studies, we consider the following
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setup. We fix the number of clusters G = 100 and cluster sizes ny, = 20 for g =1,...G — 1. To
evaluate the effect of the largest cluster size, we try two cluster sizes ng € {20,100} for cluster
g = G. Thus, we try two scenarios with (maxg<gng) /n =~ {0.02,0.09}, also corresponding to
homogeneous or heterogeneous size clusters. We generated 2000 datasets for replication. For the
data-generating process, the following two models are considered.

Setup 1 (homoskedastic errors):

Y, = sin (2X45) + 2exp (—16X92j) + 0.5eg4,
where Xg; = \/px (X1),+ V1 — px (X2),;, €gj = /PeCqg+ /1 — peugj, and we generate (X1), ~
N(0,1), (X2),; ~ N(0,1), ¢g ~ N(0,1), ug; ~ N(0,1) independently. We set px,pe €
{0.2,0.5}. Note that larger px and p. imply stronger cluster dependence on the regressor and
the error term, respectively.

Setup 2 (heteroskedastic errors):

Yy = Xgjsin (21X ;) + 0 (Xg5) €,
2+ cos (27X ;)
7 (Xg5) = a—

and X,; and ey; are generated in the same way as Setup 1.

A key feature is that Setup 1 has homoskedastic errors, and Setup 2 has heteroskedastic errors.
We adopted the functional form m(-) for Setup 1 from Fan and Gijbels (1992) and Setup 2 from
Kai, Li and Zou (2010). The data-generating process for X,4; and ey, are standard in the cluster
dependence literature (Cameron, Gelbach and Miller, 2008; Bartalotti and Brummet, 2017). We
set the weight function w(z) for cross-validation and TAMSE equals to w(z) =I1{{, < x < &y},
where we set £, = —1.5 and &y = 1.5 for Setup 1, and &1, = 0 and &y = 1 for Setup 2, respectively.
For nonparametric regression, we use the Epachenikov kernel and local linear estimators. Results
when using Nadaraya-Watson estimators are presented in Appendix D because their values are

similar to the ones by local linear estimators.

9.1. Bandwidth selection. We will compare four methods of bandwidth choice: (i) rule-
of-thumb (ROT), (ii) cluster-robust rule-of-thumb (CR-ROT), (iii) cross-validation (CV), and
cluster-robust cross-validation (CR-CV). hcr.ror (Equation 32) and hcr.cv (Equation 38) are
what we suggested. The ROT bandwidth choice hror is proposed by Fan and Gijbels (1996)
for i.i.d. observations. Instead of leave-one-cluster-out global fit as (31) for hcr.roT, it uses the
global fit using the entire sample. hcy minimizes the cross-validation function. The difference
between hcy and hcgr.cv is that hcoy minimizes a criterion based on leave-one-out prediction
errors, while hcr.cyv minimizes a criterion based on leave-one-cluster-out prediction errors.

In simulation, we first compute hror and hcr.ror. Then, hcy and hcr.cv are found by
the grid search for 50 points over [hcr-roT/3,3hcr-ROT]. The performance of the methods of
bandwidth selection is evaluated by the average squared error (ASE):

Ngrid

{mL (uk, h) —m ()}
k=1

1

Ngrid

ASE(h) =
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TABLE 1. Mean of ASE and mean of selected bandwidth (my;,, Setup 1)

maxng = 20 maxng = 100

hror  hcr-ROT hcv hcr-cv hror  hcr-ROT hcv hcr-cv

(px,pe)—(0.2,02) 00054  0.0053  0.0041  0.0041  0.0053  0.0053  0.0041  0.0041
{0.0297} {0.0302} {0.0482} {0.0483} {0.0292} {0.0297} {0.0477} {0.0479}
(px.pe)=(0.2,0.5) 0.0062  0.0061  0.0049  0.0049  0.0063  0.0062  0.0050  0.0050
{0.0297} {0.0302} {0.0482} {0.0484} {0.0292} {0.0297} {0.0479} {0.0479}
(px,pe)=(0.50.2) 0.0055  0.0054  0.0042  0.0042  0.0056  0.0055  0.0042  0.0042
{0.0292} {0.0300} {0.0484} {0.0486} {0.0288} {0.0295} {0.0482} {0.0484}
(px,pe)=(0.5,0.5) 0.0066  0.0065  0.0052  0.0052  0.0068  0.0067  0.0054  0.0054
{0.0292} {0.0300} {0.0486} {0.0486} {0.0288} {0.0295} {0.0482} {0.0483}

Note: Means of selected bandwidths are shown in curly brackets.

where M, (ug, h) is the local linear estimator with the bandwidth h, and {u1,... up,, } are
the grid points to evaluate the performance. We set the number of the grid ngiq = 50 and
{ui,... s Ungyig } are evenly distributed over [¢,, £u].

Tables 1 and 2 show means of the ASE for the local linear estimator and means of selected
bandwidths (in curly brackets) across each simulation draw for Setup 1 and 2, respectively. Each
table contains four methods of bandwidth choice in several scenarios. We consider combinations
of homogeneous or heterogeneous size clusters, high or low cluster dependence on regressors, and
high or low cluster dependence on error terms. In Setup 1 (Table 1, homoskedastic errors), hror
and hcr.roT have similar values of the ASE and the selected bandwidth, and hoy and hcr.cv
have the similar values of them, but hcy and hcr.cyv work better than hror and hcor.roT in
terms of the ASE. Within the same method of bandwidth choice, heterogeneous size clusters
ng = 100 and high cluster dependence on regressors px = 0.5 give a slightly larger ASE.
Compared to them, high cluster dependence on error terms p, = 0.5 gives a much larger ASE.

In Setup 2 (Table 2, heteroskedastic errors), hror and hcr.roT work poorly because they as-
sume homoskedasticity. Different from Setup 1, hgroT has a larger ASE than hcr.roT. As Setup
1, hov and hcgr-gv work well and have similar values of the ASE and the selected bandwidth.
The good performance of hcy can not be explained by our theoretical results. We probably need
an asymptotic analysis of Aoy under the cluster dependence, which is outside of the scope of this
paper.

To investigate how close the selected bandwidths are to the bandwidth that minimizes the
ASE, we plot two figures for a scenario with ng = 100 and px = p. = 0.5. Figures 1 and 2
have values of bandwidth A in the z-axis and means of the function ASE(h) in the y-axis, which
are calculated from simulation draws for Setup 1 and 2, respectively. These figures also contain
means of selected bandwidths by four selection methods and hargmin minimizing ASE(h). We
find that hcyv and hor-cv are very close to hargmin in both setups.

We recommend hcgr.cy because it has a theoretical guarantee (Theorem 14) and because it
performs the best in our simulation, although the difference of ASEs between hcyv and hcr.cv
is subtle. In terms of the computational cost, hcr.cv is also better than hgy since leave-one-

cluster-out estimators use smaller sample sizes than leave-one-out estimators do. hcr-roT iS
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TABLE 2. Mean of ASE and mean of selected bandwidth (my;,, Setup 2)

maxng = 20 maxng = 100

hror  hcr-ROT hcv hcr-cv hror  hcr-ROT hcv hcr-cv

(px,pe)—(0.2,02) 00096  0.0080  0.0028  0.0028  0.0090  0.0076  0.0027  0.0028
{0.0890} {0.0865} {0.0461} {0.0462} {0.0876} {0.0853} {0.0457} {0.0458}
(px.pe)=(0.2,05) 00104  0.0087  0.0033  0.0033  0.0098  0.0083  0.0034  0.0034
{0.0893} {0.0868} {0.0461} {0.0462} {0.0878} {0.0855} {0.0457} {0.0459}
(px,pe)=(0.50.2) 0.0098  0.0084  0.0029  0.0029  0.0096  0.0082  0.0029  0.0029
{0.0896} {0.0877} {0.0465} {0.0467} {0.0889} {0.0869} {0.0463} {0.0465}
(px.pe)=(0.5,05) 00103  0.0091  0.0036  0.0036  0.0104  0.0090  0.0037  0.0037
{0.0892} {0.0874} {0.0464} {0.0466} {0.0886} {0.0866} {0.0461} {0.0463}

Note: Means of selected bandwidths are shown in curly brackets.
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FIGURE 1. Mean of ASE(h) for myy, in Setup 1 with max,<gng = 100 and
px = pPe = 0.5

useful for a rough estimation and for choosing the range of the grid search in cross-validation.

We recommend hcr.roT over hrot for these purposes because it has a smaller ASE.

9.2. Inference. We will compare three methods to calculate 95% confidence intervals: (i) using
the conventional standard error as for i.i.d. datasets (CT), (ii) using the cluster-robust standard
error without the term related to the conditional covariance (Clcr), and (iii) using the cluster-

robust standard error with the term related to the conditional covariance (CIy). More precisely,

we calculate CI with the standard error \/ Ri52. (2)/ (nhdf(x)), ClIcr with the standard error
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FIGURE 2. Mean of ASE(h) for myy, in Setup 2 with max,<gny = 100 and
px = pe =0.5

\/Rzﬁﬁw (x)/ (nhdf(:v)>, and CT, with the standard error

VAR NG ACS LR
nhd ]?(:E) (Ax))2 )

x
i
2

where o7,

(z) and &2, (z) are nonparametrically estimated with €,; = Y,; — L, (X,;) and
€gj = Ygj — mrr, —g (Xgj), and N (2, 2) Gaw (2, ) is calculated parametrically as (46). Note

<ls) " In nonparametric

that in our data-generating processes, we have no cluster-level regressor
regressions, bandwidths are selected as follows. The bandwidth h,, for mpr(z) is calculated by
the CR-CV method in the same way as in Section 9.1, the bandwidth hy for f(ac) is calculated
by the reference bandwidth of the Epanechnikov kernel hy ~ 1.049 - Sx - n~1/5 where Sx is a
standard deviation of X (e.g., see Li and Racine, 2007, Section 1.2). The bandwidth h,2 for
02, (z) and 62, (z) is set to hy. Choosing h,2 = hy is a conventional choice, for example,
used by Imbens and Kalyanaraman (2012). In this simulation, A =20- hp, for ng = 20 and
X & 23.846 - hyy, for ng = 100.

To focus on comparisons of inference, we de-bias estimators by the true bias derived an-
alytically. Appendix D contains results without this infeasible bias correction. The Cls are
constructed at x = 0.75 for Setup 1 and at z = 0.8 and 0.4 for Setup 2. Performances of
confidence intervals are measured by the coverage ratio across each simulation draw.

Tables 3-5 show the coverage ratio for local linear estimators and means of the length of
confidence intervals (in curly brackets) across each simulation draw for Setup 1, Setup 2 with

x = 0.8, and Setup 2 with z = 0.4, respectively. Each table contains results for three types of
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TABLE 3. Coverage and mean of length of 95% CI for each standard error (mry,,
Setup 1)

maxng = 20 maxng = 100

CcI Clcr C1I, CI Clcr CIy

(px,pe)=(0.2,0.2)  0.923 0.926 0.953 0.914 0.916 0.950
{0.190} {0.193} {0.215} {0.187} {0.189} {0.215}

(px,pe)=(0.2,0.5)  0.875 0.880 0.959 0.859 0.864 0.953
{0.189} {0.192} {0.244} {0.186} {0.189} {0.248}

(px,pe)=(0.5,0.2) 0915 0.921 0.956 0.906 0.909 0.953
{0.189} {0.192} {0.225} {0.186} {0.189} {0.226}

(px,pe)=(0.5,0.5)  0.858 0.868 0.960 0.836 0.848 0.959
{0.189} {0.192} {0.260} {0.185} {0.189} {0.265}

Note: Lengths of confidence intervals are shown in curly brackets.

TABLE 4. Coverage and mean of length of 95% CI for each standard error (myy,,
Setup 2, z = 0.8)

max ng = 20 maxng = 100

CI Clcr ClIy Cl Clcr CI,

(px,pe)=(0.2,0.2)  0.893 0.899 0.931 0.884 0.892 0.927
{0.168} {0.171} {0.187} {0.166} {0.169} {0.187}

(px,pe)=(0.2,0.5)  0.842 0.852 0.919 0.827 0.835 0.926
{0.168} {0.171} {0.209} {0.165} {0.168} {0.212}

(px,pe)=(0.5,0.2)  0.898 0.905 0.934 0.873 0.879 0.925
{0.167} {0.171} {0.192} {0.165} {0.168} {0.193}

(px, pe)=(0.5,0.5)  0.826 0.835 0.930 0.802 0.809 0.925
{0.167} {0.171} {0.219} {0.164} {0.168} {0.223}

Note: Lengths of confidence intervals are shown in curly brackets.

