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GLS UNDER MONOTONE HETEROSKEDASTICITY

YOICHI ARAI, TAISUKE OTSU, AND MENGSHAN XU

Abstract. The generalized least square (GLS) is one of the most basic tools in regression

analyses. A major issue in implementing the GLS is estimation of the conditional variance

function of the error term, which typically requires a restrictive functional form assumption for

parametric estimation or smoothing parameters for nonparametric estimation. In this paper, we

propose an alternative approach to estimate the conditional variance function under nonpara-

metric monotonicity constraints by utilizing the isotonic regression method. Our GLS estimator

is shown to be asymptotically equivalent to the infeasible GLS estimator with knowledge of the

conditional error variance, and involves only some tuning to trim boundary observations, not

only for point estimation but also for interval estimation or hypothesis testing. Our analysis

extends the scope of the isotonic regression method by showing that the isotonic estimates,

possibly with generated variables, can be employed as first stage estimates to be plugged in

for semiparametric objects. Simulation studies illustrate excellent finite sample performances

of the proposed method. As an empirical example, we revisit Acemoglu and Restrepo’s (2017)

study on the relationship between an aging population and economic growth to illustrate how

our GLS estimator effectively reduces estimation errors.

1. Introduction

The generalized least square (GLS) is one of the most basic tools in regression analyses. It

yields the best linear unbiased estimator in the classical linear regression model, and has been

studied extensively in econometrics and statistics literature; see e.g., Wooldridge (2010, Chapter

7) for a review. A major issue in implementing the GLS is that the optimal weights given by the

conditional error variance function (say, σ2(·)) are typically unknown to researchers and need

to be estimated. One way to estimate σ2(·) is to specify its parametric functional form and

estimate it by a parametric regression for the squared OLS residuals of the original regression

on the specified covariates. However, economic theory rarely provides exact functional forms

of σ2(·), and the feasible GLS using misspecified σ2(·) is no longer asymptotically efficient

(Cragg, 1983). To address this issue, Carroll (1982) and Robinson (1987) proposed to estimate

σ2(·) nonparametrically and established the asymptotic equivalence of the resulting feasible GLS

estimator with the infeasible one under certain regularity conditions. This is a remarkable result,

but it requires theoretically and practically judicious choices of smoothing parameters, such as

bandwidths, series lengths, or numbers of neighbors. It should be noted that such smoothing

parameters appear in not only the point estimator but also its standard error for inference,

and their choices typically require some assumption or knowledge of the smoothness of the

conditional variance and associated density functions, such as their differentiability orders.

In this paper, we propose an alternative approach to estimate the conditional error variance

function to implement the GLS by exploring a shape constraint of σ2(·) instead of its smoothness
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as in Robinson (1987). As argued by Matzkin (1994), economic theory often provides shape

constraints for functions of economic variables, such as monotonicity, concavity, or symmetry.

In particular, we focus on situations where σ2(·) is known to be monotone in its argument

even though its exact functional form is unspecified, and propose to estimate σ2(·) by utilizing

the method of isotonic regression (see a review by Groeneboom and Jongbloed, 2014). It is

known that the conventional isotonic regression estimator typically yields piecewise constant

function estimates and does not involve any tuning parameters. Although the limiting behavior

of the isotonic regression estimator is less tractable (such as the n1/3-consistency and complicated

limiting distribution), we show that our feasible GLS estimator using the optimal weights by the

isotonic estimator with some trimming for boundary observations is asymptotically equivalent

to the infeasible GLS estimator. Furthermore, we can plug in this isotonic estimator to estimate

the asymptotic variance of the GLS estimator for statistical inference.

For the linear model Y = X ′β + U in the presence of heteroskedasticity σ2(X) = E[U2|X],

using feasible GLS to improve the estimation efficiency has a long history. On the one hand,

several parametric models have been proposed to estimate conditional error variance function

σ2(·). See Remark 5 below. On the other hand, Carroll (1982) and Robinson (1987) estimated

σ2(·) with kernel and nearest neighbor estimator, respectively, and they showed their semipara-

metric GLS estimators are asymptotically equivalent to the infeasible GLS estimator and thus

efficient. Compared to existing parametric methods, our proposed method imposes monotonic-

ity, a feature implied by many parametric models, but it is nonparametric and does not rely on

any specific parametric function form.1 Compared to existing nonparametric methods, our pro-

posed method involves only some tuning to trim boundary observations which does not require

knowledge of the smoothness of the conditional variance and associated density functions. In the

Monte Carlo simulations, we show that our proposed method outperforms the above-mentioned

nonparametric methods at almost every choice of smoothing parameters, while it performs as

well as parametric feasible GLS estimators with correctly specified conditional error variance

function.

The isotonic estimator can date back to the middle of the last century. Earlier work includes

Ayer et al. (1955), Grenander (1956), Rao (1969, 1970), and Barlow and Brunk (1972), among

others. The isotonic estimator of a regression function can be formulated as a least square

estimation with monotonicity constraints. Suppose that the conditional expectation E[Y |X] =

m(X) is monotone increasing, for an iid random sample {Yi,Xi}ni=1, the isotonic estimator is

the minimizer of the sum of squared errors, min
m∈M

∑n
i=1{Yi −m(Xi)}2, where M is the class of

monotone increasing functions. The minimizer can be calculated with the pool adjacent violators

algorithm (Barlow and Brunk, 1972), or equivalently by solving the greatest convex minorant of

the cumulative sum diagram {(0, 0), (i,∑i
j=1 Yj), i = 1, . . . , n}, where the corresponding {Xi}ni=1

1Monotone heteroskedasticity is often observed in economic literature. For example, Mincer (1974) argued that the
variance of wages, when conditioned on education, should increase with the level of education because individuals
with higher education have a broader array of job choices. Ruud (2000) cited this argument and provided empirical
evidence in his Figure 18.1 based on the CPS data from March 1995. Another example can be found in Example
8.6 of Wooldridge (2013, pp. 283-284), where he employed a univariate conditional variance function of log income
to explain the heteroskedasticity observed in net total financial wealth of people in the United States.
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are ordered sequence; see Groeneboom and Jongbloed (2014) for a comprehensive discussion

of different aspects of isotonic regression. Moreover, recent developments in the monotone

single index model provide convenient and flexible tools for combining monotonicity and multi-

dimensional covariates. In a monotone single index model, the conditional mean of Y is modeled

as E[Y |X] = m(X ′α), and the monotone link function m(·) is solved with isotonic regression.

Balabdaoui, Durot and Jankowski (2019) studied the monotone single index model with the

monotone least square method. Groeneboom and Hendrickx (2018), Balabdaoui, Groeneboom

and Hendrickx (2019), and Balabdaoui and Groeneboom (2021) developed a score-type approach

for the monotone single index model. Their approach can estimate the single index parameter α

and the link function m(·) at n−1/2-rate and n−1/3-rate respectively. We employ their approach

for the estimation of the conditional variance function in the multivariate case. Recently, Babii

and Kumar (2023) applied the isotonic regression to their analysis of regression discontinuity

designs. To this end, Babii and Kumar (2023) extended existing results concerning the boundary

properties of Grenander’s estimator (e.g., those from Woodroofe and Sun, 1993, and Kulikov

and Lopuhaä, 2006) to derive the asymptotic distribution of their trimmed isotonic regression

discontinuity estimator. To regularize the isotonic estimator in the weights of our proposed

GLS estimator, we employ a similar trimming strategy while adapting the theory of Babii and

Kumar (2023) to our context of the conditional variance estimation. We contribute to this

literature on isotonic regression by showing that the isotonic estimates can be employed as

first stage estimates to be plugged in for semiparametric objects. Furthermore, we note that

our isotonic estimator involves generated variables (i.e., OLS residuals), which make theoretical

developments substantially different from the existing ones.

This paper is organized as follows. In Section 2, we consider the case where σ2(·) is monotone

in one covariate, present our GLS estimator, and study its asymptotic properties. Section

3 extends our GLS approach to the case where σ2(·) is specified by a monotone single index

function. Section 4 illustrates the proposed method by a simulation study and empirical example.

2. Heteroskedasticity by univariate covariate

We first consider the case where monotone heteroskedasticity is caused by a single covariate.

In particular, consider the following multiple linear regression model

Y = α+ βX + Z ′γ + U, E[U |X,Z] = 0, (2.1)

where X ∈ X = [xL, xU ] is a scalar covariate with compact support and Z is a vector of

other covariates. In this section, we focus on the case where heteroskedasticity is caused by the

covariate X, i.e.,

E[U2|X,Z] = E[U2|X] =: σ2(X), (2.2)

and σ2(·) is a monotone increasing function. The case of monotone decreasing σ2(·) is analyzed
analogously (by setting U2 as −U2). In the setup (2.2), we assume that the researcher knows

which covariate should be included in σ2(·) based on economic theory or other prior information.

This setup should be considered as a useful benchmark to provide a clear exposition of the main

concept and the asymptotic properties of the proposed monotone GLS estimator. Without the
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covariates Z, the above model covers a bivariate regression model, and our approach is new even

in such a fundamental setup. Furthermore, this setup covers the case where X contained in

(2.2) does not enter the regression model (2.1) by setting β = 0 (such a situation is considered

in our empirical illustration in Section 4.2). Extensions to relax the assumption in (2.2) will be

discussed in Remark 1 and Section 3.

Let θ = (α, β, γ′)′ be a vector of the slope parameters and W := (1,X,Z ′)′ so that the model

in (2.1) can be written as Y = W ′θ + U . Based on an iid sample {Yi,Xi, Zi}ni=1, the infeasible

GLS estimator for θ is written as

θ̂IGLS =

(

n
∑

i=1

σ−2
i WiW

′
i

)−1( n
∑

i=1

σ−2
i WiYi

)

, (2.3)

where σ2
i = σ2(Xi). In order to make this estimator feasible, various approaches have been

proposed in the literature.

In this paper, we are concerned with the situation where the researcher knows σ2(·) is

monotone in a particular regressor X but its exact functional form is unspecified. In par-

ticular, by utilizing knowledge of the monotonicity of σ2(·), we propose to estimate σ2(·) by

the isotonic regression from the squared OLS residual on the regressor X. More precisely, let

θ̂OLS = (
∑n

i=1 WiW
′
i )

−1 (
∑n

i=1WiYi) be the OLS estimator for (2.1), and Ûj = Yj −W ′
j θ̂OLS be

its residual. Then we estimate σ2(·) by

σ̂2(·) = isotonic regression function from {Û2
j }nj=1 on {Xj}nj=1. (2.4)

Although this estimator is shown to be consistent for σ2(·) in the interior of support [xL, xU ]

of X, it is generally biased at the lower boundary xL, which may cause inconsistency of the

resulting GLS estimator. Therefore, we propose to trim observations whose Xi’s are too close

to xL, and develop the following feasible GLS estimator

θ̂ =

(

n
∑

i=1

I{Xi ≥ qn}σ̂−2
i WiW

′
i

)−1( n
∑

i=1

I{Xi ≥ qn}σ̂−2
i WiYi

)

, (2.5)

where I{·} is the indicator function, and the trimming term qn is set as the (n−1/3)-th sample

quantile of {Xi}ni=1.

Let B(a,R) be a ball around a with radius R; for ε = U2 − σ2(X), define σ2
ε(x) = E[ε2|X =

x]. To study the asymptotic properties of the proposed estimator θ̂, we impose the following

assumptions.

Assumption.

A1: {Yi,Xi, Zi}ni=1 is an iid sample of (Y,X,Z). The support of (X,Z) is convex with

non-empty interiors and is a subset of B(0, R) for some R > 0. The support of X is a

compact interval X = [xL, xU ].

A2: σ2 : X → R is a monotone increasing function defined on X , and 0 < σ2(xL) <

σ2(xU ) < ∞. There exist positive constants a0 and M such that E[|U |2s|X = x] ≤
a0s!M

s−2 for all integers s ≥ 2 and x ∈ X . For some positive constant δ, σ2(·) is

continuously differentiable on (xL, xL + δ), and σ2
ε(·) is continuous on (xL, xL + δ).
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A3: X has a continuous density function fX(·) on X , and there exists a positive constant

b such that b < fX(x) < ∞ for all x ∈ X .

Assumption A1 is standard. As pointed out in Balabdaoui, Groeneboom and Hendrickx

(2019, p.13), the compact support assumption can be relaxed when X follows a sub-Gaussian

distribution. In this case, the L2-convergence rate of the isotonic estimator will decrease from

Op(n
−1/3 log n) to Op(n

−1/3(log n)5/4). Another impact of relaxing the distribution of X (and

Z) to a sub-Gaussian one is on the concentration rate of maxj |Û2
j − U2

j | (see Appendix A for

more details). This rate, used in proving Lemma 1 and explaining the concentration of T1 and

T2 in Appendix A.2, will inflate by a factor of log n. However, even with this change, we still

have maxj |Û2
j − U2

j | = op(n
−1/3), which is the key to show that the impact of substituting

infeasible U2 with estimated Û2 on isotonic estimators is asymptotically negligible. Considering

that the convergence rates of these aforementioned terms are slowed down by a factor of log n

at most, the validity of the main results in this paper is preserved with sub-Gaussian covariates,

but the analytical derivation would become more cumbersome. For a clearer and more concise

exposition, we maintain the compact support assumption on X. Assumption A2 is on the

error term. The monotonicity of σ2(·) is the main assumption. The assumption on arbitrary

higher moments, which rules out some fat-tailed distributions, is commonly used to obtain

some maximal inequalities (cf. van der Vaart and Wellner, 1996, Lemma 2.2.11, for a similar

assumption). Assumption A3 contains additional mild conditions on the density of X.

We first present asymptotic properties of the conditional error variance estimator σ̂2(·) in (2.4).

Let q∗n be the (n−1/3)-th population quantile of X, DL
A[f ](a) be the left derivative of the greatest

convex minorant of a function f(·) evaluated at a ∈ A, and {Wt} be the standard Brownian

motion. Also define c∗ = limn→∞ n1/3(q∗n − xL). Assumption A3 guarantees 0 < c∗ < ∞. Then

we obtain the following lemma for the behavior of σ̂2(·) around the boundary xL, which extends

the result by Babii and Kumar (2023, Theorem 2.1(ii)) by allowing the generated variable Û2
i

as a regressand for σ̂2(·).

