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Abstract

A principal has a stream of related decisions to make under imperfect information. He

employs a finite group of agents to acquire information at a cost. The principal designs

task allocation and payment schemes to robustly implement all agents engaging in infor-

mation acquisition and truthful reporting. We characterize the optimal joint design of

task allocation and payment scheme, which highlights a trade-off between task assignment

diversification and peer monitoring efficiency. The optimal deterministic design features a

chain structure of peer monitoring. Stochastic task allocation and payment scheme ease

the tension between diversification and monitoring efficiency.
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1 Introduction

Modern organizations face numerous decision problems in their daily operations. Some prob-
lems are similar to each other and thus admit similar solutions, whereas other problems are
more novel and require distinct approaches. Recognizing the heterogeneous similarity among
decision problems is crucial for organizations to efficiently allocate and motivate their limited
personnel resources for gathering decision-relevant information. Nevertheless, to the best of
our knowledge, this aspect remains largely unexplored in the literature. To fill the gap, this
paper offers a model of task allocation and contracting in team information production. The
principal faces many decision problems. The solution to each problem is ex ante uncertain and
correlated. The principal can task each agent to acquire information about one of the problems
and discover its solution. However, there are more problems than agents, and the effort each
agent puts into acquiring information is unobservable. The principal’s design problem consists
of sampling and contracting—i.e., which problems to assign to agents and how to motivate
them to produce high-quality information. We give some examples of this setting below.

Market research. A business owner wants to decide whether to launch an advertising cam-
paign in each market. The returns to advertising are ex ante uncertain and correlated, that is,
similar markets are more likely to have similar returns. The owner hires consultants, each of
whom can investigate one market. The owner then needs to decide which markets to investigate
and how to incentivize consultants to produce high-quality information.

Project evaluation. A granting agency wants to assess a project’s merits across several
attributes. The agency can consult a limited number of reviewers, each possessing unique
expertise in specific attributes. The agency needs to decide how to select reviewers (or attributes
to focus on), incentivize their participation through monetary or non-monetary rewards, and
consolidate their feedback.

Federated learning. A leading hospital wants to train an AI-based image-processing model
for tumor diagnosis. The training requires a large amount of diverse patient data from hospitals
nationwide. However, due to privacy concerns, the data must be processed within the hospi-
tal where the data originated.1 The leading hospital needs to select participating hospitals,

1E.g., German Cancer Consortium’s Joint Imaging Platform consists of 24 research institutes and hospitals
across Germany. It aims at facilitating medical image processing with machine learning methods, while dealing
with challenges of data protection requirements at participating sites. See Rieke et al. (2020) for more examples.
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incentivize them for proper model training, and aggregate the training results.

We study an optimal contracting problem to study such issues. The principal needs to make
decisions on a continuum of locations, each of which is indexed by t ∈ [0, 1]. Each location t

has a binary uncertain state, or its local state, x(t) ∈ {A,B}. The local states are initially
uncertain and correlated: If two locations are closer, the local states are more likely to take the
same value. To capture such a correlation structure, we assume that the state (x(t))t∈[0,1] is a
realized path of a continuous time Markov chain.

To learn about the state, the principal hires n agents. The principal chooses a task
allocation—which specifies the location each agent is assigned to—and a compensation scheme—
which rewards agents based on their reports and the principal’s own information. Specifically,
given a contract, each agent i privately chooses whether to work or shirk, where working is costly
but enables agent i to privately observe the local state of her assigned location, x(ti) ∈ {A,B}.
Each agent then sends a report A or B to the principal. The principal also observes the real-
ized local state x(0) of location 0 at no cost, which captures his pre-existing knowledge. Based
on the reports of the agents and his own signal, the principal pays agents according to the
compensation scheme.

Based on the collected information, the principal chooses action A or B at each location.
The principal incurs a loss whenever the action does not match the corresponding local state.
We call the principal’s loss from this final decision stage an information loss.

The principal chooses a task allocation and a compensation scheme in order to minimize the
sum of the information loss and payments, while robustly implementing work and truth-telling.
That is, the principal designs a contract so that all agents work and report truthfully in a
unique (correlated) rationalizable outcome, or equivalently, as a unique outcome that survives
the iterative elimination of strictly dominated strategies.

We first characterize the task allocation that minimizes the information loss without taking
into account payments to the agents. Such a task allocation maximally diversifies the agents’
locations. The principal learns about the entire set of local states well, including locations that
are further away from the principal’s location (i.e., t = 0) and exhibit high ex ante uncertainty.

We then characterize the robustly optimal contract and show that it has two features. First,
the optimal compensation scheme takes a chain monitoring structure, i.e., it pays each agent a
bonus if and only if her report coincides with the report of her left neighbor. Intuitively, the
agent closest to the principal, say agent 1, will be paid whenever her report coincides with the
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principal’s signal, regardless of other agents’ reports. Thus agent 1 will be the first player who
chooses “work” as a dominant strategy. Conditional on that agent 1 works, the right neighbor of
agent 1, say agent 2, finds it dominant to work. This logic continues and ensures that all agents
work and truthfully report their findings as a unique outcome. While other compensation
schemes could also robustly implement the desired outcome, the chain monitoring structure
does so in the cheapest way.

The robust compensation scheme contrasts with the optimal contract under partial imple-
mentation, which induces all agents to work in an equilibrium. Consistent with the informative-
ness principle, such a contract rewards each agent when her report coincides with the reports of
her left and right neighbors (cf. Holmström (1982)). However, the contract also creates another
equilibrium in which everyone shirks. The robustly optimal contract eliminates such strategic
risk by underusing information for compensating agents.

The second feature of the robustly optimal contract is that, compared to the task allocation
that minimizes information loss, the principal assigns agents closer to each other and closer
to the principal. Such a task allocation renders monitoring more effective: When agents are
assigned to closer locations, the report of each agent i and that of her left neighbor will be more
strongly correlated. Then if agent i shirks, she would face a higher probability of sending an
inconsistent report (and thus losing a bonus) than when her left neighbor is further away. As a
result, the principal can induce effort at a relatively low bonus. However, the principal incurs
large information losses at locations that are further away from the principal location, t = 0.

Finally, the principal benefits from keeping task allocation opaque. Specifically, suppose
that the principal can commit to randomize task allocations and privately reveal a realized
location to each agent. In such a case, the principal can virtually eliminate the trade-off
between maximizing learning and minimizing agency cost. We construct a distribution over
task allocations such that the first-best task allocation is realized with probability close to 1,
but with small probabilities, one of the agents is secretly appointed to monitor another agent.
The principal compensates each agent only when the task allocation differs from the first best,
but each agent, not knowing whether she is monitored by another agent, will exert effort
regardless of the realized task allocation. Such a contract attains the first-best information
loss without sacrificing the effectiveness of monitoring. The result highlights the benefit for the
principal of keeping task allocation uncertain and opaque from the agents’ perspectives.

Contributions. Our paper makes four contributions. First, we introduce a tractable model
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for analyzing task allocation in team information production. The model parsimoniously cap-
tures the rich set of heterogeneous, interdependent tasks. Second, we study a novel trade-off
between information diversification and peer monitoring efficiency. In addition to the standard
underprovision of effort (which we do not study in this paper), the trade-off creates another
distortion in motivating team information acquisition—the misallocation of tasks. Third, we
highlight the importance of leveraging the principal’s existing knowledge in motivating agents
to acquire information. For enhanced monitoring efficiency, the principal should assign agents
to those closely aligned with the areas in which the principal holds information, relative to
the efficient allocation. Finally, we propose a new rationale for maintaining confidentiality
regarding task assignment and compensation.

Related Literature. The paper contributes to several strands of literature. First, we offer a
new model to study task allocation in team production. Since the seminal work by Holmstrom
and Milgrom (1991), there has been intensive discussion on allocating multiple tasks to a
group of agents in team production settings. We recommend Bolton and Dewatripont (2004)
for a comprehensive textbook treatment.2 While the majority of the literature is not about
information acquisition, Bohren and Kravitz (2019) consider a principal who employs agents to
learn the realization of many independent draws. The principal can (i) assign multiple agents
to the same task for peer monitoring and (ii) assign multiple tasks to the same agent and takes
away the rewards from successful tasks if one failure is detected by her peer monitor. In their
model, tasks are independent, so the trade-off between diversification and monitoring efficiency
does not arise.

Second, we introduce task-design to the literature of information acquisition by multiple
agents. To the best of our knowledge, this perspective has been neglected in the existing
literature, with the exception of Bohren and Kravitz (2019) discussed above. Our optimal
contract rewards agreement between agents due to correlated states. This property also arises
in papers that study how to incentivize agents to costly learn some common state, such as
Pesendorfer and Wolinsky (2003), Miller et al. (2005), Gromb and Martimort (2007), Bohren
and Kravitz (2019), and Azrieli (2021, 2022). In contrast to these papers, we consider a principal
who aims to implement information acquisition as a unique outcome. Also, the similarity of

2There is also a literature on task allocation initiated by Garicano (2000). This literature emphasizes the
trade off between knowledge acquisition and communication cost, putting incentive concern aside. Also, papers
in this literature typically assume tasks are unrelated.
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tasks that agents investigate is endogenous. Rewarding consistency of reports also arises in
other settings. For example, in Deb et al. (2018), rewarding consistency is useful for screening
a strategic forecaster who observe signals about some persistent state.

Third, our paper complements the literature on spatial learning. The literature is started
by Jovanovic and Rob (1990) and Callander (2011), who model the state as a realized path
of Brownian motion. These papers use spatial learning to model the set of alternatives in the
trial-and-error process.3 Recent papers model complex decision uncertainty using more general
processes and discuss how it interacts with agency problems. See Bardhi (2022), Bardhi and
Bobkova (2023), and Dong and Mayskaya (2023) for examples. Our paper differs from the above
ones in several aspects. First, these papers model uncertainty as a realized path of a Gaussian
process. In contrast, we consider a simple non-Gaussian setting. Second, these papers exclude
monetary transfers, whereas optimal compensation is an important part of our study. Finally,
none of these papers consider peer monitoring and robust implementation.

By focusing on robust implementation, we join the literature on robust implementation
in teams. Winter (2004) and Halac et al. (2021) derive optimal contracts that induce all
agents to work when the only verifiable information is the entire team’s success. Camboni
and Porcellacchia (2023) show that even when the signal of an individual performance is also
available, the optimal robust contract may not use it because it could introduce undesirable
equilibria. These papers do not consider endogenous task allocation or monitoring structure.
Halac et al. (2023) allow the principal to divide agents into groups, each delivering a signal
of joint performance, but the number of groups is constrained. Cusumano et al. (2023) study
a design of monitoring systems when the number of signals the principal can contract on is
finite. In these papers, the principal directly designs the monitoring structure, which generates
verifiable information about agents’ actions.4 In contrast, the principal in our model determines
the peer monitoring structure through task allocation.

Finally, our paper is related to the literature on random monitoring in team production.
The way in which the principal benefits from a stochastic task allocation is consistent with
papers such as Legros and Matthews (1993), Rahman and Obara (2010), and Rahman (2012).
These papers study contracts that induce some agents occasionally choose suboptimal actions

3Also see Cetemen et al. (2023) for a model of collective search based spatial learning.
4Li and Yang (2020) study the optimal joint design of incentive contract and monitoring technology. They

focus on the trade-off between giving incentives to agents and saving the monitoring cost and apply their analysis
to a team production setting.
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to identify non-deviators.5 The literature also considers informational assumptions under which
the principal can attain (nearly) efficient outcomes (see, e.g., Miller (1997) and Strausz (1999)).
Our work differs from these papers in that we consider robust implementation, and the principal
implements a random monitoring structure through task assignment.

Organization. The rest of the paper is organized as follows. Section 2 describes the model.
Section 3 puts the agency problem aside and derives the principal’s optimal task allocation that
minimizes information loss. Section 4 characterizes the optimal deterministic task allocation
and contracting, and Section 5 allows the principal to assign tasks randomly and privately.
Section 6 concludes.

2 Model

Decision Environment. The principal (“he”) faces a continuum of decision problems under
uncertainty. Each problem is associated with an uncertain state, and the states for similar
problems are more likely to take the same value. We model such a situation as spatial learning:
There is a unit mass of locations t ∈ [0, 1]. A function

x : [0, 1] → {A,B}

is called the state, and x(t) is called the local state of location t. We model the state as a realized
path of a continuous-time Markov chain. Specifically, x(0) is a random draw from {A,B} with
equal probability. At each t ∈ [0, 1], a shock arrives at rate λ > 0, which induces a change in
local state (x(t) ̸= x(t−) ≜ limt′↑t− x(t′)) with probability 0.5. If no shock arrives at t, x(·) is
continuous at t. Under this specification, the distribution of local state x(t) conditional on a
shock at t is independent of other local states.6 Figure 1 presents an example of the realized
state in which x(0) = B and x(t) changes value at t1 and t2. At t3, a shock arrives, but the
transition does not occur.

5Some recent development in principal-agent literature demonstrates that the opacity in incentive scheme
(Ederer et al., 2018) and monitors’ identities (De Janvry et al., 2023) can also mitigate agents’ incentive to
game the system. These papers do not consider moral hazard in team production.

6This independence would fail if the local state deterministically switched upon each shock, i.e., conditional
on a shock at t, x(t) ̸= x(t−) with probability 1. Furthermore, our analysis extends to the case in which (i)
the set of local states is an arbitrary finite set, and upon the arrival of each shock, x(t) is independently and
uniformly drawn from the set, or (ii) when x(t)’s distribution is independent but non-uniform upon the arrival
of each shock.
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x(t)
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A

Figure 1: Illustration of a realized state where A,B are real numbers such that A < B.