TABLE 5. Coverage and mean of length of 95% CI for each standard error (myy,,
Setup 2, x = 0.4)

maxng = 20 maxng = 100

CI Clcr Cly CcI Clcr ClI,

(px,pe)=(0.2,0.2)  0.991 0.992 0.997 0.988 0.989 0.998
{0.137} {0.138} {0.157} {0.134} {0.136} {0.158}

(px,pe)=(0.2,0.5)  0.975 0.978 0.999 0.969 0.972 1.000
{0.136} {0.139} {0.182} {0.134} {0.136} {0.184}

(px,pe)=(0.5,0.2)  0.990 0.991 0.998 0.991 0.992 0.998
{0.136} {0.138} {0.160} {0.133} {0.135} {0.161}

(px,pe)=(0.5,0.5)  0.973 0.976 0.998 0.962 0.967 0.999
{0.136} {0.138} {0.188} {0.133} {0.135} {0.192}

Note: Lengths of confidence intervals are shown in curly brackets.

confidence intervals in several scenarios. As in Section 9.1, we consider 8 different scenarios with
all possible combinations of ng € {20,100}, px € {0.2,0.5} and p. € {0.2,0.5}.

In Setup 1 (Table 3, homoskedastic errors), CIcgr has slightly better coverages than CI does
although both confidence intervals have severe under-coverage values when p. = 0.5. These

confidence intervals work more poorly for the case max,<gngy = 100. On the other hand, CT,
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performs the best among the three methods. It has accurate coverage (95-96%) for every data-
generating process.

For Setup 2 (heteroskedastic errors), we consider two different points (Table 4 for z = 0.8
and Table 5 for 2 = 0.4). Table 4 shows that CI, improves the accuracy greatly, and it attains
coverage ratios close to 95%. ClIcr and CT fail to reach even 90% coverage ratios for almost
all cases. However, Table 5 shows that all three methods have 95% coverage ratios, and C1Ty
has over-coverage values at « = 0.4. Differences between Table 4 and Table 5 come from the
functional form of the error term o (Xg4;) eg;. Since o () = (2 4 cos (2mx)) /5 takes a large value
at x = 0.8 and a small value at x = 0.4, the conditional variance and covariance of error terms
also do so. Overall, C'Iy is the most conservative choice among the three methods. Our proposed
confidence interval CI, performs well even if we ignore the estimation bias of nonparametric
estimators (see Appendix D).

We recommend C1T) because it works the best for homoskedastic errors, and it provides a

conservative interval for heteroskedastic errors in our simulation.

10. EMPIRICAL ILLUSTRATION

In this section, we will apply our methods to a dataset from Alatas et al. (2012),% which ran
an experiment in 640 Indonesian villages with heterogeneous cluster sizes from 17 to 72. The
purpose is to investigate a good way to target people with low incomes. In their village-level
randomized assignments, they compare three different ways of targeting: using demographic
characteristics as proxies of income, using the community knowledge on the ranking of wealth
(community targeting), and using a hybrid of them. The wealth ranking for community tar-
geting was measured as follows. In each village, villagers were asked to rank everyone in the
community from the richest to the poorest. A facilitator used randomly ordered index cards,
each representing a household. Starting the first two cards, the facilitator asked the community
which household was better off in terms of wealth. Based on the community’s response, the
cards were placed with the wealth order. By sequentially adding one more index card to the
comparison, the facilitator continued the process until all the households had been ranked.

One concern for this ranking process is that human errors could happen since it took 1.68 hours
on average. Alatas et al. (2012) investigated this concern by running a nonparametric regression
of the mistarget rate (Yy;) on the card order in the ranking process (Xg4;). The mistarget rate
is calculated based on the household’s per capita consumption. The card orders in the ranking
process are scaled from 0 to 1. Error terms of nonparametric regression can be dependent on the
same cluster. For example, some villages can be more patient than others, and their mistarget
rate can be less variant across the order in the ranking process. Thus, we revisit Alatas et al.
(2012) with theoretically justified methods for cluster sampling. We will use the local linear
regression with the Epachenikov kernel while Alatas et al. (2012) used the local linear regression
with the quartic kernel (what they call nonparametric Fan regression).

By the random card order, it is reasonable to assume that the regressor X, is independent
within the cluster (village). Since the distribution of Xy; does not follow from U|0, 1] due to the

3Their replication package, including datasets, is available on the AEA website.
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FIGURE 3. Cluster-robust cross-validation function CV(h)

lack of observations on the mistarget rate Y,;, we also estimate it nonparametrically. Thanks to
the independence of the regressor, we can estimate the joint density by the product of marginal
densities. Other detailed calculations for the bandwidth selection and standard errors are done
in the same way as in Section 9.

The sub-dataset for the above regression contains n = 3784 observations, G = 431 villages,
and each village has from 4 to 9 observations. Thus, max,<g ng is 9. The selected bandwidth by
CR-CV was 0.1301 while Alatas et al. (2012) choose it to be (max(Xg;) —min(Xg;))/5 = 0.1979.
We plot the cluster-robust cross-validation function in Figure 3.

We calculated three 95% confidence intervals: CI, Clggr, and CI,. We calculate N ~ 1.148.
Since C'I and CIggr are almost identical, we only draw C'Icg on the plot. Figure 4 shows the es-
timated nonparametric regression values and estimated pointwise confidence intervals. We found
that CTI is slightly wider than C'Icgr. We still have significant pointwise differences between the
first few households and the household in the middle of the ranking process (mistargeting rate
rises 5-10%) even under wider confidence intervals CIy. The conclusions are similar to Alatas
et al. (2012).

11. CONCLUSION

This article has developed a comprehensive theoretical framework for nonparametric regression
analysis under cluster sampling. Our contributions are threefold, addressing critical aspects of
cluster-dependent data analysis that have significant implications for econometric methodologies
and applied research. First, we allow both growing and bounded size clusters. This extension is
crucial, as growing cluster sizes introduce a non-negligible within-cluster dependence, necessitat-

ing the inclusion of an additional term in the asymptotic variance to capture this phenomenon
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FIGURE 4. Local linear estimation and 95% CIs on Alatas et al. (2012)’s dataset

accurately. Second, we cover the case where regressors contain common variables within the
same clusters. These cluster-level regressors are the extreme case of cluster-dependent regres-
sors, and they require the careful estimation of the joint density function. Third, our proposed
inference is valid with heterogeneous and growing cluster sizes. The simulation studies illustrate
the critical role of accounting for within-cluster dependence, affirming the practical relevance of
our theoretical insights.

While this article establishes a foundation for nonparametric regression analysis under cluster
sampling, several avenues for future research emerge. Theoretical work on other nonparametric
estimators, such as local polynomial regressions and series regressions, would be an interest-
ing extension. Investigating boundary analysis is crucial due to its impact on estimator bias.
Additionally, developing cluster bootstrap inference methods for nonparametric regressions is

important since it would provide more practical statistical inference for clustered data.
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APPENDIX A. PROOFS FOR MAIN RESULTS

In this section, we will provide technical lemmas and proofs for the main results. The proofs
for technical lemmas are in Appendix B.
Let Kp (1) = 7K (3).

Lemma 2. Under Assumptions 1 and 2,

G ng
—*ZZKh = f(z) + op(1)
g=1 j=1
G nyg
ZZKh z) (Xg5 — @) = op (h) 14,
g 1j=1
G nyg
= — ZZKh (ng — .CC) (ng — x)T = h2f (l’) kolgxd + Op (hQ) ].dl:ir.
g 1j=1

Lemma 3. Under Assumptions 1-3,

G ng
() = = D3 K (X5 — 2) {0 (X) - m(2))
g=1 j=1
1 2 1
K’QZ< Oggm(z) + f(x)~ 3qf($)aqm(ﬂf)>+0p(h)+0p< nth)?
G ng
ZZKh z) {m (Xgj) —m(z)} (Xg; — @)
g 1j=1

= h,2f(0)/-@2Vm (0) + op (hg) 1.+ Op ( nhld_4> 1,

Lemma 4. Under Assumptions 1-3,

G nyg

)= 3SR (X~ 2) 0 (Xgg) = 30 f (@) 0 () B + 0 (h70).
g 1j5=1
G nyg

)= Z ZKh (ng) (Xgj —x) =o0p <hid+1> L4,
==
G ]ng

= Z Z Kj (X (ng) (Xgj — ) (Xgj — ﬂf)T

9131

- #f (2)0* @ { [ yrrar) o, () 1],
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Lemma 5. Under Assumptions 1-4,

1 ind iIld cls
@)=~ 3 Kn(Xy—o) K, (ng—x)a(Xéj ¢ );Xél)>
g:l 1<j<t<ng

W A\ Rdds f (x(ind)’ 2(ind). gc(cls)) o (x(ind)7 2 (ind). x(m)) +o, (h*d) ’

ind ind cls
)= Z 3 Kh(ng—x)Kh(ng—a:)a<X£j ) X );Xg”)(ng—x)

g 11<j<t<ny

G
1 ind ind
12(:[:)552 > En(Xg — 1) Ky (ng—x)a<X(, >7Xg<,£ );Xécls)) (Xgo—2) (X4 — )"

Lemma 6. Under Assumptions 1-/,

G ng 1
LSS K (X - e op( h)
gl]l
G ng

1
= ZZKh x) egj (Xgj —x) = Op ( nhd—2> 1q4.

g 1j=1
Lemma 7. Under Assumptions 1, 2 and 0,

G ng

IS K (X - ) { (X — )T V() (X — 1)} = Whaf(2) Zaqqm ) +o0p (1),

g9=17j=1

A.1l. Proof for Theorem 1.
Proof. Lemma 2 for Fy(x) implies the result. O
A.2. Proof for Theorem 2.

Proof. Since observations belonging to different clusters are mutually independent and E [Y; | X4] =
m (ng)v

S5 K () m ()
S K (X
=m(x) + JP(CE).

f(@)

Theorem 1 implies f(w) — f(z) > 0. Thus, the continuous mapping theorem and Lemma 3

E [ (2) | X1, -+ Xa] =

imply the result. O
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A.3. Proof for Theorem 3.

Proof. Since eg; = Yg; —m (Xg5),
Var [Mnw () | X1, , Xg]

= E (it (@) — E [0 (@)) | X+ X)) | X, Xl

(Zg—l YLK <X“’fl_$) (Yy; —m (ng)))
E Xy Xo
Yot Xp K (Xg;;x)

E [(Zf_l Sy K (Xa=t) egj>2 | Xy, ,XG}
(S ()
S| (S K () er) 1|
(= (5))
o {23711 K (XT*)QE €2, 1] 425, cren, K (X572) K (X472 ) Elegyey | XQ]}
(ST K ()

G ng Xgi—z)> Xgi—a Xgo—z ind) - (ind), 1 (cls
zg_l{zj-_lz(( 4) 0 (X)) + 25 oy K (372 ) I (B2 o (X500, X 50; x )

(28, sy & (X472))
R {Ho(x) + 2Io(x)}
nht (§())”

where the fourth equality follows from the mutual independence between clusters.

)

Theorem 1 implies f(z) & f(z) > 0. Lemmas 4 and 5 for Ho(z) and Iy(z) and the continuous
mapping theorem together imply that
Var [nw(z) | X1, , Xqg]

1 f(l‘)O'Q(.’E)R% + )\chlsz (:/U(ind)7 x(ind); :E(ds)) o (x(ind)7 x(ind); x(cls)) + 0p(1)

nh? f(@)* + 0p(1)
B RﬁaQ(x) N )\desfz (:E(ind),x(ind); x(cls)) o (x(ind)’ x(ind);x(cls)) 1
~ f(z)nhd f(z)2nhd o\ nnd

A 4. Proof for Theorem 4.
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Proof.
o () — o K (M) Yoo
o Zg 1an K( 97 x)
129 12 Kp (Xgj —x) {m (z) + m (Xg;) — m (z) + eg;}
rlz 29:1 Zj':l h(Xgj — @)
=m(z JE(:E) ng(x) 47
T T o
20
by Theorem 1 and Lemmas 3 and 6. (I

A.5. Proof for Theorem 5.

Proof. Since we have (47), Theorem 1, Lemma 3, and (12),

Vh? (i () = m(x) = h* Buy (x)) = Vnh? (‘sﬂ(x)) + Vnhd (‘W - thnw@))

f(x) f(z)
= @i‘;(x) + Vnhd (Op (h2) +0p < nhilQ))
Vnhid&y(z)
= ————" 4+ (0p (VRhiTY) + O, (b
), () + 0, )
_ Vi) |
(@) +o0,(1) +op (1)
Define an = Zﬁi K <w) egj- Note that {Z }G: are independent and E [ZQ] =0.

We can express Vnhd&y(z) = \/— Z - Z ( > ﬁ 25:1 an. Denote s2 =

Var

\/W 29:1 an} . By the proof for Lemma 6,
3721 = nh? Var [Eo(2)] = heE [Ho(x) + 2Io(2)]
= f(2)o?(z)RY + AR clsf < (ind) (ind). x(cls)) o (x(ind)jx(ind); w(ob)) +o(1).