Lemma 1. Under Assumptions A1-A3 and limx↓xL

dσ2(x)
dx > 0, it holds

n1/3{σ̂2(qn)− σ2(qn)} d→ DL
[0,∞)

[
√

σ2
ε(xL)

c∗fX(xL)
Wt +

(

lim
x↓xL

dσ2(x)

dx

)

c∗
(

1

2
t2 − t

)

]

(1). (2.6)

Based on this lemma, the asymptotic distribution of our feasible GLS estimator θ̂ is obtained

as follows.

Theorem 1. Under Assumptions A1-A3, it holds

√
n(θ̂ − θ)

d→ N(0, E[σ−2(X)WW ′]−1),

and the asymptotic variance matrix is consistently estimated by
(

1
n

∑n
i=1 σ̂

−2
i WiW

′
i

)−1
.

This theorem implies that our estimator θ̂ has the same limiting distribution as the infeasible

GLS estimator θ̂IGLS and thus achieves the semiparametric efficiency bound. This result extends

the scope of the isotonic regression method by showing that the isotonic estimates, possibly with
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generated variables, can be employed as first stage estimates to be plugged in for semiparametric

objects. We re-emphasize that θ̂ involves only a trimming term qn, the (n
−1/3)-th sample quantile

of {Xi}ni=1.
2

Remark 1. [Extensions of (2.2)] The benchmark setup E[U2|X,Z] = σ2(X) considered in

this section can be extended in various ways. First, an extension to a single index model

(say, E[U2|X,Z] = σ2(Xηx + Z ′ηz)) will be discussed in the next section. Second, the model

in (2.1)-(2.2) can be extended to the case where the conditional variance varies with discrete

covariates Z (or its subvector), say E[U2|X,Z = z] = σ2
z(X) with monotone functions σ2

z(·)
for z ∈ {z(1), . . . , z(D)}. In this case, we can implement the isotonic regression for each group

categorized by z, and construct the feasible GLS estimator in an analogous way as (2.5). Third,

our approach may be extended to the additive monotone heteroskedasticity, say E[U2|X,Z] =

σ2
x(X)+σ2

z(Z) with monotone functions σ2
x(·) and σ2

z(·). Although formal analysis is beyond the

scope of this paper, the results in Mammen and Yu (2007) suggest that the isotonic estimators

for additive functions converge at similar rates as the univariate case, and we conjecture that

a similar result as Theorem 1 can be obtained. Finally, when the conditional error variance

function is multiplicative, say E[U2|X,Z] = σ2
x(X)σ2

z(Z), and the researcher knows the form of

σ2
z(·) (e.g., Z is household size and σ2

z(Z) = Z2), then our feasible GLS estimator can be applied

to observations reweighted by 1/σz(Z).

Remark 2. [Monotonicity testing] Monotonicity is an assumption that can be tested. For ob-

servable random variables (Y,X), several methods have been developed to test whether E[Y |X]

is monotone increasing in X; see, e.g., Ghosal, Sen and van der Vaart (2000), Hall and Heck-

man (2000), Dümbgen and Spokoiny (2001), Chetverikov (2019), and Hsu, Liu and Shi (2019),

among others. All these tests can be adapted for our case, testing the monotonicity of σ2(·) with
generated {Û2

j }nj=1 and observed {Xj}nj=1. Since Assumptions A1-A2 and θ̂OLS− θ = Op(n
−1/2)

imply Û2
j − U2

j = Op(n
−1/2 log n) uniformly over j = 1, . . . , n, the critical values of these tests

can be adjusted accordingly to maintain a proper asymptotic size.

Remark 3. [Misspecification of E[U2|X,Z]] We want to note that even if the assumption in

(2.2) is violated (e.g., E[U2|X,Z] varies with Z or E[U2|X,Z] = σ2(X) with non-monotone

σ2(·)), our feasible GLS estimator θ̂ in (2.5) is still consistent for θ due to E[U |X,Z] = 0, and

asymptotically normal at the
√
n-rate with the limiting distribution

√
n(θ̂ − θ)

d→ N(0, E[ρ(X)−1WW ′]−1E[ρ(X)−2E[U2|X,Z]WW ′]E[ρ(X)−1WW ′]−1),

where ρ(·) = argminm∈M E[{U2 −m(X)}2] for the class of monotone increasing functions M.

Since σ̂2(·) can estimate ρ(·), then the asymptotic variance matrix can be consistently estimated

2Although our estimator θ̂ in (2.5) does not involve any tuning constant, the trimming term qn should be under-

stood as the c · (n−1/3)-th sample quantile of {Xi}
n
i=1, where the tuning constant is set as c = 1. Indeed Theorem

1 holds true with any c > 0. If we compare with other nonparametric methods, smoothing parameters, such as
bandwidths, series lengths, and neighbors, typically require two constants to implement. For example, for the
bandwidth parameter b = c1n

−c2 , researchers need to choose c1 and c2. The constant c1, which is analogous to c
above, can be any positive number. However, they also need to choose a positive constant c2 whose upper bound
typically depends on (unknown) smoothness of underlying functions.
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by
(

1

n

n
∑

i=1

σ̂−2(Xi)WiW
′
i

)−1(

1

n

n
∑

i=1

σ̂−4(Xi)Û
2
i WiW

′
i

)(

1

n

n
∑

i=1

σ̂−2(Xi)WiW
′
i

)−1

. (2.7)

This misspecification robust variance estimator is analogous to the one proposed by Cragg

(1992) for the feasible GLS estimator with parametrically specified models for the conditional

error variance E[U2|X,Z].3

Remark 4. [Endogenous regressor] The result of Theorem 1 can also be extended to some linear

instrumental variable (IV) regression model. For notational simplicity, consider the following

univariate IV regression:

Y = α+ βX + U, E[U |Z] = 0,

where X is a scalar endogenous regressor and Z is a scalar IV, and we further assume E[X|Z] =

η+γZ for some parameters (η, γ). This linearity assumption on E[X|Z] is not essential, and may

be relaxed by some nonparametric estimator of E[X|Z]. In this setup, the optimal instrument

for estimating (α, β)′ is given by (see, e.g., Newey, 1993)

E

[

∂(Y − α− βX)

∂(α, β)′

∣

∣

∣

∣

Z

]

E[U2|Z]−1 = −
(

1 0

η γ

)(

1

Z

)

v−2(Z),

where v2(·) = E[U2|Z = ·]. Under the assumption of γ 6= 0 (i.e., the IV is relevant), the

optimal IV estimator is obtained by the method of moments estimator of the following moment

condition:

E

[(

1

Z

)

v−2(Z)(Y − α− βX)

]

= 0. (2.8)

Under the monotonicity assumption of v2(·), we can obtain the isotonic estimator v̂2(·) for v2(·)
by regressing the squared residuals ê2 = (Y − α̃− β̃X)2 for an initial estimator (α̃, β̃) (e.g., the

two-stage least squares estimator) on Z. The resulting estimator, v̂2(·), should have the same

properties as those of σ̂2(·) presented in Lemma 1, where qn is replaced with the (n−1/3)-th

sample quantile of {Zi}ni=1. Based on this isotonic estimator, a feasible optimal IV estimator

θ̂IV = (α̂IV, β̂IV)
′ is given by

θ̂IV =

(

n
∑

i=1

I{Zi ≥ qn}v̂−2(Zi)

(

1

Zi

)

(1,Xi)

)−1( n
∑

i=1

I{Zi ≥ qn}v̂−2(Zi)

(

1

Zi

)

Yi

)

.

By applying the same arguments for Theorem 1, we can show that θ̂IV is asymptotically equiv-

alent to the infeasible optimal IV estimator based on (2.8) with known v2(·).

3Based on simulation studies, Cragg (1992) recommended to use his misspecification robust variance estimator
even when the parametric form of heteroskedasticity is correctly specified. Although a similar analysis is beyond
the scope of this paper, we also recommend to employ the variance estimator (2.7) in practice due to its consistency
regardless of the assumption in (2.2).

7



3. Heteroskedasticity by multivariate covariates

We now consider the model

Y = α+X ′β + Z ′γ + U, E[U |X,Z] = 0, (3.1)

where X is a vector of covariates. This section focuses on the case where heteroskedasticity

takes the form of a monotone single index function of X with unknown parameters η0, i.e.,

E[U2|X,Z] = E[U2|X] = σ2(X ′η0) for a monotone increasing function σ2(·). Single index

models are known to be more flexible than parametric models and achieve dimension reduction

relative to nonparametric models.

Remark 5. First, the monotone index model σ2(X ′η0) covers several existing parametric

models. Popular examples include σ2(X) = C(X ′η0)2−2λ (Box and Hill, 1974), σ2(X) =

C exp(λ(X ′η0)) (Bickel, 1978), σ2(X) = C{1 + λ(X ′η0)2} (Fuller, 1980) for some constants

C > 0 and λ; interestingly, all these parametric functions are monotone increasing (or de-

creasing) in the index of X. Second, although the setup E[U2|X,Z] = σ2(X ′η0) assumes that

the researcher knows which (sub-)vector of covariates should be included in σ2(·), researchers
do not have to select those covariates in the case where such prior information is unavailable.

They can simply re-define the model in (3.1) without covariates Z (or equivalently specify as

E[U2|X,Z] = σ2(X ′η0 + Z ′ηz0)). Our asymptotic theory below applies even if some covariates

are irrelevant for E[U2|X,Z].

For identification, η0 is normalized as ||η0|| = 1. Define

σ2
η(a) = E[σ2(X ′η0)|X ′η = a]. (3.2)

We show in Lemma 4 that σ2(·) and η0 can be consistently estimated by extending the method

proposed in Balabdaoui, Groeneboom and Hendrickx (2019) (BGH hereafter) and Balabdaoui

and Groeneboom (2021) to allow generated variables. In particular, for a given η, define the

isotonic regression of {Û2
i }ni=1 on {X ′

iη}ni=1 as

σ̂2
η = arg min

m∈M
1

n

n
∑

i=1

{Û2
i −m(X ′

iη)}2, (3.3)

where M is the set of monotone increasing functions defined on R. Based on this, η̂ can be

estimated by minimizing the square sum of a score function. For example, the simple score

estimator in the spirit of BGH and Balabdaoui and Groeneboom (2021) is given by

η̂ = argmin
η

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Xi{Û2
i − σ̂2

η(X
′
iη)}

∥

∥

∥

∥

∥

2

, (3.4)

where ‖·‖ is the Euclidean norm: ‖a‖ =
√

∑k
j=1 a

2
j for a = (a1, . . . , ak)

′ ∈ R
k.

Letting σ̂2
i = σ̂2

η̂(X
′
i η̂) and W = (1,X ′, Z ′)′, we propose the following GLS estimator

θ̂ =

(

n
∑

i=1

I{X ′
i η̂ ≥ qn}σ̂−2

i WiW
′
i

)−1( n
∑

i=1

I{X ′
i η̂ ≥ qn}σ̂−2

i WiYi

)

, (3.5)
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where qn is the (n−1/3)-th sample quantile of {X ′
i η̂}ni=1.

To avoid unnecessarily heavy notations, in the multivariate case, we redefine some notations,

which have similar meanings to those used in Section 2. Define ε = U2 − σ2(X ′η0), σ2
ε(·) =

E[ε2|X ′η0 = ·], xL = infx∈X (x′η0), and xU = supx∈X (x′η0). Let fX(·) be the density function

of the random variable X ′η0. Let q∗n be the (n−1/3)-th population quantile of X ′η0, qn be the

(n−1/3)-th sample quantile of {X ′
i η̂}ni=1, c

∗ = limn→∞ n1/3(q∗n − xL), and DL
A[f ](a) be the left

derivative of the greatest convex minorant of function f(·) evaluated at a ∈ A. Let dim(w) be

the dimension of a vector w.

Assumption.

M1: {Yi,Xi, Zi}ni=1 is an iid sample of (Y,X,Z). The support of (X,Z), X ×Z , is convex

with non-empty interiors and is a subset of B(0, R) for some R > 0.

M2: (i) There exists δ0 > 0 such that the function a 7→ σ2
η(a) defined in (3.2) is monotone

increasing on Iη = {x′η, x ∈ X } for each η ∈ B(η0, δ0). (ii) 0 < infa∈Iη σ
2
η(a) <

supa∈Iη σ
2
η(a) < ∞ for each η ∈ B(η0, δ0). (iii) There exist positive constants a0 and

M such that E[|U |2s|X = x] ≤ a0s!M
s−2 for all integers s ≥ 2 and x ∈ X . (iv) σ2

η(·)
is continuously differentiable on Iη for each η ∈ B(η0, δ0). (v) σ2

ε(·) is continuous on

(xL, xL + δ1) for some δ1 > 0.

M3: The random variable X ′η0 has a density function fX(·) that is continuous on Iη0 .

There exists some real positive numbers b and b, such that 0 < b < fX(a) < b < ∞ holds

for all a ∈Iη0 .
M4: For each η ∈ B(η0, δ0), the mapping a 7→ E[X|X ′η = a] defined on Iη is bounded and

has a finite total variation.

M5: Cov[X ′(η0 − η), σ2(X ′η0)|X ′η] 6= 0 almost surely for each η 6= η0.

M6: B :=
∫

(x− E[X|x′η0])(x− E[X|x′η0])′ dσ2(a)
da

∣

∣

∣

a=x′η0
dP (x) has rank dim(η0)−1.

Assumptions M1-M3 are analogs of Assumptions A1-A3, respectively. The main assumption

is the monotonicity of σ2
η(·). Assumptions M4-M6 are additional regularity conditions for the

monotone index model. By Assumption M1, we have −∞ < xL < xU < ∞. Then similar to

Lemma 1, we obtain the following lemma for the behavior of σ̂2
η̂(·) around xL.

Lemma 2. Under Assumptions M1-M6 and lima↓xL

dσ2(a)
da > 0, it holds

n1/3{σ̂2
η̂(qn)− σ2(qn)} d→ DL

[0,∞)

[
√

σ2
ε(xL)

c∗fX(xL)
Wt +

(

lim
a↓xL

dσ2(a)

da

)

c∗
(

1

2
t2 − t

)

]

(1).

Based on this lemma, the asymptotic distribution of the GLS estimator θ̂ in (3.5) is obtained

as follows. Let σ2
i = σ2(X ′

iη0).

Theorem 2. Under Assumptions M1-M6, it holds

√
n(θ̂ − θ)

d→ N(0, E[σ−2(X ′η0)WW ′]−1),

and the asymptotic variance matrix is consistently estimated by
(

1
n

∑n
i=1 σ̂

−2
i WiW

′
i

)−1
.
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Similar comments to Theorem 1 apply here. Our estimator θ̂ is asymptotically equivalent

to the infeasible GLS estimator θ̂IGLS. In terms of technical contribution, our theoretical anal-

ysis generalizes existing ones in, e.g., Babii and Kumar (2023), BGH, and Balabdaoui and

Groeneboom (2021) to accommodate generated variables. Similar to Remark 3, even when the

monotonicity assumption of σ2
η(·) is violated, θ̂ is still consistent for θ and asymptotically normal

at the
√
n-rate with certain robust asymptotic variance. Furthermore, endogenous regressors

can be accommodated as in Remark 4.

