
Assessing Heterogeneity of Treatment Effects∗

Tetsuya Kaji1 and Jianfei Cao2

1University of Chicago
2Northeastern University

June 28, 2023

Abstract

Treatment effect heterogeneity is of major interest in economics, but its

assessment is often hindered by the fundamental lack of identification of the

individual treatment effects. For example, we may want to assess the effect of

insurance on the health of otherwise unhealthy individuals, but it is infeasible

to insure only the unhealthy, and thus the causal effects for those are not

identified. Or, we may be interested in the shares of winners from a minimum

wage increase, while without observing the counterfactual, the winners are not

identified. Such heterogeneity is often assessed by quantile treatment effects,

which do not come with clear interpretation and the takeaway can sometimes

be equivocal. We show that, with the quantiles of the treated and control

outcomes, the ranges of these quantities are identified and can be informative

even when the average treatment effects are not significant. Two applications

illustrate how these ranges can inform us about heterogeneity of the treatment

effects.
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1 Introduction

Heterogeneity of the treatment effects is a major concern in various places of eco-

nomics. In causal inference with instrumental variables, heterogeneous treatment

effects play a key role in the correct interpretation of the estimates (Imbens and An-

grist, 1994). In optimal policy targeting and ethical intervention design, assessment

of heterogeneity is vital in improving welfare and promoting equity (Kitagawa and

Tetenov, 2018, 2021). In the empirical examination of economic theory, it is essen-

tial to account for heterogeneous impacts that are consistent with the theoretical

prediction (Bitler et al., 2006).

The assessment of heterogeneity is often hindered by the lack of identification of

the individual treatment effects. Because of the fundamental impossibility of assigning

more than one treatment status to one subject, the joint distribution of the treated

outcome and the control outcome is not identified. When the average treatment

effect (ATE) is of concern, this lack of identification is not an issue since the ATE

only depends on the marginal distributions of the potential outcomes. There are

situations, however, in which delicate assessment of heterogeneity is needed.

Consider an investigation of moral hazard in health care (e.g., Aron-Dine et al.,

2013). Ideally, we want to know how health insurance affects medical spending across

different levels of untreated medical spending. However, since the joint distribution of

the treated outcome and the control outcome is not identified, such treatment effects

are not identified. In another example, consider the evaluation of a welfare program

for low-income and unemployed households (e.g., Bitler et al., 2006). The theoretical

prediction is often ambiguous even on who benefits and who loses from the program,

so the average effects do not draw the complete picture. However, again, due to the

lack of identification of the joint distribution, the shares of winners or losers are not

identified.

In these settings where heterogeneity is of primary interest, economists often use

the quantile treatment effects (QTEs) to grasp a sense of heterogeneity. While QTEs

can suggest the presence of heterogeneity, they can be hard to assess or interpret if

we are not willing to assume a strong condition of rank invariance.

In this paper, we focus on two quantities that summarize heterogeneity and com-

plement QTEs, and show that—although they are not point-identified—we can calcu-

late the ranges in which they reside. Using two empirical applications, we show that
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these ranges can be informative, even when the ATE estimates are not significant.

The first quantity is what we call the subgroup treatment effect, which is the ATE

for the subpopulation whose control outcome is in some range. For example, when the

lower bound for the subgroup treatment effect is positive, we may conclude that the

subgroup of interest receives at least some positive treatment effects. We illustrate

the usefulness of this concept in Section 3 drawing an example from Tarozzi et al.

(2015). The second quantity is what we call the subgroup proportion of winners (or

of losers), which is the share of those whose treated outcome exceeds (or falls under,

respectively) the control outcome in the subpopulation whose control outcome is in

some range. For example, if the proportion of winners is above one fourth, we may

conclude that there are at least a quarter of subjects whose outcomes improved thanks

to the treatment. Section 4 illustrates the usefulness of this concept in an example

from Bitler et al. (2006).

There is enormous literature on (partial) identification of various heterogeneity

in program evaluation. Close to our paper are Heckman et al. (1997) and Tetenov

(2012). Heckman et al. (1997) discussed bounds on the proportion of winners and

the distribution of treatment effects and investigated how the assumption of rational

choice by the participants helps sharpening the bounds. Tetenov (2012) derived

bounds on positive and absolute treatment effects and the proportion of winners on

the entire population. A key departure of our analysis is that we consider subgroups

that are defined by ranges of the control outcome, which gives a finer picture of who

receives how much treatment effects.

The rest of the paper is organized as follows. Section 2 lays down the notation

used in the paper and clarifies the extent to which the proposed methods can be

applied. Section 3 introduces the bounds on the subgroup treatment effects and

illustrates their use drawing examples from Tarozzi et al. (2015). Section 4 presents

the bounds on the subgroup proportions of winners and applies them to revisit Bitler

et al. (2006). Section 5 concludes. Appendix A collects the proofs.

