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Abstract

In subgroup analysis, testing the existence of a subgroup with a differential treatment effect

serves as protection against spurious subgroup discovery. Despite its importance, this hypothesis

testing possesses a complicated nature: parameter characterizing subgroup classification is not

identified under the null hypothesis of no subgroup. Due to this irregularity, the existing methods

have the following two limitations. First, the asymptotic null distribution of test statistics often

takes an intractable form, which necessitates computationally demanding resampling methods to

calculate the critical value. Second, the dimension of personal attributes characterizing subgroup

membership is not allowed to be of high dimension. To solve these two problems simultaneously,

this study develops a novel shrinkage likelihood ratio test for the existence of a subgroup using

a logistic-normal mixture model. The proposed test statistics are built on a modified likelihood

function that shrinks possibly high-dimensional unidentified parameters toward zero under the

null hypothesis while retaining power under the alternative. This shrinkage helps handle the

irregularity and restore the simple chi-square-type asymptotics even under the high-dimensional

regime.

1 Introduction

Subgroup analysis is routinely conducted in clinical trials that aim to account for patients’ het-

erogeneous responses to treatment (Wang et al., 2007). By exploring the interaction between

treatment effect and patients’ characteristics, subgroup analysis searches for a subgroup with cer-

tain attributes who have a more beneficial or adverse treatment effect compared to the rest of
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the population. Despite its widespread usage, one possible concern is that the treatment effect is

actually homogeneous so that the detected subgroup is spurious.

To prevent such false subgroup discovery, this study proposes a novel testing method for the

existence of a subgroup that is computationally efficient and scales with high-dimensional patients’

characteristics. Following Shen and He (2015) and Shen et al. (2017), our hypothesis testing is based

on a logistic-normal mixture model. This is a type of normal mixture regression model in which

the means for different Gaussian components express distinctive treatment-outcome relationships

and the mixing proportion varies as a logistic function of covariates. These covariates and their

associated parameters pertain to subgroup classification and are thus called classification covariates

and classification parameters, respectively. With this model, hypothesis testing for the existence of

a subgroup reduces to testing the number of components. Specifically, the null hypothesis of one

component suggests that no subgroup characterized by the classification covariates exists, and the

alternative hypothesis of two components indicates otherwise.

Numerous model-based methods have been developed for testing the existence of a subgroup

with a differential treatment effect. Within the framework of the logistic-normal mixture model, a

pioneering work by Shen and He (2015) considers an EM-test for subgroup existence while Shen

et al. (2017) extend their approach to unequal variance cases. For survival data, Wu et al. (2016)

consider the logistic-Cox mixture model and develop an EM-test for the existence of a subgroup.

In contrast to those mixture-based modelings, Fan et al. (2017) deal with a structurally similar

change-plane model where two regression functions switch according to single-index thresholding

characterized by covariates and parameters. They then propose a score-type test for the existence

of a subgroup. This change-plane-based approach has been adapted to many other contexts: Kang

et al. (2017) for survival data and Huang et al. (2021) for binary response data.

Hypothesis testing for the existence of a subgroup possesses an irregular structure: the classi-

fication parameter is not identified under the null hypothesis of no subgroup. Due to the presence

of unidentified parameters, the aforementioned works have the following two limitations. First,

the asymptotic null distribution of test statistics takes complicated forms. In fact, the asymptotic

null distribution derived in Fan et al. (2017) is a functional of stochastic processes indexed by

unidentified parameters. The intractability of the limiting distribution necessitates computation-

ally demanding resampling methods to calculate the critical value. The dependence of the null

distribution on the unidentified parameters further gives rise to the second limitation. Namely,

the asymptotic null distribution of test statistics is even not well defined when the dimension of

classification covariates, and accordingly, the classification parameter increases with sample size.

Considering the growing availability of high-dimensional personal characteristics such as biomark-

ers and genetic information, this restriction can be a hurdle to the practical use of testing for the

existence of a subgroup.

To address these challenges, this study develops a novel testing procedure. Our test statistics

are based on the likelihood ratio as in Shen and He (2015) and Shen et al. (2017). However, in-

stead of naively estimating the model parameter, we propose to estimate the parameter under the

2



alternative model with a modified likelihood function that penalizes L1-norm of the classification

parameter. When the null hypothesis is true, this penalization strongly shrinks the unidentified

classification parameters toward zero. Owing to this shrinkage, the asymptotic null distribution of

the resulting shrinkage likelihood ratio test statistics (SLRT ) follows the half chi-square distribu-

tion, whose quantile is easy to calculate. This asymptotic result holds even when the dimension of

the classification covaraites and parameters increases with sample size under some rate conditions.

Meanwhile, the shrinkage effect is not as strong when the alternative hypothesis is true. Hence,

the proposed test is more powerful than the test that fixes the classification parameter to zero in

advance, as confirmed in our simulation study.

Besides tackling the computational burden and the high dimensionality associated with testing

the existence of a subgroup, this study further connects to the following strands of the literature.

First, in testing the number of components in finite mixture models, several works employ penalized

likelihood to realize simplified asymptotic null distributions. See, for example, Chen et al. (2001)

and Li et al. (2009) for non-normal mixture models; Chen and Li (2009) for normal mixture models;

and Kasahara et al. (2014) for Markov regime-switching models. Although those predecessors

and the present study share the same spirit of using penalization, the penalized parameters are

substantially different; the former penalize a one-dimensional mixing proportion while the latter

penalizes possibly high-dimensional parameters that can be associated with covariates. Especially,

dealing with the high dimensionality requires a distinct proof strategy for deriving the asymptotic

distribution.

Beyond the context of finite mixture models, hypothesis testing with unidentified parameters

under the null hypothesis for more general settings has been a long-standing interest in statistics

and econometrics. A partial list of the examples includes Davies (1977), Davies (1987), Andrews

and Ploberger (1994), Hansen (1996), Song et al. (2009) and Andrews and Cheng (2012). This

literature, however, does not cover the case where the unidentified parameters under the null

hypothesis are high-dimensional. Furthermore, our shrinkage approach is a novel way to treat such

a non-identification problem in hypothesis testing. A recent preprint by Yoshida and Yoshida (2023)

considers penalized quasi-maximum likelihood estimation with part of parameter unidentified and

proposes to use the Lq-norm penalty (0 < q ≤ 1) to stabilize the asymptotic behavior. However,

hypothesis testing and the high-dimensional unidentified parameter are beyond the scope of their

research.