Remark 6. We can suggest two informal robustness checks for the monotone index assumption

in (3.2). One is to compute the standard errors robust to possible misspecification obtained

in the same manner as Remark 3 and compare them to those in Theorem 2. This can serve

as a robustness check for the monotone specification given variables of the conditional error

variance functions. Another is to report the results for the specification where all exogenous

variables are included to σ2(·) in addition to those for the chosen specifications. A large difference

between these results can be a sign of the misspecification of the chosen ones. See Section 4.2

for illustration.

Remark 7. In this section, we employ the monotone single index structure to model the multi-

variate conditional variance function. This strategy allows us to strike a balance between robust-

ness and mitigating the curse of dimensionality. Indeed, the current specification can be extended

to the multiple index model E[U2|X = x] = x′0η0 +
∑M

i=1Gi(x
′
iηi), for X = (X ′

0,X
′
1 . . . ,X

′
M )′,

where {Gi(·)}Mi=1 are unknown monotone increasing functions. For the case of M = 1, this model

simplifies to a monotone partially linear single index model whose properties have been studied

by Xu and Otsu (2020). We are optimistic that, under certain regularity conditions, similar re-

sults as in this section can be obtained. To the best of our knowledge, we have not come across

any works that discuss the multiple monotone index model with M > 1 even for the conven-

tional regression setup for E[Y |X = x]. A possible solution could be derived by combining the

existing literature on the monotone single index model (as cited in Section 1) with the literature

on the monotone additive model (for instance, Mammen and Yu, 2007). Another potential ex-

tension involves employing the nonparametric framework of Fang, Guntuboyina and Sen (2021)

to model the multivariate conditional variance function. This framework is free of parametric

structure, and it requires the true conditional variance to be entirely monotone increasing in its

arguments, i.e., σ2(x1, z1) ≤ σ2(x2, z2) if only if x1 ≤ x2 and z1 ≤ z2. Explorations of these

extensions exceed the scope of this paper, and we leave them for future research.

4. Numerical illustrations

4.1. Simulation. We now investigate the finite sample properties of the proposed GLS estima-

tor by a Monte Carlo experiment. We follow the simulation design by Cragg (1983) and Newey

(1993). The first data generating process, denoted by DGP1, is the heteroskedastic linear model
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with a univariate covariate and normally distributed disturbance:4

Yi = β0 + β1Xi + ui, ui = σiεi, εi ∼ N(0, 1),

β0 = β1 = 1, log(Xi) ∼ N(0, 1), Xi and εi are independent,

σ2
i = .1 + .2Xi + .3X2

i . (4.1)

We consider three sample sizes, n = 50, 100, and 500. The number of replications is set to 1,000.

In addition to the feasible GLS estimator with monotone heteroskedasticity (MGLS), we con-

sider the ordinary least squares (OLS), infeasible generalized least squares (GLS), feasible GLS

(FGLS), and nearest neighbor estimators (k-NN). GLS requires knowledge of the conditional

error variance function (4.1), including the values of the coefficients. In contrast, FGLS pro-

ceeds with the known functional form, but the coefficients are estimated. The “k-NN automatic”

chooses the number of neighbors by a cross-validation procedure suggested by Newey (1993).

All the estimators except OLS are the weighted least squares estimators, and their differences

come from how the weights are calculated. Following Newey (1993), we calculate the weights

for each method by taking a ratio of the predicted squared residual to the estimated variance of

the disturbance, censoring the result below 0.04.

Table 4.1 presents the simulation results for estimation. The first column shows the estimation

methods, and the following two columns show the root mean-squared error (RMSE) and mean

absolute error (MAE) for DGP1 with n = 50. The results for GLS report the levels of the RMSE

and MAE, and those for others are their ratios relative to GLS. The next two columns give the

corresponding results with n = 100 and the last two columns with n = 500. Two rows for each

estimator show the results for β0 and β1, respectively. The inefficiency and inaccuracy of OLS

are apparent. FGLS performs quite well, and this is natural when the conditional error variance

functions are correctly specified. The performance of k-NN varies with the choice of k and is

in between OLS and FGLS. We observe that the performance of MGLS is better than k-NN in

every choice of smoothing parameters. The result of MGLS is comparable to that of FGLS if

not better. MGLS’s independence of a smoothing parameter is clearly desirable. We also note

that MGLS performs well even for n = 50.

The last four columns of Table 4.1 present the results for DGP2 with a homoskedastic error:

Yi = β0 + β1Xi + ui, ui ∼ N(0, 1),

β0 = β1 = 1, log(Xi) ∼ N(0, 1), Xi and ui are independent.

For DGP2, all estimators work reasonably well although the performance of k-NN with k = 6 is

worse than others.

4Normal random variables are not compactly supported, and hence it violates Assumption A1. However, as
discussed in the remark on Assumption A1, this assumption can be relaxed.
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Table 4.1. Simulation: Estimation with univariate covariate

DGP1 DGP2
n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

Estimator RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
GLS (infeasible) 0.132 0.085 0.093 0.059 0.041 0.028 0.194 0.122 0.133 0.088 0.057 0.039

0.157 0.100 0.108 0.073 0.048 0.032 0.083 0.046 0.055 0.034 0.021 0.014
OLS 3.103 2.856 3.831 3.479 5.574 4.495 1.000 1.000 1.000 1.000 1.000 1.000

2.072 2.098 2.543 2.370 3.377 2.971 1.000 1.000 1.000 1.000 1.000 1.000
FGLS 1.279 1.210 1.245 1.233 1.598 1.152 1.032 1.041 1.026 1.033 1.024 1.067

1.427 1.268 1.406 1.280 1.271 1.242 1.090 1.092 1.075 1.036 1.088 1.090
k-NN (Automatic) 1.630 1.373 1.633 1.511 1.355 1.167 1.123 1.081 1.130 1.081 1.181 1.138

1.535 1.427 1.606 1.431 1.424 1.267 1.092 1.074 1.065 1.006 1.197 1.097
k-NN (k = 6) 1.554 1.361 1.525 1.498 1.474 1.417 1.274 1.243 1.253 1.155 1.359 1.276

1.466 1.421 1.472 1.462 1.454 1.459 1.178 1.143 1.177 1.114 1.350 1.344
k-NN (k = 15) 1.600 1.386 1.566 1.365 1.251 1.108 1.037 1.076 1.079 1.059 1.081 1.140

1.520 1.398 1.546 1.408 1.247 1.197 1.003 1.046 1.037 1.012 1.066 1.053
k-NN (k = 24) 1.781 1.568 1.685 1.457 1.291 1.160 1.011 1.039 1.039 0.980 1.044 1.098

1.630 1.560 1.673 1.471 1.312 1.246 1.002 1.026 1.015 0.994 1.038 1.025
MGLS 1.379 1.285 1.326 1.279 1.113 1.129 1.039 1.091 1.049 1.075 1.027 1.075

1.327 1.214 1.332 1.249 1.113 1.144 1.043 1.051 1.051 1.058 1.055 1.066

Note: “RMSE” and “MAE” stand for the root mean squared error and mean absolute error, respectively. The results for GLS report
the levels of the RMSE and MAE, and those for others are their ratios relative to GLS.
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Next, we consider the heteroskedastic linear models with multivariate covariates, denoted by

DGP3:

Yi = β0 + β1X1i + β2X2i + ui, ui = σiεi, εi ∼ N(0, 1),

β0 = β1 = β2 = 1, log(X1i), log(X2i) ∼ N(0, 1), X1i, X2i and εi are independent,

σ2
i = .2(X1i +X2i)

2. (4.2)

The conditional error variance function of DPG3 is of a monotone single index structure. Using

the notation in (3.2), DGP3 corresponds to the structure with σ2(a) = a2, X ′ = (X1,X2), and

η0 = (
√
.2,

√
.2)′. The left panel of Table 4.2 shows the results of DGP3 in the same manner as

Table 4.1. For each estimation method, two rows show the results for β0 and β1, and those for

β2 are omitted to avoid redundancy. k-NNs and MGLS perform better than FGLS, and this is

in contrast to the performance of DGP1. In general, MGLS works better than k-NNs except for

a few cases.

To see the potential applicability of MGLS to a non-single index structure, we consider another

heteroskedastic linear model denoted by DGP4:

Yi = β0 + β1X1i + β2X2i + ui, ui = σiεi, εi ∼ N(0, 1),

β0 = β1 = β2 = 1, log(X1i), log(X2i) ∼ N(0, 1), X1i, X2i and εi are independent,

σ2
i = .1 + .2X̃i + .3X̃2

i , log(X̃i) =
log(X1i) + log(X2i)√

2
. (4.3)

The right panel of Table 4.2 shows the results. The results for DGP 4 are overall similar to those

of DGP3. An exception is FGLS, which performs poorly for DGP3. MGLS works remarkably

well for the heteroskedasticity of a non-single index structure.
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Table 4.2. Simulation: Estimation with multivariate covariates

DGP 3 DGP 4
n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

Estimator RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
GLS (infeasible) 0.162 0.103 0.110 0.071 0.045 0.028 0.165 0.108 0.115 0.076 0.049 0.033

0.163 0.107 0.109 0.072 0.048 0.033 0.108 0.067 0.071 0.046 0.029 0.020
OLS 3.401 3.589 4.255 4.168 6.650 6.695 3.069 2.653 3.792 2.980 4.897 4.186

1.942 1.950 2.317 2.260 3.051 2.610 2.318 2.170 2.914 2.338 3.809 3.198
FGLS 2.531 2.239 2.516 2.141 2.731 2.037 1.381 1.189 1.427 1.233 1.699 1.219

1.606 1.441 1.709 1.486 1.732 1.358 1.359 1.227 1.344 1.281 1.326 1.271
k-NN (Automatic) 1.952 1.925 2.108 1.709 1.786 1.537 1.868 1.638 1.778 1.488 1.709 1.390

1.546 1.429 1.680 1.489 1.516 1.318 1.766 1.771 1.865 1.763 2.009 1.626
k-NN (k = 6) 1.827 1.766 1.787 1.587 1.670 1.666 1.719 1.541 1.674 1.521 1.594 1.537

1.458 1.397 1.514 1.486 1.497 1.362 1.717 1.704 1.769 1.764 1.813 1.654
k-NN (k = 15) 1.914 1.957 1.850 1.669 1.490 1.385 1.769 1.611 1.669 1.491 1.373 1.246

1.468 1.401 1.511 1.428 1.313 1.248 1.712 1.727 1.769 1.639 1.588 1.517
k-NN (k = 24) 2.182 2.203 2.008 1.816 1.570 1.510 1.952 1.888 1.799 1.581 1.392 1.254

1.562 1.455 1.611 1.571 1.371 1.267 1.825 1.807 1.890 1.729 1.626 1.511
MGLS 2.144 1.977 1.993 1.659 1.667 1.481 1.839 1.549 1.647 1.422 1.320 1.251

1.486 1.467 1.477 1.401 1.238 1.186 1.670 1.533 1.604 1.451 1.448 1.360

Note: “RMSE” and “MAE” stand for the root mean squared error and mean absolute error, respectively. The results for GLS report
the levels of the RMSE and MAE, and those for others are their ratios relative to GLS.

1
4



Next, we turn to the simulation results on inference. Tables 4.3 and 4.4 show empirical cover-

ages (EC) and average lengths (AL) for the 95% confidence intervals under DGPs 1-4. Again we

consider GLS, OLS, FGLS, k-NN, and MGLS. For OLS, three types of confidence intervals are

considered. They are based on the usual OLS standard error (OLS-U), the heteroskedasticity-

robust standard error (OLS-R), and the wild bootstrap standard error (OLS-boot). For MGLS,

we also present the results for its robust version. We observe that the empirical coverages are

smaller than the nominal coverage 0.95 for all DGPs and all methods except GLS. It is natural

that OLS-U performs poorly since it is invalid except for DGP2. The performance of k-NN is

worse than others for all DGPSs in terms of empirical coverage. OLS-R, OLS-boot, FGLS, and

MGLS work similarly in terms of empirical coverage, however, we note that the average length

of OLS-R is much larger than those of FGLS and MGLS except for DGP2. While the empirical

coverages of OLS-Boot are similar to those of OLS-R, the average lengths of OLS-Boot are

smaller than those of OLS-R but still larger than those of MGLS. MGLS works quite well for

all DGPs, especially for n = 500. The results of MGLS (Robust) are similar to those of MGLS

especially when n = 100 and 500. Finally, we note that the empirical coverages tend to be lower

when n = 50 than when n = 100 and 500. Careful interpretation of results is recommended

when the sample size is small.
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Table 4.3. Simulation: Inference with univariate covariate

DGP 1 DGP 2
n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

Estimator EC AL EC AL EC AL EC AL EC AL EC AL
GLS (infeasible) 0.956 0.528 0.955 0.370 0.956 0.164 0.939 0.749 0.947 0.516 0.955 0.224

0.946 0.627 0.962 0.441 0.960 0.196 0.948 0.316 0.952 0.207 0.970 0.085
OLS-U 0.798 1.008 0.742 0.740 0.636 0.349 0.939 0.749 0.947 0.516 0.955 0.224

0.492 0.409 0.421 0.290 0.348 0.131 0.948 0.316 0.952 0.207 0.970 0.085
OLS-R 0.766 0.962 0.805 0.862 0.884 0.648 0.933 0.733 0.941 0.507 0.949 0.222

0.730 0.761 0.772 0.689 0.880 0.488 0.874 0.272 0.881 0.185 0.935 0.081
OLS-Boot 0.740 0.885 0.845 0.517 0.907 0.356 0.917 0.718 0.947 0.516 0.955 0.224

0.690 0.681 0.856 0.527 0.894 0.345 0.846 0.270 0.952 0.207 0.970 0.085
FGLS 0.800 0.451 0.847 0.328 0.872 0.162 0.916 0.709 0.925 0.493 0.935 0.216

0.737 0.504 0.812 0.395 0.885 0.195 0.761 0.231 0.758 0.159 0.844 0.072
k-NN (Automatic) 0.708 0.410 0.659 0.258 0.701 0.102 0.902 0.711 0.884 0.483 0.883 0.205