By assumption, this implies that s2 deterministically converges to some positive constant. The
conclusion follows by applying the Lindeberg Central Limit Theorem and the Slutsky’s Lemma.
Thus, it is sufficient to verify the Lindeberg condition:

G
1 ~ -
— Y E [zig1 {zig > nhdsis” = o(1) (48)
n 9:1

for all € > 0.
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()l

Pick any € > 0 and any § > 0.
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1
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where the first and third inequality follow from the definition of the kernel function (Definition
1) K(u) < K < o0, the first equality follows from the law of iterated expectations, the second

equality follows from the change of variables (X; — x) /h = T}, the second inequality follows from

1/4pd/2 |2r 1/47,d/2
R— '
< |2r R )
<E [|6z| | X x*‘th} WAL B
R— '
< 72 ..
=YV adrg| ()

and the fourth inequality follows by (11). Thus,

1 Xi—l‘ " 1 Xi—.CL‘
n1/4hd/2K< A )61' 1{n1/4hd/2K< h >ei

holds. By Lemma 1 of Hansen and Lee (2019), this equation implies

li E
Beo ib [

ol

~ r ~
. an an
_— _— > = .
PR [ iy, { e el B
Hence, we can pick B large enough so that
~ r ~
Zyg Zy,g sgar/%l
" —_ | > < —
E nUAhd/?n, 1 { nAhd/2, | = Bol=—g—0 (49)
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for large enough n. Now, let’s verify the Lindeberg condition:
1 &g
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W ZE an]_ {an 2 nh STLE}]
nog=1

Goore - 1/2
_ nhd ; S E|Z2,1 {‘zng > (nhtsie) H
p el

=1

G ‘an 1/2
— e B | [ = (o)
n ng=1 ‘an
- 1/2
< E ‘zn 1{‘zn > (nhdste H
nhds% (( hds )1/2)r 22 |: g g ( )
G I 7 " 7 1/4.1/2
N 1 Z TE an 1 an > SpN 3
T pr/fAgner/ 1”9 R d/ 2, n a2, | T T n,
g= L
G I r >
1 . Zong Zong
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33

where the second inequality holds for sufficiently large n since (13) enables us to pick large

enough n* to satisfy

ng
— >max——2— for any n > n*
T <G sp,nl/4cl/2 yi=ns

the third inequality follows by (49), and the fourth inequality follows by (10).

A .6. Proof for Theorem 6.

Proof. Define M = [m (X1),...,m(X,)]" and
1
D), = 0 .
0 h_2Id><d

1
E (@) | X, Xa] = ef (XIW,X,) X[ W,M

Then, we can rewrite

—1
— e (DhXTW X ) D, X! W, M

by E [eg; | X4] = 0. Let Qun(z) be a n x 1 vector

Qun(z) = [(X1 — ) V2m(z) (X1 —2),..., (Xn — ) V2m(z) (X, — x)} "

By Taylor expansion of M around =,

M =X, [m(z), Vm(x)" . %Qm(x) + Ry (),
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where R,,,(z) is a n x 1 vector of remainder terms. Compact support of K implies that there
exists some constant C' > 0 such that we essentially use observations with ‘Xi(Q) — w(q)‘ <C-h
forany ¢ = 1,...,n and any ¢ = 1,...,d. Thus, by the multivariate Taylor expansion, we can

evaluate a scalar random variable as
—1
e (X}szz) X W, R, (2) = o, (h2). (50)

By Lemma 2, we can calculate

1 —1
(thlwxxx>
n

_ {Dh [ LY 3 Ky (X — ) LG S Ky (X — ) (X — ) ] }1
L Y Kn (X —2) (Xgj — ) 2305 Y0 Ky (Xgy — ) (X5 — ) (Xgj — @)
_ [ J) + 0p(1) 0p ()1} ]
op (h1) 1g  f(x)kalgxa+0p (1) 141y
op (h1) 14 (f(@)k2laxa) " + 0y (1) 141)

Also, by Lemma 7,
DX W.Qu ()
[ AN S K (X — ) {(Xyy — ) Pmle) (X — o)}
i %Zf:l Z?il Kp (Xgj — 2) (Xgj — @) {(ng - x)T Vim(z) (Xgj — x)}

= Dy | Hraf (@) Y=t Dagm() + 0y (h?) ]

I O, (h?) 14
_ h2fi2f(x) 23:1 Ogqgm(z) + 0p (h2) (52)
Op (h) 14
Therefore,
E [mLL(.’L') ‘ Xl, ce ,Xg] — m(x)
= o (DIX]W.X,) DyX]W, <2Qm(m) + Rm(x)>
1 +/1 A
- §e1T <nDhX;WxX$> (nDhX;Wme(x)> + o, (h?).
oy
2
= h2? Z Oggm(x) + op (h2) ,
q=1
where the first equality holds since e{ (XIWsz)fl X, WX, [m(z), Vm(ac)T]T = m(x), the
second equality follows from (50), and the third equality follows from (51) and (52). O

A.7. Proof for Theorem 7.

Proof. Let Y =[Y1,... ,Yn]T. Then,
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Var [rhpy(x) | Xq, -+, Xg]
T (~T T T -1
— e (Xx WxXI) XTW, Var[Y | X1, -, Xe] WX, (Xx mex) er.
Here, Var[Y | X1, -+, X¢] is a n X n matrix having the following structure.
A\ @)
Var[Y]X1,~--,XG]: ,
@) Vg

where V, (for g =1,...,G) is a matrix with

Vg = [Elegjeqe | Xg]]

ngXng
The upper-left scalar element of

Q1 Q2

nIXIW, Var[Y | Xy, , Xg] WX, =
Qo1 Qo9

1s

G Ng
1
My = EZ ZK% (Xgj — ) 0% (Xgj)
g=1 7j=1

1203 K (X — ) K (X — @) (X5, X0 x(09)
1<j<t<n,

the lower-left d x 1 block is

G Ng
1
Q1 = EZ ZK,% (Xgj — ) o (Xg5) (Xgj — @)
=1 | j=1

12N KXy — 1) Kn (X —2) o (X500 XV XW) (X5 - 0) 5
1<j<t<ng

and the lower-right d x d block is

G g
1
Qo = > S KE (X —2)0 (Xy) (Xgs — ) (X — )
g=1 Jj=1

ind ind cls T
2 Y Kn(Xg =) K (Xge =)o (X0 X G X ) (g — ) (Xgy — @)
1<j<t<ng
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Here, we defined Q5 = ©QJ,. By Lemma 4 and 5,

V= Ho(l‘) + 2[0($)

_ % {f(x)aQ(x)Rﬁ + AR f, (x(ind)vx(ind);x(cls)> o (x(ind)’x(ind);x(cls)> +Op(1)}’ (53)

Qo1 = Hy(z) + 20 (z) = o, (h—d+1) 14, (54)

Qoo = Hy(z) + 2I(z) = O, (h*d”) 141] . (55)
Therefore,

Var [ThLL(l’) ‘ Xl, cee ,Xg}
Q1 Qo

1 1 -1
= —e| (DhXTWme> Dy,
n 21 229

1 —1
D,, <XIWZXth) e
n n

1| f2)~" +0,(1)
n| o, (h)1y
- % {fla)™t + Op(l)}2 M +op (nilh*d“>

Rgaz(x) . )\Rchsz (aj(ind)’ m(ind);w(cls)) o (m(ind)’w(ind); x(cls)) . L
f(z)nhd f(z)?nhd °\nnd )

where the second equality follows from (51), (54), and (55) and the last equality follows from
(53). ]

T[ Q op (h=+1) 1] ][f(x)‘1+0p(1)]

op (1) 1 0y (#2117 | | oy (1) 14

A.8. Proof for Theorem 8.

Proof. Let € = ey, ..., en]T. Then, by Theorem 6,
~1
iL(z) = ef (XI WxXx> X, W,Y
-1 _1
— e (X;szx) XIW,M +e] (ngxxx) XTW, €

1
= m(z) +op(1) + €] (DhX;WgCXI) D, X W,E.

Here,

1 LG S K (X5 — : &
—DhXIWxg = Dy [ ) Gn Zgzgl Zy—l h (Xgj z) €gj ] — D, [ o(z) ]
" w 2g=1 2 B (Xgj — @) (Xgj = 7) eg;

_ Op (\/%) ) (56)

h=20, (« /nh}l_Q) 1,
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Thus, (51) and (56) together imply that

—1
e/ DhXTWX) D, X W,E

_ [ fl)™t + Op ) op (h) 1; ] Op (\/%)
 ( h

) (f(@)k2laxa) " + o0, (1) 141] 10, (\/%) 1,
1 1
- O (\/7> “p( W) = op(1).
Hence, my, ( _> (). -

A.9. Proof for Theorem 9.

Proof. Theorem 6 and i (z) = e] (X,JIWQEX,,C)f1 X1 W, {M + £} together imply that
1 - 1
nhd (fr(z) — m(z) — h*Br(z)) = e ( D, X W,X ) \/nhdﬁDhXIWIS + Vnhdo, (h?)
1 - -1 1 .
—ef (- DiX; WX, ) Vahi DiX]W.E +0, (1),

where the second equality follows from nhét* = O(1).

Equations (51) and (56) together imply that the first term on the displayed equation will be

1 -1 1
e (nDhXIWxXx) \/nhdﬁDhXIWfo

o [ Fla) ™+ 0p(1) 0p ()1} ] VnhiE(z)
! Op (h_l) 1, (f(l’)lﬁgfdxd)il + 0p (1) 1011;lr \/Wh_20p (\ / ﬁ) 14

= {f(x)_l—i—op }\/750 +0p()
= \/W+op(l).

We conclude with a similar argument to the proof of Theorem 5. ([

A.10. Proof for Theorem 10.

Proof. We will show the theorem by the following three steps. The proof modifies time series
results (Theorem 2 of Hansen (2008); Theorem 4.1 of Vogt (2012)) to the cluster sampling case.

Let 7, = Crn'/5, where C; > 0 will be chosen in Step 1 below.® Decompose 1& (z) into the
tail 1 (z) and the truncated part ¥; ().

4The choice of 7, is different from Hansen (2008). For discussions on it, the reader can refer to the proof of
Lemma B-1 in Cattaneo, Crump and Jansson (2013) and the proof of Theorem 4.1 in Vogt (2012).
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G ng
7;(95) = *ZZKh ) Woi 1 {|Wes| < mn}
g=1j=1
G ng
= ZZKh z) Wo; L{IWy;| > 7o}
g 1j=1
= 1 (z) + 2 (2).

Then,
$ (@) —E [0 (@)] =1 (@) ~E [$1 (2)] + ¥ () — E [d2 (2)] -
Step 1: Evaluate the tail part ¢, (z) — E [1@2 (ac)}
The tail part has the following bounds. Pick any € > 0.
P (sup ’7,22 (33)‘ > an> <P (|W;| > 7, for some 1)

<nP(|W|>1,)

< nE[[W[]7,*

S nBlTn_S S Bl/Cﬁ
where the first inequality follows from the construction of 7[]2 (x), the second inequality follows
from the union bound, the third inequality follows from Markov’s inequality, the fourth inequality
follows from (19), and the last equality follows from the definition of 7,,. Then, we can choose

s (x)‘ > an> < e. Hence, a:)‘ = Op(ay)
uniformly. Note that C; depends on ¢, but does not on n.

a large enough number C; such that P (supw

Also,
E || @)
< o LK (5T EIWILOW) > 7)1 X17 () ax
< /K E[W|1{[W|> m} | X = 2+ BT f (z + hT)dT
< E(WPL{W|> 72} | X = o + AT] f (z + hT)dT

S o 2 = O (an) )

Tn

where the fourth inequality follows uniformly from (20), and the last equality follows from

31—1 -0 <n1/3—1>

<O (ay). o (21)

In the next two steps, we evaluate the truncated part ¢, (z) — E wl (x)} :

Step 2: Bound the supremum over ||z|| < ¢, with the maximum over a finite grid
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We can cover the region {z € R?: ||z|| < ¢, } with Nuan < ch™%a,? balls
d
Ban (z1) = {a: eRY: |z — 2| < anh} :

where xy is the midpoint of By, p, (x). Assumption 9 implies that for all ||z — 2/|| < a < L, there

exists some function K*(-) and some constant A > 0 such that
|K(z) — K(2)| < aAK*(a) (57)

where K*(u) = ngl k* (ul®) and k* (-) satisfies the definition of the kernel function (Definition

1). To construct such functions, we can define

{0 < 2r}
()

and set A = 49LIA. Also, let K (-) = 17 K* (5).”

Then, for any x € B, p (vx) equation (57) implies

O ()
Xgj

o=y
I

since
HXQJ r h ||$ —hﬂck‘ <ay,,
and a,, < L for large enough n.
Define 1 () by replacing Kp(-) on )y () with K;(-),
G ng
wl ZZKh Wei L {{Wy;l <7}
"o J=1

Then, E [Jl (ac)] is bounded since
~ 1 [ Xgi — 2
B [ (0)] = o | K7 (47 EIW 11 W] < 7} | %,
< /]Rd K7 (ugy) E[[Wejl| | Xgj = @ + hug;] f (x + hug;) dug;

< B3/ K* (ugj)dugj = B3 < 00,
R4

5Under Assumption 9,
K@) = K@) < Ao - | 1]} < 2L} < a1 {|l] < 21}

d
<aA H 1 {

q=1
where the first inequality follows from the support of K, the second inequality follows from ||z — 2’| < a, and the

D) <\ (@ @) =l

Since k* is bounded, symmetric, and has finite moments, it satisfies the definition of the kernel function.

