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Abstract

This paper tests the feasibility and estimates the cost of climate control through eco-

nomic policies. It provides a toolbox for a statistical historical assessment of a Stochastic

Integrated Model of Climate and the Economy, and its use in (possibly counterfactual) policy

analysis. Recognizing that stabilization requires supressing a trend, we use an integrated-

cointegrated Vector Autoregressive Model estimated using a newly compiled dataset ranging

between years A.D. 1000-2008, extending previous results on Control Theory in nonstation-

ary systems. We test statistically whether, and quantify to what extent, carbon abatement

policies can effectively stabilize or reduce global temperatures. Our formal test of policy

feasibility shows that carbon abatement can have a significant long run impact and policies

can render temperatures stationary around a chosen long run mean. In a counterfactual

empirical illustration of the possibilities of our modeling strategy, we show that the cost of

carbon abatement for a retrospective policy aiming to keep global temperatures close to their

1900 historical level is about 75% of the observed 2008 level of world GDP, a cost equivalent

to reverting to levels of output historically observed in the mid 1960s. This constitutes a

measure of the putative opportunity cost of the lack of investment in carbon abatement

technologies.

Keywords: Vector Autoregression, Cointegration, Control theory, Carbon abatement, Cli-

mate change, Counterfactual analysis, Integrated Assessment Models.
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1 Introduction

This article presents a novel approach to testing the feasibility and evaluating the costs associated

with global temperature control by drawing on historical data on the interaction between climate

and the economy spanning over a thousand years. Our primary objective is to rely on empirically

estimated relationships, acknowledging the criticism raised by Pindyck (2013) towards models

that solely rely on theoretical assumptions, calibrations, or simulations, as they may create a

“misleading perception of knowledge and precision”. In pursuit of our objective, we construct a

dataset and employ a new econometric methodology relying on stable long-run interactions to

test the hypothesis of temperature controllability and evaluate its cost through counterfactual

policy analysis.

Our approach relies on a model inspired by Stochastic Dynamic Integrated Models of Climate

and the Economy (SDICE) proposed by Nordhaus (2017) that has become one of the main

Integrated Assessment Models (IAMs) of climate and the economy. This model is often assessed

through simulations and scenario analyses in order to evaluate the cost of carbon abatement

policies required to achieve some specific temperature control objectives. The lack of historical

carbon abatement policies, at least until the recent decades, renders empirical studies of the

SDICE models limited. This is one issue we tackle using long historical time series dating back

to AD 1000, i.e., prior to natural experiment that the industrial revolution constitutes. This

allows us to prove, through a statistical test, that policies whose objectives focus on temperature

control are empirically feasible.

The industrial revolution having accelerated the upward trend in economic activity, Green-

house gas (GHG) emissions and temperatures, we recognize that temperature control requires

suppressing the upward stochastic trend to render temperatures stable around a long run mean.

For this we draw on the abundant literature studying the dynamic interactions between climate

variables and human activity through an integrated-cointegrated Vector Autoregressive (VAR)

model (see, inter alia, Stern and Kaufmann, 2014, and Chang et al., 2020). We study this

modeling strategy in light of work on nonstationary Control Theory developed by Johansen and

Juselius (2001, JJ01 henceforth) who find cointegration properties to be the determining factor.

We show that the effect of the control policy is to augment the VAR(p) into a VARMA(p, 1)

that reflects additional cointegration relations.

Hence, we assess within a cointegrated VAR model what policies are feasible to render “cli-

mate” variables stationary around a stated objective while retaining economic progress. We

focus on very long series (despite the unavoidable mismeasurements) to capture long-run equi-

libria that are invariant to changes in policy, i.e., that are immune to the Lucas (1976) critique.

Our empirical model can be used as a toolbox for evaluating the statistical feasibility and cost

of policies. In an empirical application, we propose a formal test that carbon abatement or

technology investment are capable of achieving temperature control. We entertain the counter-
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factual question whether a centralized authority could have implemented, in the 20th century,

a policy aiming to maintain global temperatures at the level of 1900. We assess its cost using

two distinct indirect examples, either (i) via a costing of the lack of carbon abatement policy,

using a reduction of output and consumption as controls; or (ii) through the increased wealth

that a costless reduction of the carbon content of production technology would generate. The

estimated cost of the lack of abatement policy amounts to about 75% of the 2008 global level of

output (equivalent to forestalling growth since the 1960s) together with a reduction of 45% in

consumption. Investment in carbon neutral technology would by contrast achieve its objective

and be profitable as long as it costs less than 50% of 2008 global GDP and 75% of consumption.