0.576 0.351 0.574 0.251 0.650 0.115 0.927 0.306 0.917 0.197 0.881 0.079
k-NN (k = 6) 0.732 0.410 0.666 0.258 0.621 0.102 0.845 0.711 0.845 0.483 0.819 0.205

0.576 0.351 0.574 0.251 0.650 0.115 0.927 0.306 0.917 0.197 0.881 0.079
k-NN (k = 15) 0.735 0.418 0.704 0.266 0.717 0.105 0.929 0.725 0.907 0.492 0.914 0.210

0.582 0.353 0.592 0.258 0.677 0.118 0.944 0.310 0.931 0.200 0.919 0.081
k-NN (k = 24) 0.711 0.440 0.688 0.269 0.721 0.107 0.945 0.744 0.921 0.504 0.935 0.216

0.512 0.324 0.537 0.244 0.668 0.118 0.953 0.316 0.942 0.204 0.939 0.083
MGLS 0.779 0.499 0.812 0.363 0.905 0.165 0.885 0.640 0.907 0.468 0.937 0.219

0.725 0.523 0.744 0.392 0.888 0.188 0.951 0.333 0.968 0.222 0.972 0.092
MGLS (Robust) 0.762 0.483 0.791 0.354 0.903 0.163 0.879 0.635 0.902 0.463 0.933 0.216

0.725 0.465 0.744 0.359 0.888 0.181 0.951 0.258 0.968 0.177 0.972 0.079

Note: “EC” and “AL” stand for the empirical coverage probability and average length, respectively. “OLS-U”, “OLS-R”, and

“OLS-Boot” use the normal approximation with the usual OLS standard error, the heteroskedasticity robust standard error,
and the percentile bootstrap interval, respectively. “MGLS (Robust)” is based on the variance formula presented in Remark 2.
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Table 4.4. Simulation: Inference with multivariate covariates

DGP 3 DGP 4
n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

Estimator EC AL EC AL EC AL EC AL EC AL EC AL
GLS (infeasible) 0.944 0.611 0.951 0.413 0.946 0.175 0.944 0.636 0.943 0.440 0.956 0.192

0.951 0.632 0.961 0.439 0.960 0.194 0.949 0.414 0.950 0.282 0.968 0.123
OLS-U 0.824 1.535 0.786 1.108 0.632 0.511 0.819 1.222 0.780 0.893 0.675 0.412

0.589 0.526 0.549 0.369 0.491 0.164 0.639 0.420 0.611 0.298 0.521 0.133
OLS-R 0.787 1.411 0.815 1.232 0.869 0.873 0.797 1.197 0.843 1.068 0.906 0.718

0.729 0.767 0.782 0.660 0.891 0.441 0.762 0.596 0.810 0.517 0.914 0.334
OLS-Boot 0.756 1.319 0.781 1.133 0.839 0.797 0.752 1.115 0.785 0.951 0.860 0.654

0.688 0.708 0.749 0.593 0.826 0.400 0.719 0.569 0.780 0.460 0.866 0.301
FGLS 0.831 1.069 0.845 0.759 0.897 0.336 0.801 0.596 0.823 0.424 0.834 0.191

0.658 0.517 0.722 0.395 0.826 0.198 0.797 0.382 0.862 0.262 0.855 0.112
k-NN (Automatic) 0.571 0.481 0.557 0.289 0.587 0.105 0.672 0.526 0.646 0.323 0.609 0.122

0.471 0.296 0.472 0.205 0.534 0.091 0.596 0.298 0.599 0.200 0.605 0.082
k-NN (k = 6) 0.597 0.481 0.574 0.289 0.549 0.105 0.670 0.526 0.639 0.323 0.571 0.122

0.471 0.296 0.472 0.205 0.534 0.091 0.596 0.298 0.599 0.200 0.605 0.082
k-NN (k = 15) 0.592 0.504 0.590 0.299 0.639 0.108 0.690 0.551 0.675 0.338 0.689 0.129

0.491 0.301 0.484 0.212 0.570 0.096 0.607 0.309 0.629 0.210 0.668 0.088
k-NN (k = 24) 0.582 0.557 0.561 0.313 0.618 0.111 0.681 0.590 0.664 0.347 0.702 0.132

0.459 0.287 0.450 0.204 0.562 0.096 0.598 0.297 0.608 0.207 0.662 0.091
MGLS 0.803 0.956 0.863 0.623 0.938 0.248 0.801 0.805 0.844 0.526 0.902 0.216

0.687 0.524 0.756 0.401 0.897 0.198 0.707 0.404 0.776 0.305 0.908 0.154
MGLS (Robust) 0.755 0.855 0.833 0.573 0.920 0.234 0.762 0.750 0.833 0.511 0.902 0.219

0.687 0.548 0.756 0.415 0.897 0.199 0.707 0.422 0.776 0.308 0.908 0.148

Note: “EC” and “AL” stand for the empirical coverage probability and average length, respectively. “OLS-U”, “OLS-R”, and

“OLS-Boot” use the normal approximation with the usual OLS standard error, the heteroskedasticity robust standard error,
and the percentile bootstrap interval, respectively. “MGLS (Robust)” is based on the variance formula presented in Remark 2.
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4.2. Empirical example. We illustrate how the proposed method in this paper can improve

the precision of the traditional OLS approach. In doing so, we revisit Acemoglu and Restrepo

(2017) that investigate the relationship between an aging population and economic growth.

After Hansen (1939), a popular perspective is that countries undergoing faster aging suffer more

economically partly because of excessive savings by an aging population. In contrast to the

perspective, Acemoglu and Restrepo (2017) find no evidence of a negative relationship between

aging and GDP per capita after controlling for initial GDP per capita, initial demographic

composition, and trends by region.

Acemoglu and Restrepo (2017) estimated eight specifications for the regression of the change

in (log) GDP per capita from 1990 to 2015 (denoted by GDP) on the population aging measured

by the change in the ratio of the population above 50 to those between the ages of 20 and 49

(denoted by Aging). The results are reproduced in Panel A of Table 4.5. Those in columns

1-5 are based on the sample including 169 countries. Column 1 shows the result of the simple

regression. Standard errors robust to heteroskedasticity are reported in square brackets. Column

2 shows the result with an additional regressor, the initial log GDP per worker in 1990. Column 3

in addition includes the initial demographic information, the ratio of the population above 50 to

those between 20 and 49 in 1990 (denoted by Initial Ratio), and the population in 1990. Column

4 additionally uses dummies for seven regions, Latin America, East Asia, South Asia, Africa,

North Africa and Middle East, Eastern Europe and Central Asia, and Developed Countries.

Column 5 estimates the same specification as Column 4 with instruments of birthrates for the

1960, 1965, 1970, 1975, and 1980 cohorts. Columns 6 to 8 report the result for OECD countries

using specifications of Columns 1, 3, and 5, respectively. The number of observations for the first

five columns is 169, and that for the last three columns is 35. Seven out of eight OLS estimates

indicate positive relationships and five of them are statistically significant at the 5 percent level.

Acemoglu and Restrepo (2017) discuss that these findings can be explained by the adoption of

automation technologies based on a theoretical model.

We estimate the same specifications by MGLS proposed in this paper. Acemoglu and Restrepo

(2017) show that the negative effect of aging can be mitigated or reversed by adopting new

automation technologies given abundant capital. This also implies that the effect of aging can

be negative without sufficient capital. Hence it would be reasonable to consider Aging as a source

of heteroskedasticity. The upper panel of Figure 4.2 shows the relationship between the residual

from the simple regression of column 1 in Panel A and Aging. Heteroskedasticity due to Aging

is not easily confirmed visually. We consider Initial Ratio as another source of heteroskedasticity

since the low ratio of old to young in 1990 is likely correlated with more aging in 2015, leading

to larger variability in GDP per capita by the same reasoning discussed above. The lower panel

of Figure 4.2 presents the relationship between the residual from the simple regression of column

1 in Panel A and Initial Ratio, and we see that the variability decreases with the growing ratio.

Panels B, C, and D of Table 4.5 show the results of MGLS. Panels B and C present the

results for cases where the conditional error variance functions depend on Aging and Initial

Ratio, respectively. Panel D reports the results where the conditional error variance functions

depend on all exogenous regressors except the regional dummies. Standard errors based on
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Theorems 1-2 and their analogous versions for IV estimators are reported in parentheses, while

robust standard errors are reported in square brackets. First, we observe reductions in standard

errors for all MGLSs relative to OLS. The differences stand out when n = 169. Second, the

two standard errors are similar for the MGLS estimates under exogeneity while they differ for

the IV estimates. These are the supporting evidence for the monotone specification of the

conditional error variance function for the MGLS method with exogenous regressors but not for

the IV method. Third, the results given in Columns 2, 3, and 4 are stable, while the results

of IV estimates and OECD countries contain a lot of variations. Those variations can be due

to non-monotone conditional error variance functions and/or small sample sizes, and further

investigations will be required. Overall, the standard errors of MGLS tend to be smaller or no

larger than those of OLS, which demonstrates the increased precision of MGLS.
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Figure 4.1. Plots for residual and aging (upper) and residual and ratio of old
to young workers in 1990 (lower)

Note: For both panels, the residuals are obtained from the regression of the change in GDP per capita from

1990 to 2015 (GDP) on the population aging measured by the ratio of the population above 50 to those between

the ages of 20 and 49 (Aging). For the upper panel, the variable on the X-axis represents the change in the ratio

of old to young workers from 1990 to 2015. For the lower panel, it represents the ratio of old to young workers in

1990.
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Table 4.5. Effects of the Aging on GDP by OLS and MGLS

Sample of all countries (n = 169) OECD countries (n = 35)
Specification (1) (2) (3) (4) (5) (6) (7) (8)
Panel A: OLS

Aging 0.335 1.036 1.162 0.773 1.703 -0.262 0.042 1.186
(0.210) (0.257) (0.276) (0.322) (0.411) (0.352) (0.346) (0.458)

Initial GDP -0.153 -0.138 -0.156 -0.190 -0.205 -0.260
(0.039) (0.042) (0.046) (0.045) (0.072) (0.092)

Panel B: MGLS (covariate of σ2(·) =Aging)
Aging 0.387 1.098 1.191 0.751 0.414 -0.391 -0.029 -0.458

(0.189) (0.187) (0.205) (0.267) (0.101) (0.247) (0.284) (0.092)
[0.150] [0.179] [0.198] [0.310] [0.472] [0.190] [0.340] [0.451]

Initial GDP -0.164 -0.155 -0.168 -0.079 -0.190 -0.297
(0.027) (0.029) (0.030) (0.009) (0.069) (0.025)
[0.031] [0.032] [0.029] [0.046] [0.069] [0.141]

Panel C: MGLS (covariate of σ2(·) =Initial Ratio)
Aging 0.065 0.771 0.894 0.574 0.483 -0.501 -0.344 -0.585

(0.196) (0.223) (0.231) (0.235) (0.142) (0.270) (0.219) (0.226)
[0.196] [0.249] [0.262] [0.272] [0.603] [0.231] [0.213] [0.758]

Initial GDP -0.164 -0.141 -0.159 -0.080 -0.148 -0.379
(0.031) (0.035) (0.041) (0.012) (0.056) (0.096)
[0.035] [0.037] [0.046] [0.055] [0.065] [0.288]

Panel D: MGLS (covariates of σ2(·) =All)
Aging 0.285 1.064 1.188 0.810 0.494 -0.391 0.062 -0.268

(0.221) (0.265) (0.281) (0.289) (0.100) (0.247) (0.274) (0.186)
[0.206] [0.249] [0.271] [0.323] [0.442] [0.190] [0.340] [0.972]

Initial GDP -0.152 -0.136 -0.146 -0.079 -0.203 -0.250
(0.030) (0.033) (0.041) (0.009) (0.072) (0.049)
[0.033] [0.036] [0.044] [0.051] [0.072] [0.197]

Note: For all specifications from (1) to (8), GDP is the dependent variable. Column 1 shows the result of the simple regression of Aging on GDP. Column 2 shows the
result with an additional regressor, the initial log GDP per worker in 1990. Column 3, in addition, includes the initial demographic information, the ratio of the
population above 50 to those between 20 and 49 in 1990 (denoted by Initial Ratio), and the population in 1990. Column 4 additionally uses dummies for seven regions,
Latin America, East Asia, South Asia, Africa, North Africa and Middle East, Eastern Europe and Central Asia, and Developed Countries. Columns (6), (7) and (8)
report the result for OECD countries using specifications (1), (3) and (5), respectively. Panel A reproduces the results by Acemoglu and Restrepo (2017). For Panel A,
heteroskedasticity robust standard errors are presented in parentheses. Panels B, C, and D present the results by MGLS. Panels B and C show the results where the
conditional error variance functions depend on Aging and Initial Ratio, respectively. Panel D reports the results where the conditional error variance functions depend on
all exogenous variables except the regional dummies. For Columns (1)-(4) and (6)-(7) of Panels B and C, standard errors based on the formula in Theorem 1 are
presented in parentheses, while those based on the formula in Remark 3 are presented in square brackets. For Columns (1)-(4) and (6)-(7) of Panel D, standard errors
based on the formula in Theorem 2 are presented in parentheses, while those based on the formula analogous to Remark 3 are presented in square brackets. For Columns
(5) and (8) of Panels B, C, and D, standard errors are based on the formulae analogous to Remark 3.
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Appendix A. Proof of lemma and theorem in Section 2

Notation. In this section, we use the following notation. For a function f(·), we let ‖f‖∞ =

supx∈X |f(x)| be the sup-norm and ‖f‖2,P =
√

∫

|f(x)|2dP be the L2(P ) norm; given there is

no confusion in the context, we use the same set of notations for a vector a = (a1, . . . , ak)
′: we

let ‖a‖∞ = maxj∈{1,...,k} |ak| be the sup-norm and ‖a‖ =
√

∑k
j=1 a

2
j be the Euclidean norm.

DL
A[f ](a) be the left derivative of the greatest convex minorant of a function f evaluated at

a ∈ A, Pn be the empirical measure of {Yi,Xi, Zi}ni=1, Gn be the empirical process, i.e., Gnf =
1√
n

∑n
i=1{f(Xi) − E[f(Xi)]}, ‖Gn‖F = supf∈F |Gnf |, and IA(x) = I{x ∈ A}. Let τ0(x) =

σ2(x), τ ′0(xL) be the right derivative of τ0 at xL, τ̂(x) = σ̂2(x), W be the support of W :=

(1,X,Z ′)′, F (x) be the distribution function of X, Fn(x) = 1
n

∑n
i=1 I{Xi ≤ x}, and Mn(x) =

1
n

∑n
i=1 Û

2
i I{Xi ≤ x}. For a, b ∈ R, let a∧ b denote min{a, b}, and a . b denote that there exists

a positive constant C such that a ≤ C · b. Let dim(w) be the dimension of a vector w.