2/ (@

<2} = aM'LK" (o),

third inequality follows from
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where Bsg exists by (20). Thus, AE [zbvl (a:)} < M for large enough M, and within each ball
Ba,n (z1),

o fi@ =B [ (@)
= _gwp i1 (@) = b (@) + b (@) B [ )] + B[4 00)] - E [ )]
< @) -Efbi@i]|+  sw [hi@ i@+ sw [E[d @] —E[dh @)
- - 2€Ba,n(Tk) 2€Ba,n(zk)
< | () —E 1/}1 (l‘k): +anA {Wl (xk)’ +E H% (wk)H }

< [ @) —E [ ()] | + and [ (@) = E [ (@0)] | + 200 AE [ [ (1)

~

< |1 (zx) —E Kl (l‘k): + ‘{/;1 (zx) —E [151 (xk)} ‘ + 2a, M,

where the first and third inequalities follow from the triangle inequality, the second inequal-
ity follows from (58), and the last inequality comes from a, < A~! for large enough n and
AE [{/?1 (x)} < M.

As a consequence,

~

P (z) — E [1&1 (a:)} ’ > 4Man]

[zl <cn

IP’[ sup

IN

Npan _max P Sup
1<k<Npan x€Bg,, n(Tk)

U () —E {1[11 (x)} ‘ > 4Man]
< Npan _max {IP’ H% (zr) —E [1/31 (.I'k:):| ‘ > Man} +P Hle (x) —E [Jl (xk)} ’ > Man} } )

1<k<Npan

Since we can evaluate both of P Hz[)l (xx) —E {1&1 (a:k)} ’ > Man} and P Hzf/;l (zx) —E [{El (azk)} ‘ > Man}

in the same way, we will focus on P W}l (zx) —E [zﬁl (azk)} ‘ > Man} in the next step.

Step 3: Apply the Bernstein’s inequality.

Define
~ 9 Xgi—x Xgj—x
Uy =Y {K ( o ) Wi L {IWyjl < 7} — E [K <gjh> Wi L{IWyjl < Tn}} } :
j=1
Then,
) A 1
Y1 (zp) — E [1#1 (xk)] = ;Ug-
Since

X . —x Xgi —x %
o (Pt 0 < ) (B2 ) < | < 26

G
Var (Z ﬁg) = n2h2? Var (1& (ac)) < nhiV, *.» Assumption 7
g=1



NONPARAMETRIC REGRESSION UNDER CLUSTER SAMPLING 41

the Bernstein’s inequality for cluster sampling (Lemma 1) implies

i [ b1 (zx) —E [zﬁl (xk)} ‘ > Man} —P iﬁg > Mannh®

M2 2h2d
2 nth + 2 (maxy<q ng) Kt,Ma,nhd/3 }

{ M?a2nh? }
< 2exp

2v+2c KM/3

96 M?logn }

= 2ex

P 2V+2C KM/3
6M logn

<2exp{ -1}

— 9y, 6M/(3+2CaK)

where the second inequality with some Cj > 0 follows from (max,<g ng) Ta, = O(1) by (21), the
second equality follows from a2 = logn/ (nh?), the third inequality follows by choosing M > V.
Thus,

P [ sup ¢1 (x) —E [wl } ’ > 4Man] < 4Npy 1177,_6M/<3+20a )
=l <cn
<O(Th), (59)
where T}, = cgh_da;dn_6M/(3+2Cak). We can evaluate
_ (maxy<gng)®logn
Czh d _ 19) ( 9= hdg (22)

=0 (nl_(2/5)> o (21)

and

= ()=o)

T, =o (n1—<2/s>+(d/2>—<6M/<3+2caf<>>)

Thus,

<o(1),

where the inequality holds for large enough M. Therefore, (59) implies SUD||z[|<cn
Op (an). O

A.11. Proof for Lemma 1.
Proof. By the triangle inequality, ’\?g‘ = ’Z?il ng‘ < ngB. Thus,

max ‘Y ‘ (max ng) B.
9<G <G
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The result follows from the standard Bernstein’s inequality for the independent and zero mean

random variables ?1, . ,?G. O

A.12. Proof for Theorem 11.

Proof. As the proof for Lemma 2, we can prove that

Var [f (x)} = Var [Fp (x)]

<0(n ') +0 (i <mgaxng>> -0 <nlhd) .

Under Assumption 10, this bound holds uniformly for any z € R% Thus, Assumption 7 for
¢ (z) = f(x) with W,; = 1 is satisfied. Since we also have Assumption 8 with s = oo, all

assumptions for Theorem 10 are satisfied. Hence,

@) —E[f@)]] = 0p(an). (60)

sup
HxHSCn

As the proof for Lemma 2, we can also show

E[f@)]-f@|=00?, (61)

sup
zcRd

where we have the sup bound under Assumption 10. The triangle inequality, (60), and (61)
together imply the result. O

A.13. Proof for Theorem 12.

Proof. For the case m.(x) = Myyw(x).

First, Theorem 11 implies

f () SUPg<c, | (@) —f(rf)\ B )
B = 4 n+h7)).
o2 | £ (@) 1= inf ||, <c, f(z) Op (0" (an +17)) (62)
Next, define
~ 1 G Ny
¢ (2) = EZZK}L (Xgj — ) Yy;.
g=1 j=1
Then,
Var [25 (x)}
1 &
= Var |3 > K (Xg —w) {m(Xy)) —m(z) + eg; +m(z)}
g=1 j=1

= Var[Jo(x) + m(z)Fo(z) + Eo(z)]
2
( Var [Jo(z)] + m(z)+/Var [Fy(x)] + /Var [So(x)]) ,

IN

where the inequality follows since the absolute value of covariance is bonded by the product of

the square root of variances. By the similar way as in the proof of Lemmas 2, 3, and 6, we can
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evaluate

Var [Fy(z)] < O (n—lh—d) +0 (n—1 <mgaxng>> <0 <n1hd) ,
© (5.

Var[so<x>]so( ! )

nhd

Var [Jo(x)]

IN

Under Assumption 10, these bounds hold uniformly for any z € R. Combining these equations

and the uniform boundedness of m(z), we have

var [3(2)] < 0 <nlhd>

uniformly for any « € R%. Then, all assumptions for Theorem 10 are satisfied. Hence,

e 6() ~E[$(@)]| = Op (an). (63)
Also,
stﬁgln E [5(93)] - m(x)f(x)‘

= sup [E[Jo(z)] + E[E(2)] + m(x)E [Fo(z)] —m(x)f(x)]

el <en
< Sop IE[Jo(ﬂ:)]IJrHs”uf IE[Eo(x)]IﬂL”s‘&p Im(w)!”s|1‘1<p [E [Fo(z)] = f(2)|

< O(R*)+0+0(1)0 (h?)

= 0(h?), (64)

where the first inequality follows from the triangle inequality, the second inequality can be shown

as in the proof of Lemmas 2, 3, and 6, and Assumption 10 implies these bounds hold uniformly
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for any 2 € R%. Hence,

sup [y () —m (2)|

e <cn
—w $(w)_{(ﬂf)_m .
el | F @) F (@) )
o <$<x> _m(@) f@:)) / (@)
Izll<en |\ £ (2) f () f(x)
é(z) m(x)f(x) [ (z)
< su — u —
= alleen | F (@) F@) |l | F (@)
< | S‘F<p &(:p) —m () f(:n) (5;1 {1 + 0, (5;1 (an + h2))}
< {s”u<p b(2)~E [§(@)]|+ sup B [6@)] = m (@) f @)+ s |m (@) (@)= m(z) f
x8, {140y (6, (an +1%))}
< {0 (an) + 0 (1?) +0p (an)} 6.1 {140, (6, (an + %))}

< 0y (6,1 (an + 1)) {14+ 0, (8, (an + 1?))}
= 0, (5 (1)),

where the second inequality follows from (26) and (62), the third inequality follows from the
triangle inequality, and the fourth inequality follows from (63), the uniform boundedness of
m (z), the result of Theorem 11, and (64).

For the case m.(z) = mpy(z).

Using the partition matrix inversion, we can rewrite

= -~ ) (65)
() = S(z) " M(z)~1S(z)
where
G ng .
S(z) = L ZZKh (Xgj — ) (ngh ) ;
g=1j=1
x:lG e o Xgj—x Xgj— !
1 A Xgj— 7
N(QU):*ZZKh(XgJ x)( A >ng

<x>)}
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Define

E Z Z Kh (gjh> = hilF(q) (IE),
g 1j5=1
G ng x® _ .\ [ x@ _ @\

M( 97 93
=15 k- (S0 (B
g 1j5=1
h2F ()  ifp=gq
h—QF(P"I) (x) if P 7é q ’
PR (n) {1 (X,5) = mlz) + m(z) + e}

= h U0 (@) + b () B (2) + h 1 ().

Similar way as in the proof of Lemmas 2, 3, and 6, we can evaluate

Var [ F(] <0 (n~h7) ( -1 (maxng>) 0 (n th71).
e o(e ) 0 o)) o).
o 2] 20 o) 0 (o () =0 (17,

Var [0 ()] <0 (n7'h* 1) + 0 <n1 <maxng> h2> =0 (n7'n7),

g

and
Var [h_lgl(Q) (m)] =0 <n_1h_d) .

Since these bounds are uniform for any x € R under Assumption 10 and the compact kernel
function enables us to treat (X;‘JJ-) — 29)/h as bounded in S (z), M®P9(z), and N (z), we
can apply Theorem 10:

oo $@ (@) —E [ F ()| = 0P S (@) ~ hy f @)z + O ()] = Op (an)
s MO (z) - E |h 2R @) || = sup MOD(z) — f(w) + O (h%)] = Op (an),
\| s”u<p M®PD(z) —E [h_QF(p’Q) (:E) = | S”U<p M®D(z) + 0O (h2)’ = Op (an) ,
and
sup [ND(z)—E [N(Q) (x)} ’
2l <cn
= sup @) (z) — hf(x)0gm(z)ke — hm(z)0,f(x)ke — 0+ O (hQ)‘ = Oy (an) .

lzll<cn
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By element-wise comparisons, we obtain
S(x) = hkaV f () + Oy (an + h?) 14,
M(z) = f(2)kolixa + Op (an + h*) 1414,
N(z) = hsaV {f () m (z)} + Oy (an + h?) 14,

where asymptotic orders are uniform over [|z|| < ¢,.

Therefore, by the same matrix calculations as Hansen (2008), we obtain
fﬁLL(a:) = m(a:) + Op ((5;1 (an + hz))

uniform over ||z|| < ¢,. O

A.14. Proof for Theorem 13.

Proof. Necessary condition is

0 dR%5?
— AIMSE = 4h*B — —k—_ =
Oh nhd+1
We obtain hg by solving this equation since by
0 9= dld+1)R
the first-order condition is sufficient. O

A.15. Proof for Theorem 14.

Proof. For any g and j,
E g5 (1) w (Xg5)| = B [ejw (Xgp)] + B [{m (Xg5) = g (Xgs, 1)} w (Xg5)]

+ 2E [{m (Xg;) — m—g (Xgj, h)} egjw (Xg;)]

D52+ B [{m (Xg5) — iy (Xg5 )P w0 (X5)]

© 72 2 4R, [ {m (z) — g (z,h)}* f (x) w () dx]

R4

where (i) follows from the definition of 7% and

E[{m (Xg;) —m—g (Xgj, h)} egjw (Xg5)] = E[E[{m (Xg;) — m—_g (Xg;,h)} egjw (Xg;) | Xg]]
=E[E [{m (Xg;) —m—g (X5, h)} w (Xgj) | Xg] E [eg; | Xg]]
=0

since m_g4 (Xgj, h) is independent of eg4; after conditioning X, and (ii) follows from
E [{m (Xgy) = g (Xgi, M)} 0 (Xg5)| = By [E [{m (Xg5) = g (X, W)} 0 (Xg5) | Yo, X
B, | [ ) =y (e WP @) w )]
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Thus,

G ng

IOV = + 33 E [eg; (02w (Xyy)]

g=1j=1

G
— A e, | [ ) =y ) ) w ) e
g=1

Rd

= 52 4+ IMSEg_1(h).

A.16. Proof for Theorem 15.

47

Proof. We can interpret (39) as a standard nonparametric density estimator. Under Assumption

11, Theorem 1 is applicable for (2dinq + dcis)-dimensional regressors and ng(ngy—1)/2 size clusters.

A.17. Proof for Theorem 16.

]

Proof. First, we show that the feasible estimator of conditional variance can be asymptotically

replaced with the infeasible estimator, i.e.,

|Gt (@) = T ()] = 0p(1).
Here,
1 G n o o 9
ot )t ] < EE I (=0 (5, -5)
nw - nw =~ G
% Zg:l 2?11 Kh (ng — x)

< maxmax |e2; — e2.].