We note that Wang (2016) develops a information-criterion-based method for selecting the

number of components in the logistic-mixture model with high-dimensional covariates. As Chen

et al. (2012) point out, however, such a model selection procedure and hypothesis testing often

serve different purposes. The former is expected to find the simplest model consistent with the

observed data, while the latter is useful to check the validity of scientific propositions, for example,

the (non)existence of a subgroup in our context.

The rest of the paper is organized as follows. Section 2 introduces the formal model setup,

the proposed testing methodology, and the notation. Section 3 then investigates the theoretical
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properties of the proposed test statistics after providing the required assumptions. In particular, we

establish the asymptotic distribution of the test statistics under the null hypothesis of no subgroup.

Section 4 illustrates the finite sample performance of the proposed method through Monte Carlo

simulations. We also discuss the choice of a tuning parameter. Subsequently, in Section 5, we

analyze real-world data with the proposed test. Section 6 concludes the article. All the proofs

of the propositions in the main text are relegated to Appendix A, while Appendix B collects the

auxiliary results and their proofs.

2 Methodology

Let {(Yi, Xi, Di, Zi, εi, δi)}ni=1 be i.i.d. copies of sample size n defined on some underlying probability

space (Ω,F ,P) with the following logistic-normal mixture model:

Yi = X ′
iα+Di(β + δiλ) + εi,

P(δi = 1|Xi, Zi) = exp(Z ′
iγ)/(1 + exp(Z ′

iγ)),

P(δi = 0|Xi, Zi) = 1− P(δi = 1|Xi, Zi), (1)

where Yi ∈ R is the outcome of interest, Di ∈ R is a treatment variable, Xi ∈ Rq is other confounding
variables, and εi is an independent error term that follows the normal distribution with mean

zero and variance σ2. Furthermore, δi ∈ {0, 1} is a latent subgroup membership indicator, and

Zi ∈ Rdn is possibly high-dimensional classification covariates that may be predictive of subgroup

membership. Among the unknown parameters (α, β, λ, γ, σ2), β expresses treatment effect common

to the entire population, λ is an additional treatment effect specific to a subgroup and γ is the

classification parameter that governs how Z influences the subgroup classification. Based on this

model, we perform the following hypothesis test based on the observable {(Yi, Xi, Di, Zi)}ni=1:

H0 : λ = 0 against Ha : λ > 0,

where the positivity of λ under the alternative hypothesis reflects an identifiability issue in the

logistic-normal mixture model (Jiang and Tanner, 1999). In this formulation, the null hypothesis

indicates that there exists no subgroup characterized by Z.

As in Shen and He (2015), our likelihood ratio-based test starts with the following conditional

density function of Yi given Wi := (X ′
i, Di, Z

′
i)
′:

f(Yi|Wi; θ, γ) := π(Z ′
iγ)ϕσ(Yi −X ′

iα−Di(β + λ)) + (1− π(Z ′
iγ))ϕσ(Yi −X ′

iα−Diβ),

where θ collects the parameter (α, β, λ, σ2) except for γ, π(x) := exp(x)/(1 + exp(x)) and ϕσ is

a density function of the normal distribution with mean 0 and variance σ2. Letting ln(θ, γ) :=∑n
i=1 log f(Yi|Wi; θ, γ), the likelihood ratio test statistics take the form 2(ln(θ̂, γ̂) − ln(θ̂0)), where
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(θ̂, γ̂) is the MLE under the full logistic-normal mixture model while θ̂0 denote the MLE under the

null model with the restriction λ = 0 (so that γ is dropped for brevity).

The standard chi-square-type limit theory is expected to break down for the likelihood ratio test

in the logistic-normal mixture model. To illustrate this point intuitively, the non-identifiability of

γ keeps γ̂ from having any clear probability limit under the null hypothesis, λ = 0. This non-limit

property implies that γ̂ freely moves across the whole parameter space even asymptotically, which

should translate into the complex asymptotic null distribution characterized by the parameter space

of γ as in Fan et al. (2017). Although this argument does not directly apply to the EM-test of

Shen and He (2015), their test is also not free from the intractable asymptotic null distribution.

Furthermore, the adaptability of their method to high-dimensional Z is not known.

For a simple chi-square-type asymptotic distribution and high-dimensional adaptability, our

proposal aims to fix the aforementioned non-limit issue of γ̂. To introduce our idea, we define a

penalized log-likelihood function:

l∗n(θ, γ) :=

n∑
i=1

log f(Yi|Wi; θ, γ)− pn∥γ∥1,

where ∥γ∥1 :=
∑d

j=1 |γj | is a L1-norm and pn is a tuning parameter such that pn/n goes to zero

as n → ∞. We then use a penalized estimator (θ̂∗, γ̂∗) := argmaxθ∈Θ,γ∈Γ l
∗
n(θ, γ) in place of (θ̂, γ̂)

for likelihood ratio test statistics where Θ and Γ are parameter spaces for θ and γ, respectively.

Hence, our proposed shrinkage likelihood ratio test statistics (SLRT ) are defined as

SLRT := 2(ln(θ̂
∗, γ̂∗)− ln(θ̂0)).

The idea of penalizing γ is inspired by the following insight. Under the null hypothesis, λ = 0,

an estimate of λ is expected to be close to zero asymptotically. In this case, variation of γ has little

effect on ln(θ, γ). Then, the effect of γ on l∗n(θ, γ) is more through −pn∥γ∥1 than through ln(θ, γ),

which strongly shrinks γ to zero. This shrinkage of γ toward zero solves the non-limit problem of

γ. In contrast, under the alternative λ > 0, an estimate of λ should be bounded away from zero

when the sample size is large. The effect of the variation of γ on ln(θ, γ) is nontrivial this time.

Combining this with the fact that pn/n is set to be asymptotically negligible, the effect of γ on

l∗(θ, γ) is more through ln(θ, γ) so that the shrinkage effect of γ to zero is not as strong. This

avoids substantial power loss of the test.