The state realization process has several key features. First, the local state of one location
is informative about another, and closer locations are more likely to have the same local state.
To see this, take two locations, t and t′ > t. Their local states differ (i.e., x(t) ̸= x(t′)) if
and only if (i) at least one shock arrives in the interval (t, t′], which occurs with probability∫ t′−t

0
λe−λsds, and (ii) the realized local state at the last shock is different from x(t), which

occurs with probability 1/2. As a result, we have

Pr[x(t) = x(t′)] = 1− 1

2

∫ t′−t

0

λe−λsds =
1

2
+

1

2
e−λ(t′−t). (1)

Thus, probability Pr[x(t) = x(t′)] is greater than 1/2 for any t ≤ t′ and decreasing and convex
in |t′−t|. Second, suppose that the principal observes the local states {x(ti)}i=1,...,m of locations
t1 < t2 < · · · < tm. Then for any j ∈ {1, ...,m− 1} and any location t ∈ [tj, tj+1], we have

Pr
(
x(t) = A|{x(ti)}i=1,...,m

)
= Pr

(
x(t) = A|x(tj), x(tj+1)

)
, (2)

because the state x(·) is a realized path of a Markov process.
For each location, the principal chooses action A or B and incurs a loss whenever the action

does not match the local state. Formally, let

p : [0, 1] → {A,B}

denote a policy of the principal, where p(t) specifies his action for location t ∈ [0, 1]. Given
policy p and state x that are piecewise constant (with at most finitely many jumps), the principal
incurs a loss ∫ 1

0

1(p(t) ̸= x(t))dt,

7



where 1(·) denotes the indicator function.
The principal privately observes the local state x(0) of location 0, but not the rest of the

path. As a result, without additional information, the principal correctly predicts local state
x(t) with probability Pr[x(0) = x(t)]. The probability Pr[x(0) = x(t)] is decreasing in t and λ,
so we can view a decision problem (or a location) with a larger t as less understood or more
novel from the principal’s perspective, and λ as the degree of uncertainty the principal faces.

Agents and Information Acquisition. To learn about the uncertain state, the principal
hires n ∈ N agents (“she”) and assigns each agent i to one location, denoted by ti. Without
loss, we assume that t1 ≤ t2 · · · ≤ tn. The resulting (deterministic) task allocation is7

τ = (t1, ..., tn).

The distance between agent i and her left neighbor (i.e., agent i− 1) is denoted by

∆ti = ti − ti−1,

which captures the task similarity between the two agents. As ∆ti becomes smaller, probability
Pr[x(ti) = x(ti−1)] increases. As a result, the local states that agents i and i− 1 are tasked to
learn are more likely to take the same value.

Given the task allocation, the agents make two choices. First, each agent simultaneously
and privately chooses whether to acquire information (ai = 1) or not (ai = 0). If agent i chooses
ai = 1, she incurs a cost of c and privately observes the local state x(ti) of her assigned location
ti. If agent chooses ai = 0, she incurs no cost but observes a pure noise (say ∅) regardless of the
realized state. Second, each agent simultaneously sends a report x̂i ∈ {A,B} to the principal.
The profile of reports is denoted by

χ = (x̂0, x̂1, ..., x̂n).

To simplify exposition, we include the principal’s signal (i.e., local state x(0)) as a part of a
report profile χ. We abstract away from the principal’s incentive to misreport and assume that
x̂0 = x(0) in any report profile.8 The profile of reports is the only contractible object.

In our model, the realized state is only partially indicative of an agent’s action: Even if
the principal could ex post observe the state and use it to compensate an agent, the principal

7In Section 5, we consider a stochastic task allocation.
8To maintain the principal’s incentive, one would have to introduce money burning as in MacLeod (2003),

making the principal’s payment independent of his report.
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would still be unable to induce ai = 1 at the first-best wage (which is c). Indeed, the agent
can always shirk, randomly report A or B, and secure a probability 0.5 of matching her report
with the true local state. The principal’s inability to observe the state further exacerbates the
agency problem, because the principal has to rely on agents’ reports to compensate them.

The principal commits to a compensation scheme to incentivize agents to acquire information
and truthfully report the local states. Let w(τ, χ) ∈ Rn

+ denote the compensation profile, where
its ith component wi(τ, χ) specifies the payment to agent i when the report profile is χ under
task allocation τ . Agents are risk-neutral and have limited liability, so the payment to each
agent must be nonnegative.9 The principal’s payoff is not contractible. This assumption is
justified when the principal’s payoff is realized after a long time period or unverifiable.

Timing. The timeline of the game is as follows.

1. The principal chooses a task allocation τ and a compensation scheme w.

2. Nature chooses the state x.

3. Agents observe τ and w and then simultaneously choose whether to acquire information
and what to report. The principal observes x(0).

4. The profile of report χ becomes public. Agents receive payment according to the com-
pensation scheme, and the principal chooses a policy p.

Joint Design of Task and Contract. A task allocation τ and a compensation scheme w

together define a simultaneous-move incomplete information game between the agents, denoted
by Γ(τ, w). In this game, the task allocation, compensation scheme, and distribution of states
are common knowledge. Each agent i’s strategy specifies (i) whether to acquire information
(ai ∈ {0, 1}), and (ii) what to report conditional on the outcome of information acquisition
(bi : {∅, A,B} → {A,B}). The principal wishes to robustly implement the profile such that
each agent acquires information and truthfully reports her discovery.

Formally, given a task allocation τ , a contract w robustly implements work and truth-telling
(RIWT) if ai = 1, bi(y) = y,∀y = A,B is the unique outcome of (correlated) rationalizable

9We do not explicitly model an agent’s decision to join the team. But one can assume that the agents’
outside option is 0, which implies that an agent weakly prefers accepting the assigned task and contract and
choosing ai = 0 to taking the outside option.
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profiles (Fudenberg and Tirole, 1991) of game Γ(τ, w).10 Let W(τ) denote the set of RIWT
contracts given task allocation τ . By the standard argument, we have w ∈ W(τ) if and
only if the action profile ai = 1, bi(y) = y,∀y = A,B is the only one that survives iterated
elimination of strictly dominated strategies (IESDS) in game Γ(τ, w). This implementation is
immune to strategic risk and only relies on agents’ rationality and beliefs about their opponents’
rationality, and so on (Bernheim, 1984; Pearce, 1984). It is also stronger than the usual Nash
full implementation, which requires the desired action profile being the unique (Bayes) Nash
equilibrium.11

For each task allocation τ , the optimal contract design problem is formulated as

K(τ) ≜ inf
w∈W(τ)

n∑
i=1

∑
χ

wi(τ, χ) Pr(χ|τ), (P-C)

where Pr(χ|τ) is the probability of a truthful report profile χ ∈ {A,B}n+1 given task allocation
τ . The compensation minimization problem (P-C) generally does not have a minimum. We
call the infimum of the expected compensation, K(τ), as the incentive cost for task allocation
τ .

Task allocation also affects the principal’s decision quality. Fix a task allocation τ , and
suppose that the principal observes the truthful report profile, χ = (x(0), x(t1), ..., x(tn)). We
define the principal’s information loss as

L(τ) ≜
∑
χ

{
min
p

E
[ ∫ 1

0

1(p(s) ̸= x(s))ds
∣∣∣τ, χ]}Pr(χ|τ). (P-I)

Here, the inner expectation operator E[·|τ, χ] denotes the expectation over realized path x(·)
conditional on the profile of truthful reports, χ. The minimization is over the set of admissi-
ble policies that consists of all piecewise-constant functions from [0, 1] to {A,B}. The outer
expectation is taken over truthful report profile χ.

In sum, the principal’s task design problem is

min
τ

L(τ) +K(τ),

10When ai = 0, the off-path report bi(∅) can be arbitrary for the implementation. Hence, we look for a unique
outcome of rationalizable profiles.

11For some pair τ, w, the induced game Γ(τ, w) may have a unique Nash equilibrium but multiple rationalizable
action profiles (Γ(τ, w) is in general not supermodular). In this sense, our implementation criteria is harder to
satisfy than Nash full implementation.
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where for each task allocation τ , K(τ) is the incentive cost in program (P-C), and L(τ) is the
information loss in program (P-I). As we will show, the principal faces a trade-off, because the
task allocation that minimizes information loss L(·) is different from the one that minimizes
incentive cost K(·).

3 Optimal Policy and Information Loss

We first characterize the principal’s optimal policy and task allocation that solve problem (P-I),
temporarily ignoring the agency problem. The problem is reduced to optimal sampling with size
n to minimize the overall error of state estimation. Without incentive concerns, the principal
make agents acquire information at sufficiently distant locations.

Proposition 1. Fix a task allocation τ and a truthful report profile χ, the principal’s optimal
policy is given by

p(t) =


x(0) if t ∈ [0, t1

2
)

x̂(ti) if t ∈ [ ti−1+ti
2

, ti+ti+1

2
), ∀i = 1, 2, ..., n− 1

x̂(tn) if t ∈ [ tn−1+tn
2

, 1]

, (3)

and the corresponding information loss is

L(τ) =
1

2
− 2n+ 1

2λ
+

1

λ

[ n∑
i=1

e−
λ(ti−ti−1)

2 +
1

2
e−λ(1−tn)

]
. (4)

Moreover, the information loss is minimized by the task allocation τ † such that

t†i =
2i

2n+ 1
,∀i = 1, 2, ..., n. (5)

The corresponding information loss is L(τ †) = 1
2
+ 2n+1

2λ

(
e−

λ
2n+1 − 1

)
, which decreases in n and

increases in λ.

We refer to τ † in expression (5) as the efficient or first-best task allocation. We will use τ †

as the benchmark to evaluate the distortion in task allocation due to moral hazard.
We first discuss the optimality of policy (3). Armed with truthful reports χ, the principal

makes perfectly informative decisions at locations t0, t1, ..., tn. At other locations t ̸= ti,∀i, the
principal’s optimal action aligns with the nearest known local state, i.e.,

p(t) = x̂(t∗i ), where t∗i = argmin
ti∈{t1,...,tn}

|t− ti|.

11



That is, each report x̂i establishes a range of illumination, [ ti−1+ti
2

, ti+ti+1

2
]. Within this range,

the principal’s optimal policy is guided by the report x̂(ti). By this policy, the principal’s
decision quality, as measured by the likelihood of matching the local state x(t) with the action
p(t), achieves its maximum at t = ti and diminishes as t diverges from ti. At ti+ti+1

2
, the

principal is indifferent to match his action to x̂i and x̂i+1. Figure 2 depicts the decision quality
at different locations and the corresponding information loss.

t
10 t1 t2

Pr[x(t) = p(t)]

1

1/2

p(t) : x̂0 x̂1 x̂2

Figure 2: Illustrating decision quality under the efficient allocation with n = 2. The brackets correspond to
each report’s illumination range. The solid thick curve corresponds to the principal’s decision quality under the
optimal policy, and the grey area corresponds to the principal’s information loss L(τ) under the optimal policy.

Proposition 1 also says that, without incentive concern, the optimal design ensures ample
diversification in the tasks allocated to agents. Specifically, according to the formula (5), the

ti−1 ti+1ti ti +∆

loss gain

Figure 3: Illustrating the marginal impact of increasing ti on decision quality fox fixed ti−1 and ti+1 when
ti is on the left side of its illumination range. The marginal loss and the marginal gains are the corresponding
areas delineated by four curves.
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efficient task allocation equalizes the illumination range of each report x̂i, i.e., ∀i = 1, .., n− 1,

t†i+1 − t†i = ∆t† ≜
2

2n+ 1
. (6)

To see the intuition, fix ti−1 and ti+1 and consider the principal’s choice of ti. Suppose that
task ti is on the left-side of its illumination range (see Figure 3). The principal can then slightly
move ti to its right and decrease the information loss. Indeed, within the illumination range of
ti, the decision quality on the left side of ti decreases but the decision quality on the right hand
side increases. Because there are more tasks on the right hand side of the illumination range
than the left hand side, the gain is greater than the loss. The symmetric argument holds when
ti is on the right side of its illumination range. As a result, each ti must be in the middle of its
illumination range, and task assignment (6) is the unique one with such a property.

With more agents (larger n), the illumination range of each agent’s report under the effi-
cient task allocation becomes narrower, which increases the principal’s overall decision quality.
As λ increases, the agent’s report becomes less informative about the local states within its
illumination range, which reduces the principal’s overall decision quality.

4 Optimal Task Allocation and Contracting

We now study the optimal joint design of a task allocation and a compensation scheme that
minimize the principal’s total loss.

4.1 Least-Cost Compensation and Incentive Cost

We begin with the principal’s optimal contract design problem (P-C).

Proposition 2. Fix any task allocation τ . For each ϵ ≥ 0, define the compensation scheme wϵ

as follows: For each i = 1, ..., n and report profile χ,

wϵ
i(χ) ≜

2ceλ(ti−ti−1) + ϵ if x̂i = x̂i−1

0 otherwise
. (7)

For any ϵ > 0, compensation scheme wϵ(χ) robustly implements work and truth-telling (RIWT).
The principal’s incentive cost K(τ) coincides with the expected payment under w0(χ), where

K(τ) = c
n∑

i=1

[
1 + eλ(ti−ti−1)

]
. (8)
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Moreover, for any task allocation τ , as the state uncertainty vanishes, we have

lim
λ→0

K(τ) = K† ≜ 2nc. (9)

Finally, K(τ) ≥ K† for any τ . We have K(τ) = K† if τ is such that for each agent i’s
assignment ti > 0, either ti = ti−1 or ti = ti+1.

Proposition 2 has three parts. First, it presents compensation schemes that robustly imple-
ment work and truth-telling. Under compensation scheme wϵ, an agent is paid if and only if her
report is consistent with that of her “left neighbor." Thus the optimal contract induces a moni-
toring chain: agent 1 is monitored by the principal’s report, and other agents are monitored by
their peers. The distance ti − ti−1 between two adjacent agents determines the correlation of
their truthful reports, thus defining the efficiency of peer monitoring. Second, such a compen-
sation scheme is the cheapest way to robustly implement work and truth-telling, in the sense
that the incentive cost is the infimum of the expected payments associated with wϵ across all ϵ.
Third, the result points out two cases in which the principal can perfectly verify whether the
agent’s report matches the true state. One is when the local state never changes (i.e., λ = 0),
in which case we have x(0) = x(ti) for any ti > 0. The other one is when at least two agents
are assigned to each location so that their reports must be perfectly correlated, maximizing the
efficiency of peer monitoring.

The optimal contract in Proposition 2 contrasts with the informativeness principle (Holm-
ström, 1979, 1982): Payment to each agent does not depend on the report of her right neighbor,
although it is a part of the sufficient statistics for the agent’s effort and report (see equation
(2)). The reason is that in contrast to papers such as Holmström (1982), which focus on partial
implementation, we focus on implementation as a unique (correlated) rationalizable profile.