=g ‘ 97 9]‘
and

2 e |
max maX }egj eg]-

9
< max max ){egj +m (Xgj) — M (ng)}2 - egj
j
N . 2
= mgaxmjax )QGQJ' {m (ng) — M (ng)} +{m (ng) MM (ng)}
< 2maxmax |eg;| - max max |[{m (Xg;) — M. (Xg;)}|
g i g J

2
+ {mgaxmax Im (Xgj) — M (ng)’} .
J

(66)



NONPARAMETRIC REGRESSION UNDER CLUSTER SAMPLING 48

Pick any € > 0. By Theorem 12 and Assumption 11 (v),

Pr (mxinax o (X,) - . (X} > ¢

< (maxmaXI{m Xgj) = M (Xgj) } > e | | Xgsll < Cn) Pr ([ Xg; < ¢n)
+o(1)
< ( sup |m (z) — my (z )\>€>+0(1)
llzll<en
< o(1).

We also know that assumptions for Theorem 12 imply

max max |Yg;| = o, <n_1/8) ,
J

g
and
max max [m (Xg;)| = O(1),
9
thus
max max |eg;| = maxmax[ | + max max [m (Xg;)]|
g i g g9 J
< 0p(1).
Hence,

~2 2
maxmax |e ;. —e>.| = o,(1).
o i ‘gj gjl P()

Thus, it is sufficient to show that

G () B 0* (). 67)
Let vg; = €2, — 02 (Xy;). Since 0?(z) = E [¢? | X = z], we have
E [vg; | Xg] =0,
E[v}; | Xg] =E [v2; | Xg5] =E [{ef]j — o2 (X)) ng} “E[ed | X,5] - {o® (X))
= 2(Xy5) — {0 (Xg9)} "
E [vgjvg | Xy] = E {U g0 | X0 X;an);Xécls)}
) [{egj — 0% (Xg)} {egz — 0% (Xg0)} | X0 (ind) X(md)7Xg(ds)]
- E [ €22, | X 1nd md) X(cls)} 0 (X,0) 0% (Xy0)

ind ind ind ind cls
— (X8 ’,ng %xgg DX X))~ 0 (X 0% (X

Under Assumption 11, we can apply Theorem 4 after replacing m(z) with o2 (z) and obtain
(67). O

A.18. Proof for Theorem 17.
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Proof. We will first show
‘anw <$(ind)7l,(ind); x(cls)) _52 (x(ind)’ $(ind);m(cls))‘ = 0,(1), (68)
and then show that
G (l,(ind)7x(ind);x(cls)) LA (x(ind)’l,(ind); x(cls)) _ (69)
For the first step,

s (x(ind)7 p(ind), :U(Cls)) _ 52 (:L,(ind)’ £(ind), x(cls))‘

nw

(ind) T (ind) T - (cls) T\ T ind)T ,.(ind) T .(cls)T) |
<<ng T XY (@0 0T (0T )

‘Zg:ng>2 Zlgjdgng K (€gj€qe — egjege)

<

(ind)T’X;ilnd)T’XyIS)T) T_(m(ind)T7x(ind)T7I(cls)T)T >

x
Zg:ngZQ Zl§j<€§n9K <( = b

< maxmax [€g;€ — egjeqe|,
g gt

and

maxmax [€gi€ge — €gj€qtl
g -]7

< max m:‘:kx [{egs +m (Xgj) — M (Xgj) } {ege +m (Xge) — M (Xgo) } — egjeqe
< max m.%x legi {m (Xge) — M (Xgo) }

+ m?x n}%x lege {m (Xg;) — M (Xg;) }H

—|—m§1x m'%x H{m (Xgj) — M (Xgj) } {m (Xge) — M (Xge) }]
< Qm&Xm?X leg;] - fnax max {m (Xgj) — M (Xgj)}|

g

+ max max [m (X ;) = (Xg5)I?
J

Thus, similarly to the proof of Theorem 16, we can show that

max H;%X |€gj€qe — egjege] = 0p(1),

and (68) is shown.
Next, let’s prove (69). Let ugjp = egjeqe—0 (Xéijnd), Xg(iznd); Xéds)). Since o (Xéljnd), X(an); Xéds)) =

g
E [egjegg | Xéijnd),X;ian); Xéds)}, we have

E [ugje | Xg] =0,

[ ind ind cls
E [ug;e | Xg) = E uf | X7, Xy X )}

. [ (ind) (ind), y-(cls 2 (ind) (ind) | y-(cls
=K {egjegg—U(ng ngz ’ng )>} |ng ’Xgﬁ ’X!g )]

w2 2 (ind) (ind) 1 2 (ind) (ind) 1
=k [C95€gt | XoiXge ’ngc S)} — e (ng » Xge ’XQ(C S))

. (ind) (ind) (ind) (ind) | cls 2 (ind) (ind) cls
*§<ng X X gl Xog ¥ X )>_‘7 (ng Xy X ))7
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and for (j,€) # (t, ).

E [ugjeugts | X

) [ugjzugts | Xg(ijnd)’ Xg(ignd)’ Xg(itnd)7 Xéisnd); Xg(cls)}

- F [{egjegg . (X;ijnd)’X;iend); X;cls))}
% { egtegs — O ( Xéind)’ Xéisnd); X!gcls))} | X;;pd), X;iend)7 Xgnd)’ Xéisnd); Xécls)]
— . < Xg(i;d)} Xéiﬂnd), Xéitnd)y X;isnd); Xécls))
—o (X5, X5V x[) o (X5, XD, x ().
Under Assumption 11, we can apply Theorem 4 for (2dinq + dcjs)-dimensional regressors and

ng(ng —1)/2 size clusters. O
A.19. Proof for Corollary 1.

Proof. Apply the Slutsky’s Lemma. O
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APPENDIX B. PROOFS FOR TECHNICAL LEMMAS
. ; T .
For the following proofs, we focus on the case x = (:L'(md)T,ZE(ClS)T) = 0 to make notation
lighter. We also suppress subscripts such as g and j if the meaning is implied from the context.

B.1. Proof for Lemma 2.

Proof. Define /") = LS9 5™ [, (X, )(X@) PR = 156 S e (x) x 0 x (@
for p # q, and " = [o, K (T ( @) AT = [k (T@) (T@)"dT@ for r = 0,1,2. 5 Note
that

1 itr=20

=30 ifr=1.
Ky ifr=2

We will evaluate expectations and variances of F (P.9) and Fr(q) and obtain a conclusion by

Markov’s inequality. For expectations, we have
E [F,@] = | KT ( Q>)
yx ( ‘D)T { )+ hTTVf(0) + h;TTV2f (hT) T} T
[ wr ) (1) {£ @) +rTTVF (O} aT + O (n7+?)

hrf( )z @410 (h"2) if r is even
L9, £ (0) [k (T@) (T@) ™ aT@ 4 O (hr+1)  if ris odd

by the identical marginal distribution, the change of variables T' = X/h, the Taylor expansion
(T is between 0 and T'), the dominated convergence theorem, and the symmetry of the kernel
function.” Thus,
f(0)+o0(1) ifr=0
E[F®] = oh) ifr=1.
h?f(0) ke + o0 (h?) ifr=2
Similarly, for p # ¢,

E {F@vq)] =12 [ K(T)TWTWf (hT)dT
R4

=n? | K(@TWT {f (0) +RT TV f(0) + h;TTVQf (0) T} dT + o (h*)
Rd

— 12 (0) / K (T)TPTD4r + 8 | K (T)TOTOTTY £ (0)dT + O (h*)
Rd R4
=0 (h).

6When r = 0, F'? does not depend on g because (X;‘;))T =1.
"We use the continuity of V2 f (x) in some neighborhood NV of z = 0. The continuity implies V?* f (hT) — V2£(0)

as h — 0. Since V2 f (0) exists, it is bounded. Thus, we can apply the dominated convergence theorem.



NONPARAMETRIC REGRESSION UNDER CLUSTER SAMPLING 52

For variances,

IA
3, =
Ma

—E {Kh (Xgj) (Xég)ﬂ E {Kh (Xge) (Xéz)ﬂ :

=E[F(?] ’

where the second equality follows from the independence between clusters and the inequality
2r

follows from Var | K (X,) (X\7) | <E [K,% (Xy5) (x7) ] We will bound the following two

expectations
2r
K2 () (x0)"] (70)

E [Kh (X)) (Xj@)T Ky, (X)) (Xéq))r} . (71)

(70): E [K,% (X) (X@)ﬂ - f;d/RdK (‘)}f)z (X(q))%f(X) ax
= [ E@R ()
# K (T)* (T@)ZT F(0)AT + o <h27"‘d)

h)dT

R
_ 0 (h2r—d> :

where the second equality follows from the change of variables T = X/h and the third equality

follows from the continuity.
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Also,

(71): E [Kh (X;) (X](q))rKh (Xy) (X(Q))r}

=i fo fo Lo ) () () (i)

Xf2 (X;lnd),Xélnd); X(Cls)> dX;ind)dXéind)dX(Cls)

_ 2 —dgs , O\ (@\"
B h /]Rdind /]Rdind Rdcls K (TJ) K (T£> (T] ) (TZ >
x fa ( oy (ind) hT(lnd) hT(cls)) de(ind) de(ind) q7(c1s)

= e [ [ k@@ (1) (1)

X f2(0,0;0) AT VT VAt 4 o (B2 )
= 0] (h27°_dcls) ’

where the second equality follows from the change of variables Tj(ind) = X ](ind) /h, Tz(ind) =

. . T . T
Xémd)/h, and T = X /b (we define Tj = (T,j(lnd)T7T(cls)T> T, = (Tz(lnd)T7T(cls)T> ),

and the third equality follows from the continuity.
Thus, since 2521 ng = n and (max,ng) / (nhd) = (maxy nghind) / (nh?) = o(1),

G ng G
Var {qu)} < o ;; 0 <h27“ d) N % ; lgjgt;gng 0 (h2r7dcls)
< O (n_lh%_d> + % (mgx ng> 0] (hzr_d°15> =0 (hzr) )
Similarly,
Var [F(p’q)}
¢ Qs 2 2
< L[t () ()]

g=1j5=1

G
2
5> (B [ #h (Xg5) X7 X0 Ko (Xg0) X35 XL |
g=11<j<t<ny

—E | K (Xg) XD XD | E [ K (Xp0) X7 X (|

:]E[qu) ] 2

IN IN
ST
~
3
1M
= I
-
Iy =
o 1
/? ~—
| +
? 310‘ =
Q Q
NG
3
N— A
— 2
I
& Q
\_v/ N
>
I -~
= &
—~ 78
> N——
S
SN—
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Therefore, by Markov’s inequality and Jensen’s inequality,
@ 911/2
E[|F? - w21 )r| E [(qu — B2 (0) ) }
<
h25 - h25

‘IE [Féq)} — h2f(0) /42‘ + 4/ Var [FQ(Q)]

h2¢
<o(1) for any 9,

P H;ﬂ (S =021 (0) @)( >0 <

which implies that FQ(q) = h2f (0) k2 + op (h?). Similarly, we have Féq) = f(0)+ 0, (1), Fl(q) =

o, (h), and F(P9) = o, (h?). We conclude by element-wise comparisons. O

B.2. Proof for Lemma 3.

Proof. Define J\% = %Zfﬁ:l Sty Kn (Xgj) {m (Xg5) —m(0)} (X;‘JI.))T for r = 0,1 . For expec-

tations,

= | K@) <T(Q))T {hTTVm (0) + h;TTVQm (hT) T} {f (0)+ TV f (hT) } dr

= KHLF(0) / (T(q))TTTVm(O)K(T)dT
Rd
hr+2
2

S50 [ (T9) TR O T (1) ar

—|—hr+2/ <T(q))T TTVm (0)T'Vf(0) K (T)dT + O (h™+3) + o (K" 2)
Rd

PP {37(0)9ggm (0) + Ogm (0) 8 f (0)} k2 + 0 (h?)  ifr =0
h? f(0)0gm (0) k2 + o (h?) ifr=1

where the second equality follows from the linearity of the expectation and the identical marginal
distribution, the third equality follows from the change of variables T' = X/h, the fourth equality
follows from the Taylor expansion (T and T are between 0 and T), the fifth equality follows from
the dominated convergence theorem, and the sixth equality follows from the symmetry of the

kernel function.
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For variances,

Var [Jr(q)}

= iiiKh Kgj) m (Xg5) —m(0)} (X;?)T
g=1j=1
— szzG:Var iKh (Xgj) {m (Xgj) —m(0)} <X‘$)>T]
g=1 J=1
— % XG: iVar [Kh (Xgj) {m (Xgj) —m(0)} (Xéj)ﬂ

1 G 9 2 (@)
< e} Z ZE [Kh (Xgj) {m (Xg;5) —m(0)} (XgJ ) ]
g=1j=1
23S B[R O o () — 0 (359) 5 () (50— ) ()
g=11<j<t<n,
_% EG: E [Kh (Xgj) {m (Xg;) —m(0)} (X;?'))T] E [Kh (Xge) {m (Xge) —m(0)} (Xg(z)ﬂ’

=E[ (7] ’

where the second equality follows from the independence between clusters. We will bound the
following two expectations

2r

B K2 () { (X) = m(0))* ()] (72)
B [ (X)) {m (%) = m()} (X(7) K (X0) {m (X0 = m()} (X)' ] (73)

(72): E [Kﬁ (X) {m (X) = m(0)} (X (‘”)%]

= e [ K@ (T9) ()~ m©) § (h7)dT

= ﬁ K (T)> (Tm))?” {TTvm (o)}2 F(0)dT + o <h2(r+1)*d>

- 0 (h2(r+1)fd> .

where the second equality follows from the change of variables T'= X/h, and the third equality

follows from the Taylor expansion and the dominated convergence theorem.
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Also,

(73) B [Kn (X5) {m (X;) = m(0)} (X(7) K5 (X0) {m (X0) = m(0)} (x{?)']