In the remainder of the paper, we use the following notation. Collect the covariate as Ui =

(X ′
i, Di)

′. We suppress the dependence of dn and pn on n and just write d and p. Let := denote

“equals by definition.” For a ∈ Rk, ∥a∥r denotes the Lr-norm of a in Euclidean space. In particular,

we suppress r and just write ∥a∥ when referring to the L2-norm. For a := (a1, . . . , ak)
′ ∈ Rk and

a real-valued function g(a), let ∇ag(a
∗) := (∂g(a∗)/∂a1, . . . , ∂g(a

∗)/∂a2)
′ be a vector of derivative

evaluated at a = a∗. The subscript 0 as in θ0 signifies the true parameter value. For two real

numbers a and b, a∧ b and a∨ b denote min(a, b) and max(a, b), respectively. Let C be a universal
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finite positive constant whose value may change from one expression to another. For two real

sequences {an}n∈N and {bn}n∈N, the notation an ≲ bn means that there exists a finite constant D
independent of n such that an ≤ Dbn for all n ∈ N. All the limits below are taken as n→ ∞ unless

stated otherwise. Throughout the article, we assume n ∧ d ≥ 2.

3 Theory

The goal of this section is to establish the asymptotic null distribution of SLRT , which is crucial

for the implementation of the test. After setting the required assumptions, we first show the

consistency of θ̂∗ and the convergence rate of ∥γ̂∗∥1 to zero (Proposition 1). We then introduce

the reparameterization of θ to deal with the non-regularity inherent in the logistic-normal mixture

model. Built on the reparameterization, we establish the quadratic approximation for the penalized

log-likelihood function and derive the convergence rate of the reparameterized estimator and the

asymptotic null distribution of SLRT . In the following, let Θ := Θα × Θβ × Θλ × Θσ2
be the

parameter space for θ = (α′, β, λ, σ2)′, and Z := (Z(1), · · · , Z(d))
′. Throughout the section, we

assume that the null hypothesis holds: λ0 = 0.

3.1 Assumptions

In addition to the basic model setup, the following set of assumptions is required for the subsequent

theoretical results.

Assumption 1. (a) Θα and Θβ are compact, convex sets, (b) Θσ2
= (0,∞), (c) Θλ = [0, uλ] for

some 0 < uλ <∞, (d) Γ = Rd and (e) (α′
0, β0)

′ lies in an interior of Θα ×Θβ.

Assumption 2. (a) E[∥U∥10] < ∞, (b) E[UU ′] is positive definite, (c) Z is uniformly sub-

Gaussian: there exist finite K,C > 0, independent of n and j, such that P(|Z(j)| > t) ≤ Ke−Ct
2

for all 0 < t <∞ and 1 ≤ j ≤ d, and (d) D is bounded and nondegenerate, i.e., V ar(D) > 0.

Assumption 3. n, d and p satisfy the following rate condition: (a) n7/4
√
log n log d/p2 = o(1) and

(b) log d = o(n1/4).

Compactness in Assumption 1(a) and (c) is required for the proof of consistency (Proposition

1), which extends that of Lemma A1 of Andrews (1993) to our context. As noted by Assumption

1(b) and (d), the parameter spaces for σ2 and γ are unrestricted. Still, Lemma 1 suggests that

those parameter spaces can essentially be regarded as compact with probability approaching one.

Assumption 2(a) is set because we expand the log-likelihood function five times and the tenth-order

terms of U appear when establishing the quadratic approximation for the penalized log-likelihood

function (Proposition 2). Similar higher-order moment conditions are employed when higher-order

expansion of the log-likelihood function is necessary, as in Assumption 2(a) of Kasahara and Shi-

motsu (2015). Positive definiteness of E[UU ′] in Assumption 2(b) is standard in hypothesis testing

for finite mixture models and can be seen in Theorem 2 of Shen and He (2015) and Assumption
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2(b) of Kasahara and Shimotsu (2015). We, however, do not require positive definiteness of E[ZZ ′],

which is a major departure from Shen and He (2015) (see Theorem 2 therein). Sub-Gaussianity

in Assumption 2(c) is for the sake of repeated use of Lemma 2.2.1 and 2.2.2 of van der Vaart and

Wellner (1996) to deal with the high-dimensionality of Z. For Assumption 2(d), the boundedness is

a technical requirement for the proof of Lemma 6 while the nondegeneracy avoids the complication

associated with the quadratic approximation, as discussed in the paragraph following Proposition

2. This assumption should be satisfied in most of our intended applications where D denotes a

treatment variable in clinical trials. Note that Fan et al. (2017) also consider bounded and nonde-

generate D in their setting for subgroup analysis. Assumption 3(b) indicates that d can grow much

faster than n. However, given Assumption 3(a), larger d requires larger p, which leads to stronger

shrinkage and thus power loss of the test.

3.2 Asymptotic Null Distribution of SLRT

Based on the assumptions, we start by showing the consistency of θ̂∗ and the convergence rate of

∥γ̂∗∥1 to zero.

Proposition 1. Assume Assumptions 1-3 hold. Then θ̂∗ →p θ0 and ∥γ̂∗∥1 = op(n
−1/4(log d log n)−1/2).

Note that the choice of the convergence rate of ∥γ̂∗∥1, n−1/4(log d log n)−1/2, is for the sake of the

proof of Proposition 2 and not essential in itself. The proof is built on that of Lemma A1 of Andrews

(1993), a consistency result when some parameters are not identified. We make modifications so that

the unidentified parameter can be of high-dimension and the L1 norm of the unidentified parameter

converges to zero in probability due to the L1 penalty. The key instrument for handling the high-

dimensionality is a judicious use of the multivariate contraction principle (Lemma 3) that leverages

the contraction property of the multivariate function (x1, x2, x3) → log(π(x1)e
−x2+(1−π(x1))e−x3)

appearing in the log-density.

We proceed to analyze the asymptotic properties of SLRT . As λ0 = 0 is on the boundary of Θλ

under the null hypothesis, we employ the method of Andrews (1999) for quadratic approximation

of the penalized log-likelihood function with the score ∇θ log f(Y |W ; θ0, γ̂
∗). We, however, note

that the standard analysis is hampered by the irregular structure of the score:

∂

∂β
log f(Y |W ; θ0, γ̂

∗) =
D(Y −X ′α0 −Dβ0)

σ20
,

∂

∂λ
log f(Y |W ; θ0, γ̂

∗) = π(Z ′γ̂∗)
D(Y −X ′α0 −Dβ0)

σ20
. (2)

There are two aspects to this irregularity. First, (∂/∂λ) log f(Y |W ; θ0, γ̂
∗) depends on γ̂∗, the

dimension of which possibly increases with the sample size n. However, this problem can be solved

by using the convergence ∥γ̂∗∥1 = op(n
−1/4(log d log n)−1/2) in Proposition 1. Specifically, Lemma

6 clarifies that π(Z ′γ̂∗) can be approximated by π(0) asymptotically, which enables us to treat

(∂/∂λ) log f(Y |W ; θ0, γ̂
∗) essentially as D(Y −X ′α0−Dβ0)/2σ20. Unfortunately, this approximation
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leads to the second aspect of the irregularity: (∂/∂β) log f(Y |W ; θ0, γ̂
∗) andD(Y −X ′α0−Dβ0)/2σ20

are linearly dependent. This linear dependence degenerates the Fisher information matrix so that

the standard second-order quadratic approximation is no longer valid.