2 Notation and the Scope of Applicability

We employ the standard notation of the potential outcome framework; Y0 denotes

the potential outcome without the treatment and Y1 the potential outcome with the

treatment. The marginal cumulative distribution functions (cdfs) of the potential
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outcomes are denoted by F0 for the control and F1 for the treated. We define the

quantile functions of the potential outcomes, Q0 and Q1, by the left-continuous gen-

eralized inverses of F0 and F1. We denote the normalized rank of Y0 by U ∈ [0, 1].

Mathematically, this is equivalent to having a uniformly distributed random variable

U ∼ U(0, 1) that satisfies Y0 = Q0(U). We define a winner (from the treatment) to

be a subject with Y1 > Y0 and a loser (from the treatment) a subject with Y1 < Y0.

We use the notation (x)+ := max{x, 0} and (x)− := (−x)+. We denote the left limit

of a cdf by F (a−) := limx↗a F (x).

The key assumption in this paper is that the marginal distributions of the potential

outcomes are identified. This applies to settings beyond the standard randomized con-

trolled trials (RCTs) with perfect compliance. In RCTs with monotone compliance,

Abadie (2002) discussed derivation of the marginal distributions of potential outcomes

for compliers. In standard difference-in-differences (change-in-changes) models, Athey

and Imbens (2006) provided the marginal distributions for the treated, which was ex-

tended to synthetic control settings by Gunsilius (2023). In models with selection

on observables, Firpo et al. (2009) developed unconditional quantile regression to ob-

tain the marginal distributions, which was generalized to models with instrumental

variables by Frölich and Melly (2013) and to models with multiple and continuous

treatments by Powell (2020). Our method applies to all of these settings.

Moreover, the marginal distributions can be replaced with conditional distribu-

tions conditional on covariates, so our framework applies to cases with conditional

randomization, for which conditional quantile regression estimates the conditional

distributions of the potential outcomes (Koenker and Bassett, 1978; Chernozhukov

and Hansen, 2005; Abadie et al., 2003).

3 Subgroup Treatment Effects

There is literature that considers access to microfinance as a way to reduce poverty in

developing countries. Tarozzi et al. (2015) used data from an RCT conducted in rural

Ethiopia from 2003 to 2006 to assess the impact of microfinance on various outcomes.

The brief outline of the experiment is as follows. Randomization was carried out

at the Peasant Association (PA) level, which is a local administrative unit. Out of

133 PAs, 34 PAs were randomly assigned to microcredit and 33 PAs to the control.

The remaining 66 PAs were assigned to a different combination of treatments, which
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we will not use. The compliance rate was 78%, and our analysis below focuses on the

intent-to-treat (ITT) effects as did Tarozzi et al. (2015). We leave further details of

the experiment to Tarozzi et al. (2015).

Tarozzi et al. (2015) noted that “most loans were initiated to fund crop cultivation

or animal husbandry, with 80 percent of the 1,388 loans used for working capital or

investment in these sectors . . .” In light of this, we look at two outcome variables:

(1) the net cash revenues from crops and (2) the total value of livestock owned.

3.1 Who Benefits from Microfinance?

For both of these outcomes, we are interested in knowing how much impact microfi-

nance have had on those who were most in need, i.e., those who would have attained

low outcome in the absence of the treatment (Abadie et al., 2018). For example, we

may want to see whether a small amount of money helps increase the output of those

who are poor, which is approximated by low Y0.

Precisely, we are interested in the ATE conditional on U < b for some level b, that

is,

E[Y1 − Y0 | U < b].

Note here that when Y0 is continuously distributed, conditioning on U < b is equiv-

alent to conditioning on Y0 < Q0(b). We call this quantity the subgroup treatment

effect (STE). The STE is not point-identified since it depends on the joint distribution

of Y0 and Y1, but using their quantile functions, we can infer (Theorem 3)

1

b

∫ b

0

[Q1(u)−Q0(u)]du ≤ E[Y1 − Y0 | U < b] ≤ 1

b

∫ b

0

[Q1(1− u)−Q0(u)]du. (1)

While QTEs in general cannot be interpreted as individual treatment effects without

the rank invariance assumption, (1) states that the integral of the QTEs can be

interpreted as the lower bound for the STE without any assumption. The lower bound

is exact when rank invariance holds, but it is also expected to be close when rank

invariance approximately holds. This idea that individuals do not change ranks too

drastically by the treatment would be a reasonable presumption in many applications.

(Meanwhile the upper bound may not be very informative in many cases.) A possible

takeaway from (1) is that, if the lower bound is greater than zero, we know that the

poor individuals receive some positive treatment effects even though we do not know
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(a) Quantiles for the net cash revenues from
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(b) Quantiles for the total value of livestock
owned. The KS p-value = 0.0002.

Figure 1: Empirical quantile functions for the two outcomes in the treated and control
groups in Tarozzi et al. (2015). The difference of the green dashed line and the black
dashed line is the estimated ATE, which is insignificant in either case. However, the
KS test indicates non-null effects in both outcomes.

exactly how much.