Both policies show that, under the condition that the stated temperature control is achieved, the

huge magnitude of investment in mitigating technologies that is required and is more profitable

than a degrowth alternative. We state in the title that our analysis provides a toolbox as our

model and methodology can be applied to other policies and choices of controls that climate

scientists may prefer.

The rest of this study consists of four sections. Section 2 reviews the SDICE model, the

database we consolidate, and its framing in a cointegrated VAR system. Section 4 discusses the

control theory of JJ01 and develops some of the results needed for a counterfactual analysis.

Section 4 then assesses empirically the controllability of temperature through carbon abatement

policies and performs some counterfactual costing analyses. Details, further explanations and

empirical results are provided in an online Supplementary Appendix.

2 A linearized SDICE Model

We propose an empirical model for the climate-economy nexus and estimate over a thousand

years. We introduce a log-linearized SDICE that has been sufficiently streamlined so it can shed

light on long-run equilibria estimated later in the paper. There exist a multiplicity of IAM models

but most of them can been seen as refinements or extensions of the main equations we consider

here (see, e.g., Barnett et al., 2022, and Hänsel et al., 2022, for analyses of the uncertainty

surrounding the models). By construction, log-linearization removes the nonlinearities that are

inherent in the discussion surrounding possible future tipping points but these can easily be

introduced through additional local trends.

We consider here a simplified version of the SDICE model of Nordhaus (2017) as studied,

inter alia., in Ikefuji et al. (2020), see Figure 1 for a presentation of its general principles. The

key feature is that the model introduces a negative feedback loop from climate to the economy.

At each period t, human economic activity combines various production factors (such as labor

force and capital) to generate real Gross Domestic Product (GDP, or world output), Yt. This

production generates externalities in the form of greenhouse gas (GHG) emissions – Carbon

dioxide (CO2) in particular. Humans may decide to mitigate these externalities via abatement,
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i.e. investment that reduces the emission producing (brown) content of economic activity. We

simplify the model and only present the log-linearized version of that in Ikefuji et al. (2020), with

lower case letters representing logarithms, see the Supplementary Appendix for more details.

Total CO2 emissions consist of anthropogenic emissions (caused by human activity) and

other – exogenous – types e0t . Total emissions et then result from

et = σt − µt + yt + e0t , (1)

where σt is the emissions-to-output ratio for CO2 and µt is the abatement fraction for CO2.

Regarding the presence of CO2 in the atmosphere, the SDICE specifies that its concentration

mt accumulates through interactions with shallow and lower oceans. The lack of long historical

series on the carbon contents of oceans, mt can be seen as following a Markov state-space

process with two hidden layers (latent variables). This amounts to specifying that mt follows an

autoregressive model with distributed lags of et, here an ARDL(4,4), A (L)mt = B (L) et,where

L denotes the lag operator such that Lmt = mt−1 and A (·) , B (·) are polynomials of degree 4.

Now atmospheric temperatures, ht, themselves relate dynamically to atmospheric gas con-

centrations, ocean temperatures, as well as extraneous radiative forcing, f0t , which in log form

can be written as an equation linking ht+1−a1mt+1−f0t+1 to the lagged value of that expression

together with ht and ht−1. Finally, we consider the impact of climate on economic growth:

the fraction of GDP not spent on abatement is consumed, ct, or invested, it, along the budget

constraint: yt − ωt − ξht = c̃t, where c̃t = ct + it, and the logarithm of the cost of abatement,

ωt, satisfies ωt = ψt + θµt.with θ > 1 so the cost of abatement increases faster than abatement

itself. Parameter ξ represents damage induced by warming: it closes the feedback loop from

climate to the economy shown in Figure 1. Considering ψt constant over the historical sample

(but not over the future under tipping point scenarios), we identify ωt to θµt below.