A.1. Proof of Lemma 1. Since Ûj = Yj−W ′
j θ̂OLS is the OLS residual, Assumptions A1-A2 and

θ̂OLS− θ = Op(n
−1/2) imply Û2

j −U2
j = Op(n

−1/2 log n) = op(n
−1/3) uniformly over j = 1, . . . , n.

To see this, decompose

Û2
j − U2

j = (Yj −W ′
j θ̂OLS)

2 − (Yj −W ′
jθ)

2

= W ′
j(θ̂OLS + θ) ·W ′

j(θ̂OLS − θ)− 2W ′
jθ ·W ′

j(θ̂OLS − θ)− 2UjW
′
j(θ̂OLS − θ)

=: Ij + IIj + IIIj .

For Ij, note that

Ij = [W ′
j(θ̂OLS − θ)]2 + 2W ′

jθ ·W ′
j(θ̂OLS − θ)

≤ ‖Wj‖2
∥

∥

∥
θ̂OLS − θ

∥

∥

∥

2
+ 2 ‖Wj‖ · ‖θ‖ · ‖Wj‖ ·

∥

∥

∥
θ̂OLS − θ

∥

∥

∥

≤ R2
∥

∥

∥θ̂OLS − θ
∥

∥

∥

2
+ 2R2 ‖θ‖ ·

∥

∥

∥θ̂OLS − θ
∥

∥

∥ = Op(n
−1/2), (A.1)

where R is the constant defined in Assumption A1. The first inequality follows from the Cauchy-

Schwarz inequality, the second inequality follows from ‖Wj‖ ≤ R (by Assumption A1), and

the last equality follows from θ̂OLS − θ = Op(n
−1/2). Note that in the second inequality, the

upper bound no longer depends on the index j, so we have maxj |Ij| = Op(n
−1/2). For IIj ,

using the same reasoning as for the first inequality in (A.1), we have maxj |IIj | = Op(n
−1/2).

Note that here we only consider the second term following the first inequality of (A.1). For

IIIj, the same argument as above yields maxj |W ′
j(θ̂OLS − θ)| = Op(n

−1/2). Furthermore, by

Assumption A2 and a similar argument after equation (7.11) on p.3297 of Balabdaoui, Durot

and Jankowski (2019) (BDJ hereafter), we have max1≤j≤n |U2
j | = Op(log n). By the fact that

max1≤j≤n |Uj | ≤ max1≤j≤n |U2
j — if max1≤j≤n |Uj | ≥ 1, we have

max
1≤j≤n

|Uj | = Op(log n). (A.2)

In the case of max1≤j≤n |Uj | < 1, max1≤j≤n |Uj | = Op(log n) holds trivially. Combining (A.2)

and maxj |W ′
j(θ̂OLS−θ)| = Op(n

−1/2), we have maxj |IIIj | = Op(n
−1/2 log n). Consequently, we
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have

max
j

|Û2
j − U2

j | ≤ max
j

|Ij|+max
j

|IIj |+max
j

|IIIj |

= Op(n
−1/2 log n) = op(n

−1/3). (A.3)

Furthermore, Assumption A3 guarantees q∗n − xL = O(n−1/3) (by an expansion of q∗n =

F−1(n−1/3) for the quantile function F−1(·) of X), and we can define c∗ = limn→∞ n1/3(q∗n −
xL) =

dF−1(q)
dq

∣

∣

∣

q↓0
∈ (0,∞).

Now, we analyze n1/3{τ̂(q∗n) − τ0(xL)}. The term n1/3{τ̂(qn) − τ0(qn)} will be addressed in

the final step of this subsection. Pick any m > 0. Let

Zn1(t) = n2/3[{n−1/3m+ τ0(xL)}Fn(xL + t(q∗n − xL))−Mn(xL + t(q∗n − xL))].

Observe that

P
(

n1/3{τ̂ (q∗n)− τ0(xL)} ≤ m
)

= P

(

arg max
s∈[xL,xU ]

[{n−1/3m+ τ0(xL)}Fn(s)−Mn(s)] ≥ q∗n

)

= P

(

arg max
t∈[0,(xU−xL)/(q∗n−xL)]

n−2/3Zn1(t) ≥ 1

)

, (A.4)

where the first equality follows from the switch relation (see a review by Groeneboom and

Jongbloed, 2014), and the second equality follows from a change of variables s = xL+ t(q∗n−xL)

and its implication, s ≥ q∗n ⇔ t ≥ 1. Let Û(y,w) = y − w′θ̂OLS and

gn,t(y,w) = n1/6{τ0(xL)− Û(y,w)2}I[xL,xL+t(q∗n−xL)](x).

We decompose

Zn1(t) =
√
n(Pn − P )gn,t + n2/3E[{τ0(xL)− Û(Y,W )2}I[xL,xL+t(q∗n−xL)](X)]

+n1/3m{Fn(xL + t(q∗n − xL))− F (xL + t(q∗n − xL))}+ n1/3mF (xL + t(q∗n − xL))

=: Za
n1(t) + Zb

n1(t) + Zc
n1(t) + Zd

n1(t).

Analysis of Za
n1(t). We verify the conditions of van der Vaart (2000, Theorem 19.28). Define

the class of random functions (depending on θ̂OLS):

Gn1 = {gn,t(y,w) = n1/6(τ0(xL)− Û(y,w)2)I[xL,xL+t(q∗n−xL)](x) : t ∈ [0,K]},

for K ∈ (0,∞), where n in the subscript indicates the dependence on both the scaling parameter

n1/6 and θ̂OLS. By van der Vaart (2000, Example 19.6) we know that for a bracket size ǫ, Gn1

has the entropy with bracketing of order log(1/ǫ). Thus, Gn1 satisfies the entropy condition for

van der Vaart (2000, Theorem 19.28).
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For each t, s ∈ [0,K], note that

Cov(gn,t, gn,s) = n1/3E[{Û (Y,W )2 − τ0(xL)}2I[xL,xL+(t∧s)(q∗n−xL)](X)] + op(1)

= n1/3E[{U2 − τ0(xL)}2I[xL,xL+(t∧s)(q∗n−xL)](X)] + op(1)

= n1/3E[[ε2 + {τ0(X)− τ0(xL)}2]I[xL,xL+(t∧s)(q∗n−xL)](X)] + op(1)

= n1/3

∫ xL+(t∧s)(q∗n−xL)

xL

[σ2
ε(x) + {τ0(x)− τ0(xL)}2]fX(x)dx + op(1)

= [σ2
ε(ξn) + {τ0(ξn)− τ0(xL)}2]fX(ξn)c

∗(t ∧ s) + op(1)

= σ2
ε(xL)fX(xL)c

∗(t ∧ s) + op(1), (A.5)

for ξn ∈ (xL, xL + (t ∧ s)q∗n). The first equality follows from q∗n − xL = O(n−1/3). In the second

equality, we replace the estimated Û2 with the unobservable U2. By (A.3), the discrepancy

between Û2 and U2 converges more rapidly than n−1/3, and the factor I[xL,xL+(t∧s)(q∗n−xL)](X)

further refines this rate. Consequently, under Assumptions A1 and A2, the impact of substituting

Û2 with U2 in the second line is op(1). The third equality follows from the definition ε =

U2 − τ0(X) and E[ε|X] = 0, the fourth equality follows from the law of iterated expectations,

the fifth equality follows from a Taylor expansion, and the last equality follows from c∗ =

limn→∞ n1/3(q∗n − xL) and the continuity of σ2
ε(·) and τ0(·) at xL from right. Similarly, we have

Var(gn,t) = σ2
ε(xL)fX(xL)c

∗t+ op(1).

We next consider the envelop function of the class Gn1, that is

Gn1(y,w) = n1/6|τ0(xL)− Û(y,w)2| · I[xL,xL+K(q∗n−xL)](x).

We can see that Gn1 is square integrable since similar arguments to (A.5) yield

E[G2
n1(Y,W )] = n1/3E[|τ0(xL)− Û(Y,W )2| · I[xL,xL+K(q∗n−xL)](X)]

= n1/3E[|τ0(xL)− U2| · I[xL,xL+K(q∗n−xL)](X)] + op(1)

= n1/3E[[ε2 + {τ0(X) − τ0(xL)}2] · I[xL,xL+K(q∗n−xL)](X)] + op(1)

= n1/3

∫ xL+K(q∗n−xL)

xL

[σ2
ε(x) + {τ0(x)− τ0(xL)}2]fX(x)dx+ op(1)

= Op(1), (A.6)

and thus the Lindeberg condition can be verified by Assumption A2: for any ζ > 0 and some

δ > 0,

E[G2
n1I{Gn1 > ζ

√
n}] ≤ n(2+δ)1/6

ζδnδ/2
E[|τ0(xL)− Û(Y,W )2|2+δ · I[xL,xL+K(q∗n−xL)](X)]

=
n(2+δ)1/6

ζδnδ/2
E[|τ0(xL)− U2|2+δ · I[xL,xL+K(q∗n−xL)](X)] + op(1)

= O(n−δ/3) + op(1) = op(1), (A.7)

where the inequality follows from the same arguments that are used in the proof of Markov’s

inequality, the first equality follows from θ̂OLS − θ = Op(n
−1/2) and Assumptions A1-A2, and

the second equality follows from a similar argument to (A.6).
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Furthermore, as δn → 0, we obtain

sup
|t−s|≤δn

E|gn,t − gn,s|2 = n1/3 sup
|t−s|≤δn

E[{Û (Y,W )2 − τ0(xL)}2I[xL,xL+|t−s|q∗n](X)]

= n1/3 sup
|t−s|≤δn

E[[ε2 + {τ0(X) − τ0(xL)}2] · I[xL,xL+|t−s|q∗n](X)] + op(δn)

= Op(δn) = op(1). (A.8)

By (A.5)-(A.8), we can apply van der Vaart (2000, Theorem 19.28), which implies for each

K ∈ (0,∞),

Za
n1(t)

d→
√

σ2
ε(xL)fX(xL)c∗Wt in l∞[0,K]. (A.9)

Analysis of Zb
n1(t). Observe that

Zb
n1(t) = n2/3E[{τ0(xL)− U2}I[xL,xL+t(q∗n−xL)](X)] + n2/3E[(U2 − Û(Y,W )2)I[xL,xL+t(q∗n−xL)](X)]

= n2/3

∫ xL+t(q∗n−xL)

xL

{τ0(xL)− τ0(F
−1(F (x)))}dF (x) + op(1)

= n2/3

∫ F (xL+t(q∗n−xL))

F (xL)
{τ0(xL)− τ0(F

−1(v))}dv + op(1)

= −n2/3

∫ F (xL+t(q∗n−xL))

F (xL)
τ ′0(xL){F−1(v)− F−1(F (xL))}dv + op(1)

= −n2/3

∫ F (xL+t(q∗n−xL))

F (xL)
τ ′0(xL)

v − F (xL)

fX(xL)
dv + op(1)

= −n2/3τ ′0(xL)
{F (xL + t(q∗n − xL))− F (xL)}2

2fX(xL)
+ op(1)

= −τ ′0(xL)
t2(c∗)2

2
fX(xL) + op(1) (A.10)

holds uniformly over t ∈ [0,K], where the second equality follows from E[{U2 − Û(Y,W )2} ·
I[xL,xL+t(q∗n−xL)](X)] = op(n

−2/3), the third equality follows from a change of variables v = F (x),

the fourth equality follows from a Taylor expansion, the fifth equality follows from F−1(v)−xL =
1

fX(xL)
(v − F (xL)) + o(v − F (xL)), the sixth equality follows from evaluating the integral, and

the last equality follows from a Taylor expansion and c∗ = limn→∞ n1/3(q∗n − xL).

Analysis of Zc
n1(t). By Kim and Pollard (1990, Maximal inequality 3.1),

E

[

sup
t∈[0,K]

|Fn(xL + t(q∗n − xL))− F (xL + t(q∗n − xL))|
]

≤ n−1/2J
√

PG2
n

holds for some constant J ∈ (0,∞). Here Gn is the envelope of the set of indicator functions,

thus PG2
n ≤ 1. As a result,

Zc
n1(t) ≤ n1/3n−1/2mJ

√

PG2
n = o(1), (A.11)

uniformly over t ∈ [0,K].

Analysis of Zd
n1(t). A Taylor expansion yields

Zd
n1(t) = n1/3mF (xL + t(q∗n − xL)) = m · t · fX(xL)c

∗ + o(1), (A.12)
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uniformly over t ∈ [0,K], for every K < ∞.

Combining (A.9)-(A.12), it holds that for each 0 < K < ∞,

Zn1(t)
d→ Z1(t) :=

√

σ2
ε(xL)fX(xL)c∗Wt − τ ′0(xL)

t2(c∗)2

2
fX(xL) +m · t · fX(xL)c

∗ in l∞[0,K].

(A.13)

We now verify the conditions of the argmax continuous mapping theorem (Kim and Pollard,

1990). Note that for each t 6= s,

Var(Z1(s)− Z1(t)) = σ2
ε(xL)fX(xL)c

∗|t− s| 6= 0.

By Kim and Pollard (1990), the process t → Z1(t) achieves its maximum a.s. at a unique point.

Consider extended versions of Zn1 and Z1 to the real line:

Z̃n1(t) =







Zn1(t), t ≥ 0

t t < 0
, Z̃1(t) =







Z1(t), t ≥ 0

t t < 0
.

It holds Z̃n1(t)
d→ Z̃1(t), and the similar argument to Lemma SM.2.1 (ii) in Babii and Kumar

(2023) yields that the maximum of Z̃n1(t) is uniformly tight. Therefore, by Kim and Pollard

(1990, Theorem 2.7),

P
(

n1/3{τ̂ (q∗n)− τ0(xL)} ≤ m
)

→ P

([

argmax
t≥0

Z1(t)

]

≥ 1

)

= P

([

argmax
t≥0

√

σ2
ε(xL)

c∗fX(xL)
Wt − τ ′0(xL)

t2c∗

2
+mt

]

≥ 1

)

= P

([

DL
[0,∞)

(
√

σ2
ε(xL)

c∗fX(xL)
Wt + τ ′0(xL)

t2c∗

2

)

(1)

]

≤ m

)

,

where the second equality follows from the switch relation and symmetry of the process Wt.