To understand differences between the two approaches, consider two agents. Under partial
implementation—where the principal can pick his favorite equilibrium—the optimal contract
pays agent 1 if and only if x̂0 = x̂1 = x̂2 and agent 2 if and only if x̂1 = x̂2.12 Moreover,
to minimize the expected payment, the principal set payments so that each agent’s incentive-
compatibility constraint holds with equality. However, the induced game between the two agents
also has an equilibrium in which no agent acquires information. Indeed, if agent 1 shirks, the

12The logic follows the standard argument. For each risk-neutral agent, it is optimal to pay her only in
the event that maximizes the likelihood ratio of her information acquisition and truth-telling relative to no
information acquisition, which is the event x̂0 = x̂1 = x̂2 for agent 1 and x̂1 = x̂2 for agent 2.
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probability of x̂1 = x̂2 becomes independent of the effort and report of agent 2, so she will
shirk as well. But if agent 2 shirks, the probability of x̂0 = x̂1 = x̂2 under agent 1’s effort and
truthful reporting decreases, which violates agent 1’s incentive compatibility. The multiplicity
of equilibria given the optimal contract under partial implementation stems from monitoring
externality : One agent’s information acquisition and truth-telling enables the principal to better
evaluate other agents. The optimal contract under partial implementation reflects mutual peer
monitoring. It exploits the monitoring externality well but introduces strategic risk among
agents due to its coordination feature, causing the multiplicity of equilibria.13

The optimal contract in Proposition 2 rules out the mutual peer monitoring to gain strategic
robustness: Agent 1’s pay depends only on her own report and the principal’s, curbing her from
the strategic risk induced by other agents’ choices. Once the incentive of agent 1 is established,
the incentives of agents 2, 3, ..., n’s can be pinned down in a similar manner.14 The optimality of
the monitoring chain suggests a robust informativeness principle. The optimal contract isolates
the signal generating process of {x̂0, ..., x̂i−1} from agent i’s strategic influence, making these
reports a reliable source of information to monitor agent i’s action. Moreover, due to the
Markov property of the state, it is sufficient to compare x̂i with x̂i−1 in determining agent i’s
payment.

The rest of this section offers some intuition behind the optimality of the compensation
scheme in equation (7). We begin with the case of a single agent and then the case of two
agents. The full analysis is in the appendix.

Single-Agent Case. First, suppose that n = 1. For simplicity, we use “work” for the agent’s
choice to acquire information and report truthfully and “shirk” for any strategy that does not
acquire information. The event in which the agent’s report coincides with the principal’s signal
(i.e., x(0) = x̂(t1)) maximizes the likelihood ratio of the agent’s working relative to shirking.
Thus, the optimal contract pays the agent if and only if her report equals the principal’s private
signal.

When the agent works, she incurs a cost c and receives compensation with a probability of
(1+ e−λt1)/2, as indicated by expression (1). Conversely, the agent who shirks will avoid cost c,
provide an uninformed report, and earn the compensation with probability 1/2. Consequently,
the agent will strictly prefer to work (i.e., the contract belongs to W(τ)) if her payment w1

13See Appendix B for the optimal partial-implementation contract in general settings.
14Camboni and Porcellacchia (2023) recognize a similar information-waste result in a super-modular setting

where the principal observes a team performance measure and a signal about each individual’s action.
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given x̂1 = x(0) satisfies the inequality

1

2

(
1 + e−λt1

)
w1 − c >

1

2
w1.

To minimize expected compensation, the principal sets w1 = 2ceλt1 . The agent has the incentive
to work because it increases the probability of matching her report with the principal’s by e−λt1 ,
which is decreasing and convex. As t1 increases, w1 has to increase accordingly to maintain the
agent’s incentive compatibility. As t1 → 0, the payment converges to w1 = 2c rather than 0,
because the agent can always make an uninformed report and secure an expected payoff w1/2.

The expected incentive cost is the sum of the agent’s individually rational payoff w1/2 = ceλt1

and information acquisition cost c, or

K(t1) = c
(
1 + eλt1

)
. (10)

The expected payment is linear in the agent’s information acquisition cost and increases in
t1. The coefficient’s inverse, 1/(1 + eλt1), is called agent i’s (peer) monitoring intensity. The
greater the monitoring intensity, the more closely the agent is monitored, and the less costly it
becomes to induce her effort.

Two-Agent Case. Assume now that n = 2 and t1 ≤ t2. For the desired outcome (i.e.,
both agents work) to be the unique (correlated) rationalizable profile, it has to be the unique
outcome surviving IESDS in the induced game Γ(w, τ). The order of eliminating dominated
strategies leads to two sets of contracts. Each set corresponds to a specific monitoring structure,
as illustrated in Figure 4.

In the first case (i.e., the left panel of Figure 4), the first step of the IESDS procedure
makes it strictly dominant for agent 1 to work. In the second step, the incentive for agent
2 is established. Within this set of contracts, we can determine the optimal compensation
iteratively. In each of these iterations, the principal effectively deals with a single agent at
a time. Specifically, to guarantee that agent 1 finds it strictly dominant to work, agent 1’s
contingent payment should only be based on her own and the principal’s reports. Following the
logic from the single-agent scenario, agent 1 receives payment if and only if x̂(t1) = x(0). To
solidify the incentive for information acquisition, the compensation must exceed 2ceλt1 slightly.

Once agent 1’s incentive is guaranteed, the principal can rely on her report to monitor agent
2. By a parallel argument, to ensure that agent 2 finds it strictly dominant to work (conditional
on agent 1 working), she should be paid if and only if x̂(t2) = x̂(t1) and the payment should be
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0 1 0 1t1 t2 t1 t2

(i) (ii) (ii) (ii)

(i)

Figure 4: The left panel shows the chain monitoring structure in case 1, where the principal’s signal x(0) is
used to monitor agent 1 and agent 1’s report is used to monitor agent 2. The right panel shows the sandwich
monitoring structure in case 2, where the principal’s signal is used to monitor agent 2 and agent 1 is monitored
jointly by the principal’s signal and agent 2’s report. Each arrow points from the monitor to the monitored,
with the associated roman numeral indicating the order of establishing information acquisition and truthful
reporting as a strictly dominant strategy.

marginally above 2ceλ(t2−t1). This case leads to a “chain” monitoring structure. The incentive
cost under this chain monitoring structure is written as:

Kc(t1, t2) ≜ c
∑
i=1,2

[
1 + eλ(ti−ti−1)

]
, (11)

which is the sum of the minimum expected payment to each agent Kc
i (τ) = c[1 + eλ(ti−ti−1)].

Similar to the single-agent case, Kc
i (τ) is linear in c, and the coefficient’s inverse captures the

monitoring intensity for agent i.
In the second case (i.e., the right panel of Figure 4), the IESDS procedure establishes agent

2’s dominance incentive in the first step, paying her if and only if x̂(t2) = x(0). The payment
must be slightly higher than w2 = 2ceλt2 . Thus the incentive cost for agent 2 is c(1 + eλt2).

In the second step, agent 1’s action can be jointly monitored by the principal’s private signal
and agent 2’s report. The optimal contract pays agent 1 if and only if her report matches the
reports of both the principal (her left neighbor) and agent 2 (her right neighbor), i.e.,

x̂(t1) = x(0) = x̂(t2).

In this case, the contract induces a “sandwich” monitoring structure.
To ensure agent 1’s strict incentive to work, the compensation w1, which is paid only when

x(t1) = x(0) = x̂(t2), must satisfy

1

4

(
1 + e−λt1

)(
1 + e−λ(t2−t1)

)
w1 − c >

1

4

(
1 + e−λt2

)
w1. (12)

The left-hand side is agent 1’s expected utility from working. By doing so, she incurs cost c

and receives payment w1 with probability (1 + e−λt1)(1 + e−λ(t2−t1))/4. The right-hand side of
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condition (12) is agent 1’s payoff of shirking. In this case, she avoids incurring the cost and
receives payment w1 if her uninformed report matches the principal and agent 2’s reports. As
in the case of a single agent, inequality (12) gives us the infimum of w1 that induces a strict
incentive to work. The corresponding incentive cost for agent 1 is

c
[
1 +

1 + e−λt2

e−λt1 + e−λ(t2−t1)

]
To sum up, the infimum of the principal’s expected payment under the sandwich monitoring
structure is

Ks(t1, t2) = c
[
1 +

1 + e−λt2

e−λt1 + e−λ(t2−t1)

]
︸ ︷︷ ︸

Ks
1(τ)

+ c
[
1 + eλt2

]
︸ ︷︷ ︸

Ks
2(τ)

, (13)

where agent i’s monitoring intensity c/Ks
i (τ) differs from that under chain monitoring struc-

tures.
The principal’s optimal contract design boils down to the comparison between Kc(t1, t2)

and Ks(t1, t2). In what follows, we argue that the chain monitoring structure attains a lower
incentive cost, i.e.,

Ks(t1, t2) ≥ Kc(t1, t2),∀t1 ≤ t2.

Note that in both cases, fix t2, the expected compensation payment is symmetric in t1; i.e.,

Ki(t, t2) = Ki(t2 − t, t2),∀t ∈ [0, t2/2], i = c, s.

Also, the incentive costs in two cases are identical if t1 = 0 or t1 = t2. We claim that at any
t1 ∈ [0, t2/2), Kc(·, t2) is decreasing and Ks(·, t2) is increasing. We plot Kc and Ks in Figure 5.

First, we differentiate Kc(t1, t2) = c
∑

i=1,2

[
1 + eλ(ti−ti−1)

]
with respect to t1 and obtain

∂Kc

∂t1
= cλeλt1 − cλeλ(t2−t1).

The first term of the left-hand side reflects the marginal impact on agent 1’s expected compen-
sation, and the second term reflects the marginal effect on agent 2’s expected compensation.
As t1 increases, the principal’s report becomes less informative in monitoring agent 1, resulting
in an increase in the incentive cost for agent 1, but agent 1’s truthful report becomes more
informative in monitoring agent 2, resulting in a decrease in the incentive cost for agent 2.
Overall, the total incentive cost decreases because the second effect dominates when t1 < t2/2

due to the convexity of the individual agent’s expected compensation in her distance from her
left neighbor. By symmetry, Kc(·, t2) reaches its minimum at t1 = t2/2.
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t20 t2/2

c(3 + eλt2 )

Ks(·, t2)

Kc(·, t2)

Figure 5: Illustrating expected payment functions Kc(·, t2) (chain monitoring structure) and Ks(·, t2) (sand-
wich monitoring structure).

Now consider the effect of increasing t1 on Ks(·, t2). For a given t2, t1 affects Ks(·, t2) only
through e−λt1 + e−λ(t2−t1), which decreases in t1 whenever t1 < t2 − t1. As a result, Ks(·, t2)
increases in t1 when t1 < t2/2. By symmetry, Ks(·, t2) reaches its maximum at t1 = t2/2. The
intuition is as follows. Agent 1 is paid if only if (i) the principal’s and agent 2’s reports are
identical and (ii) they are aligned with agent 1’s report. The first event occurs with probability
(1 + e−λt2)/2, which is independent of t1. Conditional on the first event, agent 1 is more likely
to be paid if her location is closer to either the principal’s or agent 2’s. Therefore, as t1 moves
from 0 toward t2/2, agent 1’s probability of being paid decreases, and so w1 must increase
accordingly to maintain her incentive compatibility.

In sum, when n = 2, the principal’s incentive cost is K(t1, t2) = Kc(t1, t2) for any t1 ≤ t2. In
the appendix, we extend the above argument to an arbitrary number of agents. To understand
the intuition, consider the example of three agents in Figure 6. Consider a contract (τ, w) such
that the order of IESDS is t2 → t1 → t3, i.e., agent 2 is monitored by the principal’s signal,
agent 1 is monitored by the principal and agent 2’s reports, and agent 3 is monitored by agent
2’s report (the left panel of Figure 6). Notice that the principal, agent 1, and agent 2 form a
local sandwich monitoring structure. The incentive cost can be written as

Ks(t1, t2) + c
[
1 + eλ(t3−t2)

]
,

where the last term is the minimum incentive-compatible expected payment to agent 3. Now,
suppose we “locally” modify the order of IESDS as t1 → t2 → t3. Then the principal, agents 1,
and 2 form a chain monitoring structure (the right panel of Figure 6). The incentive cost is

Kc(t1, t2) + c
[
1 + eλ(t3−t2)

]
.
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Figure 6: Illustrating the optimality of chain monitoring structure when n = 3.

By the previous argument, Kc(t1, t2) ≤ Ks(t1, t2). Because agent 3 is still monitored by agent
2’s signal, agent 3’s expected payment remains the same. As a result, the local modification is
weakly profitable.

In general, whenever the order of IESDS induced by a contract is different from that ot
the chain monitoring structure, we can locally modify the contract to decrease the expected
payments to the agents. As a result, the chain monitoring structure is robustly optimal for any
number of agents.

Remark 1 (Robustness to collusion). The contract in Proposition 2 is susceptible to collusion:
If the agents could privately send cheap-talk messages to each other before sending reports to
the principal, agent 1 would reveal x(t1) to other agents, who will shirk and report x̂i = x(t1)

to the principal. The resulting outcome gives strictly higher payoffs to agents i = 2, ..., n

than the original equilibrium without changing agent 1’s payoff. However, the principal can
prevent this kind of collusion (which does not involve side payments) by modifying each wϵ

i(χ)

as ŵϵ
i(χ) ≜ wϵ

i(χ)−δ1(∃j ̸= i, x̂j = x̂i), i.e., the principal penalizes agent i if her report matches
the report of at least one agent.15 For any δ > 0, no agent is willing to communicate their
report truthfully to other agents.16 Moreover, so long as δ is sufficiently small relative to ϵ,
contract ŵϵ(χ) robustly implements work and truth-telling.

4.2 Optimal (Deterministic) Task Allocation

Propositions 1 and 2 present a tension: On the one hand, the principal wishes to diversify
agents’ tasks to reduce the information loss. On the other hand, the principal wants to assign

15This modification would not prevent collusion with side payments, because the agents can still increase joint
payoffs with the aforementioned information-sharing strategy.