We overcome this challenge by considering reparameterization inspired by Kasahara and Shi-

motsu (2015), which are built on the result of Rotnitzky et al. (2000). Let us introduce the

following one-to-one mapping between the original parameter (α′, β, σ2, λ)′ and the reparameter-

ized one (α′, ν, σ2, λ)′ with β = ν − λ/2. Collect the reparameterized parameter as ψ := (η′, σ2, λ)′

where η := (α′, ν)′. Accordingly, let Θψ := {(α′, β + λ/2, σ2, λ)′ : (α′, β, λ, σ2) ∈ Θ} denote the

reparameterized parameter space. With the abuse of notation, the reparameterized density, the

log-likelihood function, and the penalized log-likelihood function are given by

f(Y |W ;ψ, γ) := π(Z ′γ)ϕσ(Y −X ′α−D(ν + λ/2)) + (1− π(Z ′γ))ϕσ(Y −X ′α−D(ν − λ/2)),

ln(ψ, γ) :=
∑n

i=1 log f(Yi|Wi;ψ, γ) and l
∗
n(ψ, γ) := ln(ψ, γ)− p∥γ∥1. With this reparameterization,

the original score structure (2) can be transformed into

∂

∂ν
log f(Y |W ;ψ0, γ̂

∗) =
D(Y −X ′α0 −Dν0)

σ20
∂

∂λ
log f(Y |W ;ψ0, γ̂

∗) = (2π(Z ′γ̂∗)− 1)
D(Y −X ′α0 −Dν0)

2σ20

∂2

∂λ2
log f(Y |W ;ψ0, γ̂

∗) =
D2

4σ20

{
(Y −X ′α0 −Dν0)

2

σ20
− 1

}
−
(
∂

∂λ
log f(Y |W ;ψ0, γ̂

∗)

)2

.

As suggested by Lemma 6, the following approximation holds for the second and the third line:

∂

∂λ
log f(Y |W ;ψ0, γ̂

∗) ≈ 0,

∂2

∂λ2
log f(Y |W ;ψ0, γ̂

∗) ≈ D2

4σ20

{
(Y −X ′α0 −Dν0)

2

σ20
− 1

}
. (3)

As (∂/∂ν) log f(Y |W ;ψ0, γ̂
∗) and the approximation for (∂/∂λ2) log f(Y |W ;ψ0, γ̂

∗) in (3) are lin-

early independent, the derivative of the penalized log-likelihood function with respect to α, ν, σ2

and λ2 can play the role of the scores for the quadratic approximation under this parameterization.

Namely, let

tn(ψ) :=

 n1/2(η − η0)

n1/2(σ2 − σ20)

n1/2λ2

 , si :=


Ui
σ0
H1
i

1
2σ2

0
H2
i

Di
8σ2

0
H2
i

 ,

Sn := n−1/2
∑n

i=1 si, In := n−1
∑n

i=1 sis
′
i and Hk

i := Hk(εi/σ0) for k ∈ N where Hk(z) is the

Hermite polynomial of order k given by, for example, H1(z) = z and H2(z) = z2 − 1. Then,

the following proposition formally establishes the quadratic approximation for the penalized log-

likelihood function.
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Proposition 2. Assume Assumptions 1-3 hold. Then (a) l∗n(ψ, γ̂
∗) − l∗n(ψ0, γ̂

∗) = S′
ntn(ψ) −

1
2 tn(ψ)

′Intn(ψ) +Rn(ψ, γ̂
∗), where supψ∈{ψ∈Θψ :∥ψ−ψ0∥≤κ} |Rn(ψ, γ̂

∗)|/(1 + ∥tn(ψ)∥)2 →p 0 for any

sequence κ converging to zero, (b) Sn →d N(0, I), and (c) In →p I, where I is nonsingular.

Proposition 2 of Kasahara and Shimotsu (2015) obtains a similar quadratic approximation result

under reparameterization for their analysis of normal mixture regression models. Our proposition

2, however, departs from that work in two respects. First, the setting of Kasahara and Shimotsu

(2015) accommodates heterogeneous intercept terms across different mixture components, which

corresponds to the case where D equals unity in our context. Such heterogeneity is yet another

source of singularity of the Fisher information matrix: the first and second derivatives of the log-

density with respect to variance and an intercept term, respectively, are linearly dependent. Due to

this complication, Kasahara and Shimotsu (2015) employ a more involved reparameterization than

ours. Second, our proof faces a new challenge of the presence of possibly high-dimensional γ̂∗ and

handle the problem in a novel approach. Namely, we show that the effect of γ̂∗ on the quadratic

approximation vanishes asymptotically (Lemma 6) with the help of Proposition 1. Consequently,

the resulting quadratic approximation in Proposition 2(a) is the same as if γ̂∗ is fixed to zero up

to the remainder term.

Define the reparameterized version of the penalized MLE as (ψ̂∗, γ̂∗) := argmaxψ∈Θψ ,γ∈Γ l
∗
n(ψ, γ).

Then, based on Proposition 2, the following proposition derives the asymptotic null distribution

of SLRT . Note that χ2
1/2 + χ2

0/2 denotes the half chi-square distribution, which is a mixture of

the chi-square distribution with one degree of freedom and a point mass at zero with equal mixing

weights.

Proposition 3. Assume Assumptions 1-3 hold. Then (a) tn(ψ̂
∗) = Op(1) and (b) SLRT →d

χ2
1/2 + χ2

0/2.

According to the proof, the limiting null distribution, χ2
1/2 + χ2

0/2, is the same as that for the

likelihood ratio test statistics with γ fixed to zero. Moreover, the difference between the latter

test statistics and SLRT converges to zero in probability. The half chi-square distribution often

appears in likelihood-ratio-based tests for the number of components in finite mixture models in

which penalization is imposed on one-dimensional mixing proportion independent of covariate (e.g.,

Chen et al., 2001; Li et al., 2009). In this respect, our result witnesses the generalizability of the

penalization approach in the literature to covariate-dependent and high-dimensional settings.

