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Abstract

When testing the null hypothesis of no threshold effects based on threshold

autoregressive models, wild-bootstrap supremum, average, and exponen-

tial tests are routinely used to handle an identification issue under the null.

In this note, we demonstrate via Monte Carlo simulations that the boot-

strap average tests lose control for the type-I error rate when the threshold

variable is persistent and the delay parameter is chosen from more than a

handful of choices. In some cases, the average tests reject the correct null

hypothesis with probability exceeding nominal size by more than 10%.

The size distortion is present even in large samples, indicating the aver-

age tests may not converge to the intended asymptotic null distribution.

Supremum and exponential tests achieve correct type-I error rates, posing

a puzzle why only the average tests suffer from over-rejections.
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1 Introduction

In the literature of nonlinear time series analysis, it is well known that economic and

financial indicators sometimes exhibit threshold effects : a target variable y has asym-

metric structures when a threshold variable x is below versus above a threshold µ.

A variety of threshold time series models, including Tong’s (1978) Threshold Autore-

gression (TAR), have been proposed in the literature. Whichever threshold model is

used, a major concern lies in testing the null hypothesis of no threshold effects H0.

Under H0, several parameters such as the delay d and threshold µ are unidentified.

Hansen (1996) provides a well-known solution to this issue via wild-bootstrap tests,

where common test statistics are supremum (sup-), average (ave-), and exponential

(exp-) Wald statistics as well as their Lagrange Multiplier (LM) counterparts.1

In this note, we demonstrate via Monte Carlo simulations that the bootstrap ave-

Wald and ave-LM tests exhibit distortions for the type-I error rate if the threshold

variable x is persistent and the space of delay parameter d contains several choices.

In some cases, the average tests reject the correct no-threshold-effect hypothesis with

probability exceeding nominal size by more than 10%. This is particularly puzzling

as x and d do not play any role under the true data generating process. The size

distortion exists even in large samples, indicating that the average tests may not

converge to the intended asymptotic null distribution. Supremum and exponential

tests do not appear to exhibit size distortions in the same scenario. This puzzle is not

documented in the existing literature, and reasons for the over-rejections are unknown.

While using sup-tests or exp-tests is a practical solution, it would be an interesting

future task to explain why only the average tests appear to produce these distortions.

The remainder of this note is organized as follows. Section 2 sets up a simulation

study. We present our simulation results in Section 3, and give some concluding

remarks in Section 4. Omitted technical details and complete Monte Carlo simulations

are collected in a separate supplemental material. We use the following notation

throughout: R is the set of real numbers, N is the set of natural numbers, ⌊a⌋ is the

largest integer not larger than a ∈ R, #A is the number of elements of set A, and

A× B is the Cartesian product of sets A and B.

1Extensive surveys on TAR are provided by Tong (2015) and Tsay and Chen (2019), among
others. Recent empirical applications of threshold time series models and the wild-bootstrap tests
include Chen, Qiao, and Zhang (2022) and Motegi and Hamori (2023); they detected significant
threshold effects of stock market realized volatilities on crude oil realized volatilities. Andrews and
Ploberger (1994) discuss use of the wild-bootstrap tests when a nuisance parameter is present only
under the alternative hypothesis.
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2 Simulation design

Suppose that the true data generating process (DGP) is as follows.yt
xt

 =

ϕ0 0

0 ψ0

yt−1

xt−1

+

ϵt
νt

 ,
ϵt
νt

 i.i.d.∼ N

0
0

 ,
1 0

0 1

 . (1)

The target variable y and the threshold variable x follow mutually independent single-

regime AR(1) processes. Fix the AR(1) parameter for y at ϕ0 = 0.6.2 Consider low,

medium, or high persistence in x: ψ0 ∈ {0.3, 0.6, 0.9}. The joint standard normality

of the true errors is a conventional assumption which simplifies analysis. Generate

J = 1000 Monte Carlo samples of size n ∈ {125, 250, 500, 1000} from DGP (1).