16Formally, if the agents can send cheap-talk messages simultaneously before reporting to the principal, the
only equilibrium of this cheap-talk game would be the babbling equilibrium.
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agents similar tasks to reduce the incentive cost. This trade-off determines the solution to the
principal’s task allocation problem,

min
τ

L(τ) +K(τ),

where the information loss L(τ) is given by equation (4) and the incentive cost K(τ) is given
by equation (8). To state the next result, define the cutoff cost as follows:

c̄ ≜
1− e−λ

2λ
. (14)

Recall that ∆t†i , defined by equation (6), is the distance between any two neighboring agents at
the allocation that minimizes information loss. The following result characterizes the optimal
task allocation.

Proposition 3. Under the optimal task allocation, there is a unique ∆t∗ ∈ [0,∆t†) such that

t∗i − t∗i−1 = ∆t∗, ∀i = 1, 2, ..., n,

with t∗0 = 0. If c ≥ c̄, we have ∆t∗ = 0. If c < c̄, we have ∆t∗ = 2
λ
log x > 0, where x solves

x2(n−1) + 2λeλc =
eλ

x3
. (15)

Finally, ∆t∗ decreases in c and n, but increasing λ has an ambiguous effect on ∆t∗.

Proposition 3 implies that the optimal task allocation equalizes the distance ti−ti−1 between
any two neighboring agents to be ∆t∗. The inequality ∆t∗ < ∆t† means that the agents work on
more similar tasks than under the efficient allocation. Similar tasks generate more correlated
outputs, enabling the principal to monitor the agents more effectively and reduce incentive
costs. Meanwhile, so long as the cost c of information acquisition is below c̄, the principal
assigns agents to different tasks and learns nontrivial information about the state. We call(

n+
1

2

)
∆t∗ =

∆t∗

∆t†
,

the principal’s knowledge frontier. Within the frontier (i.e., t ∈ [0,∆t∗/∆t†]), the principal’s
decision quality is non-monotone, reaching maximum at each agent’s assigned location t∗i and
minimum at the midpoints between adjacent agents’ locations, (t∗i + t∗i−1)/2. However, at any
location t > ∆t∗/∆t†, the decision quality is lower than those within the knowledge frontier.
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To understand the cutoff c̄ defined by (14), note that equations (4) and (8) imply

∂L(0)

∂∆t
+

∂K(0)

∂∆t
= −n

(1− e−λ

2

)
+ ncλ.

The first term is negative and captures the benefit of diversifying the allocation of tasks. The
second term is positive and equals the marginal increase in the incentive cost. If c ≥ c̄, the
second effect dominates, so the principal chooses ∆t∗ = 0 and allocates all the agents to the
same task.

x
0

2λeλc

x2(n−1) + 2λeλc

eλx−3

Figure 7: Illustrating the solution to equation (15). The increasing dashed curve is the left-hand side and the
decreasing solid curve is the right-hand side of equation (15).

Equation (15) corresponds to the principal’s first-order condition with respect to ∆t∗. The
equation typically has no closed-form solution but enables us to establish the comparative
statics in Proposition 3. Figure 7 depicts the left-hand and right-hand sides of equation (15).17

As the cost c of information acquisition falls, the left-hand side (i.e., the dashed curve) shifts
downward, resulting in a larger x and thus ∆t∗. At c = 0, equation (15) has solution x = e

λ
2n+1

and thus ∆t∗ = 2
2n+1

, i.e., the optimal task allocation coincides with the efficient allocation.
Second, as the team size grows (i.e., n increases), the dashed curve becomes steeper, which

results in a smaller x and thus ∆t∗. With a larger team, the principal receives more reports
from the agents and attains a lower information loss. As a result, the principal effectively puts
more weight on saving incentive costs. To do so, he assigns agents to work more closely with
each other for more efficient peer monitoring.

17As we can see from the figure, equation (15) implies ∆t∗ exists and is unique. Indeed, the left-hand side of
the equation strictly increases, whereas the right-hand strictly decreases from +∞ (as x → 0) to 0 (as x → ∞).
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Figure 7 also indicates that increasing λ has an ambiguous effect on ∆t∗ because it shifts
both curves upwardly. Intuitively, increasing λ lowers the correlation between the local states
assigned to agents, making it harder for the principal to monitor the agents. However, increasing
λ also makes it more costly for the principal to deviate from the efficient allocation, because
the local state of one location is less informative about the local state of another location.
Depending on which effect dominates, a higher λ may increase or decrease ∆t∗. One exception
to this ambiguous comparative statics with respect to λ is when the principal hires only one
agent (n = 1): equation (15) implies t∗1 = ∆t∗ = − 2

3λ
ln(e−λ+2λc), i.e., t∗1 decreases as λ grows.

4.3 Discussion

Optimal Team Size. We have assumed that the principal hires an exogenous number of
agents and induces every agent to acquire information. Suppose, instead, that the principal
chooses the number of agents to hire and the action profile to implement. Then we can always
assume that the principal induces all employed agents to acquire information, because inducing
information acquisition by n′ < n agents is equivalent to hiring n′ agents and inducing all of
them to acquire information. The remaining question is how many agents to hire. The cost
of hiring agents is a higher expected payment and the benefit is the reduction of information
loss. Because the maximal information loss is bounded, the principal will optimally hire finitely
many agents. Moreover, Proposition 3 implies that in a larger team, the agents work at closer
locations, increasing the peer monitoring efficiency and lowering the incentive cost per agent.

Optimal Principal’s Location. The benchmark model assumes that the principal observes
the local state of location t0 = 0. We obtain qualitatively the same results even when the
principal can choose which local state x(t0) to observe, so long as the principal can commit
to his location t0. In this case, there is an optimal task allocation τ = (t0, t1, ..., tn) such
that: t0 ≤ t1 ≤ · · · ≤ tn; τ is symmetric around 1/2; and any two neighboring locations
are equidistant.18 Given such a task assignment, the principal adopts the chain monitoring
structure, i.e., each agent i ≥ 2 is monitored by agent i− 1’s signal, and agent 1 is monitored
by the principal’s signal. In particular, it is without loss for the principal to locate at the left of

18For any fixed t0 and tn, ti+1 − ti must be constant across i = 0, ..., n− 1 by the same argument as in Figure
5. The optimal assignment also satisfies t0 = 1− tn; for example, if t0 < 1− tn, then the principal can reduce
the information loss without changing the incentive cost by slightly shifting every ti to the right by the same
amount. Therefore, the optimal τ = (t0, t1, ..., tn) is symmetric around 1/2 and equidistant.
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Figure 8: The left panel shows a monotone optimal task allocation 0 < t∗0 < t∗1 < t∗2 < 1. The right panel
shows a non-monotone optimal task allocation 0 < t∗∗1 < t∗∗0 < t∗∗2 < 1. Each arrow points from the monitor to
the monitored, with the associated roman numeral indicating the order of establishing information acquisition
and truthful reporting as a strictly dominant strategy.

agent 1, because swapping the principal and agent 1’s locations affects neither the incentive cost
nor the information loss. For example, suppose that the principal originally chooses (t∗∗0 , t∗∗1 , t∗∗2 )

with t∗∗1 < t∗∗0 < t∗∗2 (see Figure 8). The corresponding contract compares each agent’s report to
the principal’s signal. However, the principal can attain the same incentive cost and information
loss with (t∗0, t

∗
1, t

∗
2) = (t∗∗1 , t∗∗0 , t∗∗2 ) and the chain monitoring structure.

Imperfect Information Acquisition. Suppose that agents’ effort does not perfectly reveal
the local state. Concretely, suppose that each agent observes a signal si ∈ {A,B} that equals
x(ti) with probability q ∈ (0.5, 1) if she acquires information. The principal also observes
an imperfect signal of x(0) with the same signal structure, and the signals are conditionally
independent. Then the chain monitoring structure is not optimal, because the left neighbor’s
report is no longer a sufficient statistic for all information that efficiently identifies an agent’s
deviation. Instead, the principal should reward an agent when her report matches with all
agents whose dominance incentives have been established in the previous rounds of IESDS.
As a result, it becomes cheaper to induce effort of agents whose dominance incentives are
established in later rounds of IESDS, because their reports are compared with more reports.
For two agents, a variation of the chain monitoring structure is optimal: Each agent’s report
is compared with all information sources located at her left side. The optimal task allocation
satisfies t∗2 − t∗1 > t∗1, i.e., the agents are no longer equi-distant. See Online Appendix C.3 for
the details.

On the Optimality of Chain Monitoring Structure. The optimality of the chain structure
relies on at least two other assumptions. One is that all agents have the same cost of acquiring
information. Otherwise, the optimal monitoring structure can be the sandwich monitoring
structure (see, e.g., Figure 4). For intuition, recall the discussion below Proposition 2 with two
agents: Compared with the chain monitoring, the sandwich monitoring structure saves incentive
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cost for agent 1 but increases incentive cost for agent 2. When agent 1 faces a much higher
information acquisition cost than agent 2, the cost saving outweighs the cost increment, and
the sandwich monitoring structure becomes optimal (see Online Appendix C.1 for the details).

The other assumption is that the set of locations is a line. If we instead consider a circle, the
optimal contract will entail a sandwich monitoring structure: At least, any agent is “sandwiched”
by the principal on the circle. Due to symmetry of the circle, the optimal task allocation is
not unique and the agents’ locations may not be equidistant (see Online Appendix C.2 for the
details).

5 Random Assignment and Transparency

In this section, we show that if each agent privately observes her assigned location, the principal
can randomize task assignment to simultaneously attain the minimal incentive cost and the
first-best information loss.

Private task allocation is ubiquitous in real world. For instance, on crowdsourcing platforms
such as Amazon Mechanical Turk, requestors can assign the same task to multiple workers
without revealing the number of other workers assigned to the same task.19 A faculty member
may hire research assistants from a large pool of students—who do not know each other—and
secretly assign them the same dataset. Private task allocation would also be relevant to a
company hiring external consultants or a granting agency hiring anonymous reviewers, who
have limited opportunities to communicate with each other. In such a situation, the principal
can substantively benefit from keeping task assignment private and uncertain.

Formally, stochastic task allocations are defined as follows:

Definition 1. A (stochastic) task allocation policy is a pair (T, π): T is a finite set of deter-
ministic task allocations; π ∈ ∆(T ) specifies the probability of each allocation being realized.

Recall that τ † = (t†1, ..., t
†
n) and L(τ †) are the first-best task allocation and corresponding

information loss (Proposition 1). The minimal incentive cost under moral hazard is denoted
by K† := 2nc, which arises when the principal can perfectly verify whether each agent’s report
coincides with the local state of her assigned location (Proposition 2).

To highlight the intuition, we begin with the example in which the principal hires one
agent, who does not observe the realized task assignment. For simplicity, we dispense with

19See https://blog.mturk.com/cooking-tip-5-ask-multiple-workers-to-complete-a-hit-ec21c9fc0734.
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robust implementation and assume that the agent breaks ties in favor of the principal. Suppose
that the principal assigns the agent to location t1 = 0 or t1 = t†1 with probability p ∈ (0, 1) or
1 − p, respectively. The compensation w(t1, χ) depends on the realized task allocation t1 and
the report profile χ = (x0, x̂1). The same argument as the proof of Proposition 2 implies that
the principal pays a positive amount only if the agent’s report is aligned with the principal’s
signal x(0) at each realized location. Hence, the principal’s contract design becomes as follows:

min
w(0),w(t†1)≥0

pw(0) + (1− p)
1

2
(1 + e−λt†1)w(t†1) (16)

s.t.
pw(0) + (1− p)

1

2
(1 + e−λt†1)w(t†1)− c ≥ 1

2
[pw(0) + (1− p)w(t†1)], (17)

where w(0) and w(t†1) denote the payments when the realized locations are 0 and t†1, respectively.
The constraint binds at the optimum, and we obtain the following solution:

w∗(0) =
2c

p
, w∗(t†1) = 0. (18)

In other words, the principal rewards the agent only if (i) she is perfectly monitored (t1 = 0),
and (ii) her report matches the true state x(0). Even though the probability of a positive
payment could be small, the compensation w∗(0) is high enough to induce the agent to acquire
information and tell the truth, regardless of the realized task allocation. The resulting expected
payment is 2c, which is the same as when the principal can perfectly verify whether the agent’s
report is aligned with the true local state. Taking p → 0, the principal can implement the
first-best task assignment t†1 with probability approaching 1.

Intuitively, the stochastic task allocation achieves conflicting goals through different realized
assignments: Realization t = t†1 minimizes information loss, while realization t = 0 enforces the
most effective monitoring. Although the principal faces t = t†1 most of the time, he will reward
the agent only when the task realization is t = 0. The agent does not know the realized
task assignment but understands that the probability of t = 0 is small. As a result, in order
to satisfy the agent’s incentive compatibility constraint in expectation, the reward must be
inversely proportional to the probability of t = 0, leading to formula (18).

We now turn to our main setup, in which each agent observes her realized location but not
other agents’ locations. For each p ∈ (0, 1), define task allocation policy (T p, πp) as follows:
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T p = {τ †, τ †1 , ..., τ †n}, and

πp(τ) ≜


1− p if τ = τ †

p
n

if τ = τ †i ≜ {t†1, ..., t
†
n−1, t

†
i}, i = 1, 2, ..., n− 1

p
n

if τ = τ †n ≜ {t†1, ..., t
†
n−2, t

†
n, t

†
n}.

(19)

This task allocation policy assigns all agents to their respective first-best locations, t†1, ..., t†n,
with probability 1 − p. With probability p/n each, the allocation policy chooses τ †i , which
continues to assign agents 1, ..., n− 1 to their first-best locations but now assigns agent n to t†i

so that her report is used to monitor agent i. With the remaining probability p/n, the policy
draws τ †n, which assigns all agents but n − 1 to their first-best locations and agent n − 1 to
t†n, so that agent n − 1’s report can be used to monitor agent n. As a result, when agent
i ∈ {1, ..., n} learns that her own assignment is t†i , she is uncertain whether the realized task
allocation is τ † or τ †i , i.e., whether another agent is assigned to the same location as i. When
agent i ∈ {n − 1, n} is assigned to location t†j ̸= t†i , she knows that she is privately appointed
to monitor agent j and her report will be compared to the principal’s signal.