Thus, we have

n1/3{τ̂ (q∗n)− τ0(xL)} d→ DL
[0,∞)

(
√

σ2
ε(xL)

c∗fX(xL)
Wt + τ ′0(xL)

t2c∗

2

)

(1), (A.14)

which also implies

n1/3{τ̂(q∗n)− τ0(q
∗
n)}

d→ DL
[0,∞)

(
√

σ2
ε(xL)

c∗fX(xL)
Wt + τ ′0(xL)

t2c∗

2

)

(1) − lim
n→∞

n1/3{τ0(q∗n)− τ0(xL)}

d∼ DL
[0,∞)

(
√

σ2
ε(xL)

c∗fX(xL)
Wt + τ ′0(xL)

t2c∗

2
− τ ′0(xL)c

∗t

)

(1), (A.15)

where the distribution relation follows from the fact that the DL
[0,∞) is a linear operator for a

linear function of t.

Finally, we analyze n1/3{τ̂ (qn)−τ0(qn)}. Recall qn is the (n−1/3)-th sample quantile of X. As-

sumption A3 guarantees qn−q∗n = Op(n
−1/2) = op(n

−1/3), which also implies plimn→∞n1/3(qn−
xL) = limn→∞ n1/3(q∗n − xL) = c∗. Thus, the same argument for (A.14) can be applied to show
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that the result in (A.14) holds true even if we replace q∗n with qn. Therefore, the conclusion

follows.

A.2. Proof of Theorem 1. By the definitions of the estimators, it holds that

√
n(θ̂ − θ) =





1

n

∑

i:xi>qn

σ̂−2
i WiW

′
i





−1



1√
n

∑

i:xi>qn

σ̂−2
i WiUi



 ,

√
n(θ̂IGLS − θ) =

(

1

n

n
∑

i=1

σ−2
i WiW

′
i

)−1(

1√
n

n
∑

i=1

σ−2
i WiUi

)

.

Thus it is sufficient for the conclusion to show

T1 :=
1√
n

∑

i:xi>qn

σ̂−2
i WiUi −

1√
n

n
∑

i=1

σ−2
i WiUi

p→ 0,

T2 :=
1

n

∑

i:xi>qn

σ̂−2
i WiW

′
i −

1

n

n
∑

i=1

σ−2
i WiW

′
i

p→ 0.

A.2.1. The concentration of T1. Decompose

T1 =
1√
n

∑

i:xi>qn

(σ̂−2
i − σ−2

i )WiUi −
1√
n

∑

i:xi≤qn

σ−2
i WiUi =: T11 − T12.

We first consider T12. For any h ∈ {1 : dim(W )}, let W h
i and T h

12 be the h-th element of Wi

and T12, respectively. Note that E[T h
12|qn] = 0 by E[U |W ] = 0. Also we have Var(T h

12|qn)
p→ 0.

To see this, decompose

Var(T h
12|qn) = Ih − n · (IIh)2,

where Ih = 1
nE
[

(
∑n

i=1 I{Xi ≤ qn}σ−2
i W h

i Ui

)2
∣

∣

∣
qn

]

and IIh = E[I{Xi ≤ qn}σ−2
i W h

i Ui|qn]. For

Ih, note that

Ih =
1

n
E



E





(

n
∑

i=1

I{Xi ≤ qn}σ−2
i W h

i Ui

)2
∣

∣

∣

∣

∣

∣

W





∣

∣

∣

∣

∣

∣

qn





= E[E[(I{Xi ≤ qn}σ−2
i W h

i Ui)
2|W]|qn] = E[I{X ≤ qn}σ−2(X)(W h)2|qn]

≤ R2σ−2(xL)E[I{X ≤ qn}|qn]
p→ 0,

where W = (W1, . . . ,Wn)
′. The first equality follows from the law of iterated expectation and

the fact that qn is a function of W, the second equality follows from E[U |W ] = 0 and {Ui}ni=1

being iid, the third equality follows because conditional on W, I{Xi ≤ qn}(σ−2
i W h

i )
2 is treated

as fixed, the inequality follows from Assumptions A1 and A2, and the convergence follows from

qn
p→ xL. For IIh, note that

IIh = E[I{Xi ≤ qn}σ−2
i W h

i E[Ui|W]|qn] = 0,

where the first equality follows from the law of iterated expectation and the fact that qn is a

function ofW, and the second equality follows from E[Ui|W] = E[Ui|Wi] = 0. Since E[T h
12|qn] =

0 and Var(T h
12|qn)

p→ 0 hold for every h, we can conclude that T12
p→ 0.
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To proceed, we will utilize Lemma 3 below. Its proof can be found at the end of Appendix

A.2. Recall that earlier in this appendix, we relabel σ2(·) as τ0(·), and τ̂ is used to denote the

isotonic estimator of σ2(·). Additionally, with some abuse of notation, we use wh to denote the

h-th element of vector w.

Lemma 3. Under Assumptions A1-A3,

(i): ‖τ̂‖∞ = Op(log n),

(ii): ‖τ̂ − τ0‖22,P = Op((log n)
2n−2/3),

(iii): E[‖Gn‖Fn
] ≤ Aν

2 holds for any constants A > 0 and ν > 0, and all sufficiently large

n, where Fn is the function class defined as

Fn =











fn(w, u) = I{x > qn}
(

1

τ(x)
− 1

τ0(x)

)

whu :

τ ≥ 0 is monotone increasing on X ,

‖τ‖∞ ≤ C log n, ‖τ − τ0‖22,P ≤ Crn,

I{x > qn}/τ(x) ≤ 1/K0, h ∈ {1 : dim(w)}











,

(A.16)

with C and K0 being some positive constants, and rn = (log n)2n−2/3.

Now we focus on T11. Since the proof is similar, we only present the proof for the h-th element

of T11, i.e., for any constant A > 0,

P{|Gnf̂ | ≥ A} → 0, (A.17)

where f̂(w, u) = I{x > qn}
(

1
τ̂(x) − 1

τ0(x)

)

whu. To this end, we set τ0(xL) = C0 = 2K0 > 0. It

holds that for any A > 0 and ν > 0, there exists a positive constant C such that

P{|Gnf̂ | ≥ A} ≤ P

{

|Gnf̂ | ≥ A, ‖τ̂‖∞ ≤ C log n, ‖τ̂ − τ0‖22,P ≤ Crn,
I{x > qn}

τ̂(x)
≤ 1

K0

}

+
ν

2

≤
E
[

‖Gn‖Fn

]

A
+

ν

2
≤ ν, (A.18)

for all sufficiently large n, where the first inequality follows from Lemma 1 and Lemma 3 (i)-

(ii), and the fact that τ̂ is monotone increasing (so that the lower bound at the truncation

point is the uniform lower bound). Specifically, for any ν > 0, we can find C > 0 and a

positive integer n0 such that for any integer n > n0, it holds that (a) P{‖τ̂‖∞ > C log n} <
ν
6 , (b) P{‖τ̂ − τ0‖22,P > Crn} < ν

6 , and (c) P
{

I{x>qn}
τ̂(x) > 1

K0

}

< ν
6 . Parts (a) and (b) are

ensured by Lemma 3 (i) and (ii), respectively; part (c) is guaranteed by Lemma 1. As a

result, P
(

{‖τ̂‖∞ > C log n} or {‖τ̂ − τ0‖22,P > Crn} or
{

I{x>qn}
τ̂(x) > 1

K0

})

< ν
2 . In the case of

limx↓xL

dσ2(x)
dx = 0, part (c) remains valid since τ̂(x) will converge to τ0 at a faster rate (the

√
n-rate), then the first inequality of (A.18) holds without invoking Lemma 1.

The second inequality of (A.18) follows from Markov’s inequality and the definition of Fn,

which is given by (A.16). The last inequality follows from Lemma 3 (iii). Since ν can be

arbitrarily small, we obtain (A.17) and the conclusion follows.
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A.2.2. Proof of T2 = op(1). Note that

T2 =
1

n

∑

i:xi>qn

σ̂−2
i WiW

′
i −

1

n

n
∑

i=1

σ−2
i WiW

′
i

=
1

n

∑

i:xi>qn

(σ̂−2
i − σ−2

i )WiW
′
i −

1

n

∑

i:xi≤qn

σ−2
i WiW

′
i

=: T21 − T22.

First, we have T22
p→ 0 since qn

p→ xL. For T21, let sn be the (1 − n−1/3)-th sample quan-

tile of {Xi}ni=1. By employing arguments similar to those in the proof of Lemma 1, we have

σ̂2(sn) − σ2(sn) = Op(n
−1/3). Using reasoning akin to, yet simpler than, those in the proof of

Lemma 1, we can establish that for any x ∈ (qn, sn), it holds that σ̂2(x) − σ2(x) = Op(n
−1/3).

Combining the aforementioned results with the monotonicity of both σ̂2(·) and σ2(·), we can

conclude that supx∈[qn,sn] |σ̂2(x)− σ2(x)| = Op(n
−1/3), i.e., σ̂2(x) is uniformly consistent within

trimmed domain [qn, sn] (the proof here resembles the one given for the Glivenko-Cantelli The-

orem regarding the uniform consistency of the empirical distribution function; see, for example,

the proof of Theorem 19.1 in van der Vaart, 2000). Therefore, we have

T21 =
1

n

∑

i:qn<xi<sn

(σ̂−2
i − σ−2

i )WiW
′
i +

1

n

∑

i:xi≥sn

(σ̂−2
i − σ−2

i )WiW
′
i = op(1), (A.19)

where the second equality follows from the preceding argument, |sn − xU | = Op(n
−1/3), and

Lemma 3 (i). Combining T22
p→ 0 and (A.19), we have T2

p→ 0.

A.2.3. Proof of Lemma 3 (i). The min-max formula of the isotonic regression says

min
1≤k≤n

∑k
j=1 Û

2
j

k
≤ τ̂(x) ≤ max

1≤k≤n

∑n
j=k Û

2
j

n− k + 1
,

for each x ∈ X , which implies min1≤j≤n Û
2
j ≤ τ̂(x) ≤ max1≤j≤n Û

2
j for each x ∈ X . Thus, it is

sufficient for the conclusion to show that

max
1≤j≤n

Û2
j = Op(log n). (A.20)

Observe that

max
1≤j≤n

Û2
j ≤ max

1≤j≤n
U2
j + 2Rk||θ̂OLS − θ||∞ max

1≤j≤n
|Uj |+R2k2||θ̂OLS − θ||2∞.

From BDJ (2019, eq. (7.11) on p.3297), Assumption A2 guarantees max1≤j≤n U
2
j = Op(log n).

Since θ̂OLS is the OLS estimator, it holds that ||θ̂OLS − θ||∞ = Op(n
−1/2). By (A.2), we also

have max1≤j≤n |Uj | = Op(log n). Combining these results with Assumption A1, we have (A.20).

A.2.4. Proof of Lemma 3 (ii). The proof is based on that of Proposition 4 of BGH (p.8 of

BGH-supp). Recall that τ̂(·) is the solution of minτ∈{all monotone funcitons}
∑n

j=1{Û2
j − τ(Xj)}2,

or equivalently

max
τ∈{all monotone funcitons}

n
∑

j=1

{2Û2
j τ(Xj)− τ(Xj)}. (A.21)
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On the other hand, τ0(·) is the solution of minτ∈{all monotone funcitons}E[{U2 − τ(X)}2], or equiv-
alently

max
τ∈{all monotone funcitons}

E[2U2τ(X)− τ(X)2]. (A.22)

By (A.21), it holds

n
∑

j=1

{2Û2
j τ̂(Xj)− τ̂ (Xj)

2} ≥
n
∑

j=1

{2Û2
j τ0(Xj)− τ0(Xj)

2},

or equivalently (by plugging in Ûj = Uj −W ′
j(θ̂OLS − θ)),

n
∑

j=1

{2U2
j τ̂(Xj)− τ̂(Xj)

2}+ 2

n
∑

j=1

(

−2UjW
′
j(θ̂OLS − θ) + {W ′

j(θ̂OLS − θ)}2
)

{τ̂(Xj)− τ0(Xj)}

≥
n
∑

j=1

{2U2
j τ0(Xj)− τ0(Xj)

2}. (A.23)

Define d22(τ1, τ2) = −E[2τ1τ2 − τ21 − τ22 ]. Note that for any monotone function τ ,

E[2U2τ(X)− τ(X)2]− E[2U2τ0(X)− τ0(X)2]

= E[2E[U2|X]τ(X) − τ(X)2 − 2E[U2|X]τ0(X) + τ0(X)2]

= E[2τ0(X)τ(X) − τ(X)2 − τ0(X)2] = −d22(τ, τ0), (A.24)

where the first equality follows from the law of iterated expectation, the second equality follows

from the definition τ0(x) = E[U2|X = x], and the last equality follows from the definition of

d22(·, ·).
Define

gτ (u, x) = {2u2τ(x)− τ(x)2} − {2u2τ0(x)− τ0(x)
2},

Rn =
2

n

n
∑

j=1

(

−2UjW
′
j(θ̂OLS − θ) + {W ′

j(θ̂OLS − θ)}2
)

{τ̂ (Xj)− τ0(Xj)}.

From (A.23) and (A.24), it holds
∫

gτ̂ (u, x)d(Pn − P )(u, x) +Rn ≥ d22(τ̂ , τ0). (A.25)

Note that Rn is bounded as

|Rn| ≤

∣

∣

∣

∣

∣

∣

−(θ̂OLS − θ)′
4

n

n
∑

j=1

WjUj{τ̂(Xj)− τ0(Xj)}

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

2

n

n
∑

j=1

{W ′
j(θ̂OLS − θ)}2{τ̂ (Xj)− τ0(Xj)}

∣

∣

∣

∣

∣

∣

.

The second term is of order Op(n
−1 log n) (because θ̂OLS − θ = Op(n

−1/2) and Lemma 3 (i)).

By similar arguments in p.22 of BGH-supp and in the proof of Lemma 3 (i), the first term is of

order Op

(

n−1(log n)2
)

.

Then

Rn = Op

(

n−1(log n)2
)

. (A.26)
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Thus, for some constants C,K > 0 and a shrinking sequence ǫn, set inclusion relationships yield

P (d22(τ̂ , τ0) ≥ ǫ2n) = P

(

d2(τ̂ , τ0) ≥ ǫn,

∫

gτ̂ (u, x)d(Pn − P )(u, x) +Rn ≥ d22(τ̂ , τ0)

)

≤ P

(

d2(τ̂ , τ0) ≥ ǫn, |Rn| ≤ Cn−1(log n)2, ‖τ̂‖∞ ≤ K log n
∫

gτ̂ (u, x)d(Pn − P )(u, x) +Rn − d22(τ̂ , τ0) ≥ 0

)

+P (|Rn| > Cn−1(log n)2) + P (‖τ̂‖∞ > K log n)

=: P1 + P2 + P3,

where the first equality follows from (A.25). For P2 and P3, (A.26) and Lemma 3 (i) imply that

we can choose C and K to make these terms arbitrarily small. Thus, we focus on the first term

P1.