For each sample generated from (1), fit a two-regime TAR model with lag length

p = 1:

yt =

α1 + ϕ1yt−1 + ut if xt−d < µ,

α2 + ϕ2yt−1 + ut if xt−d ≥ µ,
(2)

where βr = (αr, ϕr)
⊤ is a vector of regression parameters in regime r ∈ {1, 2}; d ∈ N

is the delay parameter; and µ ∈ R is the threshold parameter.3 Consider the null

hypothesis of no threshold effects H0 : β1 = β2 versus a fixed alternative hypothesis

H1 : β1 ̸= β2. Since the DGP is given by (1), H0 is true in our experiment. Under H0,

the nuisance parameters γ = (d, µ)⊤ are not identified. To address this identification

problem, we perform Hansen’s (1996) wild-bootstrap tests with ave-Wald, exp-Wald,

ave-LM, and exp-LM test statistics. When computing the actual and bootstrap test

statistics, we use a simple covariance matrix which is not robust to heteroscedasticity.

This is a correct choice since the error term u in model (2) is indeed homoscedastic

given the true DGP (1). Nominal size is set to be a = 0.05, and the number of

bootstrap iterations is B = 500.

To implement the bootstrap tests, one needs to specify the choice space of nuisance

parameter γ. We set the choice space of d to be D = {1, . . . , d̄} with the upper bound

being d̄ ∈ {1, 2, 4, 8}. Specifically, the choice space D is either {1}, {1, 2}, {1, 2, 3, 4},
or {1, . . . , 8}. For the choice space of µ, let x[1] ≤ · · · ≤ x[n] be a sorted version of x.

2Simulation results are similar for ϕ0 ∈ {0.3, 0.6, 0.9}, hence we focus on the middle value here.
Complete results are reported in the supplemental material.

3Previous results in the literature, including Hansen (1996), ensure uniform consistency of the
estimator for (β1,β2).
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In general, the space of µ is specified as

Xκ,n =
{
x[⌊0.5(1−κ)n⌋], . . . , x[⌊{1−0.5(1−κ)}n⌋]

}
, (3)

where κ ∈ [0, 1) signifies the fraction of #Xκ,n to n. We pick κ = 0.7, following a well-

known suggestion of Andrews (1993). This means that Xκ,n consists of observations

above the 15 percentile and below the 85 percentile of x. The space of γ is given

by Γκ,n = D × Xκ,n. Compute a conditional test statistic given each γ ∈ Γκ,n, and

aggregate the #Γκ,n outcomes into a single test statistic by either the average or

exponential transformation.4

In finite samples, there is expected to be a bias-variance trade-off on the cardinal-

ity of Γκ,n. Under H0, the finite sample performance of the bootstrap tests is expected

to be worse due to larger variance with larger #Γκ,n. Under H1, asymptotic bias arises

if a true value of γ is not included in Γκ,n. In our current set-up, threshold effects are

absent and H0 is true given DGP (1). Hence, the empirical size of the bootstrap tests

should be closest to the nominal size 5% for d̄ = 1 and farthest for d̄ = 8, particularly

for small sample sizes. When the sample size is large enough (say n = 1000), the

type-I error rate should be sufficiently close to 5% for any d̄ ∈ {1, 2, 4, 8}. Keeping

this conjecture in mind, we report rejection frequencies in the next section.

3 Simulation results

In Table 1, we report rejection frequencies of the bootstrap average tests for the

no-threshold-effect hypothesis H0 based on the TAR model. We maintain focus on

the ave-LM test, as the ave-Wald test results are similar. When the threshold vari-

able x has low persistence (i.e., ψ0 = 0.3), the empirical size of the ave-LM test

is sufficiently close to the nominal size a = 0.05 for any d̄ ∈ {1, 2, 4, 8}. Taking

(ψ0, d̄, n) = (0.3, 1, 1000) as an example, the empirical size of the ave-LM test is

0.055.

When x has medium persistence (i.e., ψ0 = 0.6), size distortions emerge as d̄ in-

creases. The empirical size of the ave-LM test with (d̄, n) = (8, 1000) is 0.108 (Table

1). When x has high persistence (i.e., ψ0 = 0.9), the tendency to over-reject H0 be-

comes more salient. The average tests lose control for the type-I error rate as d̄ grows.