The following result presents a contract that, combined with the task allocation policy in
(19), robustly implements the desired outcome.

Proposition 4. Suppose that there are n ≥ 2 agents. Assume that each agent observes the
task allocation policy, the compensation scheme, and the realization of her assigned location,
but not the realized locations of other agents. Take any p ∈ (0, 1) and consider a stochastic
task allocation policy (T p, πp) defined by (19). For any ϵ > 0, the following contract robustly
implements work and truth-telling (RIWT): For each agent i = 1, ..., n− 2,

wϵ
i(τ, χ) =

2nc
p

+ ϵ if τ = τ †i , x̂i = x̂n,

0 otherwise;
, (20)

for agent n− 1,

wϵ
n−1(τ, χ) =


2nc
p

+ ϵ if τ = τ †n−1, x̂n−1 = x̂n,

2ceλ(t
†
n−t†n−2) + ϵ if τ = τ †n, x̂n−1 = x̂n−2

0 otherwise;

, (21)
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and for agent n,

wϵ
n(τ, χ) =


2nc
p

+ ϵ if τ = τ †n, x̂n = x̂n−1

2ceλ(t
†
i−t†i−1) + ϵ if τ = τ †i , x̂n = x̂i−1, i < n

0 otherwise.

. (22)

The principal’s incentive cost is K† + p
n
(2ce2λt

†
1 + 2(n − 1)ceλt

†
1 − 2nc), as if he can perfectly

verify whether each agent’s report matches her assigned location state, except for the events in
which he needs to provide strict incentive to the monitor.

Corollary 1. By using the contract described in Proposition 4 and taking (ϵ, p) → (0, 0), the
principal’s total loss can arbitrarily approximate L(τ †) +K†.

Proposition 4 illustrates how the principal separates diversification and incentive provision
using different realizations of task allocation. For example, suppose that agent i < n learns that
she is assigned to her first-best location, t†i . Agent i is uncertain whether agent n is assigned
to the same location. Moreover, agent i is paid only if (i) agent n’s location is t†i (i.e., τ †i is
realized) and (ii) her report is aligned with agent n’s. As in the previous single-agent example,
the combination of probabilistic monitoring and high reward makes agents act as if they are
always monitored. To solve the “who-monitor-the-monitor” problem (Alchian and Demsetz,
1972), whenever agent n is assigned to location t†i with i < n, she is offered a contingent
payment that rewards her only if her report is aligned with x̂i−1. Finally, when the realized
task allocation is τ †n, agent n−1 is assigned to location t†n secretly with probability p/n to verify
whether agent n’s report is aligned with the state. We plot a two-agent case in Figure 9; agent
1 monitors agent 2 in one realized task allocation, and agent 2 monitors agent 1 in another.

For each p ∈ (0, 1) and ϵ > 0, the induced game is dominance solvable. Expression (22)
implies that, if the realized allocation is τ †1 , agent n finds it strictly optimal to work regardless
of what other agents do. Next, agent 1 believes that, with probability p/n, the realized task
allocation is τ †1 and agent n will report x̂n = x(t†1). By expression (20), agent 1 finds it strictly
optimal to work, which, in turn, ensures the incentive of agent n when she is assigned to t†2.
The IESDS argument continues, ensuring the only action profile survives the iterated process
is that all agents acquire information and tell the truth in each realized allocation.

Corollary 1 states that keeping agents’ assignment and compensation privacy in organiza-
tions can be beneficial. However, the contract that approximates L(τ †) +K† will have to pay
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(i)
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(ii)

(i)

Figure 9: The left panel shows the chain monitoring structure when the realized task allocation is τ †1 , where
the principal’s signal is used to monitor agent 2 and agent 2’s report is used to monitor agent 1. The right
panel shows the chain monitoring structure when the realized task allocation is τ †2 , where the principal’s signal
is used to monitor agent 1 and agent 1’s report is used to monitor agent 2. The filled blue circles correspond to
locations assigned to agents, and the filled red circle corresponds to the principal’s location.

an arbitrarily large amount of reward with an arbitrarily small probability. Thus, the extent to
which the principal can take advantage of stochastic and private design depends on unmodeled
components such as the principal’s liquidity constraint and agents’ attitudes towards risks.

6 Conclusion

This paper studies a robust contracting problem in which the principal chooses a task allocation
and a compensation scheme to incentivize agents to acquire information as a unique outcome.
A task allocation plays a dual role—it determines the kind of information the agents generate
and the intensity of peer monitoring each agent faces. Upon designing a contract, the principal
faces the trade-off between information diversification and monitoring efficiency. The resulting
optimal contract entails a new distortion whereby the principal gives up learning about states
that are ex ante novel and less-understood in order to reduce the agency cost. Moreover, to
provide robust incentives, the principal adopts a simple one-sided peer monitoring. When task
allocation can be private, the principal can virtually eliminate this trade-off by adopting a
stochastic task allocation. The result highlights the benefit of confidential task assignment.

A Appendix: Proofs

Proof of Proposition 1. Given τ, χ, the principal’s problem is

min
p

E[
∫ 1

0

1(p(s) ̸= x(s))ds|τ, χ]
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Because the integrand 1(p(s) ̸= x(s)) is bounded at each t, we can ignore the zero-measure
policy shifts and rewrite the problem as pointwise optimization, i.e.,

min
p(t)

E[1(p(t) ̸= x(t))|τ, χ],∀t ∈ T.

Note that E[1(p(t) ̸= x(t))|τ, χ] = Pr(p(t) ̸= x(t)|τ, χ). The principal chooses each p(t) = x̂k

for some k to minimize the pointwise loss. At each t ∈ [ti−1, ti], for some agents i − 1 and i

(consider principal as agent 0)

Pr(x(tj) ̸= x(t)|τ, χ) ≤ Pr(x(tk) ̸= x(t)|τ, χ) ⇐⇒ |t− ti−1| ≤ |t− ti|.

Then the optimal policy p(t) = x̂(t∗i ), where t̂∗i = argmint̃{|t̃ − ti|}ni=0,∀t. Note that p(t) is a
piecewise linear function of t. The information loss is computed as

L(τ) =

∫ t1
2

0

Pr(x̂0 ̸= x(s))ds+
n−1∑
i=2

∫ ti+ti+1
2

ti−1+ti
2

Pr(x̂i−1 ̸= x(s))ds+

∫ 1

tn−1+tn
2

Pr(x̂n−1 ̸= x(s))ds

=
1

2
− 2n+ 1

2λ
+

1

λ

[
n∑

i=1

e−
λ(ti−ti−1)

2 +
1

2
e−λ(1−tn)

]
,

which is strictly convex and symmetric in ∆ti ≡ ti − ti−1,∀i = 1, ..., n. Therefore, it attains a
unique minimum at the symmetric solution ∆t†i =

2
2n+1

,∀i, or

t†i =
2i

2n+ 1
,∀i = 1, 2, ..., n.

Then, we are able to calculate the first-best information loss as

L(τ †) =
1

2
+

2n+ 1

2λ

(
e−

λ
2n+1 − 1

)
.

Denote y† ≡ e−
λ

2n+1 < 1. Using envelope theorem,

∂L(τ †)

∂n
=

1

λ

(
y† − 1

)
< 0 and

∂L(τ †)

∂λ
= −2n+ 1

2λ2

(
y† − 1

)
> 0.

Proof of Proposition 2. For convenience, we say an agent is kth-ranked in dominance order
(indexed by ik) if the agent’s strict dominance incentive to acquire information and truth-report
(“work”) is established in the kth round of IESDS. We say agent ij is strategically risk-free or
ranked higher for agent ik if j < k. Given τ , we proceed in three steps. The first two focus on
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the optimal payment-contingent report profiles: The 1st-ranked agent (agent i1) is paid if and
only if x̂0 = x̂i1 , i.e., her report matches the principal’s; then, agent ik is paid if and only if her
report matches with her nearest strategically risk-free neighbors. The last step shows that the
identity permutation is uniquely optimal among all dominance orders, i.e., tk = tik ,∀k.

Step 1: Agent i1 is paid if and only if x̂0 = x̂i1. The incentive cost minimization is
separable across agents. Since agent i1 find it dominant to work, her wage scheme wi1(χ) solves

inf
wi1

(·)

∑
χ

wi1(χ) Pr(χ|ai1 = 1, a−i1 = 1)

subject to ∑
χ

wi1(χ) Pr(χ|ai1 = 1, a−i1)− c >
∑
χ

wi1(χ) Pr(χ|ai1 = 0, a−i1),∀a−i1 (IC)

The number of IC constraints is the number of permutations of a−i1 ∈ {0, 1}n−1, i.e., 2n−1. In
all IC constraints, we assume x̂i1 = xi1 whenever ai1 = 1, and discuss the incentive of truth-
reporting shortly. To find the contract that attains the infimum incentive cost, we focus on
the limit problem with weak ICs. To satisfy the IC with a−i1 = 0, the payment necessarily
conditions on the report profile x̂0 = x̂i1 , where x̂0 is the principal’s truthful report. It supports
i1’s dominant incentive of truth-reporting conditioned on acquiring information. We claim
x̂0 = x̂i1 is also sufficient for paying agent i1, so that the other agents’ reports are irrelevant
for her compensation. Then agent i1’s contract is pinned down as if there were only one agent,
and the infimum of the optimal wage is

w0
i1
(χ) =

2ceλti1 , if x̂0 = x̂i1

0, otherwise

solved by the binding (IC) for the one-agent problem. The incentive cost for i1 is then

Ki1(τ) =
∑
χ

w0
i1
(χ) Pr(χ|ak = 1,∀k) = c(1 + eλti1 ).

To see w0
i1

is indeed the optimal wage scheme, suppose agent i1’s contract conditions on x̂j,
for some agent j. All possible payment-contingent report profiles can be divided into two
categories: 1) x̂j = x̂i1 ; 2) x̂j ̸= x̂i1 . In both cases, only j’s action affects the probability of
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payment-contingent report profiles of i1, so the relevant ICs reduce to∑
χ

wi1(χ) Pr(χ|ai1 = 1, aj = 1)− c ≥
∑
χ

wi1(χ) Pr(χ|ai1 = 0, aj = 1) (IC1)∑
χ

wi1(χ) Pr(χ|ai1 = 1, aj = 0)− c ≥
∑
χ

wi1(χ) Pr(χ|ai1 = 0, aj = 0) (IC0)

Suppose first that x̂j = x̂i1 is a condition of the payment-contingent report profiles. Without
loss, suppose agent j reports truthfully upon acquiring information. (IC0) implies a lower bound
for the wage: wi1(x̂0 = x̂j = x̂i1) ≥ c/(1

2
(1 + e−λti1 ) · 1

2
− 1

2
· 1
2
) = 4ceλti1 , incurring an expected

compensation of 4ceλti1 · Pr(x̂0 = x̂j = x̂i1 |ai1 = 1, aj = 1) = c(1 + eλti1 )(1 + e−λ(tj−ti1 )) >

Ki1(τ). Therefore, adding x̂j = x̂i1 into agent i1’s contract increases cost while satisfying
(IC0). Similarly, conditioning on x̂j ̸= x̂i1 increases cost while satisfying (IC1). Adding more
agents’ report profiles into the contract of i1 increases cost in the same manner. Generally, if
the payment-contingent profiles depend on x̂i1 ̸= x̂j (resp. x̂i1 = x̂j), the constraint involving
aj = 1 (resp. aj = 0) requires a cost increase.

Step 2: Agent ik is paid if and only if x̂ik matches the reports of her nearest

neighbors who are strategically risk-free. This is a generalization of Step 1. One could
regard the principal as “agent i0” ranked primarily in the dominance order. Agent i1 is paid
if and only if x̂i1 = x̂0, since the principal is the only “agent” that is strategically risk-free for
agent i1. Now, consider agent ik for a generic k, whose wage scheme is a solution to a problem
identical to agent i1’s, except that there are only 2n−k constraints, for k−1 strategies have been
eliminated in IESDS. Agent ik may have strategically risk-free neighbors on both “left side” and
“right side” (i.e., ∃tij , tim s.t. tij ≤ tik ≤ tim and j,m < k), or only on the “left side” (i.e., ̸ ∃m
s.t. m < k and tim > tik). In the latter case, agent ik is paid if and only if her report matches
the nearest left side risk-free neighbor, say ij, leading to the infimum of the optimal wage

w0
ik
(χ) =

2ceλ(tik−tij ), if x̂ij = x̂ik

0, otherwise

and incentive cost Kik(τ) = c(1 + eλ(tik−tij )). Using the same logic as in Step 1, the wage
scheme does not condition on lower-ranked agents’ reports. As a result, at least n− k agents’
reports are excluded in agent ik’s contract. Now what remains to show is the rationale to only
condition on the nearest risk-free neighbor. Note that the agent’s compensation is a solution
to a linear programming with 2n−k constraints, leading to at most 2n−k payment-contingent
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report profiles for agent ik, which implies excludes at most n − k agents’ reports from ik’s
contract. Combining the arguments, agent ik’s contract is contingent on exactly k agents’
reports, i.e., agent ik’s report should be compared with all k agents whose dominance incentive
has been established before round k. However, the principal can further simplify the contract by
conditioning only on the nearest risk-free neighbors’ reports, which are the sufficient statistics
for all informative reports. To illustrate, suppose agent ik is paid if and only if x̂0 = x̂ij = x̂ik .
The principal serves as the risk-free “agent” who is not the nearest neighbor to agent ik. Then
the expected compensation is P (x̂0 = x̂ij = x̂ik |a = 1)·4ceλ(tik−tij )/(1+e−λtj) = c(1+eλ(tik−tij )),
which is the same as Kik(τ). When ik has nearest risk-free neighbors on both sides, the same
logic follows through. We now characterize the optimal contract. Denote the nearest risk-free
neighbors of ik to be ij and im, respectively. Then the relevant IC is∑

χ∈X

wik(χ)[Pr(χ|aij = 1, aik = 1, aim = 1)− Pr(χ|aij = 1, aik = 0, aim = 1)] ≥ c

where X is the set of all combinations of the informative report profiles: (x̂ij , x̂ik , x̂im). The
problem boils down to finding the report profiles that maximizes the likelihood ratio Pr(·|aik =

1)/Pr(·|aik = 0), and the profile is x̂ij = x̂ik = x̂im . Both ij and im have dominance incentive to
work, which ensures ik’s dominance incentive to truthfully report upon acquiring information.
The binding IC implies

w0
ik
(χ) =


4c

e
−λ(tik

−tij
)
+e

−λ(tim−tik
)

if x̂ij = x̂ik = x̂im

0 otherwise

and the corresponding incentive cost is

Kik(τ) =
1

4
(1+e−λ(tik−tij ))(1+e−λ(tim−tik ))·w0

ik
(x̂ij = x̂ik = x̂im) = c

[
1 +

1 + e−λ(tim−tij )

e−λ(tik−tij ) + e−λ(tim−tik )

]
.