Now we turn to estimates from the data. We first note that the ATE estimates

for both outcomes are not significant. Tarozzi et al. (2015) wrote “We document

that despite substantial increases in borrowing in areas assigned to treatment the

null of no impact cannot be rejected for a large majority of outcomes.” However, this

does not mean that there is no evidence of heterogeneity in the data. In fact, the

weighted Kolmogorov–Smirnov (KS) test of equal distributions (Monahan, 2011, p.

358) suggests that the marginal distributions of Y0 and Y1 are significantly different

from each other for both outcome variables (Figure 1).

Figure 2 shows the bounds on the STE given by (1). The black solid lines indicate

the theoretical lower bounds of E[Y1 − Y0 | U < b] across different values of b. The

black dashed lines are the upper bounds, but we do not scale the figures to cover the

whole of upper bounds since they are uninformatively large in most values of b. The

gray areas are the pointwise 95% confidence intervals for the STE at each point of b

constructed by the method of Imbens and Manski (2004). While we cannot exclude

the possibility that microfinance has no effect on the crop revenues across various

levels of crop revenues (Figure 2a), the effect on the value of livestock is significantly

positive for the mid-quantile levels of the livestock value (Figure 2b). The flat zero

region on the left is likely those who do not own any livestock, so Figure 2b suggests

that the effect of microcredit on those who has a modest to low level of livestock is
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(b) Bounds for the STEs on the total value
of livestock owned.

Figure 2: Lower bounds for the STEs in Tarozzi et al. (2015). The black lines indicate
the estimated lower bounds for E[Y1 − Y0 | U < b] for each b. The gray areas are the
pointwise 95% confidence intervals.

expected to be at least as big as a few hundred Birr.1

3.2 Who Should Be Treated?

These bounds can be used to determine who to assign treatment to for attaining higher

welfare. The literature on the welfare-maximizing assignment of the treatment was

initiated by Kitagawa and Tetenov (2018). They discussed a mechanism to decide

the treatment assignment based on covariates that maximizes the empirical welfare.

Meanwhile, policymakers may want to assign treatment to those who are most

in need, that is, those whose outcome are low without treatment. When the dataset

has a comonly observed baseline Y0 in the pre-treatment period, we may estimate the

treatment effect conditional on the predicted Y0 and consider optional assignment

based on it (Abadie et al., 2018). However, even when we only have a one-time cross-

sectional data, we can compute the bounds on the treatment effects conditional on

Y0 and discuss assignment mechanisms based on Y0. In Tarozzi et al. (2015), there

were two waves of surveys, one for pre-treatment and the other for post-treatment,

but each wave surveyed different sets of households, so we cannot use the approach

by Abadie et al. (2018) to estimate the treatment effects conditional on predicted Y0.

We apply our method to the post-treatment data to discuss optimal assignment of

treatment based on Y0.

To illustrate the point, consider assigning microfinance to those whose Y0 is less

1In January 2006, 100 Birr was worth about 11.4 USD.
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ing nobody.

Cost

Benefit

0 0.5 1
0

200

400

Rank b

W
el
fa
re

b
y
li
v
es
to
ck

va
lu
e
[2
00
6
B
ir
r]

(b) Welfare measured by the total value of
livestock owned in 2006 Birr. The dotted
line (b = 0.96) maximizes the welfare lower
bound.

Figure 3: Welfare bounds when the treatment is assigned to individuals whose Y0
is below rank b. The solid blue lines give the lower bounds for the benefit, E[(Y1 −
Y0)1{U < b}], while the thin dashed blue lines give the upper bounds. The red lines
are the social cost, which is taken to be 100 Birr per treated individual, E[100 ·1{U <
b}]. The blue areas are the pointwise 95% confidence intervals for the social benefit.

than some value for both outcomes. The social benefit is the aggregate treatment

effect, which equals E[(Y1 − Y0)1{U < b}] in the per-capita basis. Since the average

amount of outstanding loans from the microfinance for the treated individuals was

299 Birr, suppose conservatively that about one third of the balance goes sour, that is,

the social cost is 100 Birr per capita. In sum, the social welfare from the assignment

mechanism U < b is

E[(Y1 − Y0)1{U < b}]− E[100 · 1{U < b}].

Figure 3 shows the graphs of the social benefits and costs for the two outcomes.