=W@@@<)memr

h
x{m (X;) —m(0)} {m (Xg¢) —m(0)}
X fa ( 1nd) X(lnd) X(cls)) dx ](md)dX(md)dX(ClS)

_ 2r—dgs , @\" (p@\"
B h /Rdind /Rdind R4cls K (1—3) K (Tﬁ) (T7 ) (TK >
x {m (hTj) —m(0)} {m (hT;) —m(0)}
X fa (hT(ind)’ th(ind); hT(CIS)) de(ind) dTZ(ind) d7(s)

= Wt . @\" (@)
= w0 [ f @ e (1) (110
AT Tm ) {17 Vm (0) } ar D ar D ar
0 (h2r+27dcls>
. {O (h2_dcls) lf r = 0

O (hi-dos) ifr =1

where the second equality follows from the change of variables Tj(ind) = X](.ind) /h, Tg(ind) =

. . T . T
Xé(md)/hq and T(cls) — X(Cls)/h (We define T] _ (ij(md)T,T(cls)T> Ty = <Tz(1nd)T7T(cls)T> )’
and the third equality follows from the Taylor expansion and the dominated convergence theorem.
Thus, for r = 0,

io (hH) +2 Y o <h2dc15>]

Jj=1 1<j<l<ng

<0 (n_th_d) +0 (n_l <maxng> h2_d°15>
g
h? din h?
=0 (md) * {(%mg) " }O (nhd)

and for r =1,

IA
3, —
M a

Var {Jl(q)}

io (hH) +2 Y o <h4dcls>]

1<j<t<n,g

<.
Il
-

INA

Q
‘D‘
"~
N———
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Therefore, by Markov’s inequality, JSQ) = h%ko 22:1 {3 £(0)04qm (0) + 9gm (0) Oy f (0)} +
op (h?) + O, (\/ﬁ), Jl(q) = h?K2f(0)0gm (0) + o, (h?) + O, ( W) We conclude by
O

element-wise comparisons.

B.3. Proof for Lemma 4.

Proof. Define H\") = Ly°¢ s K2( )02 (X,5) (X( >) o) = L6 S0 f2 (X))

o? (X, )Xg(j)X( ) for p # q, and 7Tr f K2(T) (T(q)) dT for r = 0,1, 2. For expectations,

elu] = g [ &2 (5) o700 (x0) reoax

= hd% 5 K2(T) o2 (hT) (T(‘J)>T F(hT)dT
= hd% RdKQ(T) (T@))Tg?(o){f(0)+hTTVf(o)}dT
+o (h’““—d)
B {hdlrf (0) 02 (0) ¥ + o (h1=9)  if r is even
O (hr+1=4) if 7 is odd

where the second equality follows from the change of variables T'= X/h, and the third equality

follows from the Taylor expansion. Since W(()Q) = Rg,
hd{f )R%+O()} ifr=0
E|H®| ={0 (1 d+2) ifr=1.
£ (0) 02 (0) {fRd K2 (T) (T@)’ dT} +o(h=2) ifr=2

Similarly, for p # q,

G nyg
: 2 @) y@| _ 1 2 (X o
E[H(P@} { DD KR (Xy) 0 (X)) XX | = K (h)a (X)X® X@f(X)dx
g=17=1
_ # K2 (T) 0 (hT) TP T@ f (hT) dT
R4

il 00 [ R @TOTOar o (1)

R
— 0 (h—d+2> '
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For variances,

Var [H T(Q)]

G ng G Ng r
= Var L3S R () () (X)) | = 5 D0 var |3 KR () o () (X,7)
g=1j=1 g=1 J=1
1 S & 2 2 @\"
= 2 ZZVM [Kh (ng)‘f (ng) (ng ) }
g=1j=1
G
b5 3 oo ) (59) Rt (59)]
g
1 ¢ & A 2 (9) r
< ﬁZZE [Kh (Xg5) (0% (Xg;)) (Xga) ]
g=1j=1
9 G r T
A5 s ) () K00 050 (33
—11<j<t<n,
G
RS E K7 (Xg3) 0% (Xg3) (X00) | B [KE (Xp0) 0 (Xp0) (X)) |,
=1 1<j<t<n,
:E[Hﬁq)r

where the second equality follows from the independence between clusters. We will bound the

following two expectations

B |63 () (o ()" (x9)7]. (74)

B [K7 () 0% () (X)) KE (x0) o® (X0) (X(7)] (75)

(14): E [K;f (X) (02 (X)) (X@))ﬂ - hid/RdK (f)4(02 (X)) (x@)7 f(x)ax
_ h3d 27«/ K (T)* T<q T(JQ(hT))Qf(hT)dT

_ h3d 5 | KT Ty (Tﬁﬂ)”( (0))2{f(0)+hTTVf(0)}dT+o<h2’“_3d+l)

- 0 <h2r—3d) :

where the second equality follows from the change of variables T'= X/h, and the third equality

follows from the Taylor expansion.
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(©)5 B [KEG) o () (%)) K7 060 o2 (60 () ]

_ L 2 ( X5\ 2,¢ @\ 2 [ Xe\ 2 @\"
- h4d/Rdind/Rdmd/Rdde<h>G(X])<Xj)K h a(Xz)<X£>

><f2 ( (md Xéind);X(cls)) dX](ind)dXéind)dX(cls)

= fy fo fo, © 00 (1) R 0 (1) o i)
X fo <hT(1nd T, hT(cls)) de(ind) AT g (e
— O (h2r—2d—dcls) )

Thus,

g

Var [FT(q)] < T;iz <h2r 3d> nlzi 3 O(h2r—2d—dcls>
g=1j=1

@
Il
-
-
IN
<&
~
IA
3
S

Similarly,

G ng
1 2
= n2 ZZE [K/% (Xg5) (‘72 (ng))z (Xég)) ]
g=1 j=1
G
2
D E K7 (Xg;) 0% (Xg3) XP XK (Xg0) 02 (Xg0) X33 X0 |
g=11<j<t<ng
G
2
2 E | K7 (X01) 0% (Xoj) X7 X;2 | B |1 (X5) 0 (Xo0) X0 X7 |
9=11<j<l<ny [ ( )}2
—RE[H(P.q
G ng
< LQ ZZO <h4 3d) = Z Z 0 <h4—2d—dcls)
" g=1j=1 g=11<j<l<ng
< O <n71h473d> +0 (nl <mgax ng> h42ddcls) =0 (h4*2d> .

Therefore, by Markov’s inequality, Héq) = %f(O) o2 (0) R¢ + o, (h_d), H1(‘1) = 0p (h_d+1),
HY = 1155 (0) 0% (0) { fya K2(T) (T@)* AT} + 0, (n~+2), and HED = o, (h~12). We

conclude by element-wise comparisons. O

B.4. Proof for Lemma 5.

Proof. Define I,(,q) — %25:1 Z1§j<£§n9 Ky (Xgj) Kn (Xge) o (Xg(ijnd)a X;gnd)§Xg§ClS)) (Xész)) for
ind ind cls
r = 0,1, and 19 — %ZgG:llegng Ky, (X,5) K, (ng)a(Xéj )7X§e ). x| ))X§§)X§?
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for any p and ¢ (allow p = ¢ here). For expectations,

and

E[19] =E {iz > K (Xg) K (X0 0 (XG0 XG0 x ) (x(2)

g=11<j<t<n,g

ISy s[m

g=11<j<t<ny

g=11<j<t<ng,

ISy s[m

g=11<j<t<ny

E [[(p,qq =K |:7112 Z Ky (Xg5) K,

We will evaluate

X,) K (X,0) 0 (ngznd)’X;ignd);Xécls)) ( (q)) } 7

g9)

(ind) 3 (ind), 1 (cls)) 5 (®) 3 (@)
(ng)U(ng X0 X >)ng X

Xgj) K (Xy) o (XS0, x5, x(09) x B x (2]

97 g

B (K (X)) K (Xo) o (X0, X000 x @9 (x@)]
)

E {K (X;) K (X0) o <X(ind)’Xéind);X(cls)> X(p)Xlgq } ‘

Denote

Y

(Xm0 X D5X €19 =(0,0:0)

)

(XJ(_ind) 7X1§i“d) ;X(cls)> =(0,0;0)

J
an (Xj(ind),Xéind);X(ds))
vlf? (07 0; O) = (ind)
0X;
0 <X§ind)7Xéind);X(Cls)>
v2f2 (07 Oa O) = (ind)
X
an <X§ind)’Xlgind);X(cls)>
vaQ (07 Oa O) =

OX (cls)

ind ind
(30 x DX () =(0,050)

60

(76)

(77)
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J

= L 2J (@) & (ind) y-(ind), y(cls)
B h2d /Rdind /I%dind /Rdcls K < ) X] ) K h g (X] ’XE ’X )

X fo ( 1nd) X(md) X(Cls)) dX(md)dX(lnd)dX(cls)

= r—dcs ) (9) (ind) (ind) (cls)
h /Rdind /Rdind Rdcls K (Tj) (1} ) K (TE) g (h/j} ’ hTe ) hT )

Xf (hT (ind) hT(lnd) hT(ClS)> de(ind)dTe(ind)dT(Cls)
= Tﬁdcls ) ((1) r '
h /Rdind /Rdind Réels K (Tj) (T] > K (Ty) 0 (0,0;0)
%L £2(0,0:0) + BTV T £5.(0,0:0) + BT T2 5 (0,0;0) + ATV, £ (0,0,0) |

Xd];(ind)dTe(ind)dT(cls) +o (h7"+1—dc1s)

(76): E [K" (X;) Kn (Xe) o (X(md),Xéi“d);X(cls)) (X(fl)y]

| hdee R0 (0,050 £2(0,0;0) + O (h) ifr=0
0] (hz_dcls) ifr=1 7

where the second equality follows from the change of variables Tj(ind) =X ](-ind) /h, Té(ind) =

: . T : T
Xémd)/h, and T(¢s) = X(Cls)/h (we define T; = (Tj(md)T,T(ds)T> , Ty = (Té‘nd)T’T(CIS)T) ),

and the third equality follows from the Taylor expansion.

Similarly,
(77) ) [Kh (X) K, (XZ) o (X(ind)’ Xéind); X(Cls)> X](p)Xlgq):|
_ L) x0 Xe\ @, ( x(ind) 5 (ind), X<ds>)
h2d Rdlnd Rdmd Rdcls h ¢ J ’ ¢ ’
Xf (X(md X(md) (cls)) dX(md)dX(md)dX(C]s)
_ 2—de)s A (p) (9) (ind) (ind), cls
= /Rdmd /Rdmd Relels KT K ()T, o (hT] WIS AT )>
« 5 ( 1nd hT(ind); hT(c1S)> de(ind) dTZ(ind) A7)
- p2das, (0,0;0) f2 (0,0;0) / / K (Ty) Tj(p)K(Tg) Tg(q)dedTK +o (hQ—dcls)
Rdmd Rdlnd Rdcls
= O(n).