Step 3: The identity permutation is optimal for dominance order. Given the task
allocation τ , we are to show that the identity permutation (placing agent k as kth-ranked) is
the optimal dominance order. Starting from n = 2, there are only two permutations: agent 1

is 1st-ranked (“chain monitoring”) or 2nd-ranked (“sandwich monitoring”). The incentive cost
under the two monitoring structures are respectively:

Kc(t1, t2) = c[1 + eλt1 ] + c[1 + eλ(t2−t1)], Ks(t1, t2) = c[1 + eλt2 ] + c
[
1 +

1 + e−λt2

e−λt1 + e−λ(t2−t1)

]
.
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The two incentive costs are the same when t1 = 0, t2 > 0. Moreover, with fixed t2, Ks increases
as the distances among agents become more symmetric, driven by the denominator of the
second term, while Kc decreases. Thus Ks(t1, t2) ≥ Ks(0, t2) = Kc(0, t2) ≥ Ks(t1, t2),∀t1, t2.
Therefore, chain monitoring always dominates sandwich monitoring in cost efficiency.

To apply the logic to n ≥ 3 agents, we need to identify agent i1, who is 1st-ranked in the
dominance order. Call the monitoring regime to be Mc,n “the general chain monitoring” if
i1 = 1, to be Ms,n “the general sandwich monitoring” if i1 = n. Consider the case that i1 = n.
Similar to n = 2, we obtain Ks,n(τ) ≥ Ks,n(tn, τ−n = 0) = Kc,n(tn, τ−n = 0) ≥ Kc,n(τ),∀τ ,
which implies that Ms,n is dominated by Mc,n. The inequalities on both sides are established
by increasing ∆tk ≡ tk − tk−1 in the dominance order. E.g., starting from any tn > 0, τ−n = 0,
an increase in ∆ti2 reduces Kc,n but increases Ks,n; then, fixing any ∆tn > 0,∆ti2 > 0 and all
other ∆tk = 0, an increase in ∆ti3 reduces Kc,n but increases Ks,n further. This process goes
on until all possible τ are enumerated. If i1 < n, we can split the agents into two parts: for
k ≤ i1, we are back to Ms,i1 , and Mc,i1 is better; for k ≥ i1, the best monitoring structure is
again Mc,n−i1+1. Hence, Mc,n is dominant for any n.

As a final remark, it is without loss to study the IESDS that only removes one agent’s
strategy in each step. To see this, suppose both agent k1’s and k2’s dominant incentive is
established (where k1 < k2) in some round k. Consider a “local improvement:” remove k2’s
strategy at round k + 1 instead of round k, and also postpone by one round for the strategy
removal of all other agents after round k. There are two cases. If some strategically risk-free
agent is located between k1 and k2, then the incentive cost remains unchanged. Otherwise, the
local improvement is strict because k2 is more closely monitored (by k1 and her right neighbor).
Hence, removing multiple agents’ strategies in one round of IESDS may waste monitoring power.

In conclusion, (7) robustly implements work and truth-telling, for all ϵ > 0.

Proof of Proposition 3. Thanks to Proposition 1 and 2, the task allocation problem is

min
τ

1

2
− 2n+ 1

2λ
+

1

λ

[
n∑

i=1

e−
λ∆ti

2 +
1

2
e−λ(1−

∑n
i=1 ∆ti)

]
+ c

n∑
i=1

[1 + eλ∆ti ]

which is strictly convex and symmetric in the choice variables ∆ti, ∀i. Therefore, the objective
attains minimum at the unique symmetric solution to the first-order conditions

x2(n−1) + 2λeλc =
eλ

x3
.
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where x ≡ e
λ∆t∗

2 ≥ 1,, ∆t∗ = ∆ti. Implicitly differentiating the optimal condition with respect
to c and n, we find that ∆t∗ decreases in c and n when it is interior. However, the above
characterization ignores the primal constraints τ ∈ {(t1, ..., tn) ∈ Rn

+ : t1 ≤ ... ≤ tn}. At the
boundary, ∆t∗ = 0 implies c = 1−e−λ

2λ
≡ c̄. To sum up, if c ≥ c̄, ∆t∗ = 0. If c < c̄∗, the solution

is interior satisfying the above optimal condition, with ∆t∗ = 2
λ
log x > 0.

Proof of Proposition 4. For agent i with i = 1, 2, ..., n− 2, her incentive cost is determined by
the following linear programming.

inf
wi(τ

†
i ),wi(τ ̸=τ†i )

p

n
wi(τ

†
i ) +

(
1− p

n

) 1

2
(1 + e−λ(ti−ti−1))wi(τ ̸= τ †i )

subject to

p

n
wi(τ

†
i ) +

(
1− p

n

) 1

2
(1 + e−λ(ti−ti−1))wi(τ ̸= τ †i )− c >

p

n
· 1
2
wi(τ

†
i ) +

(
1− p

n

) 1

2
wi(τ ̸= τ †i )

which leads to (20). In this construction, agent 1’s dominance incentive is established in the
second round of IESDS20, after agent n with τ †1 . Moreover, each agent i’s dominance incentive is
established in the 2i-th round, immediately after agent n with τ †i , for all i = 2, ..., n− 2. Agent
n − 1 has two private types, the “monitor” type (when τ = τ †n) and the “worker” type (when
τ ̸= τ †n). By construction, when τ †n is realized, agent n’s dominance incentive is established
after n − 1. Therefore, the monitor-type agent n − 1 has a simple incentive cost under chain
monitoring, and gets paid if and only if x̂n−1 = x̂n−2 despite being located at tn. The worker-
type agent n− 1 has the same incentive cost as agent i = 1, 2, ..., n− 2. Combining both types,
agent n − 1’s wage scheme satisfies (21). Finally, agent n has n − 1 (private) monitor types
(when τ ̸= τ †n) and one worker type (when τ = τ †n). In each monitor type with τ = τ †i , agent
n is paid if and only if her report matches with agent i − 1, whose dominance incentive is
established one round before. Particularly, in the monitor type with τ = τ †1 , agent n’s report
matches with the principal, establishing her dominance incentive in the first round of IESDS.
In the worker type, agent n has the same incentive cost as agent i = 1, 2, ..., n− 2. Combining
all types, agent n’s wage scheme satisfies (22). Thus, the total expected incentive cost is

lim
ϵ→0

n∑
i=1

p

n
·(2nc

p
+ϵ)−2pc+

p

n
·[2ce2λt

†
1+ϵ]+

n− 1

n
p·[2ceλt

†
1+ϵ] = K†+

p

n
(2ce2λt

†
1+2(n−1)ceλt

†
1−2nc)

The expression involving t†1 follows from t†1 = t†i − t†i−1, ∀i.
20We consider the agent normal form in the IESDS process, i.e., different types of an agent are treated as

many agents.
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Proof of Corollary 1. The result follows directly from Proposition 4 by setting p ≈ 0.

B Appendix: Partial-Implementation Contract

This section characterizes the incentive scheme under partial implementation, i.e., inducing all
agents to work as a Nash equilibrium. The partial-implementation contract design problem is

min
{wi(χ)}ni=1

n∑
i=1

[∑
χ

wi(χ) Pr(χ|ai = 1, a−i = 1)
]

subject to∑
χ

wi(χ) Pr(χ|ai = 1, a−i = 1)− c ≥
∑
χ

wi(χ) Pr(χ|ai = 0, a−i = 1) (P-IC)

for each i = 1, ..., n. Constraint (P-IC) requires agent i has the incentive to acquire information
and report truthfully if others will do so. Let

Ks
i (ti−1, ti, ti+1) ≡ c

[
1 +

1 + e−λ(ti+1−ti−1)

e−λ(ti−ti−1) + e−λ(ti+1−ti)

]
be the incentive cost of agent i sandwiched by her neighbors. Denote Ks

n(tn−1, tn) ≡ c(1 +

eλ(tn−tn−1)) be the incentive cost of agent n.

Proposition B.1. Fix a task allocation τ and n ≥ 2, the incentive cost under partial imple-
mentation (with mutual monitoring) is

KPI(τ) ≡
n−1∑
i=1

Ks
i (ti−1, ti, ti+1) +Ks

n(tn−1, tn), (23)

attained by setting

wj(χ) =


4c

e−λ(tj−tj−1)+e−λ(tj+1−tj)
if x̂j−1 = x̂j = x̂j+1

0, otherwise
,

for j = 1, 2, ..., n− 1, and

wn(χ) =

2ceλ(tn−tn−1) if x̂n−1 = x̂n

0, otherwise
.
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Under the optimal partial-implementation contract, each agent i < n is monitored by her
left and right neighbors’ reports and agent n is monitored by her left neighbor’s report. Recall
by the informativeness principle, an agent’s payment should only be contingent on sufficient
statistics, which is the truthful reports of her immediate neighbors. As a result, the optimal
payment of each agent makes her indifferent to follow the desirable action (acquire information
and tell the truth) given other agents do so. The result immediately follows.

C Supplementary Material

C.1 Heterogeneous Costs of Information Acquisition

The optimal monitoring structure will change when agents have different costs of information
acquisition. To illustrate this point, we assume that there are two agents, where one agent has
cost cH and the other agent has cost cL ∈ (0, cH). The principal’s task allocation specifies (i)
the locations of two tasks, τ = (t1, t2) with t1 ≤ t2 and (ii) a who-does-what choice, i.e.,

c ≜ (c1, c2) ∈ {(cL, cH), (cH , cL)}.

Here, ci denotes the cost of the agent assigned to location ti. For example, c = (cH , cL) means
that the high-cost agent works on task t1, which is closer to the principal.

The principal’s problem is to choose a task allocation (τ, c) to minimize his total loss, i.e.,

min
τ,c

L(τ) +K(τ, c).

For each (τ, c), information loss L(τ) is still given by equation (4), but the incentive cost is

K(τ, c) = min{Kc(τ, c), Ks(τ, c)},

where

Kc(τ, c) =
∑
i=1,2

ci
[
1 + eλ(ti−ti−1)

]
and,

Ks(τ, c) = c1[1 + eλt2 ] + c2

[
1 +

1 + e−λt2

e−λt1 + e−λ(t2−t1)

]
,

correspond to the incentives cost under the chain and sandwich monitoring structures, respec-
tively (recall Figure 4).

To proceed further, we first prove that the principal can without loss of generality focus on
task allocation such that the high-cost agent works on a task closer to the principal’s location.
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Lemma C.1. The principal finds it weakly optimal to set c = c∗ = (cH , cL), i.e.,

min
τ

L(τ) +K(τ, (cH , cL)) ≥ min
τ

L(τ) +K(τ, (cL, cH)).

Moreover, the high-cost agent is more closely monitored than the low-cost agent in the sense of
monitoring intensity, i.e.,

cH

K1(τ)
≥ cL

K2(τ)
,∀τ.

Proof of Lemma C.1. We show that it is always weakly optimal to set c∗ for each monitoring
structure. Fix the chain monitoring structure, and fix any task allocation τ = (t1, t2). Suppose
the arrangement is (cL, cH), shifting the arrangement to (cH , cL) and τ ′ = (t2− t1, t2) keeps the
principal’s loss unchanged. Thus, it is always weakly optimal to set c∗. Moreover, the high cost
agent is more closely monitored. To see this, since the problem is sufficiently and necessarily
characterized by the optimal conditions

e−λ(1−t2) − e
−λt1

2 + 2λc1e
λt1 = 0

e−λ(1−t2) − e
−λ(t2−t1)

2 + 2λc2e
λ(t2−t1) = 0

Cancelling out the term e−λ(1−t2) in the optimal conditions yields

2λ(c1e
λt1 − c2e

λ(t2−t1)) = e−
λt1
2 − e−

λ(t2−t1)
2

Suppose, for the sake of contradiction, that agent 2 is more closely monitored, i.e., t1 > t2 − t1.
Then, the left-hand side of above equation is strictly positive, but right-hand side is weakly
negative, a contradiction. Therefore, it must be the case that t1 ≤ t2 − t1, i.e., agent 1 is more
closely monitored. Formally,

eλt1 ≤ eλ(t2−t1) ⇒ Kc
1(τ)

cH
≤ Kc

2(τ)

cL

where the inequality only holds at the corner t1 = t2 − t1 = 0.
On the other hand, fix the sandwich monitoring structure. The problem of who-does-what

arrangement becomes

inf
(c1,c2)∈{(cH ,cL),(cL,cH)}

L(τ) +

(
1 +

1 + e−λt2

e−λt1 + e−λ(t2−t1)

)
c1 + (1 + eλt2)c2

Observe that
1 +

1 + e−λt2

e−λt1 + e−λ(t2−t1)
≤ 1 + eλt2 ,
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and the inequality is strict if at least one of t1 and t2 − t1 is strictly positive. Therefore, it is
optimal to choose (c1, c2) = c∗. This is true for all τ , and thus is true for the optimal τ . The
high-cost agent is sandwiched, so that she is paid less per unit effort cost than the low-cost
agent. Formally,

1 + e−λt2

e−λt1 + e−λ(t2−t1)
≤ eλt2 ⇒ Ks

1(τ)

cH
≤ Ks

2(τ)

cL

Lemma C.1 says that the principal always prefers keeping the high-cost agent “close” with
greater monitoring intensity. This is intuitive. An agent’s minimum expected payment is the
product of her information acquisition cost and the reciprocal of monitoring intensity. For each
task allocation τ , to minimize the total incentive cost, it is optimal to assign the high-cost agent
a location under more intense monitoring.