The empirical size of the ave-LM test with n = 1000 is {0.051, 0.086, 0.132, 0.163} for

4Complete procedures of the bootstrap tests are described in the supplemental material.
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Table 1: Empirical size of the bootstrap average tests for the no-threshold-effect
hypothesis based on the TAR model (nominal size 5%)

n = 125 n = 250 n = 500 n = 1000

ψ0 d̄ Wald LM Wald LM Wald LM Wald LM

0.3 1 0.057 0.041 0.085 0.071 0.055 0.041 0.058 0.055

0.3 2 0.074 0.046 0.063 0.046 0.055 0.050 0.070 0.068

0.3 4 0.073 0.043 0.081 0.049 0.072 0.058 0.070 0.062

0.3 8 0.080 0.037 0.061 0.050 0.067 0.059 0.057 0.055

0.6 1 0.075 0.045 0.047 0.038 0.050 0.045 0.049 0.049

0.6 2 0.098 0.061 0.084 0.065 0.063 0.053 0.069 0.066

0.6 4 0.104 0.067 0.087 0.068 0.083 0.074 0.097 0.092

0.6 8 0.125 0.073 0.104 0.081 0.096 0.083 0.117 0.108

0.9 1 0.075 0.049 0.071 0.062 0.059 0.050 0.051 0.051

0.9 2 0.120 0.088 0.094 0.082 0.082 0.072 0.089 0.086

0.9 4 0.152 0.128 0.142 0.122 0.124 0.115 0.136 0.132

0.9 8 0.193 0.141 0.138 0.122 0.138 0.131 0.172 0.163

DGP: yt = 0.6yt−1 + ϵt, xt = ψ0xt−1 + νt, ψ0 ∈ {0.3, 0.6, 0.9}, (ϵt, νt)⊤
i.i.d.∼ N (0, I). Sample size:

n ∈ {125, 250, 500, 1000}. TAR Model: yt = α1+ϕ1yt−1+ut if xt−d < µ and yt = α2+ϕ2yt−1+ut if

xt−d ≥ µ. We perform the bootstrap ave-Wald and ave-LM tests for the no-threshold-effect hypothe-

sis H0 : (α1, ϕ1) = (α2, ϕ2). The choice space of delay parameter, D, is either {1}, {1, 2}, {1, 2, 3, 4},
or {1, . . . , 8} (i.e., d̄ ∈ {1, 2, 4, 8}). The choice space of µ is X0.7,n = {x[⌊0.15n⌋], . . . , x[⌊0.85n⌋]}, where
x[1] ≤ · · · ≤ x[n] is a sorted x. The nominal size is a = 0.05, and the number of bootstrap samples is

B = 500. This table reports the empirical size of the tests across J = 1000 Monte Carlo samples.

d̄ ∈ {1, 2, 4, 8}, respectively. The excess rejection rate is 8.2% for d̄ = 4 and 11.3% for

d̄ = 8, which is substantially large compared with the fact that our DGP and model

are quite simple.

Surprisingly, the size distortion of the average tests does not vanish as the sample

size grows; the type-I error rate is still above the nominal size even for the largest

sample sizes we examined. This indicates that the average tests may not converge to

the intended asymptotic distribution in the relevant scenario. We are not aware of

any existing work that documents this puzzle. In previous simulation studies such as

Hansen (1996, Table II) and Ahmad and Donayre (2016, Table 1), the average tests

with persistent x and large upper bound d̄ are not covered. This note is likely the
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first work that inspects the relevant case.

What is even more puzzling is that the sup-Wald, exp-Wald, sup-LM, and exp-

LM tests achieve correct type-I error rates. The rejection frequencies of the exp-Wald

and exp-LM tests are shown in Table 2. For all cases considered, the empirical size

is sufficiently close to the nominal size a = 0.05. The exp-Wald test tends to over-

reject correct H0 in small samples such as n = 125, but their size quickly converges

to the nominal size as n grows. Focus on (ψ0, d̄) = (0.9, 8), in which case the average

tests suffer from the most serious over-rejections. The empirical size associated with

n = 1000 is 0.056 for the exp-Wald test and 0.050 for the exp-LM test. The rejection

frequencies of the supremum tests are similar to those of the exponential tests, and

we relegate them to the supplemental material.

Table 2: Empirical size of the bootstrap exponential tests for the no-threshold-effect
hypothesis based on the TAR model (nominal size 5%)