Now let

T = {τ : τ is positive and monotone increasing on X , ‖τ‖∞ ≤ K log n},

G = {gτ (u, x) = {2u2τ(x)− τ(x)2} − {2u2τ0(x)− τ0(x)
2} : τ ∈ T },

Gv = {g ∈ G : d2(τ, τ0) ≤ v}.

Set inclusion relationships and Markov’s inequality yield

P1 ≤ P

(

sup
τ∈T ,d2(τ,τ0)≥ǫn

{
∫

gτ (u, x)d(Pn − P )(u, x)− d22(τ, τ0)} ≥ −Cn−1(log n)2

)

≤
∞
∑

s=0

P

(

sup
τ∈T ,2sǫn≤d2(τ,τ0)≤2s+1ǫn

√
n{
∫

gτ (u, x)d(Pn − P )(u, x)} ≥
√
n
(

22sǫ2n −Cn−1(log n)2
)

)

≤
∞
∑

s=0

P
(

‖Gng‖G
2s+1ǫn

≥
√
n
(

22sǫ2n − Cn−1(log n)2
)

)

≤
∞
∑

s=0

E[‖Gng‖G
2s+1ǫn

]/{
√
n
(

22sǫ2n − Cn−1(log n)2
)

}.

For a sufficiently large constant C̃ > 0, the sequence ǫ2n := C̃(log n)2n− 2

3 dominates Cn−1(log n)2,

so it holds
√
n
(

22sǫ2n − Cn−1(log n)2
)

=
√
n22sǫ2n(1 + o(1)). Therefore, the standard result for

the L2-convergence of the isotonic estimator under Assumption A2 (e.g., pp. 8-11 in BGH-supp)

implies that the last term can be made arbitrarily small by appropriately selecting C̃. Thus,

the proof is concluded.

A.2.5. Proof of Lemma 3 (iii). We show E[‖Gn‖Fn
] ≤ Aν

2 by using van der Vaart and Wellner

(1996, Lemma 3.4.3). First we introduce some notation for this part. Let N[](ε,F , || · ||) be the ε-
bracketing number of the function class F under the norm ||·||, HB(ε,F , ||·||) = logN[](ε,F , ||·||)
be the entropy, Jn(δ,F , || · ||) =

∫ δ
0

√

1 +HB(ε,F , || · ||)dε, and ‖f‖B,P = (2E[e|f | − |f | − 1])1/2

be the Bernstein norm.

Lemma 3.4.3 in van der Vaart and Wellner (1996): Let F be a class of measurable

functions such that ‖f‖2B,P ≤ δ for every f in F . Then

E[‖Gn‖F ] . Jn(δ,F , || · ||B,P ){1 + Jn(δ,F , || · ||B,P )/(
√
nδ2)}.
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To apply this lemma, we need to compute HB(ǫ, F̃n, ‖ · ‖B,P ) and ‖f̃‖2B,P , where F̃n = {f̃ =

D−1f : f ∈ Fn}, the function class Fn is defined below in (A.27), and the constant D > 0 will

be chosen later to guarantee that the Bernstein norm of f̃ is finite. Moreover, let us define the

following function class:

TI,K1
= {τ monotone non-decreasing on the interval I and 0 < τ < K1}.

Assumption A2 implies that there exist positive constants, C and C, such that 0 < C < τ0 <

C < ∞. Also let

Fn =

{

fn(w, u) = I{x > qn}
(

1

τ(x)
− 1

τ0(x)

)

whu :
τ ∈ TX ,K1

, ‖τ − τ0‖22,P ≤ v2,

I{x > qn}/τ(x) ≤ 1/K0, h ∈ {1 : dim(w)}

}

,

(A.27)

where wh is the h-th component of vector w. We set 2K0 = C, K1 = K2 log n, and v =

K3(log n)n
−1/3 for some constants K2,K3 > 0.

Consider ǫ-brackets (τL, τU ) under the L2(P )-norm for the functions in TI,K1
. According to

van der Vaart and Wellner (1996, Theorem 2.7.5), there exists some constant C ′ > 0 such that

HB(ǫ,TX ,K1
, ‖ · ‖2,P ) ≤

C ′K1

ǫ
, for each ǫ ∈ (0,K1). (A.28)

Without loss of generality, we can choose those bracket functions that satisfy I{x > qn}/τL(x) ≤
1/K0.

5 Define

fL(w, u) =







I{x > qn}
(

1
τU (x)

− 1
τ0(x)

)

whu if whu ≥ 0,

I{x > qn}
(

1
τL(x)

− 1
τ0(x)

)

whu if whu < 0,

fU(w, u) =







I{x > qn}
(

1
τL(x)

− 1
τ0(x)

)

whu if whu ≥ 0,

I{x > qn}
(

1
τU (x)

− 1
τ0(x)

)

whu if whu < 0.

Note that (fL, fU ) is a bracket of f ∈ Fn for every qn ∈ [xL, xU ].

Now we compute the bracket size of (f̃L, f̃U ) := (D−1fL,D−1fU) with respect to the Bern-

stein norm. Note that

‖f̃U − f̃L‖2B,P = ‖D−1fU −D−1fL‖2B,P

≤ 2
∞
∑

k=2

1

k!Dk

∫

W ×R

∣

∣

∣

∣

τU (x)− τL(x)

τL(x)τU (x)
whu

∣

∣

∣

∣

k

dP (w, u)

≤ 2

∞
∑

k=2

1

k!Dk

{

Rkk!Mk−2
0 a0(2K1)

k−2

K2k
0

‖τU − τL‖22,P

}

≤ 2a0

(

R

DK2
0

)2 ∞
∑

k=0

(

2RM0K1

DK2
0

)k

ǫ2,

where the first inequality follows from the definition of ‖ · ‖2B,P and I{x > qn} ≤ 1, the second

inequality follows from Assumption A2 (where we can choose a0,M0 > 1) and I{x>qn}
τL(x)

≤ 1
K0

.

5By definition (A.27), the τ (·) associated to Fn must satisfy I{x > qn}/τ (x) ≤ 1/K0. Since TX ,K1
is a class

of monotone increasing function, any ǫ-brackets of TX ,K1
can be modified to be a ǫ-bracket of the “Fn-subset”

of TX ,K1
, satisfying I{x > qn}/τ (x) ≤ 1/K0 by leveling-up certain part of lower bounds functions τL, without

changing the bracket numbers, and the size of each modified bracket can only be smaller.
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Thus, by setting D = 4M0RK1/K
2
0 , we obtain‖f̃U − f̃L‖2B,P ≤ a0

4M2
0
K2

1

ǫ2, which implies

‖f̃U − f̃L‖B,P ≤ K̃ǫ,

for K̃ =
a
1/2
0

2M0K1
. Note that (f̃L, f̃U ) is: (a) a set of brackets in F̃n, (b) one-to-one induced by

(τL, τU ), an ǫ-bracket in TX ,K1
with the entropy HB(ǫ,TX ,K1

, ‖ · ‖2,P ), and (c) ‖f̃U − f̃L‖B,P ≤
K̃ǫ. Based on these facts, (A.28) yields

HB(K̃ǫ, F̃n, ‖ · ‖B,P ) ≤ HB(ǫ,TX ,K1
, ‖ · ‖2,P ) ≤

C ′K1

ǫ
,

which implies (by a change-of-variable argument)

HB(ǫ, F̃n, ‖ · ‖B,P ) ≤
K̃C ′K1

ǫ
=

B̃

ǫ
, for B̃ =

C ′a1/20

2M0
. (A.29)

We now characterize the Bernstein norm of f̃ ,

‖f̃‖2B,P ≤ 2

∞
∑

k=2

1

k!Dk

∫

W ×R

∣

∣

∣

∣

τ(x)− τ0(x)

τ(x)τ0(x)
whu

∣

∣

∣

∣

k

dP (w, u)

≤ 2

∞
∑

k=2

1

k!Dk

{

Rkk!Mk−2
0 a0(2K1)

k−2

K2k
0

‖τ − τ0‖22,P

}

≤ 2a0

(

R

DK2
0

)2 ∞
∑

k=0

(

2RM0K1

DK2
0

)k

v2 ≤ a0
4M2

0

1

K2
1

v2,

where the second inequality follows from I{x>qn}
τ(x) ≤ 1

K0
, and the third inequality follows from

(A.27) and some rearrangements. Then, we have

‖f̃‖B,P ≤ Bv

K1
, for B =

a
1/2
0

2M0
. (A.30)

Combining (A.29) and (A.30), van der Vaart and Wellner (1996, Lemma 3.4.3) implies

E[‖Gn‖F̃n
] . Jn(BK−1

1 v)

(

1 +
Jn(BK−1

1 v)√
nB2v2/K2

1

)

,

where Jn(·) is the abbreviation of Jn(·, F̃n, ‖ · ‖B,P ). By the arguments used in the proof of

Proposition 7.9 of BDJ, it holds

Jn(BK−1
1 v) ≤ BK−1

1 v + 2B̃1/2B1/2K
−1/2
1 v1/2 . B1K

−1/2
1 v1/2,

for some B1 > 0 and sufficiently small v. This implies

E[‖Gn‖F̃n
] . B1K

−1/2
1 v1/2

(

1 +K2
1

B1K
−1/2
1 v1/2√
nB2v2

)

. B1K
−1/2
1 v1/2

(

1 +
B2K

3/2
1√

nv3/2

)

,

for some B2 > 0. By the definition of the class F̃n = {f̃ = D−1f : f ∈ Fn}, it follows that

E[‖Gn‖Fn
] = D·E[‖Gn‖F̃n

] . DB1K
−1/2
1 v1/2

(

1 +
B2K

3/2
1√

nv3/2

)

. B3K
−2
0 K

1/2
1 v1/2

(

1 +
B2K

3/2
1√

nv3/2

)

,
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for some B3 > 0. The conclusion follows by observing that with v = K3(log n)n
−1/3, K1 =

K2 log n, and all sufficiently large n, we have

E[‖Gn‖Fn
] . C3(log n)n

−1/6(1 +C4) .
Aν

2
,

where C3 = B3K
−2
0 K

1/2
2 K

1/2
3 and C4 = B2(K2/K3)

3/2.

Appendix B. Proof of lemma and theorem in Section 3

Notation. To avoid heavy notations, some of them are used in Appendix A but redefined

here. Define τη(a) = E[σ2(X ′η0)|X ′η = a] and τη0(a) = τ0(a) (note that τ0(x
′η0) = σ2(x′η0)).

Let τ̂η = τ̂η(x
′η) be the isotonic estimator obtained by (3.3) for a given η, W be the support of

W := (1,X ′, Z ′)′, Fn(t) =
1
n

∑n
i=1 I{X ′

i η̂ ≤ t}, and Mn(t) =
1
n

∑n
i=1 Û

2
i I{X ′

i η̂ ≤ t}.

B.1. Proof of Lemma 2. The main part of the proof is similar to that of Lemma 1. Recall

that q∗n is the (n−1/3)-th population quantile of (X ′η0) and qn is the (n−1/3)-th sample quantile

of {X ′
i η̂}ni=1 with η̂ estimated by (3.4). To proceed, we use the following lemma:

Lemma 4. Under Assumptions M1-M6, it holds

(i): η̂ − η0 = Op(n
−1/2),

(ii): τη̂(a)− τ0(a) = Op(n
−1/2) for each a, and ‖τη̂ − τ0‖2,P = Op(n

−1/2).

The proof of this lemma is in Appendix B.3. Based on Lemma 4 (i), Assumptions M2-M3,

and properties of the sample quantile, we obtain qn−q∗n = Op(n
−1/2) = op(n

−1/3), which implies

c∗ = limn→∞ n1/3(q∗n − xL) = plimn→∞n1/3(qn − xL) < ∞. By Assumption M2, Lemma 4 (ii),

and similar arguments in Appendix A.1, we have

n1/3{τ̂η̂(qn)− τ0(qn)} = n1/3{τ̂η̂(qn)− τη̂(qn)}+ op(1)

= n1/3[{τ̂η̂(qn)− τη̂(xL)} − {τη̂(qn)− τ0(xL)}] + op(1)

d→ DL
[0,∞)

(
√

σ2
ε(xL)

c∗fX(xL)
Wt + τ ′0(xL)

t2c∗

2

)

(1) − plim
n→∞

n1/3{τ0(qn)− τ0(xL)}

d∼ DL
[0,∞)

(
√

σ2
ε(xL)

c∗fX(xL)
Wt + τ ′0(xL)

t2c∗

2

)

(1) − lim
n→∞

n1/3{τ0(q∗n)− τ0(xL)}

d∼ DL
[0,∞)

(
√

σ2
ε(xL)

c∗fX(xL)
Wt + τ ′0(xL)

t2c∗

2
− τ ′0(xL)c

∗t

)

(1),

where the first and second equalities follow from Lemma 4 (ii), the convergence follows from a

similar argument to (A.15), the first distribution relation follows from Lemma 4 (ii), Assumption

M2(iv), and q∗n− qn = op(n
−1/3), and the second distribution relation follows from the fact that

the DL
[0,∞) is a linear operator for a linear function of t.

B.2. Proof of Theorem 2. Similar to Theorem 1, it is sufficient for the conclusion to prove

the following lemma.

Lemma 5. Under Assumptions M1-M6, it holds
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(i): ‖τ̂η‖∞ = Op(log n) uniformly over η ∈ B(η0, δ0),
(ii): ‖τ̂η̂ − τ0‖22,P = Op((log n)

2n−2/3),

(iii): E
[

‖Gn‖Fn

]

≤ Aν
2 holds for any constants A > 0 and ν > 0, and all sufficiently large

n, where Fn is the function class defined as

Fn =























fn(w, u) = I{x′η > qn}
(

1

τ(x′η)
− 1

τη(x′η)

)

whu :

τ ≥ 0 is monotone increasing on Iη,

‖τ‖∞ ≤ C log n, ‖τ − τη‖22,P ≤ Crn,

I(x′η > qn)/τ(x
′η) ≤ 1/K0,

h ∈ {1 : dim(w)}























,

with C and K0 being some positive constants, and rn = (log n)2n−2/3.