4 Monte Carlo Simulation

In this section, we first discuss the criteria for the choice of tuning parameter p. We then conduct

a simulation study to evaluate the finite sample performance of the test under several settings.

We compute (θ̂∗, γ̂∗) via a version of EM algorithm (Jordan and Jacobs, 1994) where the stan-

dard weighted logistic regression in the M step is replaced by its L1-penalized counterpart. The
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monotonicity of the algorithm can be easily shown. All the simulations are conducted in R lan-

guage (R Core Team, 2022). The simulation codes are available at the author’s GitHub repository

(https://github.com/stakeish/shrinkage_subgroup).

4.1 Empirical Formula for p

While Assumption 3 indicates the order of p relative to n and d, this assumption per se does not pro-

vide the exact value of p the practitioners should choose. Inspired by Chen et al. (2012), we derive

the empirical formula determining the specific value of p given n and d through numerical experi-

ments. The construction of the formula proceeds as follows. For each n ∈ {100, 250, 500, 750, 1000}
and d ∈ {10, 25, 50, 75, 100}, we generate 2000 datasets of i.i.d. random variables {Yi, Xi, Di, Zi}ni=1,

with a random seed set to 10, from the following null distribution: X ∼ N(0, 1),D ∼ Bernoulli(0.5),

Z(1) = 1, (Z(2), . . . , Z(d))
′ ∼ N(0, I), Y ∼ N(1 + 2X + D, 1), where I is an identity matrix and

X, D and Z are independent of each other. Let P be a candidate set for p. For each n, we first

calculate the rejection frequency of the likelihood ratio test with γ fixed to zero (the benchmark

rejection frequency); then, for each d and for all p in P, we compute rejection frequencies of the

shrinkage likelihood ratio tests. We set the level of the tests to 5% and use χ2
1/2+χ

2
0/2 to calculate

the critical value. Now, for each n and d, we define pn,d as the smallest value in P with which

the rejection frequency of the shrinkage likelihood ratio test falls within 0.3% from the benchmark

rejection frequency. With 25 observations of (pn,d, n, d) at hand, consider the regression model:

pn,d = a+ bn7/8
√
log d, motivated by Assumption 3(a). We obtain an estimate of (a, b)′ simply by

the method of least squares, which results in the following empirical formula for p.

p = 6.3383 + 0.0086n7/8
√
log d (4)

We use the likelihood ratio test statistics with γ fixed to zero as the benchmark because SLRT

approach these statistics asymptotically under the null as the argument following Proposition 3

discusses. Even though we set Z to the standard normal variable, the empirical formula is robust

to deviation from this specific distribution, as clarified later in this section.

4.2 Size and Power

We move on to assess the finite sample properties of the proposed methods. A random seed is set

to 20 for each n, d, and parameter value. We use the empirical formula (4) to determine p. The

level is set to 5% throughout. We first examine the size property of the test. Consider the four null

settings: X ∼ N(0, 1), D ∼ Bernoulli(0.5), Z(1) = 1, Y ∼ N(1 + 2X +D, 1) and

Setting I: (Z(2), . . . , Z(d))
′ ∼ N(0, I), Setting II: (Z(2), . . . , Z(d))

′ ∼ N(0,Σ)

Setting III: (Z(2), . . . , Z(d))
′ ∼ i.i.d. Rademacher, Setting IV: (Z(2), . . . , Z(d))

′ ∼ i.i.d. Skew normal,
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where Σ in Setting II is a randomly generated positive definite matrix based on Cholesky decompo-

sition. Furthermore, “Rademacher” in Setting III indicates a Rademacher variable, which takes its

value at −1 or 1 with equal probability and “Skew normal” in Setting IV means the skew normal

distribution with the shape parameter set to 4 and the other parameters specified to ensure that

the distribution has mean zero and variance one. We benchmark the shrinkage likelihood ratio

tests in these four settings against the likelihood ratio tests with γ fixed to zero. Table 1 shows

that the proposed method works reasonably well in preserving the nominal level, especially when

the sample size is no smaller than 500. The proposed method also generally attains type I errors

close to those of the benchmark. Notably, the deviation of Z from the standard normality has

little effect on the performance, which can be supporting evidence for the generalizability of the

empirical formula (4).

Table 1: Type I Error

d = 10

B(I) S(I) B(II) S(II) B(III) S(III) B(IV) S(IV)

n = 100 0.0640 0.0646 0.0640 0.0646 0.0558 0.0570 0.0632 0.0640
n = 250 0.0528 0.0552 0.0528 0.0554 0.0560 0.0602 0.0464 0.0488
n = 500 0.0520 0.0562 0.0520 0.0540 0.0500 0.0534 0.0498 0.0532
n = 750 0.0488 0.0518 0.0488 0.0514 0.0526 0.0552 0.0492 0.0522
n = 1000 0.0548 0.0572 0.0548 0.0560 0.0470 0.0486 0.0560 0.0582

d = 50

B(I) S(I) B(II) S(II) B(III) S(III) B(IV) S(IV)

n = 100 0.0664 0.0688 0.0664 0.0690 0.0592 0.0604 0.0662 0.0682
n = 250 0.0582 0.0648 0.0538 0.0592 0.0618 0.0654 0.0512 0.0570
n = 500 0.0506 0.0566 0.0500 0.0564 0.0586 0.0640 0.0524 0.0600
n = 750 0.0546 0.0578 0.0504 0.0544 0.0522 0.0552 0.0502 0.0538
n = 1000 0.0480 0.0492 0.0480 0.0498 0.0506 0.0522 0.0490 0.0504

d = 100

B(I) S(I) B(II) S(II) B(III) S(III) B(IV) S(IV)

n = 100 0.0560 0.0592 0.0584 0.0624 0.0576 0.0604 0.0608 0.0638
n = 250 0.0576 0.0658 0.0558 0.0656 0.0576 0.0660 0.0570 0.0678
n = 500 0.0534 0.0636 0.0474 0.0540 0.0514 0.0582 0.0538 0.0632
n = 750 0.0520 0.0570 0.0496 0.0530 0.0526 0.0590 0.0498 0.0544
n = 1000 0.0468 0.0490 0.0546 0.0570 0.0542 0.0552 0.0478 0.0514

Notes: The columns “B(I)”, “B(II)”, “B(III)” and “B(IV)” report the rejection frequencies of the
likelihood ratio test with γ fixed to zero (benchmark), for Setting I, II, III and IV, respectively. The
columns “S(I)”, “S(II)”, “S(III)” and “S(IV)” report the rejection frequencies of the shrinkage likelihood
ratio tests for Setting I, II, III and IV, respectively. The number of replications is 5000.