The model presented above can be expressed in terms of six endogenous variables (yt, c̃t,mt,

ht, µt, σt) and two exogenous
(
e0t , f

0
t

)
. This leads (removing constant terms and introducing two

lag polynomials D (·) and G (·)) to the following equations:

Economy-Climate nexus: A (L)mt = B (L)
(
σt − µt + yt + e0t

)
, (2a)

Carbon-Temperature: D (L)ht = G (L)
(
a1mt + f0t

)
, (2b)

Damage loop: yt = c̃t + θµt + ξht. (2c)

The SDICE model is typically solved by the Central Planner who sets the policy variables:

level of abatement, µt, or its cost ωt, and carbon content of technology σt to achieve a welfare

objective in terms of c̃t.
1 We consider this objective from an empirical perspective below through

1By specifying a production function for yt as a function of labor and capital, as well as a utility function, the
central planner may consider the tradeoff between consumption and leisure. We abstain from it for simplification.
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Figure 1: Principle of SDICE Model. The solved out empirical model finds two long term
equilibria ( ‘cointegration relations’) corresponding to (i) the economic-climate nexus and (ii) the
physical equilibria between global temperatures and radiative forcings linked to concentrations
of carbon in the atmosphere and the oceans.

the concept of controllability, where we ask whether and what policies can generate a stable

equilibrium between economic activity and climate.

3 An Empirical Model for Climate and the Economy

The dynamic model described above can be assessed using historical empirical evidence through

a cointegrated vector autoregressive model (CVAR) developed by Johansen (1988), i.e., a model

for the dynamic interactions and long run equilibria between climate of and the economy. For

this we first construct a new dataset compiling and extending various sources over the second

millennium AD.

Constructing a long dataset. The data were obtained and reconstructed from various

sources that are presented in the Supplementary Appendix, and whose online links and in-

terpolation details are provided in separate code file (Data Preparation). The data is presented

in Figure ??: it comprises measures of economic activity (real world output and consumption)

as well as variables describing temperature anomalies, carbon concentrations in the atmosphere,

radiative forcings of non-anthropogenic origin (solar, volcanic...). We consolidate this data at
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the annual frequency, dating back to year 1000 AD.

It is obvious that the data we consider must necessarily be subject to mismeasurement as we

consider global variables over extended periods of time. Yet, following Duffy and Hendry (2017),

we expect that this mismeasurement does not affect inference on the presence of cointegration.

In Figure ??, we see that all variables except radiative forcings of volcanic origin exhibit upward

trends towards the end of the sample.

The Cointegrated VAR approach. We perform a cointegration analysis within a VAR(8)

model for the four variables Xt = (yt, ct,mt, ht) measured as log GDP and log consumption, log

CO2 atmospheric concentration and actual (non-logged) temperature anomalies. The impact

of the Industrial Revolution is captured by a broken linear trend that starts in 1800 (that

is restricted to the cointegrating space). We prefer to model long term population patterns

through this trend for statistical reasons, as conditioning on the actual data impacts estimator

distributions in a non-standard way. For technical reasons, we also need to include the change

in the broken trend, i.e., a step dummy starting in 1800. Solving the model for concentrations

and radiative forcings as proxies for emissions allows to extend the data set to cover the years

1000-2008. Our analysis leads to focusing on Xt, with radiative forcings of volcanic origin, fV olt

entering as unrestricted exogenous regressors.

The cointegrated model writes as

∆Xt = τ + α
(
β′Xt−1 + δ1t1{t≥1800}

)
(3)

+
7∑
i=1

Γi∆Xt−i + γ′∆fV olt−1 + δ01{t≥1800} + εt,

where β′Xt−1 captures the two long run equilibria taking the form of “cointegration” relations

are stationary although the individual variables are not.

In the empirical model, the data indicates the presence of two stochastic trends, and two

cointegration relations. Based on the SDICE model, we make the following assumption on the

common stochastic trends.

Assumption 1 (S) The sources of nonstationarity in the empirical system come from two la-

tent common stochastic trends:

(i) a measure of the carbon content of technology progress, which in the model amounts to the

logarithm of emissions-to-output ratio of CO2, σt;

(ii) a wealth effect that combines global population and capital accumulation through invest-

ment, it.

Remark 1 We could alternatively interpret a linear combination of them as wealth and tech-

nology of green (carbon free) and brown (carbon intensive) origin and impact noting that these
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are not orthogonal in the sample.