The solid blue lines are the lower bounds for the social benefit per capita, and the

dashed blue lines are the upper bounds. The blue shaded areas indicate the pointwise

95% confidence intervals for the social benefits using Imbens and Manski (2004). For

the net cash revenues from crops, the lower bounds of the social benefits never exceed

the social costs, so it may not be justifiable to assign microfinance in order to maximize

the crop revenues (Figure 3a). On the other hand, the benefits measured by the value

of livestock exceed the costs in the middle range of b (Figure 3b). As the subgroup

welfare is not identified, we may go with the maximin approach: assign treatment

so as to maximize the worst-case welfare. The lower bound for the social welfare
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Figure 4: Non-utilitarian welfare bounds when the treatment is assigned to individuals
whose Y0 is below rank b. The welfare function weighs the loss 10% more than the gain.
The solid blue lines give the lower bounds for the welfare, E[h(Y1 − Y0)1{U < b}],
while the thin dashed blue lines give the upper bounds. The blue areas are the
pointwise 95% confidence intervals for the social welfare.

(the difference between the benefits and the costs) is maximized at b = 0.96, which

corresponds to providing microfinance to individuals with the value of livestock below

9,200 Birr.

Our framework also allows for non-utilitarian welfare. Let h be a welfare function

and suppose the policymaker wants to maximize the sum of h(Y1 − Y0). If h cannot

be written in the form of g(Y1)− g(Y0) for some g, h is called non-utilitarian welfare.

If h is nondecreasing and concave, Theorem 1 implies

1

b

∫ b

0

h(Q1(b− u)−Q0(u))du ≤ E[h(Y1 − Y0) | U < b]

≤ 1

b

∫ b

0

h(Q1(1− b+ u)−Q0(u))du. (2)

As an example, consider a loss-averse non-utilitarian welfare function

h(x) =

x x ≥ 0,

1.1x x < 0,

which overweighs the loss 10% more than the gain from the treatment. Such loss

aversion may arise naturally when the provider of the treatment can be held respon-

sible for negative treatment effects, such as doctors (Bordley, 2009) or policymakers
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(Nicholson and Hellman, 2020).2 Figure 4 shows the range of social welfare in (2)

when the treatment eligibility is capped by a variable threshold. The vertical dotted

black lines indicate the points where the lower bounds of the welfare are maximized.

Again, taking the maximin approach to partially-identified social welfare, the maxi-

mizer for the lower bound in Figure 4b is found to be b = 0.928, which is when the

access to microfinance is granted to those with the baseline total value of livestock

owned below 7,299 Birr. The maximum of the lower bound in Figure 4a is attained

at b = 0.708, which corresponds to the baseline net cash revenues from crops below

520 Birr, and is statistically significant, but whether the welfare improvement in this

case is economically significant is a judgment call.

4 Subgroup Proportions of Winners

In 1996, the welfare program for low-income women went over a reform in a way

that provided more generous benefits but with time limits on program participation.

Bitler et al. (2006) argued that labor supply theory predicted heterogeneous effects

of this reform on earnings, transfers, and income, and this called for more than

the mean-impact analysis to evaluate the consequences of the reform. In particular,

Bitler et al. (2006) used QTEs on RCT data to demonstrate that the effects were

heterogeneous across different levels of outcome variables. In this section, we aim to

push forward the boundary of quantitative knowledge we can infer from the data and

provide complementary evidence to their findings.

Figure 5 illustrates the stylized budget constraints faced by women supported by

Aid to Families with Dependent Children (AFDC) and by the Jobs First program

in Connecticut. The horizontal axis is the time for leisure, which is a complement

of working hours, and the vertical axis is the income. Assuming that leisure and

consumption are normal goods, each program participant enjoys the income and

leisure pair on the budget constraint. Under AFDC, the budget constraint is given

by the two segments of black solid lines in Figure 5. The segment A corresponds

to receiving the benefits from AFDC. The Jobs First program replaces the AFDC

benefits with the green solid line, raising the budget constraint for individuals in A,

B, and C. The Jobs First program also comes with a time limit; after 21 months, the

2On a related note, Heckman et al. (1997) questions utilitarian welfare in the context where
individuals can choose the treatment.
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Figure 5: Income-leisure budget constraints under AFDC and under Jobs First (Bitler
et al., 2006, Figure 1). Food stamp benefits are not included in the figures.

budget constraint is pushed down to just the thin black solid and dotted line with

no benefits.3 Before the time limit (Figure 5a), people in segments A, B, and C will

move to somewhere on the green line; people in segment D may or may not move to

a point on the green line. After the time limit (Figure 5b), individuals receive zero

cash transfers and become worse off than AFDC (they may still receive food stamps).

As we will see below, this observation makes diverse predictions on how people

react. Our outcome variables are transfers, earnings, and income, and individuals in

different locations of the budget constraint may have responded in opposite directions.

Bitler et al. (2006) used QTEs to reveal this heterogeneity, while also facing limitations

that QTEs were not individual treatment effects. Our goal here is to provide more

specific, quantitative analysis on the proportion and location of winners and losers.