Thus, since

G G Ie. B G 2
£t et 1)

9=11<j<l<ng g=1 g=1

and
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we have for r = 0,

B[] = % zG: {h=ta R (0,0:0) £ (0,0;0) + O (n1~a:) |

g=11<j<t<ng

g=1

G
1
(n E n -1 h_ddSdesa (0,0;0) f2(0,0;0) + o <(max ”g> h_dds>
9
—d

:‘

{ Rl (0,0;0) f2(0,0;0) 4 o(1 )}

and for r =1,

Also,
1 G
(p,q)} --y ( 2-das | _ ( —d+2
E [I - ' Ol(h ) O(h > .
For variances, by the mutual independence between clusters,

Var [I,ﬂq)]

G
= Var %Z Kp, (ng)Kh (ng)a (X(md) X(md)vXédS)> <Xg(?)>

1
! ind ind cls r
= n—ZVar [ Ky (Xgj) Kn (Xge) 0 <X£5j )7X!§£ );Xé 1 )) (X;;’.))
Here,

Var Z Ky, (ng) Ky, (ng) o (X;ljnd)’ Xg(,ignd); ngcls)) (X§3)>r
1<j<t<ng
= Y > Cov[Ka(Xy) Kn (Xg0) o (X5, x5 x () (Xéz))r ,
1<j<t<ng 1<t<s<ny

Kn (Xy0) K3y (Xgo) 0 (X;ijnd)’X;iend);Xécls)> (X;g)>r] 7

and there are the following three cases (i) j =t and ¢ = s, (ii) j =t,{ # s, (iii) j # t, £ = s, (iv)
j#tand {# s.
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(i) When j =t and ¢ = s,
ind ind cls r
Cov [ K, (X;) K (Xo) o (X0, X[ x 90 (x(0)7,
Ky, (X)) Ky (Xo) o (Xj(ind),Xéind);X(cls)) (Xj(_q)) }
= Var |:Kh (Xj) Kn(Xp)o (X(lnd) X (ind), X (cls) ) (XJ(ZI)) :|

i i 2r
< E [Ki (X;) K7, (X0) o (X}““d% Xm0 x @) (x10) ]

_ K2 K2 Xe o2 (X(ind),X(ind);X(cls)) <X<q)>2r
h4d Rdmd ]Rdlnd ]Rdz,l:. h J ¢ J

xfz (X, Xm0, X(°15)> dx D x ) g x ()

_ 1 2 (N 72 2 (ind) (ind), 3 r(cls) @)
= g o, fo [l KO @007 () ) (1)
X f2 (hT ind) hT(md) hT(ds)> AT Vari"ar
= 0 (h2”‘*2d*dcls) ,
where the third equality follows from the change of variables Tj(ind) =X ](ind) /h, Tz(ind) =X éind) /h, and

. T . T
T(cls) — X(cls)/h (We define Tj _ (Tj(md)T,T(ClS)T) Ty = (Te(md)T,T(ds)T) )

(ii) When j =t,¢ # s,
Cov |:Kh (X,) Kn (Xo)o (Xj(-ind),Xlgind);X(dS)) (X;q)> )

Kn (X;) K (Xs) o (X(ind), X, X(CIS)) (X;‘”)r}

- E [Kf (X)) Kn (Xo) o (X0, x5 x ) (X q) X,)o (Xf“d),xgind);X(ClS)ﬂ (78)
E [Kh (X,) Kn (X0) 0 (Xj(lnd)7 (ind) X(cl@)) (X q ) }

={(76)}*

We can evaluate an expectation as

. . 2r . .
(78): E [Ki (X;) Kn (Xo) o (X](lnd)’Xlglnd);X(Cls)> (X](q)) Kn (X))o (XJ(_1nd)7X§md);X(cls)):|

71 X; X in in 2r
= 4d/ / / / K? (J) K <f> o (X(. d)7le d);X(cls)) (X(_q))
h’ R%nd JR%nd JR%nd JR4cls h h J j
XS in in
XKh (h> g (XJ( d)7X§ d);X(CIS))

st ()((}ind)7 X(ind)7 Xgind); X(Cls)> dX(ind)dXéind)ngind) dX(cls)

2r
_ 2 (ind) ; o(ind). <clb>) ( gq))
hd 2T+2ddb /Rdmd /Rdmd /Rdmd Rdcls K ) K ( ) (hT hT hT ,11]

¥ K (T,) o (hT(“‘d’ KT (nd), hT@h))
(ind) (ind) ind). cls (ind) (ind) ind cls
X fs (th R pplind), >) AT AT arind 7 (©)
_ 9] (hQT—d—chls) ,

where the second equality follows from the change of variables Tj(ind) =X J(ind) /h, Tg(ind) =X éind) /h,
. . , T , T
Ts(md) _ Xglnd)/h and T(cls) _ X(cls)/h (We define Tj _ (Tj(md)T,T(ClS)T) , T, = (Té(lnd)T’T(cls)T>
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T, = (Ts(ind)T7T(CIS)T)T)' Thus,

Cov [Kh (X;) K (X¢) o (Xj(ind)7X[§ind);X(cls)) (ngq)> 7

Kh (X]) Kh (XQ) o (X;ind),Xgind);X(Cls)> (X](q))7:|
= O (h%'—d—zdcls) )
(iii) When j #t,0 = s,

Cov {Kh (X;) K (Xe)o (X§ind)’Xéind);X(cls)) (X7(q))r’

Ky (Xi) K (Xe) o (Xt(ind)7xéind);x(c1s)> (Xt(q)) }

ind) X(lnd X(cls)) (X(‘Z)>T

X J

E[Kh( ) K2 (X))o (X!

(
x K (X:) o (Xt(“‘d) X, x CIS) (Xf‘”ﬂ (79)

-E [Kh (X;) Kn (XZ)J(XOM) X(md (elb)) (XJ@)T

={(76)}*
- 0 (th—d—chls)

by a similar derivation to the case (ii).
(iv) When j # ¢, # s,
Cov [Kh (X;) Kn (Xe)o (Xj(ind)’X[gind);X(cls)> (Xj(q))r,
Ky, (X)) K, (Xs)o (Xt(ind),Xs(ind);X(Cls)) (Xt(q)y}
= E {Kh (X;) Kn (Xo) o (XJ(_ind)7Xéind);X(cls)) (X]@)T

x Ky, (Xt) Ky (XS) o (Xt(ind)7X§ind);X(cls)) Xéq)) } (80)

& {Kh (Xj)Kh (X0)o (X](md) X(md) X(cls)) (XJ( ))Tr

={(76)}2

We can evaluate an expectation as
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(80): E [Kh (X;) Kn (Xe) 0 (Xj(ind)’Xéind);X(cls)> (X;q))T

X Kp (Xy) Ky (Xs) o (Xt(ind)7X§ind);X(cls)) (Xt(Q))r:|

h4d Rénd JR4ind JR%nd JR9ls JR%nd

i (5 (3 ) ()

i ()0 (5 o 0 o) ()

* f4 (Xj(ind),Xéind),Xt(ind),Xgi“d);X(ClS)) de(ind)Xmgind)dXt(ind)dXs(ind)dX(cls)

B hzriSdCls / / / / /
R9%nd JR%nd JR%%nd JR%%ls JR%nd

x K (T}) K (Ty) o (th(i“d), hT i, hTms)) (Tj(q>)T
XK () K (T,) o (BT, s i) (1)
x 4 (th(ind)’ hTz(ind)7 hTt(ind), hTS(ind); hT(Cls)) de(ind)dTZ(ind)th(ind)dTS(ind)dT(cls)

— O (h27”*3dcls ) ,

where the second equality follows from the change of variables T j(ind) =X ](ind) /h, Tz(ind) =X éind) /h,
. ) . . . T
Tt(md) _ Xt(md)/h7 Ts(md) _ Xélnd)/h and T(cls) = X(cls)/h (we define T, = (Tj(md)T,T(ClS)T) LTy =

. T . T _ T
(Te(md)T,T(dS)T> , Tt — (Tt(md)T,T(ClS)T> , Ts _ (Ts(md)T7T(ds)T) ) Thus,

Cov {Kh (X)) Kn (Xe) o (Xj(ind)’ X[gind); X(cls)) (Xj(q))r7

K (X)) Kn (X2) o (Xt(ind)7Xs(ind);X(cls)) (Xt(q)> }
= 0 (h2T—3dcls) .
Thus, by counting cases (i)-(iv),

Var [I ﬁq)]

< % ZG: Z Z Cov {Kh (Xgj) K (Xgo) o (X;;nd)7X;i€nd);Xécls)) (X;§)>7‘7
9=11<j<t<ny 1<t<s<ng
K (Xgt) Kn (Xgs) 0 <X£Eitnd),Xg(isnd);Xg(ds)> (Xé;’))r}
< % EG:I {nf]O <h2r—2d—dcls> + ngO (hw—d_gdcls> + ngO (h2r—d—2dcls> n n;}O (hgT_gdds>}
P
<

n g

7dc s 2
(mavxg ng) A~ {O (hgr_zd) + (max ng) h=4ds0 <h2r_d) + (max ng> h~2das O (hQr)}
g

= 0(1)q 0 <h2r_2d) + (max ng) hdina O (hQT_Qd) + <m;mx ng>2 h2dind O <h2T_2d) =o0 <h2”_2d) .

g
N——
o(1) =0(1)
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Similarly,

Var [I(p’q)}

G . .
- % 9=11<j<l<ng 1<t<s<ng cov |:Kh (ng) K (ng) 7 (X;Ijnd), Xélend); X‘(gdS)) (X;I;)) (Xé(g)) ’
K (Xgt) Ko (Xgs) o (X500, X005 x () (X)) (x@) ]
1
< =

= ZG: {nﬁO <h472dfdcls) + 120 <h4fd72dcls) +n20 <h4fd72dds) +nt0 <h473dds>} <o <h472d) ‘
g=1

Therefore, by Markov’s inequality, Iéq) = h {%RZClSJ(O,O; 0) f2(0,0;0) + op (1)}, Ifq) =

op (h=4+1), and IP9 = O, (h=%*2). We conclude by element-wise comparisons. O

B.5. Proof for Lemma 6.

Proof. Define g9 = %Z?:l > 1<j<t<n, Kn (Xgj) (Xég))T eg;j for r =0,1. We have

G ng

E [55‘1)] ) % > ) K (Xy) (Xé?)r egj
g=1j=1
=E {Kh (Xg5) (X;?)YE [eg; | ng]}
=0

by the law of iterated expectations.
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For variances,

Var [ET(‘I)}

G ng o
= Var fZZKh ( )> €g;j
g=1j=1
G ng ., 2 G ng r ?
= E —ZZKh ( )> €gj ZZKh ( )) C9i
g—1 j—1 g 15=1
-0
1 G [ Ng r ?
— EZE E ZKh(ng) (X;;')) egi ¢ | Xg
g=1 j=1
G nyg r r
= LY K000 ) (x2)]
g=1j=1 -
G
BES 3wkt () (1) o ()
"= 1<j<t<ng
[ 2u]  itr=0
B %E[Héq)+2](qq)} ifr=1

O(=r7) ifr=0

nhd
O(-) ifr=1

nhd—2

where the third equality follows from the mutual independence between clusters.

Therefore, by Markov’s inequality, EéQ) =0 (\ / ﬁ) and 8{‘1) =0, (1 / W%) We conclude

by element-wise comparisons. O

B.6. Proof for Lemma 7.

Proof. By the proof of Lemma 2,

G ng

IS (Xp) { X m(0) X, )
g=1 j=1
G ng d d
= Y K (X) 303 gm0 X X
g=1 j=1 p=1qg=1
= Zaqqm B 42 Y 9m(0)F®9

1<p<q<d

- Zaqqm(o) {hzf(o)@ + 0p } +2 Z G Op h2)
q=1

1<p<q<d

d
= 1’2 Y Dggm(0)£(0) + o, (h?).
q=1
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Next, we will evaluate

G ng
CSTS K (X)X { X5, 9P m(0) X, )
g=1j=1
G ng d
—ZZKh Xg5 43 0ygm(0) (ng.)) +2 3 3m(0)x P x"
g=1j=1 q=1 1<p<gq<d

The compact support of the kernel function implies

G ng
m(0), 33 K (35) (X47)) = 0, (1)
g 15=1
G ng
qqm ZZKh X(p) (X(‘I)) Op (h3) ’
g 1j=1
G n
(05 373 K (3%,) X2 (x0)” = 0, ().
g=1j=1
G ng
Fpgm (0 ZZKh xPx@x\) =0, (n?)
g 1j5=1
Thus,
G ng
7221@ {Xgij2 (0) gj} 0, (h¥) 14
g=1j=1

APPENDIX C. TECHNICAL DISCUSSION

As we mentioned in Remark 1, we can relax the identical distribution assumptions for joint
densities if we strengthen the continuity assumption for them. For example, we can together
replace Assumption 1 (iii) and Assumption 3 (ii) by the following assumptions to show the

theorems on Section 4.

e Assumption 1 (iii’"): Xy; are identically distributed across all g and j with common
marginal density f(x). For any cluster g with ng > 2, (X;ﬁd),Xg(gd);Xéds)) are iden-
tically distributed across all g, j1, and jo with common joint density

fo (0,20, 69

For any n, € {3,4} and for any cluster g withng > n,, (X;ﬁd)’ . aXéi;d);XéCIS)) with
g

A<ge << jﬁg has the joint density
(ind) _(ind) ~ (ind). (ds))
f(jl,]é 77777 jﬂg§g) ( 1 7$2 ) 711729 s .
e Assumption 3 (ii’): There exists some neighborhood N of © = (x(i“d)T,x(ClS)T)T such
that m(z) and f(x) are twice continuously differentiable, fo (@D, 2D (1)) js con-

tinuously differentiable, and o*(z), and o (m(ind), x(ind);x(ds)) are continuous. Moreover,
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for any n, € {3,4},

(ind) _(ind) ind). .(cls
(s (s
129000, ﬂg7 1§]1<]2<<]ﬁg§ng

is equicontinuous in the neighborhood N .

gng>n,

APPENDIX D. ADDITIONAL SIMULATIONS

D.1. Simulation results for the Nadaraya-Watson estimator. In this subsection, we will
provide simulation results of the Nadaraya-Watson estimator for bandwidth selection and infer-

ence.

D.1.1. Bandwidth selection. The data-generating processes and the calculations are the same as
in Section 9. As we did for local linear estimators in Section 9, we will compare four methods of
bandwidth choice. The performance is evaluated by

Ngrid

{Mnw (ug, h) —m (Uk)}2 )
k=1

1

Ngrid

ASE(h) =

where My (ug, h) is the Nadaraya-Watson estimator with the bandwidth h.