Assumption S helps us identify the two stable (i.e. stationary) long run cointegration relations

(see the Supplementary Appendix for a description of the estimated model) as

c1,t = yt − 1.54ct − .81ht − .036t× 1{t≥1800},

c2,t = ht − 4.12mt.

We interpret them with the help of the SDICE model.

1. The first equation, c1,t, corresponds to an interaction between temperature and human

activity. In the SDICE, this corresponds to equation (2c). The broken trend grows at an

annual rate of 3.6%, corresponding to the long run growth rate of population, total factor

productivity and capital intensity over the industrial era (for the latter, see Baumol, 1986

and references therein).

2. The second cointegrating relation, c2,t, corresponds to the interplay between CO2 concen-

trations in the atmosphere and temperature, as in equation (2b).

3. The data does not support equation (2a) as a cointegration relation. This is in line with

Assumption S.(i) that includes the nonstationary σt.

The second cointegration relation does not involves human activity although the technology

mix has strong evolved over the millennium. Yet, yt is close to significant in this equation so

we might have preferred to retain it. In Smil (2017, in his last table on page 458) who reports

estimates of per capita annual consumption of primary energy, these have only started increasing

by an order of magnitude when countries started their industrial revolution (the estimates are

explicitly uncertain). Hence, it is likely that the technology mix, prior to 1800, has not modified

much the elasticity of temperature to CO2 emissions, yet given the ensuing changes, we prefer

to leave human activity outside this equation, to reflect only physical equilibria. For robustness,

we reestimated the model starting in AD 1750, and found the estimates to be very similar, with

a test of overidentifying restrictions that has a p-value of 0.41.

In the model above, 100% green growth is feasible if a downward trend in σt is achieved,

tending towards −∞ so actual carbon content Σt = exp (σt) is driven to zero. This constitutes

an alternative to reducing growth altogether. In practice, given the current technologies, a

combination of green investment and restrained brown growth is required in our model to achieve

stability in temperature, let alone the counterfactual analysis we perform below.

Comparison with estimates in the literature. To assess the plausibility of our estimated

model, we compare its implications with meta analyses based on the existing literature. The
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long run impact of climate change on the economy has been considered nonlinear so calibrated

parameter uncertainty is an important issue. The table below summarizes the results for three

main indicators used in the climate-economy literature (see the Appendix for derivations and

explanations).

Ranges in Literature Our results (s.e.)

Temperature damage on GDP, ξ [.68, 1.34]∗ .81 (.40)

200 year temperature increase due to CO2 [.7, 2.1]† 1.35 (.66)

GDP loss due to CO2, γ [.27, 10.4]† 4.25 (.38)

∗Nordhaus & Moffat (2017); †Hassler, Krusell & Olovsson (2018).

Overall, these results (with reported standard errors) show that our estimates are very much

in the low to mid-range of those reported in the literature, so we are confident that our analysis

neither severely underestimate nor overestimate the relative impacts of climate and the economy.

4 Control theory in a cointegrated system

We now review the non-stationary control theory derived by JJ01 and show how it can be

used to understand the issue of climate control through carbon abatement, reinterpreting the

objective of the policy as suppressing the stochastic trend in temperature through use of coin-

tegration properties. For the sake of expositional simplicity, setting k = 1 in (3) and removing

deterministic terms reduces the model to

∆Xt = α
(
β′Xt−1 − µ

)
+ εt, (4)

and its Granger-Johansen moving average representation is

Xt = C
∑t

j=1εj + C (L) εt +A0, (5)

where the long-run impact matrix C governs the nonstationary stochastic trends of the system:

it latter plays a key role in the theory of controllability. In the expression above, C (L) εt

represents a stationary series, A0 depends upon the initial values and µ such that β′A0 = µ. It

follows from β′C = 0 that β′Xt−µ = β′C (L) εt is stationary so β are cointegration vectors. The

long-run expected value of Xt is defined as X∞ = limτ→∞ E (Xτ |X0 ) = CX0 +α (β′α)−1 µ. We

now consider a Control Theory derived from Preston and Pagan (1982, Chapter 4, and Section

5.8 in particular) and adapted to the nonstationary context as follows.