In this regard, Theorem 4 tells that the proportion of winners in an arbitrary interval

a < U < b is bounded by

1

b− a
sup

x∈(a,b)
[x− a− F1(Q0(x))]+ ≤ P (Y0 < Y1 | a < U < b)

≤ P (Y0 ≤ Y1 | a < U < b) ≤ 1− 1

b− a
sup

x∈(a,b)
[b− x− 1 + F1(Q0(x)−)]+. (3)

The lower bound can be interpreted as the proportion of “identified” winners, and

one minus the upper bound as the proportion of “identified” losers. The difference

between these bounds is the proportion of individuals for whom the data alone cannot

conclude the direction of the treatment effect without making further assumptions.

3There was 6-month extension under some conditions.
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Figure 6: Estimated bounds on the proportions of winners in terms of transfers in
Q4 and Q12. The proportion of winners is estimated to lie between the blue and
red lines. The areas above the pointwise 95% confidence intervals (viz. significant
losers) are shaded in red; the areas below (viz. significant winners) shaded in blue.
Significant winners are found on the left tail in Q4 and significant losers on the right
tail in Q12.

4.1 Heterogeneous Effects on Transfers

The first variable of interest is the transfers. In Figure 5, this corresponds to the

difference of the actual income and the corresponding income on the budget constraint

without benefits. The observed transfers also include the food stamps. Individuals

in segments A, B, and C as well as some of D will receive more transfers in Jobs

First before the time limit (Figure 5a), and individuals in A will receive less (may

still receive nonzero transfers from food stamps) after the time limit (Figure 5b).

Figure 6 shows the quantile functions and the bounds on the proportions of winners

for transfers in Quarter 4 (Q4) and Quarter 12 (Q12). Figures 6a and 6d give the

quantile functions of Y1 and Y0 for transfers in Q4 and Q12. The mean effect in Q4 is

230.1 with standard error 30.9, and the mean effect in Q12 is −133.5 with standard

error 29.9. Figures 6b and 6e plot the lower bounds for P (Y1 > Y0 | U < b) as the blue
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lines and the upper bounds for P (Y1 ≥ Y0 | U < b) as the red lines. These bounds

are half-median-unbiased as developed in Chernozhukov et al. (2013). For example,

at b = 0.414, the lower bound gives 0.244, which means that among individuals who

receive transfers less than $1,000 under AFDC (that is, Y0 lower than the 41.4th

percentile), at least 24.4% of them receive transfers under Jobs First larger than they

would under AFDC in Q4. The blue shaded areas on the bottom and the red shaded

areas on the top indicate the region outside the pointwise 95% confindence intervals

for the proportions of winners constructed by the same method as Chernozhukov et al.

(2013). In other words, the blue shaded area indicates the “significant” proportion

of winners and the red area the “significant” proportion of losers. Figures 6c and 6f

plot the same when the conditioning is replaced with the right tail, U > a. Among

individuals who receive transfers greater than $1,350 (a = 0.701) under AFDC, 20.2%

or more of them receive less transfers under Jobs First (Figure 6f).

4.2 Heterogeneous Effects on Earnings

The second variable of interest is the earnings from work, which are a decreasing func-

tion of leisure. In Figure 5a, individuals in segment A might adjust the working hours

in either direction, and hence their earnings can go in either direction; individuals in

segments B and C work less and receive less earnings; individuals in segment D might

as well work less for less earnings if they move to the green line, or otherwise do not

change working hours. After the time limit in Figure 5b, individuals in segment A

will increase the working hours if leisure is a normal good.

Figure 7 shows the corresponding quantile functions and bounds on the propor-

tions of winners for earnings in Q4 and in Q12. The ATE of Jobs First on earnings

is not significant in either Q4 or Q12; in particular, it is estimated to be 86.0 with

standard error 53.9 in Q4 (Figure 7a) and 71.5 with standard error 75.5 in Q12 (Fig-

ure 7d). Figure 7b shows the proportions of winners and losers in the subgroups

defined by U < b. In the very left tail, there is neither significant proportion of win-

ners or of losers. Unlike the theory predicts, however, as we include the median and

above, there appears a significant proportion of winners in earnings but not of losers.

For example, one possibility is that at low working hours, a small monetary support

from Jobs First can help individuals free their time from daily chores and they use

the free time to work more, that is, leisure may be an inferior good when much of
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Figure 7: Estimated bounds on the proportions of winners in earnings (proportional
to working hours) in Q4 and Q12. Significant winners are found on the left in Q4,
but no significant losers are found.

leisure time is spent for chores. Interestingly, this significant proportion of winners

does not seem to disappear after the time limit (Figure 7e). In the upper tail, there

is no significant proportion of winners or losers (Figures 7c and 7f).

5 Conclusion

In this paper, we proposed two new bounds related to the heterogeneity of the treat-

ment effects that complement the commonly used QTE.

The first bounds were on the STE, which is the ATE in a subgroup whose Y0 resides

in an interval specified by the researcher. In Section 3, we went over an empirical

example in which we are interested in assessing the effect of microfinance on poor

individuals, and found that individuals whose total value of livestock owned was not

too high received some positive ATE. We also applied our bounds to the problem

of policy targeting in the context of social welfare. We considered two measures

of welfare: one was linear in the treatment effect with a per-capita fixed cost and
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the other was non-utilitarian with a loss-aversive preference. We illustrated how our

bounds can suggest the treatment assignment mechanisms that maximize the lower

bounds of the social welfare.