In what follows, we consider the effect of increasing the agents’ cost asymmetry while keeping
the average cost. Specifically, fix c > 0 and let cH = c + ∆c and cL = c − ∆c, A higher ∆c

means the higher cost asymmetry between the agents.

Proposition C.1. As the agents’ cost disparity (∆c) increases, the principal is better off. More-
over, with sufficiently large cost disparity, the optimal design induces a sandwich monitoring
structure, i.e., there exists ∆̂c < c such that for any ∆c > ∆̂c, we have

min
τ

L(τ) +Kc(τ, c∗) ≥ min
τ

L(τ) +Ks(τ, c∗),

and the inequality is strict if the optimal task allocation problem under the sandwich monitoring
structure has an interior solution, i.e., ∃τ s ∈ argminτ L(τ) +Ks(τ, c∗) and ts2 > ts1 > 0.

Proof of Proposition C.1. The first part of Proposition C.1 claims that the principal benefits
from cost disparity. We show that this is true fixing each monitoring structure. First note that
the loss function of the principal is

L = min
τ

L(τ) +K(τ)

By envelope theorem,
∂L
∂∆c

=
∂L(τ ∗)

∂∆c︸ ︷︷ ︸
=0

+
∂K(τ ∗)

∂∆c
(24)

First, fixing the chain monitoring structure, (24) becomes

∂Kc(τ ∗)

∂∆c
= eλt

∗
1 − eλ(t

∗
2−t∗1) ≤ 0
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by Lemma C.1. Hence, the loss decreases in ∆c.
On the other hand, fixing the sandwich monitoring structure. Then (24) becomes

∂Ks(τ ∗)

∂∆c
=

1 + e−λt∗2

e−λt∗1 + e−λ(t∗2−t∗1)
− eλt

∗
2 ≤ 0,

as a result of Lemma C.1. Hence, the loss decreases in ∆c. In conclusion, the principal’s loss
decreases as ∆c increases even with flexible choice of monitoring structure.

To prove the second part of Proposition C.1, we characterize the condition for Kc(τ) ≥
Ks(τ), ∀τ , in which case the sandwich monitoring structure cost dominates the chain monitoring
structure given any task allocation, implying the sandwich monitoring structure is optimal. To
see this, with straightforward algebra, we can show that both Kc(t1; t2) and Kc(t1; t2)−Ks(t1; t2)

are convex in t1. Note that Kc(0; t2) = Ks(0; t2),∀t2. Then it suffices to find a range of ∆c

such that ∂Kc(0;t2)
∂t1

≥ ∂Ks(0;t2)
∂t1

,∀t2, which boils down to

∆c ≥ ∆̂c ≡
(
1− 4

e
8
5
λ + e

4
5
λ + 2

)
c.

Note that ∆̂c(λ) increases in λ. With smaller λ, we can guarantee a larger range of ∆c for
sandwich monitoring to be optimal. In particular, when λ → 0, ∆̂c(λ) → 0.

Proposition C.1 says that the principal benefits from increasing agents’ cost disparity. The
logic is simple. Fix the task allocation (τ ∗, c∗), consider a small increase in agents’ cost disparity
by ϵ > 0. The corresponding impact on the principal’s total loss can be approximated by

ϵ
[K1(τ

∗)

cH
− K2(τ

∗)

cL

]
≤ 0.

The inequality is a consequence of Lemma C.1. Intuitively, each agent’s optimal expected
payment is her information acquisition cost divided by the monitoring intensity. Raising the
cost disparity increases high-cost agent’s expected payment but decreases the low-cost agent’s
payment, but the because high-cost agent’s monitoring intensity is also higher than the low-cost
agent, the total effect decreases the incentive cost.

The second part of Proposition C.1 says when the agents’ cost dispersion is large enough,
the chain monitoring structure can be dominated by the sandwich structure. The optimality of
the sandwich structure can be demonstrated by Figure 10, which compares the incentive costs
under the two monitoring structure by fixing t2 and varying t1. With sandwich monitoring,
the incentive cost Ks(·; t2, c∗) (blue curve) is still symmetric in t1 as the homogeneous agent
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t1
t20 t2/2

2cH + cL(1 + eλt2 )

Ks(·, t2, c∗)

Kc(·, t2, c∗)

cH(1 + eλt2 ) + 2cL

Figure 10: Illustrating expected payment function Ks(·, t2, c∗) and Kc(·, t2, c∗).

case. This is because changing t1 solely impacts agent 1’s expected compensation, which under
sandwich monitoring, depends on t1 and t2 − t1 in a symmetric manner according to equation
(13).

On the other hand, unlike the homogeneous agent case, the incentive cost with chain mon-
itoring Kc(·; t2, c∗) (red curve) is asymmetric in t1. The reason is that varying t1 impacts
compensation for agent 1 and agent 2 differently: When fixing t2 while increasing t1 from 0 to
t2, it becomes cheaper to compensate agent 2, and more costly to compensate agent 1. Crucial
to the asymmetry, the effort cost of agent 1 is higher than that of agent 2. As t1 gets close
to t2, agent 1 is less closely monitored, leading an incentive cost (≈ cH(1 + eλt2) + 2cL) to be
higher than the case where t1 is close to 0 (≈ 2cH + cL(1 + eλt2)). Moreover, note that the cost
disparity (∆c) determines the speed of increment of Kc(·; t2, c∗). To see this, it is helpful to
study the marginal effect of t1 on incentive cost:

∂Kc(t1; t2, c
∗)

∂t1
= λ[(c+∆c)eλt1 − (c−∆c)eλ(t2−t1)]

which is increasing in ∆c. Therefore, when the cost disparity (∆c) is large enough, the cost
increase in agent 1 (the first term on the right-hand side) dominates the cost saving in agent
2 (the second term), making Kc(·, t2, c∗) strictly increases. It is intuitive that when Ks’s
slop is sufficiently large, which is guaranteed when ∆c is sufficiently large, Ks dominates Kc

globally. In this case, suppose there is a minimal total loss achieved by the chain monitoring
structure, say, minτ L(τ) + Kc(τ, c∗). The principal can weakly benefit by shifting to the
sandwich monitoring while keeping τ unchanged. This arrangement preserves the information
loss, while lowering the incentive cost since Ks(τ, c∗) ≤ Kc(τ, c∗).
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We generalize this result to n agents within a limited extent. When the cost dispersion is
large enough, the optimal monitoring structure does not contain a local chain, i.e., all agents
except for n are monitored by two peers. The formal result is upon request.

C.2 Circular Decision Environment

This subsection provides an alternative way to model the principal’s decision environment. The
main insight and the tractability of our baseline model are preserved.

We arrange locations uniformly on a circle with a radius of 1/(2π) rather than an interval.
This ensures an even density of locations. We set the principal’s location as the reference
point, marked as 0, and label the other locations in a clockwise direction from this point. The
distance between any two points, t and t′, is measured as the shortest path along the circle’s
circumference, i.e.,

d(t, t′) = min{|t− t′|, |t+ 1− t′|}.

The state is represented by a realized path of a continuous-time Markov chain as in the baseline
model, with the condition that x(0) equals x(1). Specifically, x(0) is randomly selected to be
either state A or B. As t progresses, a shock arrives at rate λ, and when a shock occurs at
location t, the local state x(t) is determined by a new random draw, either A or B, randomly
chosen. The only twist from the baseline model is that the local states at t = 0 and t = 1 must
be the same. By simple algebra, the probability Pr[x(t) = x(0)|x(0) = x(1)] takes the following
formula

1

2

(
1 +

e−λt + e−λ(1−t)

1 + e−λ

)
.

This probability is symmetric, meaning it is the same for t and 1− t, and it approaches zero as
t nears 0 or 1. For any t ∈ [0, 1/2], this probability is a decreasing and convex function. The
midpoint, t = 1/2, represents the most “novel" or least understood location from the principal’s
perspective. The location circle is illustrated in Figure 11. The left panel illustrates information
loss minimizing allocation, i.e., t†1 = 1/3, t†2 = 2/3. The right panel illustrates two optimal task
allocations. One solution has t∗1 ∈ (0, 1/2) and t∗2 ∈ (t∗1, 1/2 + t∗1/2) and another solution has t∗1
and t∗∗2 > 1/2 + t∗/2 where d(t∗1, t

∗
2) = d(0, t∗∗2 ).

In what follows, we assume n = 2 for simplicity. It is straightforward that given τ , the
principal’s optimal policy remains the same form as in Proposition 1, and the task allocation
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r = 1/2π

t = 0

t†1
t†2

d(0, t†1)

d(0, t†2)

t = 0

t∗1

t∗2

d(t∗1, t
∗
2)

t∗∗2
d(0, t∗∗2 )

Figure 11: The location circle and task allocation.

minimizing the information loss is such that

t∗1 =
1

3
, t∗2 =

2

3
,

exhibiting ample diversification. Moreover, given τ , the optimal compensation scheme is to pay
whoever has the closest distance to the principal if and only if her report is aligned with the
principal’s report. Without loss of generality, assume t1 < t2, 1− t2, and so agent 1 is paid by
w1 if and only if x0 = x̂1 regardless of what agent 2 does. The optimal w1 is set to make agent
1 indifferent. After establishing agent 1’s incentive, agent 2 can be jointly monitored by the
principal and agent 1’s report, and agent 2 is paid by w2 if and only if x0 = x̂1 = x̂2, and w2 is
set to satisfy agent 2’s indifference condition. The optimal task allocations is not unique. For
instance, as illustrated by the right panel of Figure 11, if (t∗1, t∗2) is an optimal allocation, it is
also optimal to assign (t∗1, t

∗∗
2 ) where

d(0, t∗∗2 ) = d(t∗1, t
∗
2).

However, unlike in the benchmark model, the agents’ locations may not be equidistant in
general.21

To understand the intuition, notice that in the circle specification, an agent is always moni-
tored by a sandwich structure. In the first-step of the IESDS, agent 1 is monitored by the prin-
cipal but as both her left and right neighbors, and she is paid if and only if x(0) = x(t1) = x(1).

21It is difficult to solve optimal allocation in closed form, but numerical analysis reveals that in general,
d(0, t1) = d(t1, t2) is suboptimal. The result is upon request.
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0 1 0 1t∗1 t∗2 t∗1 t∗∗2

Figure 12: Illustration of the multiplicity.

In the second step of IESDS, agent 2 is jointly monitored by the principal from the left-hand
side and agent 1 from the right-hand side, and she is paid if and only if x̂1 = x̂2 = x(0). This
also specifies a sandwich structure. See Figure 12 for an illustration. Notice that whenever it
is optimal to assign agent 2 to work at location t∗2, it must be optimal to assign her to work at
location t∗∗2 by symmetry.

C.3 Imperfect Information Acquisition

In this section, suppose each agent (conditioned on acquiring information) observes an imperfect
binary signal from {A,B}, which matches the true state with probability q ∈ (0.5, 1), i.i.d.
across agents. For symmetry, assume the principal’s information is imperfect: his signal also
matches the true state with probability q.

Given any two truthful reports x̂(t′), x̂(t) from two agents located at t′ and t (t′ > t), the
critical probability that governs agents’ incentive is

Pr(x̂(t′) = x̂(t)) =
1

2
(1 + e−λt1)︸ ︷︷ ︸
Pr(x(t′)=x(t))

·[q2 + (1− q)2] +
1

2
(1− e−λt1)︸ ︷︷ ︸
Pr(x(t′ )̸=x(t))

·2q(1− q)

=

(
1

2
− 2q(1− q)

)
(1 + e−λt1) + 2q(1− q)

On Sufficient Statistics. Note that the report of the nearest strategically risk-free neighbor
is no longer a sufficient statistic monitoring an agent. Consider n = 2, suppose agent 1’s
dominance incentive is established in the first round of IESDS, and agent 2 the second (as in
the chain monitoring). Suppose agent 2 is paid if and only if x̂1 = x̂2, then her binding IC
constraint is [(

1

2
− 2q(1− q)

)
(1 + e−λ(t2−t1)) + 2q(1− q)− 1

2

]
w2 = c,

which gives

w2 =
ceλ(t2−t1)

1
2
− 2q(1− q)

.
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The incentive cost is then[(
1

2
− 2q(1− q)

)
(1 + e−λ(t2−t1)) + 2q(1− q)

]
ceλ(t2−t1)

1
2
− 2q(1− q)

= c(1 + eλ(t2−t1)) +
2q(1− q)ceλ(t2−t1)

1
2
− 2q(1− q)

,

where the additional term, relative to the benchmark incentive cost, comes from the imperfect
observation of agents. Now we show that utilizing an additional report x̂0 reduces the incentive
cost. Suppose agent 2 is paid if and only if x̂0 = x̂1 = x̂2. Again, assume a1 = 1. Then

Pr(x̂0 = x̂1 = x̂2|a2 = 1) =

[
1

4
− q(1− q)

]
(1 + e−λt1)(1 + e−λ(t2−t1)) + q(1− q).

Using binding IC of agent 2, we get

w2 =
ceλ(t2−t1)

(1
4
− q(1− q))(1 + e−λt1)

.

The incentive cost is

K2(τ) = c(1 + eλ(t2−t1)) +
2q(1− q)ceλ(t2−t1)

(1
2
− 2q(1− q))

1

(1 + e−λt1)
,

which is less than the incentive cost based on (x̂1, x̂2). When q → 1, the second term vanishes
and K2(τ) converges to the benchmark incentive cost. Note that agent 2’s compensation is
determined by a linear programming problem of one constraint, which implies that there should
be exactly one payment-contingent report. This report is x̂0 = x̂1 = x̂2, providing the maximal
incentive to work for agent 2. This is different from our main analysis, because the nearest
strategically risk-free neighbor’s report is no longer a sufficient statistic.

Following the same logic, with generic n, an agent at incentive rank k must be paid if and
only if her report match with those whose dominance incentive has been established in previous
rounds of IESDS.

Proposition C.2. Fixing any task allocation τ and imperfect learning parameter q ∈ (0.5, 1),
a contract that attains the minimal incentive cost must specify each agent to be paid if and only
if her report matches with those whose dominance incentive has been established in the previous
rounds of IESDS.