Definition 1 The Control Policy consists in two selection matrices (a, b), an objective b∗ and

a contemporaneous control rule ν (·) such that, in the system (4),
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(i) Policy controls a′Xt can be changed by intervention using control rule ν (Xt) :

ctr : a′Xctr
t = a′Xt + a′ν (Xt) ;

(ii) The objective is the desired value b∗ of a targeted combination of variables, b′Xt. It is

defined as the long-run conditional expectation

b∗ = lim
h→∞

E
(
b′Xnew

t+h |Xctr
t

)
,

where b′Xnew
t+1 is the ecosystem outcome for Xt+1 (now made stationary) given by expression (4)

when the control has been applied to Xt.

We assume in this paper that the policy objective is to control temperature so that b′Xnew
t+1 =

hnewt+1 and this process becomes stationary around a mean b∗.

The control policy defined above is explicitly written as a new equation to the system, one

that necessitates the “authority” that implements it must be able to modify a′Xt via a′ν (Xt) .

This may require extra controls that are outside the system but interact with it, though for

simplicity here we disregard this possibility. Indeed, our aim is not to assess how to implement

a policy, but whether it can be effective.

With continuous monitoring and control, the procedure delineated above works as follows

(for a policy that starts at time t = 0)

X0 → Xctr
0 = X0 + ν (X0)︸ ︷︷ ︸

(Policy)

→ Xnew
1 =

(
Ip + αβ′

)
Xctr

0 − α′µ+ ε1︸ ︷︷ ︸
(Ecosystem)

→ Xctr
1 = Xnew

1 + ν (X1)︸ ︷︷ ︸
(Policy)

→ ....

where we define the projector onto the space spanned by a as a = a (a′a)−1 .

Invariance. Success of the above approach relies on the notion of invariance of the system

(4) to interventions of the type a′Xt → a′Xctr
t so that we can assume that the potential outcome

is generated through mechanism (4) that is not affected by interventions. For invariance, we

require here that parameters remain unaffected by the introduction of the new policy so we can

be assured that Xnew
t+1 = Xctr

t + α
(
β′Xctr

t − µ
)

+ εt+1.

This relates to the notion of “super-exogeneity” proposed by Engle, Hendry and Richard

(1983), and studied by Pretis (2021) in the context of climate. Yet, super-exogeneity is about

invariance of conditional equations, while we consider here a system approach. While invariance

cannot be ascertained with certainty, we follow in the Supplementary Appendix two approaches

to ensure it constitutes a plausible assumption. These rely on (i) estimating the model using

extra long historical data to capture stable relations pre- and post-industrial revolution, treating

the latter as an historical “natural expirement” in climate change; and (ii) using statistical tests
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used in the context of super-exogeneity, inter alia by Castle et al., (2017).

Policy Impact. A question raised by JJ01 is that of controllability of b′Xt via a′Xt. Since the

objective is formulated in terms of a conditional expectation for b′Xnew
t+h , the choice of controls

and policy rule must ensure that b′Xnew
t+h is indeed stationary around b∗. In the cointegrated

VAR(1), JJ01 show that

b∗ = b′ lim
h→∞

E
(
Xnew
t+h

∣∣Xctr
t

)
= b′

(
C [Xt + ν (Xt)] + α

(
β′α
)−1

µ
)
,

so that the condition for controllability writes as follows.

Condition 1 (Controllability, C) The Policy objective is achievable using the chosen controls

if

det
(
b′Ca

)
6= 0. (6)

where C is the matrix measuring the long run impact of the stochastic trends in the Granger-

Johansen moving average representation (5).

Notice that Controllability is a property of the system (under invariance) for the targeted

variables and chosen controls. It does not depend on the actual rule ν (Xt) . JJ01 show that if

Controllability applies, then a linear rule is possible:

ν (Xt) = a
(
b′Ca

)−1  (
b∗ − b′Xt

)︸ ︷︷ ︸
policy discrepancy

+ b′α
(
β′α
)−1 (

β′Xt − µ
)︸ ︷︷ ︸

system discrepancy

 . (7)

The rule consists of a weighted average of b∗− b′Xt, a “policy” discrepancy between the desired

objective and the current value at t, and β′Xt−µ is a “system” deviation from the steady state

at t. Policy becomes, here, fully endogenous and does not constitute an exogenous shock, as is

often modelled in economics via structural VARs. The reason for the effectiveness of the policy,

and hence the channel through which it operates, relies on ν (Xt) generating an extra linear

cointegration relation. The new augmented system writes,

∆Xnew
t+1 = α

(
β′Xnew

t − µ
)