The second bounds were on the proportions of winners and of losers in the same

subgroup. In Section 4, we investigated the heterogeneous effects of welfare reform

on transfers and earnings predicted by labor supply theory. For transfers, our bounds

were able to confirm the presence of winners before the time limit and of losers after

the time limit as the stylized theory predicted. For earnings, our bounds detected a

significant proportion of winners in the mid- to left tail of the earnings distribution,

which was not entirely in line with the theoretical prediction.

In both examples, we saw cases where our bounds could detect significant STE or

proportion of winners even when the ATE estimates were not significant.

Appendix

A Theoretical Results

In this section, we formally state and prove our bounds.

The following theorem yields the second-order stochastic dominance bounds on

the subgroup distribution of treatment effects. This extends the existing results on

the entire distribution of treatment effects (Fan and Park, 2010, Lemma 2.2).

Theorem 1 (Second-order stochastic dominance bounds on subgroup distribution of

treatment effects). Let 0 ≤ a < b ≤ 1. Conditional on a < U < b, we have

Q1(b− U)−Q0(U) ⪯2 Y1 − Y0 ⪯2 Q1(1− b+ U)−Q0(U),

where A ⪯2 B means that the distribution of A is second-order stochastically domi-

nated by that of B.

Proof. Let h : R → R be a nondecreasing concave function. Consider the optimal

transport from y ∈ (a, b) to x ∈ (0, b− a) with cost h(Q1(x)−Q0(y)). Then, Rachev

and Rüschendorf (1998, Theorem 3.1.2) imply

E[h(Q1(b− V0)−Q0(V0))] ≤ E[h(Q1(V1)−Q0(V0))]
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where V0 ∼ U(a, b) and V1 ∼ U(0, b − a). Then, Beiglböck et al. (2009, Theorem

3) imply that there exist functions ϕ and ψ such that for x ∈ (0, b − a) and y ∈
(a, b), ϕ(x) + ψ(y) ≤ h(Q1(x) − Q0(y)) with equality when x = b − y.4 Here, ϕ is

nondecreasing since for every y′ ≥ y,

ϕ(b− y) + ψ(y) = h(Q1(b− y)−Q0(y)) ≥ h(Q1(b− y′)−Q0(y)) ≥ ϕ(b− y′) + ψ(y).

Thus, we see that for x ∈ (0, 1) and y ∈ (0, 1),

ϕ(x∧(b−a))+ψ(y)1{y ∈ (a, b)}−ϕ(b−a)1{y /∈ (a, b)} ≤ h(Q1(x)−Q0(y))1{y ∈ (a, b)}

with equality when x = b − y and y ∈ (a, b) or x ≥ b − a and y /∈ (a, b). Thus,

Beiglböck et al. (2009, Theorem 3) imply

E[h(Q1(b− U)−Q0(U))1{a < U < b}] ≤ E[h(Y1 − Y0)1{a < U < b}],

that is, Q1(b− U)−Q0(U) ⪯2 Y1 − Y0 conditional on a < U < b.

Similarly, Rachev and Rüschendorf (1998, Theorem 3.1.2) imply

E[h(Q1(V1)−Q0(V0))] ≤ E[h(Q1(1− b+ V0)−Q0(V0))]

where V0 ∼ U(a, b) and V1 ∼ U(1 − b + a, 1). Beiglböck et al. (2009, Theorem 3)

imply that there exist functions ϕ and ψ such that for x ∈ (1−b+a, 1) and y ∈ (a, b),

h(Q1(x) − Q0(y)) ≤ ϕ(x) + ψ(y) with equality when x = 1 − b + y. Here, ϕ is

nondecreasing since for every y′ ≥ y,

ϕ(1− b+ y) + ψ(y) = h(Q1(1− b+ y)−Q0(y))

≤ h(Q1(1− b+ y′)−Q0(y)) ≤ ϕ(1− b+ y′) + ψ(y).

Thus, we see that for x ∈ (0, 1) and y ∈ (0, 1),

h(Q1(x)−Q0(y))1{y ∈ (a, b)}
≤ ϕ(x ∨ (1− b+ a)) + ψ(y)1{y ∈ (a, b)} − ϕ(1− b+ a)1{y /∈ (a, b)}

with equality when x = 1− b+ y and y ∈ (a, b) or x ≤ 1− b+ a and y /∈ (a, b). Thus,

4Beiglböck et al. (2009, Theorem 3) assume nonnegative costs, but the theorem trivially extends
to costs bounded from below. Then optimality follows for cost h(Q1(·)−Q0(·))∨A for every A ∈ R,
so let A → −∞.
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Beiglböck et al. (2009, Theorem 3) imply

E[h(Y1 − Y0)1{a < U < b}] ≤ E[h(Q1(1− b+ U)−Q0(U))1{a < U < b}],

that is, Y1 − Y0 ⪯2 Q1(1− b+ U)−Q0(U) conditional on a < U < b. ■

Theorem 1 is equivalent to the following lemma.