We then investigate the power properties of the proposed tests. Consider the same setting as

the null case except for Y ∼ N(1 + 2X + (1 + δ)D, 1) and P(δ = 1|X,Z) = π(Z ′γ), where γ is a

vector with all the elements equal 1. Similarly to the null case, we benchmark the proposed method
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against the likelihood ratio test with γ fixed to zero. For fair comparison, we use the size-adjusted

critical values, obtained from the simulation under the null. As table 2 indicates, the proposed

methods generally improve upon the power over the benchmark. The rate of improvement is as

high as 20% in some cases. We note that the degree of improvement decreases with d, which

coincides with the observation regarding Assumption 3. Interestingly, the correlation of Z seems

to boost the power improvement. This phenomenon suggests the possibility that the power of the

test depends on the correlation structure for Z.

Table 2: Size-adjusted Power

d = 10

B(I) S(I) B(II) S(II) B(III) S(III) B(IV) S(IV)

n = 100 0.1712 0.1768 0.1740 0.1850 0.1922 0.1960 0.1722 0.1764
n = 250 0.3242 0.3692 0.3194 0.4066 0.3242 0.3698 0.3552 0.3960
n = 500 0.5140 0.6540 0.4992 0.7394 0.5290 0.6548 0.5324 0.6490
n = 750 0.6730 0.8246 0.6624 0.9050 0.6614 0.8354 0.6868 0.8332
n = 1000 0.7750 0.9238 0.7574 0.9634 0.7864 0.9234 0.7556 0.9168

d = 50

B(I) S(I) B(II) S(II) B(III) S(III) B(IV) S(IV)

n = 100 0.1742 0.1736 0.1778 0.1810 0.1808 0.1846 0.1768 0.1788
n = 250 0.3278 0.3446 0.3338 0.4062 0.3154 0.3470 0.3440 0.3608
n = 500 0.4990 0.5744 0.5564 0.6960 0.5422 0.6000 0.5432 0.5924
n = 750 0.6704 0.7184 0.7038 0.8442 0.6958 0.7460 0.6970 0.7454
n = 1000 0.8128 0.8450 0.8080 0.9158 0.8024 0.8428 0.8042 0.8416

d = 100

B(I) S(I) B(II) S(II) B(III) S(III) B(IV) S(IV)

n = 100 0.2006 0.2044 0.1958 0.1976 0.1930 0.1944 0.1766 0.1810
n = 250 0.3432 0.3554 0.3214 0.3744 0.3400 0.3466 0.3414 0.3506
n = 500 0.5358 0.5806 0.5706 0.6608 0.5508 0.5838 0.5450 0.5720
n = 750 0.7090 0.7310 0.6970 0.7950 0.6898 0.7202 0.7136 0.7286
n = 1000 0.8204 0.8344 0.8048 0.8846 0.8068 0.8274 0.8130 0.8230

Notes: The columns “B(I)”, “B(II)”, “B(III)” and “B(IV)” report the rejection frequencies of the
likelihood ratio test with γ fixed to zero (benchmark), for Setting I, II, III and IV, respectively. The
columns “S(I)”, “S(II)”, “S(III)” and “S(IV)” report the rejection frequencies of the shrinkage likelihood
ratio tests for Setting I, II, III and IV, respectively. The number of replications is 5000.

5 Real-World Data Analysis

We apply the proposed method to data from AIDS Clinical Trials Group Protocol 175 (ACTG175),

which is available in R package speff2trial. This study randomizes 2139 HIV-infected patients into

four different treatment arms: zidovudine (ZDV) only, ZDV plus didanosine (ddI), ZDV plus zal-

citabine (zal), and ddI only. As common in previous works (e.g., Lu et al., 2013; Fan et al., 2017),
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we consider the CD4 count at 20 ± 5 weeks after the randomization as the outcome variable of

interest. Following Lu et al. (2013), we include the following 12 covariates plus the intercept term

for X and Z in (1): age, weight, Karnofsky score, CD4 count at baseline, CD8 count at base-

line, hemophilia, homosexual activity, history of intravenous drug use, race, gender, antiretroviral

history, and symptomatic status. We standardize those 12 covariates when used for Z. For the

treatment variable D, we conduct the following four analyses as in Lu et al. (2013).

• Analysis 1: D = 0 for ZDV only and D = 1 for the other three treatment combined together.

• Analysis 2: Consider only those with ZDV plus ddI or ZDV plus zal. D = 0 for ZDV plus

zal and D = 1 for ZDV plus ddI.

• Analysis 3: Consider only those with ZDV plus ddI or ddI only. D = 0 for ddI only and

D = 1 for ZDV plus ddI.

• Analysis 4: Consider only those with ZDV plus zal or ddI only. D = 0 for ddI only and

D = 1 for ZDV plus zal.

Fan et al. (2017) also test the existence of a subgroup; however, they include only two covariates

(age and homosexual activity) for X and Z and are limited to Analysis 2.

The results are summarized in Table 3. The proposed test rejects the null hypothesis of no

subgroup at the 5% level for Analysis 1-3, while it fails to reject the null hypothesis for Analysis

4. In particular, the p-value for Analysis 2 is less than 0.001, suggesting strong evidence for the

existence of a subgroup, which is in accordance with the finding of Fan et al. (2017). Furthermore,

even though Lu et al. (2013) do not perform the hypothesis test, they suggest the absence of

treatment heterogeneity explained by covariate for Analysis 4 based on their estimation result.

This conclusion is consistent with our failure to reject the null hypothesis for Analysis 4.

Table 3: The p-values for the real-world data analysis

Analysis 1 Analysis 2 Analysis 3 Analysis 4

p-value 0.0098 0.0005 0.0067 0.5
Notes: Each entry shows the p-value of SLRT for the corresponding analysis.