Proof. We use a similar argument as the counterpart in the proof of Proposition 2 where q = 1.
Given task allocation τ and a fixed dominance order, consider a generic agent whose dominance
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incentive is established in round k of the IESDS. We first argue that this agent (denote by ik)
is paid upon at most 2n−k report profiles, which is equivalent to excluding report profiles of
n− k agents from agent ik’s contract. Then, we show the n− k agents are exactly the agents
whose dominance incentive has not been established before round k of the IESDS.

Step 1: Agent ik is paid upon at most 2n−k report profiles. Agent ik’s incentive cost is determined
by a linear programming with 2n−k IC constraints:

min
w1(·)

∑
χ

w1(χ) Pr(χ|ai1 = 1, a−i1 = 1)

subject to ∑
χ

wik(χ) Pr(χ|aik = 1, a−ik)− c ≥
∑
χ

wik(χ) Pr(χ|aik = 0, a−ik),∀a−ik (IC)

The number 2n−k comes from the number of combinations of a−ik : at round k of IESDS, there
are k − 1 agents whose dominance incentive has been established, and each of them only has
a strategy a = 1; the remaining n − k agents each has two strategies. By the Fundamental
Theorem of Linear Programming, the above problem has a basic feasible solution with at most
2n−k positive entries. In other words, there are at most 2n−k report profiles generating positive
payment for agent ik, which requires at most n− k other sources (agent or principal) of report
to be excluded in the contract. To see this, consider an example with k = 2. There are at
most 2n−2 report profiles generating positive payment for agent i2. Suppose agent i2 is paid
if and only if x̂0 = x̂i2 , then we have excluded n − 1 other sources of report from agent i2’s
contract. Then there are 2n−1 > 2n−2 report profiles generating positive payment, violating the
previous claim. Indeed, there must be at most n − 2 other sources of report to be excluded,
e.g., x̂0 = x̂i1 = x̂i2 .

To simplify the argument in the next step, denote

Ik− ≡ {i : i’s dominance incentive is established before or at round k of IESDS}

Then, the set of those whose incentive has not been established is Ik+ ≡ {1, 2, ..., n} \ Ik.

Step 2: Agent ik’s payment is not contingent on the n − k agents whose dominance incentive
is established after round k. We prove by induction. First, suppose that agent ik’s contract
does not contain reports of any agent from Ik+ . By step 1, this implies exactly n − k other
sources of reports have been excluded in ik’s contract, so ik’s payment is dependent on all
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agents in set Ik−. In this case, denote the payment-contingent set of report profiles to be
X∗ = {χ : x̂0 = x̂i1 = x̂i2 , ... = x̂ik}. Note that there is only one IC because the relevant
a−ik ≡ 1. The binding IC solves for

wik(X
∗) =

c

Pr(X∗|aik = 1, a−ik = 1)− Pr(X∗|aik = 0, a−ik = 1)

and the incentive cost is

Kik = wik(X
∗) Pr(X∗|aik = 1, a−ik = 1).

Then, we claim that an inclusion of any report from agent in set Ik− weakly increases the
incentive cost for agent ik. Denote a generic agent ij ∈ Ik+ (j > k). Without loss, suppose
tij > tik , i.e., ij is located to the “right” of agent ik. There are two cases depending on the
location of agent ij.

Case 1: ̸ ∃ agent m ∈ Ik− such that tm > tj. In this case, the report x̂ij is the “right-
most” report that is included in agent ik’s contract. Denote the “second right-most” agent in
ik’s contract to be agent ℓ (possibly ℓ = ik, which means there is no agent from Ik− located
between ik and ij). We discuss the case where the additional condition on the payment-
contingent profiles by including x̂ij is x̂ℓ = x̂ij , and the other case with x̂ℓ ̸= x̂ij is similar.
Denote the new set of payment-contingent report profiles to be X ′ = X∗ ∩ {x̂ℓ = x̂ij}. Since
aij ∈ Ik+, there are now 2 IC constraints for ik, one with aij = 1 and the other with aij = 0.
The optimal wage must satisfy both ICs. In particular, the IC with aij = 0 provides a lower
bound for the wage (we omit a−(ik,ij) = 1 to simplify notation, as the agents in Ik−\{ik} always
exert effort in ik’s incentive problem):

wik(X
′) ≥ c

Pr(X ′|aik = 1, aij = 0)− Pr(X ′|aik = 0, aij = 0)

=
c

Pr(x̂ij = x̂ℓ|aℓ = 1, aij = 0)[Pr(X∗|aik = 1)− Pr(X∗|aik = 0)]

=
c

1
2
[Pr(X∗|aik = 1)− Pr(X∗|aik = 0)]
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The incentive cost changes to

wik(X
′) Pr(X ′|aik = 1, aij = 1) = wik(X

′) Pr(X∗|aik = 1)Pr(x̂ij = x̂ℓ|aℓ = 1, aij = 1)

= wik(X
′) Pr(X∗|aik = 1)

[
1

2
+ e−λ(tij−tℓ)

(
1

2
− 2q(1− q)

)]
≥ c

1
2
[Pr(X∗|aik = 1)− Pr(X∗|aik = 0)]

Pr(X∗|aik = 1)

[
1

2
+ e−λ(tij−tℓ)

(
1

2
− 2q(1− q)

)]
= Kik · (1 + e−λ(tij−tℓ) (1− 4q(1− q))) > Kik

Similar approach shows that the incentive cost increases if the payment-contingent profiles
depend on x̂ik ̸= x̂j, resulting from IC with aij = 1. Therefore, it is suboptimal to condition
agent ik’s wage on agent ij’s report in this case.

Case 2: ∃ agent m ∈ Ik− such that tm > tij . Again use previous notation, we have
three neighboring reports x̂ℓ, x̂ij , x̂m. We discuss the case where the additional condition on
the payment-contingent profiles by including x̂ij is x̂ℓ = x̂ij = x̂m, and the other case with
x̂ℓ = x̂m ̸= x̂ij is similar. Denote the new set of payment-contingent report profiles to be
X ′′ = X∗ ∩ {x̂ℓ = x̂ij = x̂m}. Again, there are two IC constraints for ik as in Case 1. The IC
with aij = 0 provides a lower bound for the wage

wik(X
′′) ≥ c

Pr(X ′′|aik = 1, aij = 0)− Pr(X ′′|aik = 0, aij = 0)

=
c

Pr(x̂ij
=x̂m=x̂ℓ|aℓ=am=1,aij=0)

Pr(x̂ij
=x̂ℓ|aℓ=am=1)

[Pr(X∗|aik = 1)− Pr(X∗|aik = 0)]

=
c

1
2
[Pr(X∗|aik = 1)− Pr(X∗|aik = 0)]

The incentive cost changes to

wik(X
′′) Pr(X ′′|aik = 1, aij = 1)

= wik(X
′′) Pr(X∗|aik = 1)

Pr(x̂ij = x̂m = x̂ℓ|aℓ = am = 1, aij = 1)

Pr(x̂m = x̂ℓ|aℓ = am = 1)

= wik(X
′′) Pr(X∗|aik = 1)

[
1
4
− q(1− q)

]
(1 + e−λ(tm−tij ))(1 + e−λ(tij−tℓ)) + q(1− q)

[1
2
− 2q(1− q)](1 + e−λ(tm−tℓ)) + 2q(1− q)

≥ c
1
2
[Pr(X∗|aik = 1)− Pr(X∗|aik = 0)]

Pr(X∗|aik = 1)

[
1

2
+

e−λ(tij−tℓ) + e−λ(tm−tij )

Pr(x̂m = x̂ℓ|aℓ = am = 1)

]

= Kik ·

(
1 +

2e−λ(tij−tℓ) + 2e−λ(tm−tij )

Pr(x̂m = x̂ℓ|aℓ = am = 1)

)
> Kik
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Again, similar approach shows that the incentive cost increases if the payment-contingent pro-
files depend on x̂ℓ = x̂m = x̂ij . We conclude that agent ik’s wage does not depend on agent
ij’s report. Generally, if the payment-contingent profiles depend on x̂ik ̸= x̂ij (resp. x̂ik = x̂ij),
then the constraint involving aij = 1 (resp. aij = 0) requires a cost increase. Using the above
argument repeatedly, it is easy to see that it is suboptimal to contingent agent ik’s wage on any
reports of any combination of agents from set Ik+. This proves the claim in Step 2.

Finally, combining Step 1 and 2, we conclude that agent ik’s payment must be contingent
on exactly k agents’ reports, and the set of these agents is Ik−. This finishes the proof.

On Information Loss. We claim that for n = 2, the information loss becomes

Lq(τ) = qL(τ) + (1− q)

[
2

∫ t1
2

0

1

2
(1 + e−λt)dt+ 2

∫ t1+t2
2

t1

1

2
(1 + e−λ(t−t1))dt+

∫ 1

t2

1

2
(1 + e−λ(t−t2))dt

]

=
1

2
− 5(2q − 1)

2λ
+

2q − 1

λ
[e−λ

t2−t1
2 + e−λ

t1
2 +

1

2
e−λ(1−t2)]

The optimal policy still respects each report’s illumination range. However, given each report
x̂i, only with probability q this report matches the true state xi, and the loss sources from
the transition of state, which is captured in the term qL(τ). On the other hand, there is a
probability 1 − q that x̂i ̸= xi, and the loss sources from persistence of xi, which is captured
with the term led by 1 − q. As in the benchmark model, the information-loss-minimizing
task allocation still allocate to each agent the same length of illumination range. This result
naturally generalizes.

Proposition C.3. Fixing imperfect learning parameter q ∈ (0.5, 1), the information-loss-
minimizing task allocation is τ † with

t†i =
2i

2n+ 1
,∀i = 1, 2, ..., n.

Optimal Task Allocation When n = 2. Next, we turn to the task allocation minimizing
both incentive cost and information loss. The analysis of generic n is challenging, but we
managed to grapple with the special case with n = 2. Again, we call the identity permutation
of dominance order to be the chain monitoring structure. With n = 2, we illustrate that chain is
still optimal. In the sandwich monitoring structure, agent 1 is paid if and only if x̂0 = x̂1 = x̂2.
Her binding IC is([

1

4
− q(1− q)

]
(1 + e−λt1)(1 + e−λ(t2−t1))−

(
1

4
− q(1− q)

)
(1 + e−λt2)

)
w1 = c
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which gives
w1 =

c[
1
4
− q(1− q)

]
(e−λt1 + e−λ(t2−t1))

The incentive cost for sandwich monitoring is thus

Ks(t1, t2) = c

(
1 +

1 + e−λt2

e−λt1 + e−λ(t2−t1)
+

q(1− q)[
1
4
− q(1− q)

]
(e−λt1 + e−λ(t2−t1))

)

+ c(1 + eλt2) +
2q(1− q)ceλt2

1
2
− 2q(1− q)

Define the chain counterpart to be

Kc(t1, t2) = c(1 + eλt1) +
2q(1− q)ceλt1

1
2
− 2q(1− q)

+ c(1 + eλ(t2−t1)) +
2q(1− q)ceλ(t2−t1)

(1
2
− 2q(1− q))(1 + e−λt1)

Fix any t2 > 0, Ks(·, t2) is symmetric and unimodal in t1 ∈ [0, t2]. On the other hand,
simple algebra verifies Kc(·, t2) is convex in t1 ∈ [0, t2]. Also, Kc(t2, t2) = Ks(t2, t2) and
Kc(0, t2) < Ks(0, t2). Therefore, Kc(t1, t2) ≤ Ks(t1, t2), for all t1 ∈ [0, t2]. This holds for all
t2 > 0. Hence, the chain monitoring structure dominates the sandwich for all τ .

Note that the information loss is still symmetric in distances between agents, but the in-
centive cost is unbalanced, which leads to closer monitoring of agent 1 than agent 2. Indeed,
define ∆t1 = t1 − 0,∆t2 = t2 − t1, then the task allocation problem is

min
∆t1,∆t2

Lp(∆t1,∆t2) +Kc(∆t1,∆t2)

has the following first-order conditions for an interior solution(
e−λ(1−∆t1−∆t2) − e−

λ∆t1
2

) 2q − 1

2
+ λceλ∆t1 +

2q(1− q)cλeλ∆t1

1
2
− 2q(1− q)

+
2q(1− q)cλeλ(∆t2−∆t1)

[1
2
− 2q(1− q)](1 + e−λ∆t1)2

= 0

(25)(
e−λ(1−∆t1−∆t2) − e−

λ∆t2
2

) 2q − 1

2
+ λceλ∆t2 +

2q(1− q)cλeλ∆t2

[1
2
− 2q(1− q)](1 + e−λ∆t1)

= 0 (26)

Conditions (26) – (25) require(
e−

λ∆t1
2 − e−

λ∆t2
2

) 2q − 1

2
+ λc(eλ∆t2 − eλ∆t1)

+
2q(1− q)cλ

[1
2
− 2q(1− q)](1 + e−λ∆t1)2

[eλ∆t2 − eλ∆t1 − 2− e−λ∆t1 ] = 0
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Suppose ∆t1 ≥ ∆t2, then

e−λ(1−∆t1−∆t2) − e−
λ∆t1

2 ≤ 0, eλ∆t2 − eλ∆t1 ≤ 0, eλ∆t2 − eλ∆t1 − 2− e−λ∆t1 < 0.

This implies that (26) − (25) < 0, a contradiction. Therefore, the interior solution τ must has
the property t2 − t1 > t1. The results are summarized in the following two propositions.

Proposition C.4. Fixing n = 2, τ = (t1, t2), and the imperfect learning parameter q ∈ (0.5, 1).
The minimal incentive cost to robustly implement work and truth-reporting is

Kc(t1, t2) = c(1 + eλt1) +
2q(1− q)ceλt1

1
2
− 2q(1− q)

+ c(1 + eλ(t2−t1)) +
2q(1− q)ceλ(t2−t1)

(1
2
− 2q(1− q))(1 + e−λt1)

which is attained by paying each agent if and only if her report matches all the reports to the
left, i.e.,

w1 =


ceλt1

1
2
−2q(1−q)

, if x̂1 = x̂0

0, otherwise.

w2 =


ceλ(t2−t1)

( 1
4
−q(1−q))(1+e−λt1 )

, if x̂2 = x̂1 = x̂0

0, otherwise.

Proposition C.5. Fixing n = 2 and the imperfect learning parameter q ∈ (0.5, 1), the optimal
(interior) task allocation exhibits t2 > t2 − t1.
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