Lemma 2. Let f : R → R be a nondecreasing convex function and g : R → R a

nonincreasing convex function. For every 0 ≤ a < b ≤ 1,∫ b

a

f(Q1(u−a)−Q0(u))du ≤ E[f(Y1−Y0)1{a<U <b}] ≤
∫ b

a

f(Q1(1−u+a)−Q0(u))du,∫ b

a

g(Q1(1−b+u)−Q0(u))du ≤ E[g(Y1−Y0)1{a<U <b}] ≤
∫ b

a

g(Q1(b−u)−Q0(u))du.

Proof. Let f̃(x) = −f(−x), Ũ = 1− U , and Ỹj = −Yj so the quantile function of Ỹj

is Q̃j(u) = −Qj(1− u). Since f̃ is nondecreasing and concave, Theorem 1 implies

E[f̃(Q̃1(1−a−Ũ)−Q̃0(Ũ))1{1−b < Ũ < 1−a}] ≤ E[f̃(Ỹ1−Ỹ0)1{1−b < Ũ < 1−a}]
≤ E[f̃(Q̃1(a+ Ũ)− Q̃0(Ũ))1{1− b < Ũ < 1− a}],

which reduces to the first claim. Since −g is nondecreasing and concave, the second

claim follows straightforwardly from Theorem 1. ■

With this, we can prove the bounds on the STE.

Theorem 3 (Bounds on subgroup treatment effects). For every 0 ≤ a < b ≤ 1,∫ b

a

[Q1(u−a)−Q0(u)]du ≤ E[(Y1−Y0)1{a < U < b}] ≤
∫ b

a

[Q1(1+a−u)−Q0(u)]du,∫ b

a

[Q1(u−a)−Q0(u)]+du ≤ E[(Y1−Y0)+1{a<U <b}] ≤
∫ b

a

[Q1(1+a−u)−Q0(u)]+du,∫ b

a

[Q1(1−b+u)−Q0(u)]−du ≤ E[(Y1−Y0)−1{a<U <b}] ≤
∫ b

a

[Q1(b−u)−Q0(u)]−du.

Proof. All results follow directly from Lemma 2. ■

Remark. We may use bootstrap to calculate the standard errors for the bounds in

Theorems 1 and 3 and Lemma 2 (Kaji, 2018). Then, we can construct confidence

intervals using Imbens and Manski (2004) or Stoye (2009).
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The next theorem bounds the subgroup proportions of winners and losers.

Theorem 4 (Bounds on subgroup proportions of winners and losers). For every

0 ≤ a < b ≤ 1,

sup
x∈(a,b)

[x− a− F1(Q0(x))]+ ≤ P (a < U < b, Y0 < Y1)

≤ b− a− sup
x∈(a,b)

[b− x− 1 + F1(Q0(x))]+,

sup
x∈(a,b)

[b− x− 1 + F1(Q0(x)−)]+ ≤ P (a < U < b, Y0 > Y1)

≤ b− a− sup
x∈(a,b)

[x− a− F1(Q0(x)−)]+.

There exists a joint distribution of (Y0, Y1) for which a lower bound is attained; there

exists a joint distribution of (Y0, Y1) for which an upper bound is arbitrarily tight. All

bounds are nonincreasing and Lipschitz in a and nondecreasing and Lipschitz in b.

Proof. For the lower bound, observe that

P (a < U < b,Q0(U) < Y1) ≥ sup
x∈(a,b)

P (a < U < x,Q0(x) < Y1)

≥ sup
x∈(a,b)

[P (a < U < x) + P (Q0(x) < Y1)− 1]+ = sup
x∈(a,b)

[x− a− F1(Q0(x))]+,

where the second inequality uses the lower Fréchet inequality.5 To show tightness, let

∆ = supx∈(a,b)[x− F1(Q0(x))]+ and consider Y1 = Q1(U1) such that U1 = U − a−∆

if a+∆ < U < b. The joint distribution of (U1, U) when U /∈ (a+∆, b) is arbitrary.

Then U = u ∈ (a+∆, b) are not winners since

Q1(u− a−∆)−Q0(u) ≤ Q1(u− a−∆)−Q1(F1(Q0(u))) ≤ 0,

where the last inequality follows from the monotonicity of Q1 and

(u− a−∆)− F1(Q0(u)) = [u− a− F1(Q0(u))]−∆ ≤ 0.

This means that the lower bound is binding for this joint distribution.