+
(
Ip + αβ′

)
ν (Xnew

t ) + εt+1. (8)

Following the most recent literature on treatments in time series and macroeconometrics, the pol-

icy controls and objective above define a Direct Potential Outcome System in the sense of Ram-

bachan and Shephard (2021). In there framework, the policy consists in an assignment Wt+1 =

ν (Xnew
t ) that is uncorrelated with εt+1 so Xnew

t+1 = −αµ+(I + αβ′)Xnew
t +(I + αβ′)Wt+1+εt+1

constitutes a “Non-anticipating Potential Outcome” (see the Supplementary Appendix for a dis-

cussion of our framework and theirs).
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In the context of a VAR(1) dynamic system, it can be shown that ν (Xnew
t ) = a (κ′Xnew

t − κ0) =

aκ′εt, so the impact of the policy is to augment the VAR(1) into a VARMA(1, 1) :

Xnew
t+1 = −αµ+

(
I + αβ′

)
Xnew
t + εt+1 +

(
I + αβ′

)
aκ′εt. (9)

This results also holds for higher order VAR(p) dynamics that are modified into VARMA(p, 1)

(for a careful choice of policy parameters among those that achieve the stated objective, see JJ01,

Theorem 6). Equation (9) shows that the policy can be identified in practice for its parameters

aκ′ through a Structural VARMA or VMA and associated response functions. This is not our

objective here though, since our aim is to study the impact of implementing a given policy.

Testing for Climate Controllability. Our first question is whether economic activity, yt or

ct, can be used as an instrument for a policy that aims to control temperature. Based on the

analysis above which can be extended to cover k > 1, this amounts to testing the significance

of the element in the long run C matrix corresponding to equation (6). In the empirical model,

the estimated Ĉ, which is reported in the Supplementary Appendix, shows that coefficient for

the long run impact of yt on temperature is 1.56, with a highly significant t-statistic of 3.33.

The matrix estimate and corresponding t-statistics show that the null of non controllability

of temperature ht by policy controls yt or ct, i.e. b′Ca = 0 for either variable in equation (6),

or a linear combination thereof, can safely be rejected at conventional levels. This shows that

carbon abatement can achieve its purpose of controlling temperature, i.e. rendering it stationary

around a chosen mean. The levels of significance indicate that any linear combination of yt and

ct can also be used as a policy. Note that direct capture of carbon dioxide in the atmosphere,

provided the technology develops sufficiently fast, would also achieve its objective.

5 Counterfactual Policy Analysis

Now that we have established that a policy of carbon abatement is capable of controlling global

temperatures, the natural follow-up question is at what cost. To this end, this section considers

the retrospective and prospective costs of a policy. For this, we design, and then simulate based

on the empirical model, a counterfactual path for the endogenous variables.

Policy design. We now consider JJ01’s analysis from the perspective of the policy maker

and econometrician who aim to perform a historical counterfactual analysis. We assume that

the policy is actioned by a central authority, which may represent international coordination,

or might be fictitious. For instance, a counterfactual analysis that may be of interest consists

in deriving the development path that would have arisen if mitigating policies had been put in

place through carbon abatement at some point in the past.
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The methodology and model above allow for a variety of policy objectives and instruments.

Here, we consider retrospective policies that would have aimed to control global temperatures

to render them stationary around a long run mean equal to their 1900 level (assuming ht were

observed then), i.e. stable over the 20th century at 0.7◦C below their 2008 level. Naturally, the

ensuing cost depends on the timing of the policy initiation as well as on the choice of controls.

We contemplate two distinct policies that provide different approaches to measuring the

opportunity cost of inaction on green investment.

1. One that mixes investment and consumption, with more weight accrued to the latter (since

our model does not specify the increase in abatement effectiveness that would have arisen

from higher investment on mitigating technologies – yet this can be easily embedded via

specific assumptions). Our baseline choice for the control is a′Xt = yt + ct/2 with target

b′Xt = ht. The weights are arbitrary but the modeler has the flexibility to consider policies

of their choice, as our study provides a toolbox that is adaptable.