6 Conclusion

This study develops a novel shrinkage testing method for the existence of a subgroup with a

differential treatment effect in logistic-normal mixture models. Compared to the existing works, the

proposed test is computationally easy to implement due to the tractable asymptotic null distribution

of the test statistics and accommodates high-dimensional covariates characterizing the classification

of the subgroup. Furthermore, we confirm the good finite sample performance of the proposed

method through numerical simulation.
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There are several interesting directions for future research. First, the theoretical properties of

the test statistics under the alternative hypothesis remain unknown. Even though we expect the

presence of L1-penalization to complicate the situation, the theoretical analysis of the power merits

investigation in order to fully characterize the performance of the proposed method. Second, the

proposed test hinges on the correctness of the parametric specification of the model, which can

be too restrictive in real data. Hence, the development of a specification test or extension of the

proposed shrinkage method to more general nonlinear models as in Andrews and Cheng (2012)

is an important research topic. Lastly, in clinical trials, it is often the case that the outcome of

interest is survival time and thus possibly right-censored. Tailoring the proposed method for such

survival data is of practical importance.
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A Proofs

We employ the notations in the empirical process theory: for any random variable R and measurable

function h in a classH, we write Ph(R) = E[h(R)] and Pnh(R) = 1
n

∑n
i=1 h(Ri), and let ∥·∥H denote

the supremum of the absolute value over H. For example, ∥Pnh(R)−Ph(R)∥H = suph∈H |Pnh(R)−
Ph(R)|.

In all the proofs in Appendix A and the proofs of Lemma 2, 4 and 6 in Appendix B, we use the

following Assumption 1′ in place of Assumption 1. Assumptions 1′(a), (c) and (e) are identical to

Assumptions 1(a), (c) and (e), while Assumptions 1′(b) and (d) replace Θσ2
and Γ in Assumptions

1(b) and (d) with their compactified versions Θ̃σ2
and ΓM . Lemma 1 in Appendix B shows that

the replacement by Assumption 1′ is valid with probability approaching one under Assumptions 1

and 2. Let Θ̃ := Θα ×Θβ ×Θλ × Θ̃σ2
denote the compactified parameter space.

Assumption 1′. (a) Θα and Θβ are compact, convex sets, (b) Θ̃σ2
= [lσ2

0
, uσ2

0
] for some 0 < lσ2

0
<

σ20 < uσ2
0
< ∞, (c) Θλ = [0, uλ] for some 0 < uλ < ∞, (d) ΓM = {γ ∈ Rd : ∥γ∥1 ≤ Mn/p} for

some M , and (e) (α′
0, β0)

′ lies in an interior of Θα ×Θβ.

Proof of Proposition 1. We apply Lemma 2 with cn = n−1/4(log d log n)−1/2. To this end, we

divide the proof into three steps: (i) characterization of an, (ii) characterization of bε,n, and (iii)

verification of an = o(bε,n).

(i) characterization of an. Let f̃(Y |W ; θ, γ) := (2πσ2)1/2f(Y |W ; θ, γ) = π(Z ′γ)e−
(Y−X′α−D(β+λ))2

2σ2 +

(1− π(Z ′γ))e−
(Y−X′α−Dβ)2

2σ2 . Then a straightforward calculation yields

an = E
[∥∥∥(Pn − P ) log f̃(Y |W ; θ, γ)

∥∥∥
Θ̃×ΓM

]
. (5)

Let ξ1, . . . , ξn be i.i.d. Rademacher random variables independent of {(Yi,Wi)}ni=1 (see Lemma 2.2.7

of van der Vaart and Wellner (1996) for the definition). Lemma 2.3.1 of van der Vaart and Wellner

(1996) (the symmetrization inequality) gives that

E
[∥∥∥(Pn − P ) log f̃(Y |W ; θ, γ)

∥∥∥
Θ̃×ΓM

]
≲ E

[∥∥∥Pnξ log f̃(Y |W ; θ, γ)
∥∥∥
Θ̃×ΓM

]
. (6)

Letting θ∗ := (α′
∗, β∗, λ∗, lσ2

0
)′ with α∗ = 0, β∗ = 0, λ∗ = 0 and lσ2

0
defined in Assumption 1′(b), by

the triangle inequality,

E
[∥∥∥Pnξ log f̃(Y |W ; θ, γ)

∥∥∥
Θ̃×ΓM

]
≤ E

[∥∥∥Pnξ (log f̃(Y |W ; θ, γ)− log f̃(Y |W ; θ∗, 0)
)∥∥∥

Θ̃×ΓM

]
+ E

[∣∣∣Pnξ log f̃(Y |W ; θ∗, 0))
∣∣∣] . (7)

We bound each of the two terms on the right side. For the first term, we start by considering

the function g(w1, w2, w3) := log(π(w1)e
−w2 + (1− π(w1))e

−w3). By a straightforward calculation
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using differentiation and the mean value theorem, |g(w1, w2, w3)− g(u1, u2, u3)| ≤ |w1−u1|+ |w2−
u2|+ |w3 − u3| for any (w1, w2, w3) and (u1, u2, u3) ∈ R3. It now follows from Lemma 3 that

E
[∥∥∥Pnξ (log f̃(Y |W ; θ, γ)− log f̃(Y |W ; θ∗, 0)

)∥∥∥
Θ̃×ΓM

]
≲ E

[∥∥PnωZ ′γ
∥∥
ΓM

]
+ E

[∥∥∥∥Pnω (Y −X ′α−D(β + λ))2

2σ2

∥∥∥∥
Θ̃

]
+ E

[∥∥∥∥Pnω (Y −X ′α−Dβ)2

2σ2

∥∥∥∥
Θ̃

]
,(8)

where ω is a standard normal random variable as defined in the statement of Lemma 3. The right

side is further bounded by C(
√
n log d/p+ n−1/2) from Lemma 4, by which we obtain

E
[∥∥∥Pnξ (log f̃(Y |W ; θ, γ)− log f̃(Y |W ; θ∗, 0)

)∥∥∥
Θ̃×ΓM

]
≲

√
n log d

p
+

1√
n
. (9)

For the second term on the right side of (7), Lemma 8 of Chernozhukov et al. (2015) combined

with Assumption 2(a) gives that E
[∣∣∣Pnξ log f̃(Y |W ; θ∗, 0))

∣∣∣] ≲ n−1/2. In light of this inequality

and (9), an ≲ (n log d)1/2/p+ n−1/2 follows from (5), (6) and (7).