B.2.1. Proof of Lemma 5 (i). The proof is adapted from BDJ (2019, eq. (7.11) on p.3297).

For fixed η, let {Û2
η,i}ni=1 be a permutation of {Û2

j }nj=1, which is arranged according to the

monotonically ordered series {X ′
iη}ni=1. The min-max formula of the isotonic regression says

min
1≤k≤n

∑k
i=1 Û

2
η,i

k
≤ τ̂η(x

′η) ≤ max
1≤k≤n

∑n
i=k Û

2
η,i

n− k + 1
,

for each x ∈ X and η ∈ B(η0, δ0), which implies min1≤j≤n Û
2
j ≤ τ̂η(x

′η) ≤ max1≤j≤n Û
2
j for

each x ∈ X . Thus, it is sufficient for the conclusion to show that

max
1≤j≤n

Û2
j = Op(log n). (B.1)

Observe that

max
1≤j≤n

Û2
j ≤ max

1≤j≤n
U2
j + 2Rk||θ̂OLS − θ||∞ max

1≤j≤n
|Uj |+R2k2||θ̂OLS − θ||2∞,

where k is the dimension of θ. From Lemma 7.1 of BDJ, Assumption M2 guarantees max1≤j≤n U
2
j =

Op(log n). By the same reasoning for the proof of Lemma 3, we have max1≤j≤n |Uj | = Op(log n)

and ||θ̂OLS − θ||∞ = Op(n
−1/2). Thus, we have ‖τ̂η‖∞ = Op(log n). Since different η only

changes the permutation {Û2
η,i}ni=1 but not max1≤j≤n Û

2
j , we have ‖τ̂η‖∞ = Op(log n) uniformly

over η ∈ B(η0, δ0).

B.2.2. Proof of Lemma 5 (ii). The main part of the proof is similar to those of Lemma 3 (ii)

and Proposition 4 of BGH-supp. Define

gη,τ (u, x) = {2u2τ(x′η)− τ(x′η)2} − {2u2τη(x′η)− τη(x
′η)2},

Rn,η =
2

n

n
∑

j=1

(

−2UjWj(θ̂OLS − θ) + {Wj(θ̂OLS − θ)}2
)

{τ̂η(X ′
jη)− τη(X

′
jη)},

d22(τ1, τ2) = −E[2τ1τ2 − τ21 − τ22 ],
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Following reasoning similar to that presented for (A.21)-(A.26), we have for some C and K,

P ( sup
η∈B(η0 ,δ0)

d22(τ̂η, τη) ≥ ǫ2n)

≤ P







supη∈B(η0 ,δ0) d2(τ̂η, τη) ≥ ǫn, supη∈B(η0,δ0) ‖τ̂η‖∞ ≤ K log n,

supη∈B(η0 ,δ0)
∫

gη,τ̂ (u, x)d(Pn − P )(u, x) +Rn,η − d22(τ̂η, τη) ≥ 0,

supη∈B(η0,δ0) |Rn,η| ≤ Cn−1(log n)2







+P (|Rn,η| > Cn−1(log n)2) + P

(

sup
η∈B(η0,δ0)

‖τ̂η‖∞ > K log n

)

=: P1 + P2 + P3.

Lemma 5 (i) implies P3 → 0, and P2 → 0 follows from similar arguments for (A.26). For P1,

we define

T = {τ : τ is positive and monotone increasing function on Iη, ‖τ‖∞ ≤ K log n},

G = {g(x, u) = {2u2τ(x′η)− τ(x′η)2} − {2u2τη(x′η)− τη(x
′η)2} : τ ∈ T },

Gv = {g ∈ G : d2(τ, τη) ≤ v},

for each η ∈ B(η0, δ0). By similar arguments for Lemma 3 (ii) and Proposition 4 of BGH-supp,

we can obtain

P1 ≤
∞
∑

s=0

E
[

‖Gng‖G
2s+1ǫn

]

/{
√
n22sǫ2n − Cn−1/2(log n)2},

and

sup
η∈B(η0,δ0)

∫

{τ̂η(x′η)− τη(x
′η)}2dF (x) = Op((log n)

2n−2/3). (B.2)

By combining (B.2), Lemma 4, and the triangle inequality, we obtain ‖τ̂η̂ − τ0‖22,P = Op((log n)
2n−2/3).

Proof of Lemma 5 (iii). To avoid heavy notation, we use the same notation as in the proof of

Lemma 3 (iii), but some notation is redefined here. Let

TI,K1
= {τ monotone non-decreasing on some interval I and 0 < τ < K1}.

Assumption M2 guarantees 0 < C < τ0 < C < ∞. Similar to the proof of Lemma 3 (iii), we

calculate HB(ǫ, F̃ , ‖ · ‖B,P ) and ‖f̃‖2B,P , with F̃ = {f̃ = D−1f : f ∈ F}, where the constant

D > 0 is determined later. Define I∗η = (aL, aU ) with aL = infx∈X ,η∈B(η0,δ0) x
′η and aU =

supx∈X ,η∈B(η0,δ0) x
′η. Define

Fn =











fn(w, u) = I{x′η > qn}
(

1

τ(x′η)
− 1

τη(x′η)

)

whu :

τ ∈ TI∗η ,K1
, η ∈ B(η0, δ0),

‖τ − τ0‖22,P ≤ v2, h ∈ {1 : dim(w)},
I(x′η > qn)/τ(x) ≤ 1/K0











,

where wh is the h-th component of w. We set 2K0 = C, K1 = K2 log n, and v = K3(log n)n
−1/3

for some positive constants K2 and K3.
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By van der Vaart and Wellner (1996, Theorem 2.7.5), it holds for each ǫ ∈ (0,K1),

HB(ǫ,TI∗η ,K1
, ‖ · ‖P ) ≤

C ′K1

ǫ
.

Similarly to the univariate case, we can choose those bracket functions (τL, τU ), which satisfy

I{x′η > qn}/τL(x′η) ≤ 1/K0. Then, we define

fL(w, u) =







I{x′η > qn}
(

1
τU (x′η)

− 1
τη(x′η)

)

whu if whu ≥ 0,

I{x′η > qn}
(

1
τL(x′η)

− 1
τη(x′η)

)

whu if whu < 0,

fU(w, u) =







I{x′η > qn}
(

1
τL(x′η)

− 1
τη(x′η)

)

whu if whu ≥ 0,

I{x′η > qn}
(

1
τU (x′η)

− 1
τη(x′η)

)

whu if whu < 0.

Note that (fL, fU ) is a bracket for f ∈ Fn. The bracket size is

‖f̃U − f̃L‖2B,P = ‖D−1fU −D−1fL‖2B,P

= 2
∞
∑

k=2

1

k!Dk

∫

W ×R

I{x′η > qn}
∣

∣

∣

∣

(

1

τL(x′η)
− 1

τU (x′η)

)

whu

∣

∣

∣

∣

k

dP (w, u)

≤ 2

∞
∑

k=2

1

k!Dk

{

Rkk!Mk−2
0 a0(2K1)

k−2

K2k
0

‖τU − τL‖2P

}

≤ 2a0

(

R

DK2
0

)2 ∞
∑

k=0

(

2RM0K1

DK2
0

)k

ǫ2,

where the first inequality follows from Assumption M2 (where we can choose a0,M0 > 1) and
I{x′η>qn}
τL(x′η)

≤ 1
K0

. Setting D = 4M0RK1/K
2
0 yields ‖f̃U − f̃L‖B,P ≤ K̃ǫ for K̃ =

a
1/2
0

2M0K1
, and thus

HB(ǫ, F̃ , ‖ · ‖B,P ) ≤
B̃

ǫ
, for B̃ =

C2a
1/2
0

2M0
. (B.3)

Now we compute the Bernstein norm of f̃ :

‖f̃‖2B,P = 2
∞
∑

k=2

1

k!Dk

∫

W ×R

I{x′η > qn}
∣

∣

∣

∣

(

1

τ(x′η)
− 1

τη(x′η)

)

whu

∣

∣

∣

∣

k

dP (w, u)

≤ 2

∞
∑

k=2

1

k!Dk

{

Rkk!Mk−2
0 a0(2K1)

k−2

K2k
0

‖τ − τ0‖2P

}

≤ 2a0

(

R

DK2
0

)2 ∞
∑

k=0

(

2RM0K1

DK2
0

)k

v2 ≤ a0
4M2

0

1

K2
1

v2,

where the first inequality follows from I{x′η>qn}
τ(x′η) ≤ 1

K0
. This implies

‖f̃‖B,P ≤ B
v

K1
, for B =

a
1/2
0

2M0
. (B.4)

Combining (B.3) and (B.4), the remaining steps are the same as those in the proof of Lemma

3 (iii).
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B.3. Proof of Lemma 4. Recall for fixed η, we first obtain τ̂η = argminτ∈M
1
n

∑n
i=1{Û2

i −
τ(X ′

iη)}2 and then obtain η̂ by η̂ = argmin
η

|| 1n
∑n

i=1 X
′
i{Û2

i − τ̂η(X
′
iη)}||2. We denote E[X|X ′η =

x′η] by E[X|x′η]. The proof is similar to the ones in BGH and Balabdaoui and Groeneboom

(2021) except that we need to handle the influence of the estimated dependent variables Û2
i .

The proof of consistency of η̂ is similar to pp.16-17 of BGH-supp. By a similar argument in

Balabdaoui and Groeneboom (2021, Lemma 3.2), under Assumptions M1-M3, we have

1

n

n
∑

i=1

X ′
i{Û2

i − τ̂η(X
′
iη)} =

1

n

n
∑

i=1

(Xi − E[X|X ′
iη]){Û2

i − τη(X
′
iη)}+ op(n

−1/2),

for each η, where we also use (B.2). Thus, it holds
∥

∥

∥

∥

∥

1

n

n
∑

i=1

Xi{Û2
i − τ̂η̂(X

′
i η̂)}

∥

∥

∥

∥

∥

= min
η

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Xi{Û2
i − τ̂η(X

′
iη)}

∥

∥

∥

∥

∥

≤ min
η

∥

∥

∥

∥

∥

1

n

n
∑

i=1

(Xi − E[X|X ′
iη]){Û2

i − τη(X
′
iη)}+ op(n

−1/2)

∥

∥

∥

∥

∥

.

The leading term inside the norm ‖·‖ of the last expression does not depend on the potentially

non-smooth τ̂η; it is a smooth function of η. Thus, under standard conditions for the method of

moments, we have minη

∥

∥

∥

1
n

∑n
i=1(Xi − E[Xi|X ′

iη]){Û2
i − τη(X

′
iη)}

∥

∥

∥
= 0, and

op(n
−1/2) =

1

n

n
∑

i=1

Xi{Û2
i − τ̂η̂(X

′
i η̂)}

=
1

n

n
∑

i=1

(Xi − E[X|X ′
i η̂]){Û2

i − τ̂η̂(X
′
i η̂)}+ op(n

−1/2 + (η̂ − η))

=

∫

(x− E[X|x′η̂]){û2 − τ0(x
′η0)}d(Pn − P )(x, û)

+

∫

(x− E[X|x′η̂]){û2 − τη̂(x
′η̂)}dP (x, û) + op(n

−1/2 + (η̂ − η))

=: I + II + op(n
−1/2 + (η̂ − η)), (B.5)

where the second equality follows from similar arguments to pp.18-20 of BGH-supp and (B.2),

and the third equality follows from a similar argument in pp.21-23 of BGH-supp.

Let Û(w, u) = u− w′(θ̂OLS − θ) and

ê(w, u) := Û(w, u)2 − u2 = −2w′(θ̂OLS − θ)u+ {w′(θ̂OLS − θ)}2. (B.6)

For I, we have

I =

∫

(x−E[X|x′η̂]){u2 + ê(w, u) − τ0(x
′η0)}d(Pn − P )(w, u)

=

∫

(x−E[X|x′η0]){u2 − τ0(x
′η0)}d(Pn − P )(x, u)

+

∫

(x− E[X|x′η̂])ê(w, u)d(Pn − P )(w, u) + op(n
−1/2)

=

∫

(x−E[X|x′η0]){u2 − τ0(x
′η0)}d(Pn − P )(x, u) + op(n

−1/2), (B.7)
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where the second equality follows from p.21 of BGH-supp, and the third equality follows from

the facts that (a) θ̂OLS − θ = Op(n
−1/2), (b) ê(w, u) is a parametric function of w and u in a

changing class indexed by θ̂OLS (see (B.6)), so its ǫ-entropy is of order log(1/ǫ) ≤ 1/ǫ (see, e.g.,

Example 19.7 of van der Vaart and Wellner, 2000), and (c) similar arguments in pp.22-23 of

BGH-supp. By Lemma 17 of BGH-supp we have

τη(x
′η) = τ0(x

′η0) + (η − η0)(x− E[X|X ′η0 = x′η0])τ
′
0(x

′η0) + op(η − η0). (B.8)

For II, observe that

II =

∫

(x− E[X|x′η̂]){u2 − τη̂(x
′η̂)}dP (x, u) +

∫

(x− E[X|x′η̂])ê(w, u)dP (w, u)

=

{
∫

(x− E[X|x′η0])(x− E[X|X ′η0 = x′η0])τ
′
0(x

′η0)dP (x)

}

(η̂ − η0)

+

∫

(x− E[X|x′η̂])ê(w, u)dP (w, u) + op(η̂ − η0)

=

{∫

(x− E[X|x′η0])(x− E[X|x′η0])τ ′0(x′η0)dP (x)

}

(η̂ − η0) +Op(n
−1/2) + op(η̂ − η0)

= B(η̂ − η0) +Op(n
−1/2) + op(η̂ − η0), (B.9)

where the third equality follows from (B.8) and (E[X|x′η̂]−E[X|x′η0])(η̂−η0) = op(η̂−η0), the

fourth equality follows from θ̂OLS − θ = Op(n
−1/2) and the definition of B in Assumption M6.

Combining (B.5), (B.7), and (B.9), we have

η̂− η0 = B−
∫

(x−E[X|x′η0]){u2 − τ0(x
′η0)}d(Pn −P )(x, u) +Op(n

−1/2)+ op(n
−1/2 +(η̂− η)),

where B− is the Moore-Penrose inverse of B (see p.17 of BGH for more details). Therefore,

we have η̂ − η0 = Op(n
−1/2). This result, combined with (B.8) and Assumptions M1 and M2,

implies τη̂(a)− τ0(a) = Op(n
−1/2) and ‖τη̂ − τ0‖2,P = Op(n

−1/2).
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