2. Another that targets the same object through a reduction of the carbon content of tech-

nology, σt, in equation (2a), assuming that it can be put in place to control emissions and

concentrations a′Xt = mt directly. This amounts, for a given level of economic activity,

to reducing emissions and, possibly, to capturing atmospheric CO2. Notwithstanding the

actual cost of developing these technological solutions – which is assumed to be zero in a

baseline scenario, but could be introduced as a fraction of yt or c̃t – such a policy would

restrain the economic damage caused by increasing temperatures, hence increasing yt and

c̃t. As we do not model the cost of such a reduction, the ensuing impact on yt and ct can

help the policy maker assess what costs they are willing to endure for a specific objective.

Policy 1: Cost of inaction on abatement technologies. Assuming an authority has

modified at will both world GDP and consumption to achieve its objective, Figure 3 reports

the resulting dynamics, where to avoid a sudden shock in the early 20th century, we introduce

the policy progressively. We also include a forecast over the first half of the 21st century, both

as obtained unconditionally from the empirical model and with a policy that aims to maintain

the same temperature level. We also produce the bootstrap mean prediction and associated

confidence intervals, restricting ourselves to using residuals post 1900.

Temperature control is achieved in this exercise via stabilizing atmospheric carbon concen-

trations to a level about 20% below that of 2008. The ensuing cost in terms of foregone GDP

in 2008 is about 75% so the observed counterfactual GDP in 2008 would have been that which

we have known in the 1960s (the uncertainty is large), i.e., a cost of about 40 years of growth.

The cost in terms of world consumption is 45% of the 2008 level, foregoing the growth observed

since the mid-1970s. When looking at the bootstrap distributions (at each step forecasting the

next period using 500 bootstrap samples), we see that the historical sequence of shocks imposed

12



that most of the gains, in the counterfactual experiments, where obtained in the second half of

the 20th century.

In order to assess the cost of inaction in the face of climate change, we also perform a

complementary analysis where the objective in terms of temperature control remains the same,

but the policy only starts in 1950. Corresponding counterfactual outcomes are presented in the

Supplementary Appendix. The ensuing cost becomes 90% of the GDP of 2008, i.e. essentially

no growth since 1950. In terms of consumption, the counterfactual stands at 75% below the

observe level of 2008, i.e. an additional 20% reduction to the baseline scenario.

Projecting our experiment over the 21st century in either policy, we see that the efforts will

have to be sustained, reinforcing abatement policies. Clearly, these projections are contingent

on specific assumptions over the forecast period and nonlinearities due to major climate change

(see, e.g., Diebold et al., 2022, and Lenton et al., 2019).

Policy 2: Reducing the carbon content of technology Assuming the technological im-

provement is available freely but activated progressively to reach a reduction in 20% of at-

mospheric CO2 concentrations, the resulting gain in economic activity is potentially massive:

Figure 3 shows that the bootstrap interval ranges from −3% to +160%, with a mean gain of

+50%, and where the realized policy is at the upper bound. Similar values hold for c̃t, with a

wider bootstrap range and higher mean.

6 Conclusions

This paper assesses the feasibility and quantifies the cost of carbon abatement policies using

long series of economic and climate data compiled for the second millennium AD. By means of

a cointegrated VAR modeling strategy that matches a simple linearized SDICE model, we test

whether and show how a policy that aims to render temperatures stationary around a given

long run mean can be achieved. In an empirical application, we tested that carbon abatement is

indeed significantly capable of such a policy. We assessed its counterfactual cost, if a centralized

authority had been able to implement such a policy in the 20th centuries in order to maintain

the temperature level (observed ex post) in 1900. The estimated cost of the policy leads to a

reduction of about 75% of the 2008 world level of output (equivalent to foregoing growth since

historical levels of the 1960s) together with a reduction in about 45% in global consumption.

These costs are assessed under the assumption of a constant carbon content of technology, so

they show the opportunity cost of the lack of investment in mitigating technologies.

The analysis in this paper constitutes an exercise where we deliberately chose simple policy

controls, but economically meaningful alternatives are also possible (say the discounted wealth

rather than spot GDP and consumption). Indeed we see the collected data, model and results

above as a toolbox for policy analysis where refinements on possible projected scenarios and
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abatement policies need to be assessed. This constitutes one step into statistical analyses of the

feasibility of temperature control, and cost assessment of such policies.
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