Tables 6 and 7 show means of ASEs for the Nadaraya-Watson estimator and means of selected
bandwidths (in curly brackets) across each simulation draw for Setup 1 and 2, respectively.
Figures 5 and 6 plot values of the bandwidth & in the z-axis and means of the function ASE(h)
in the y-axis, which are calculated from simulation draws for Setups 1 and 2, respectively. We

found almost the same implications as in Section 9.1, and the detailed explanations are omitted.

TABLE 6. Mean of ASE and mean of selected bandwidth (myy, Setup 1)

maxng = 20 maxng = 100

hror  hcr-ROT hcov hcr-cv hror  hcr-ROT hcv hcr-cv

(px,pe)—(02,02) 00053  0.0053  0.0042  0.0042  0.0053  0.0053  0.0042  0.0042
{0.0297}  {0.0302} {0.0471} {0.0471} {0.0292} {0.0297} {0.0467} {0.0468}
(px.pe)=(0.2,05) 0.0062  0.0061  0.0050  0.0050  0.0063  0.0062  0.0051  0.0051
{0.0297} {0.0302} {0.0471} {0.0472} {0.0292} {0.0297} {0.0467} {0.0468}
(px,pe)—(0.50.2) 0.0055  0.0054  0.0043  0.0043  0.0055  0.0055  0.0043  0.0043
{0.0292} {0.0300} {0.0473} {0.0476} {0.0288} {0.0295} {0.0472} {0.0474}
(px,pe)=(0.5,05) 00066  0.0065  0.0054  0.0054  0.0068  0.0067  0.0056  0.0056
{0.0292} {0.0300} {0.0475} {0.0477} {0.0288} {0.0295} {0.0471} {0.0473}

Note: Means of selected bandwidths are shown in curly brackets.
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TABLE 7. Mean of ASE and mean of selected bandwidth (myy, Setup 2)

maxng = 20 maxng = 100

hror  hcr-roT hov hcr-cv hror  hcr-roT hav hcr-cv

(px,pe)—(0.2,0.2) 00086  0.0072  0.0028  0.0028  0.0081  0.0069  0.0028  0.0028
{0.0890} {0.0865} {0.0467} {0.0468} {0.0876} {0.0853} {0.0463} {0.0464}
(px.pe)=(0.2,0.5) 0.0094  0.0079  0.0033  0.0033  0.0089  0.0076  0.0034  0.0034
{0.0893} {0.0868} {0.0467} {0.0468} {0.0878} {0.0855} {0.0465} {0.0467}
(px.pe)=(0.5,0.2) 0.0088  0.0077  0.0029  0.0029  0.0087  0.0075  0.0029  0.0029
{0.0896} {0.0877} {0.0474} {0.0475} {0.0889} {0.0869} {0.0469} {0.0471}
(px,pe)=(0.5,0.5) 0.0094  0.0083  0.0036  0.0036  0.0094  0.0082  0.0037  0.0037
{0.0892} {0.0874} {0.0471} {0.0474} {0.0886} {0.0866} {0.0467} {0.0470}

Note: Means of selected bandwidths are shown in curly brackets.

©
3
S | ] —— Mean of hgot =0.0288
! ! - — Mean of heg-rot = 0.0295
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FIGURE 5. Mean of ASE(h) for myy in Setup 1 with max,<gny = 100 and
px = pe=0.5
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o}
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FIGURE 6. Mean of ASE(h) for muy, in Setup 2 with max,<gn, = 100 and
px = pe = 0.5

D.1.2. Inference. The data-generating processes and the calculations are the same as in Section
9. Tables 8-10 show the coverage ratio for the Nadaraya-Watson estimator and means of the
length of confidence intervals (in curly brackets) across each simulation draw for Setup 1, Setup
2 with = = 0.8, and Setup 2 with x = 0.4 , respectively. We found almost the same implications

as in Section 9.2, and the detailed explanations are omitted.

TABLE 8. Coverage and average length of 95% CI for each standard error (mpy,
Setup 1)

maxng = 20 maxng = 100

CI Clcr C1I, CI Clcr CIy

(px,pe)=(0.2,0.2)  0.925 0.931 0.954 0.915 0.920 0.952
{0.192} {0.195} {0.217} {0.189} {0.192} {0.217}

(px,pe)=(0.2,0.5)  0.879 0.886 0.960 0.861 0.869 0.951
{0.192} {0.195} {0.246} {0.188} {0.192} {0.250}

(px, pe)=(0.5,0.2)  0.920 0.925 0.956 0.906 0.908 0.954
{0.191} {0.194} {0.227} {0.188} {0.191} {0.228}

(px,pe)=(0.5,0.5)  0.857 0.867 0.964 0.833 0.844 0.957
{0.191} {0.195} {0.261} {0.188} {0.191} {0.267}

Note: Lengths of confidence intervals are shown in curly brackets.
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TABLE 9. Coverage and average length of 95% CI for each standard error (mpy,
Setup 2, x = 0.8)

maxng = 20 maxng = 100

cl Clcr CI, CI Clcr CI,

(px,pe)=(0.2,0.2)  0.893 0.897 0.931 0.882 0.836 0.923
{0.167} {0.170} {0.187} {0.165} {0.168} {0.187}

(px,pe)=(0.2,0.5)  0.844 0.850 0.918 0.831 0.836 0.924
{0.167} {0.171} {0.209} {0.164} {0.168} {0.211}

(px;pe)=(0.5,0.2)  0.903 0.909 0.936 0.878 0.884 0.927
{0.166} {0.170} {0.191} {0.164} {0.167} {0.192}

(px,pe)=(0.5,0.5)  0.826 0.837 0.932 0.806 0.816 0.924
{0.166} {0.170} {0.218} {0.164} {0.167} {0.223}

Note: Lengths of confidence intervals are shown in curly brackets.

TABLE 10. Coverage and average length of 95% CI for each standard error (myy,
Setup 2, x = 0.4)

maxng = 20 maxng = 100

CI Clcr Cly Ccl Clcr ClI,

(px,pe)=(0.2,0.2)  0.985 0.986 0.995 0.983 0.985 0.995
{0.136} {0.138} {0.157} {0.134} {0.135} {0.157}

(px,pe)=(0.2,0.5)  0.969 0.971 0.998 0.965 0.968 0.998
{0.136} {0.138} {0.181} {0.133} {0.135} {0.184}

(px,pe)=(0.5,0.2)  0.982 0.983 0.996 0.980 0.983 0.998
{0.135} {0.137} {0.160} {0.133} {0.134} {0.161}

(px, pe)=(0.5,0.5)  0.962 0.964 0.996 0.961 0.963 0.997
{0.135} {0.137} {0.188} {0.132} {0.134} {0.192}

Note: Lengths of confidence intervals are shown in curly brackets.

D.2. Inference without bias corrections. This subsection presents simulation results for
inference methods that do not incorporate bias corrections. We include results for both Nadaraya-
Watson and local linear estimators. The data-generating processes for these simulations are the
same as in Section 9. The calculations of confidence intervals are basically the same as in Section
9, albeit without correcting the bias. Tables 11-16 show the coverage ratio and means of the
length of confidence intervals (in curly brackets) across each simulation draw. These results
are the feasible version of our previous inference results, assuming undersmoothing to ignore
the bias. Notably, among the evaluated methods, our CI) confidence intervals exhibit superior

performance.



NONPARAMETRIC REGRESSION UNDER CLUSTER SAMPLING

TABLE 11. Coverage and mean of length of 95% CI for each standard error (myy,,

Setup 1, with bias)

maxng = 20 maxng = 100

clI Clcr Cly Cl Clcr Cly

(px.pe)—(0.2,02) 0917  0.921  0.952  0.908 0914  0.951
{0.190} {0.193} {0.215} {0.187} {0.189} {0.215}
(px,pe)=(0.2,05) 0876  0.886  0.958  0.860  0.869  0.951
{0.189} {0.192} {0.244} {0.186} {0.189} {0.248}
(px.pe)=(0.5,02) 0914 0919 0955 0905 0910  0.949
{0.189} {0.192} {0.225} {0.186} {0.189} {0.226}
(px,pe)=(0.5,0.5) 0858  0.864 0961 0835 0842  0.957
{0.189} {0.192} {0.260} {0.185} {0.189} {0.265}

Note: Lengths of confidence intervals are shown in curly brackets.

TABLE 12. Coverage and average length of 95% CI for each standard error (myy,

Setup 1, with bias)

maxng = 20 maxng = 100

o) Clcr Cl, ClI Clcr Cl,

(px,pe)—(02,02) 0918 0925 0953  0.907 0914  0.948
{0.192} {0.195} {0.217} {0.189} {0.192} {0.217}
(px,pe)=(0.2,05) 0880  0.888  0.956  0.861  0.868  0.949
{0.192} {0.195} {0.246} {0.188} {0.192} {0.250}
(px,pe)=(05,02) 0916 0921 0956 0906  0.910  0.951
{0.191} {0.194} {0.227} {0.188} {0.191} {0.228}
(px,pe)=(0.5,0.5) 0.859  0.865  0.960  0.837  0.845  0.955
{0.191} {0.195} {0.261} {0.188} {0.191} {0.267}

Note: Lengths of confidence intervals are shown in curly brackets.

TABLE 13. Coverage and mean of length of 95% CI for each standard error (myy,,

Setup 2, x = 0.8, with bias)

maxng = 20 maxng = 100

cI Clcr Cl,y clI Clcr Cly

(px.pe)—(02,02) 0.776  0.788  0.827  0.780  0.787  0.843
{0.168} {0.171} {0.187} {0.166} {0.169} {0.187}
(px.pe)=(0.2,05) 0.735  0.745  0.846  0.737  0.746  0.856
{0.168} {0.171} {0.209} {0.165} {0.168} {0.212}
(px,pe)=(05,02) 0753  0.764  0.819  0.755  0.761  0.832
{0.167} {0.171} {0.192} {0.165} {0.168} {0.193}
(px.pe)=(05,05) 0706 0721 0851  0.715  0.725  0.855
{0.167} {0.171} {0.219} {0.164} {0.168} {0.223}

Note: Lengths of confidence intervals are shown in curly brackets.
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TABLE 14. Coverage and average length of 95% CI for each standard error (myy,
Setup 2, x = 0.8, with bias)

maxng = 20 maxng = 100

cl Clcr CI, CI Clcr CI,

(px,pe)=(0.2,0.2)  0.772 0.783 0.821 0.782 0.791 0.840
{0.167} {0.170} {0.187} {0.165} {0.168} {0.187}

(px,pe)=(0.2,0.5)  0.737 0.745 0.842 0.734 0.743 0.852
{0.167} {0.171} {0.209} {0.164} {0.168} {0.211}

(px,pe)=(0.5,0.2)  0.748 0.756 0.819 0.752 0.758 0.829
{0.166} {0.170} {0.191} {0.164} {0.167} {0.192}

(px,pe)=(0.5,0.5)  0.701 0.714 0.846 0.707 0.718 0.853
{0.166} {0.170} {0.218} {0.164} {0.167} {0.223}

Note: Lengths of confidence intervals are shown in curly brackets.

TABLE 15. Coverage and mean of length of 95% CI for each standard error (myy,,
Setup 2, x = 0.4, with bias)

maxng = 20 maxng = 100

CI Clcr C1I, CI Clcr CIy

(px,pe)=(0.2,0.2)  0.954 0.957 0.980 0.945 0.949 0.982
{0.137} {0.138} {0.157} {0.134} {0.136} {0.158}

(px,pe)=(0.2,0.5)  0.935 0.939 0.988 0.922 0.926 0.985
{0.136} {0.139} {0.182} {0.134} {0.136} {0.184}

(px, pe)=(0.5,0.2)  0.945 0.948 0.981 0.943 0.945 0.984
{0.136} {0.138} {0.160} {0.133} {0.135} {0.161}

(px,pe)=(0.5,0.5) 0.924 0.929 0.989 0.909 0.915 0.987
{0.136} {0.138} {0.188} {0.133} {0.135} {0.192}

Note: Lengths of confidence intervals are shown in curly brackets.

TABLE 16. Coverage and average length of 95% CI for each standard error (myy,
Setup 2, = 0.4, with bias)

maxng = 20 maxng = 100

CI Clcr C1Iy CI Clcr ClI,

(px,pe)=(0.2,0.2)  0.951 0.953 0.978 0.941 0.944 0.978
{0.136} {0.138} {0.157} {0.134} {0.135} {0.157}

(px, pe)=(0.2,0.5)  0.928 0.934 0.982 0.915 0.918 0.986
{0.136} {0.138} {0.181} {0.133} {0.135} {0.184}

(px,pe)=(0.5,0.2)  0.937 0.942 0.985 0.935 0.938 0.980
{0.135} {0.137} {0.160} {0.133} {0.134} {0.161}

(px,pe)=(0.5,0.5)  0.919 0.924 0.988 0.910 0.915 0.987
{0.135} {0.137} {0.188} {0.132} {0.134} {0.192}

Note: Lengths of confidence intervals are shown in curly brackets.
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