n = 125 n = 250 n = 500 n = 1000

ψ0 d̄ Wald LM Wald LM Wald LM Wald LM

0.3 1 0.062 0.033 0.073 0.048 0.059 0.049 0.055 0.053

0.3 2 0.068 0.032 0.063 0.040 0.054 0.044 0.067 0.055

0.3 4 0.068 0.023 0.064 0.044 0.059 0.049 0.058 0.056

0.3 8 0.080 0.019 0.055 0.032 0.047 0.034 0.059 0.052

0.6 1 0.079 0.036 0.051 0.037 0.057 0.050 0.049 0.046

0.6 2 0.078 0.030 0.059 0.042 0.048 0.042 0.048 0.048

0.6 4 0.074 0.033 0.062 0.043 0.061 0.044 0.069 0.064

0.6 8 0.086 0.024 0.045 0.031 0.059 0.047 0.064 0.054

0.9 1 0.085 0.045 0.076 0.056 0.057 0.051 0.060 0.056

0.9 2 0.088 0.044 0.059 0.043 0.044 0.038 0.054 0.049

0.9 4 0.076 0.039 0.065 0.048 0.048 0.037 0.057 0.052

0.9 8 0.084 0.025 0.051 0.033 0.059 0.044 0.056 0.050

DGP: yt = 0.6yt−1 + ϵt, xt = ψ0xt−1 + νt, ψ0 ∈ {0.3, 0.6, 0.9}, (ϵt, νt)⊤
i.i.d.∼ N (0, I). Sample size:

n ∈ {125, 250, 500, 1000}. TAR Model: yt = α1+ϕ1yt−1+ut if xt−d < µ and yt = α2+ϕ2yt−1+ut if

xt−d ≥ µ. We perform the bootstrap exp-Wald and exp-LM tests for the no-threshold-effect hypoth-

esis H0 : (α1, ϕ1) = (α2, ϕ2). The choice space of delay parameter, D, is either {1}, {1, 2}, {1, 2, 3, 4},
or {1, . . . , 8} (i.e., d̄ ∈ {1, 2, 4, 8}). The choice space of µ is X0.7,n = {x[⌊0.15n⌋], . . . , x[⌊0.85n⌋]}, where
x[1] ≤ · · · ≤ x[n] is a sorted x. The nominal size is a = 0.05, and the number of bootstrap samples is

B = 500. This table reports the empirical size of the tests across J = 1000 Monte Carlo samples.
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Summarizing Tables 1-2, only the average tests over-reject the true no-threshold-

effect hypothesis H0 in large samples. Reasons for the over-rejections are unknown.

A practical solution is to use a sup-LM or exp-LM test, as these lead to accurate

empirical size in both small and large samples. It is an interesting future task, however,

to explain what distorts the type-I error rate of the average tests.

To further characterize the over-rejection puzzle of the bootstrap average tests,

we report additional simulation evidence. Recall that D signifies the choice space

of the delay parameter d. In the previous simulation, we always fixed the lower

bound of D at 1. Consequently, an exact role of D remains unclear. Which distorts

the size of the average tests: a large cardinality of D or a large candidate value for

d? To answer this question, we consider some additional specifications for D with

various lower and upper bounds. In view of the resulting rejection frequencies, it is

the cardinality of D, not a specific value for candidate d, that plays a key role in

the over-rejection puzzle. Excess rejection rates of the average tests increase as #D

grows. Conditional on the value of #D, we observe similar rejection rates irrespective

of the specific candidate values contained in D. More detailed results are presented

in the supplemental material.

4 Discussion and conclusion

We have presented simulation evidence that the wild-bootstrap average tests for the

no-threshold-effect hypothesis H0 : β1 = β2 fail to control the type-I error rate when

the threshold variable x is sufficiently persistent and the choice space of the delay

parameter d is sufficiently large. In these cases, the type-I error rate far exceeds the

nominal size of 5%. Moreover, the size distortion does not diminish as the sample

size grows, which indicates that the average tests may converge to an unintended null

distribution. The supremum and exponential tests have correct type-I error rates,

posing a puzzle why only the average tests suffer from over-rejections.

In additional simulations, we consider a number of alternative scenarios to confirm

the robustness of our finding. First, we try larger sample sizes, such as n = 2000.

Second, the nominal size is determined from a ∈ {0.01, 0.05, 0.10}. Third, various

degrees of persistence in y are considered: ϕ0 ∈ {0.3, 0.6, 0.9}. Fourth, the choice

space of µ is more tightly restricted by choosing κ ∈ {0, 0.35, 0.7} in (3). Fifth,

the simple covariance matrix is replaced with a heteroscedasticity-robust covariance

matrix when computing the actual and bootstrap test statistics. Sixth, the TAR
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model (2) is replaced with a self-exciting version (SETAR) by using y itself as a

threshold variable. Our findings are the same for all these scenarios, and most of the

additional simulation results are shown in the supplemental material.
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