5We thank Ismael Mourifié for suggesting the use of the Fréchet inequality.
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To derive the upper bound, observe that

P (a < U < b,Q0(U) < Y1) = P (a < U < b)− P (a < U < b, Y1 ≤ Q0(U))

≤ b− a− sup
x∈(a,b)

[b− x− 1 + F1(Q0(x))]+,

where the inequality follows as the lower bound. For tightness, let ∆ = b − a −
supx∈(a,b)[b−x− 1+F1(Q0(x))]+ and, for arbitrary ε > 0, consider Y1 = Q1(U1) such

that U1 = U − a+ 1−∆+ ε if a < U < a+∆− ε. The joint distribution of (U1, U)

for U /∈ (a, a+∆− ε) is arbitrary. Then U = u ∈ (a, a+∆− ε) are winners since

F1(Q1(u− a+ 1−∆+ ε))− F1(Q0(u)) ≥ u− a+ 1−∆+ ε− F1(Q0(u))

= b− a− [b− u− 1 + F1(Q0(u))]−∆+ ε ≥ ε > 0,

which implies Q1(u − a + 1 − ∆ + ε) − Q0(u) > 0. Since this holds for arbitrarily

small ε > 0, the upper bound can be arbitrarily tight.

The lower bound is nondecreasing and Lipschitz in b since for every ε > 0,

sup
x∈(a,b)

[x− a− F1(Q0(x))]+ ≤ sup
x∈(a,b+ε)

[x− a− F1(Q0(x))]+

≤ sup
x∈(a,b+ε)

[x− a− F1(Q0(x ∧ b))]+ ≤ sup
x∈(a,b)

[x− a− F1(Q0(x))]+ + ε.

The lower bound is nonincreasing in a since for every ε > 0,

sup
x∈(a−ε,b)

[x−a+ε−F1(Q0(x))]+ ≥ sup
x∈(a−ε,b)

[x−a−F1(Q0(x))]+ ≥ sup
x∈(a,b)

[x−a−F1(Q0(x))]+

and is Lipschitz in a since for every ε > 0,

sup
x∈(a−ε,b)

[x−a+ ε−F1(Q0(x))]+ ≤ sup
x∈(a−ε,a]

(x−a+ ε)+∨ sup
x∈(a,b)

[x−a+ ε−F1(Q0(x))]+

≤ ε ∨
(

sup
x∈(a,b)

[x− a− F1(Q0(x))]+ + ε

)
= sup

x∈(a,b)
[x− a− F1(Q0(x))]+ + ε.

The same properties follow analogously for the upper bound.

The loser bounds can be likewise derived. ■

Remark. Theorem 4 can be trivially extended to the bounds on P (a < U < b, Y1−Y0 <
c) by shifting the distribution of either Y0 or Y1. Then, setting a = 0 and b = 1 makes
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them reduce to the classical Makarov bounds (Makarov, 1981).

Remark. Theorem 4 is in the form of intersection bounds for which Chernozhukov

et al. (2013) provided a method for estimation and inference.
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Frölich, M. and B. Melly (2013): “Unconditional Quantile Treatment Effects

Under Endogeneity,” Journal of Business & Economic Statistics, 31, 346–357.

Gunsilius, F. F. (2023): “Distributional Synthetic Controls,” Econometrica, 91,

1105–1117.

Heckman, J. J., J. Smith, and N. Clements (1997): “Making The Most Out Of

Programme Evaluations and Social Experiments: Accounting For Heterogeneity in

Programme Impacts,” Review of Economic Studies, 64, 487–535.

Imbens, G. W. and J. D. Angrist (1994): “Identification and Estimation of Local

Average Treatment Effects,” Econometrica, 62, 467–475.

Imbens, G. W. and C. F. Manski (2004): “Confidence Intervals for Partially

Identified Parameters,” Econometrica, 72, 1845–1857.

Kaji, T. (2018): “Essays on Asymptotic Methods in Econometrics,” Ph.D. thesis,

Massachusetts Institute of Technology.

Kitagawa, T. and A. Tetenov (2018): “Who Should Be Treated? Empirical

Welfare Maximization Methods for Treatment Choice,” Econometrica, 86, 591–

616.

——— (2021): “Equality-Minded Treatment Choice,” Journal of Business & Eco-

nomic Statistics, 39, 561–574.

Koenker, R. and G. Bassett, Jr (1978): “Regression Quantiles,” Econometrica,

46, 33–50.

21



Makarov, G. D. (1981): “Estimates for the Distribution Function of a Sum of

Two Random Variables When the Marginal Distributions are Fixed,” Theory of

Probability & Its Applications, 26, 803–806.

Monahan, J. F. (2011): Numerical Methods of Statistics, Cambridge: Cambridge

University Press, second ed.

Nicholson, K. M. and D. Hellman (2020): “Opioid Prescribing and the Ethical

Duty to Do No Harm,” American Journal of Law & Medicine, 46, 297–310.

Powell, D. (2020): “Quantile Treatment Effects in the Presence of Covariates,”

Review of Economics and Statistics, 102, 994–1005.
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