(ii) characterization of bε,n. Let rn be an arbitrary sequence of positive real numbers converging

to zero. Define Ψrn
ε := {(θ′, γ)′ ∈ Θ̃ × ΓM : ∥θ − θ0∥ + c−1

n ∥γ∥1 ≥ ε, c−1
n ∥γ∥1 ≤ rn} and Ψrn

ε,c :=

{(θ′, γ)′ ∈ Θ̃× ΓM : ∥θ− θ0∥+ c−1
n ∥γ∥1 ≥ ε, c−1

n ∥γ∥1 > rn}. Then, because Ξε,n = Ψrn
ε ∪Ψrn

ε,c (Ξε,n

is defined in the statement of Lemma 2), bε,n is no smaller than

E[log f(Y |W ; θ0, 0)]− (An ∨Bn) ≥ (E[log f(Y |W ; θ0, 0)]−An)∧ (E[log f(Y |W ; θ0, 0)]−Bn), (10)

where

An := sup
(θ′,γ′)′∈Ψrnε

(E[log f(Y |W ; θ, γ)]− p/n∥γ∥1) , Bn := sup
(θ′,γ′)′∈Ψrnε,c

(E[log f(Y |W ; θ, γ)]− p/n∥γ∥1) .

We bound each of E[log f(Y |W ; θ0, 0)]−An and E[log f(Y |W ; θ0, 0)]−Bn from below. For the

first quantity, a straightforward calculation gives that E[log f(Y |W ; θ0, 0)]−An is no smaller than

E[log f(Y |W ; θ0, 0)]− sup
(θ′,γ′)′∈Ψrnε

E[log f(Y |W ; θ, 0)]−∥E[log f(Y |W ; θ, γ)]− E[log f(Y |W ; θ, 0)]∥Ψrnε .

(11)

Note that for sufficiently large n with rn ≤ ε/2, (θ′, γ′)′ ∈ Ψrn
ε implies that ∥θ− θ0∥ ≥ ε/2. Hence,

for such n, it holds that

E[log f(Y |W ; θ0, 0)]− sup
(θ′,γ′)′∈Ψrnε

E[log f(Y |W ; θ, 0)]

≥ E[log f(Y |W ; θ0, 0)]− sup
θ∈{θ∈Θ:∥θ−θ0∥≥ε/2}

E[log f(Y |W ; θ, 0)], (12)

where the right side is positive from the information inequality combined with the model identifiabil-
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ity and Assumption 1′(a)-(c). Meanwhile, similarly to the argument leading to (8), | log f(Y |W ; θ, γ)−
log f(Y |W ; θ, 0)| ≤ |Z ′γ|, which is bounded by ∥γ∥1max1≤j≤d |Z(j)|. Consequently,

∥E[log f(Y |W ; θ, γ)]− E[log f(Y |W ; θ, 0)]∥Ψrnε ≤ cnrnE
[
max
1≤j≤d

|Z(j)|
]
≲ cnrn

√
log d = o(1), (13)

where the second inequality follows from Lemma 2.2.1 and 2.2.2 of van der Vaart and Wellner

(1996) and Assumption 2(c) and the last equality follows from the choice of cn. Combining (11),

(12) and (13), we obtain

E[log f(Y |W ; θ0, 0)]−An ≥ cε, (14)

for some positive constant cε for sufficiently large n.

For E[log f(Y |W ; θ0, 0)]− Bn, note that

E[log f(Y |W ; θ0, 0)]−Bn ≥ E[log f(Y |W ; θ0, 0)]− sup
(θ′,γ′)′∈Ψrnε,c

E[log f(Y |W ; θ, γ)]+ inf
(θ′,γ′)′∈Ψrnε,c

p/n∥γ∥1,

where E[log f(Y |W ; θ0, 0)]− sup(θ′,γ′)′∈Ψrnε,c E[log f(Y |W ; θ, γ)] ≥ 0 from the information inequality

and the model identifiability, and inf (θ′,γ′)′∈Ψrnε,c p/n∥γ∥1 ≥ prncn/n = (pnrn)/(n
5/4

√
log d log n)

from the construction of Ψrn
ε,c and the choice of cn. As a result,

E[log f(Y |W ; θ0, 0)]− Bn ≥ (pnrn)/(n
5/4
√
log d log n) (15)

holds.

Combining (10), (14) and (15), we have bε,n ≳ pnrn/(n
5/4

√
log d log n).

(iii) verification of an = o(bε,n). Combine the results from (i) and (ii) to obtain the inequality

an
bε,n

≲ 1

rn

(
n7/4

√
log n log d

p2
+
n3/4

√
log n log d

p

)
≲ 1

rn

n7/4√log n log d

p2
+

√
n7/4

√
log n log d

p2

 .

Taking the convergence rate of rn to zero sufficiently slow, the right side converges to zero by

Assumption 3(a). Lemma 2 now completes the proof.

Proof of Proposition 2. First, we prove part (a). Let ψ = (ζ1, . . . , ζr)
′ with r = q + 3. Collect

ησ := (η′, σ2)′, tn(ησ) := n1/2(ησ − ησ0) and sησi := (U ′
iH

1
i /σ0,H

2
i /(2σ

2
0)

′)′. Accordingly, define

Sησn := n−1/2
∑n

i=1 s
ησ
i and Iησn := n−1

∑n
i=1 s

ησ
i s

ησ
i

′
. We abbreviate f(Y |W ;ψ0, γ̂

∗) to f0. Let {ησ}
be a set consisting of the elements of ησ. Furthermore, let V and ρ(ε) denote a random variable

with the finite second moments that is independent of ε and a polynomial of ε whose value and

form may vary from one expression to another, respectively. Expanding l∗n(ψ, γ̂
∗) around ψ0 five
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times using Taylor’s theorem yields l∗n(ψ, γ̂
∗)− l∗n(ψ0, γ̂

∗) =
∑5

k=1Dk where

D1 := ∇ψln(ψ0, γ̂
∗)′(ψ − ψ0), D2 :=

1

2
(ψ − ψ0)

′∇ψψ′ ln(ψ0, γ̂
∗)(ψ − ψ0)

D3 :=
1

3!

r∑
i=1

r∑
j=1

r∑
k=1

∇ζiζjζk ln(ψ0, γ̂
∗)(ζi − ζi,0)(ζj − ζj,0)(ζk − ζk,0),

D4 :=
1

4!

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

∇ζiζjζkζl ln(ψ0, γ̂
∗)(ζi − ζi,0)(ζj − ζj,0)(ζk − ζk,0)(ζl − ζl,0),

D5 :=
1

5!

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

r∑
m=1

∇ζiζjζkζlζm ln(ψ̄, γ̂
∗)(ζi − ζi,0)(ζj − ζj,0)(ζk − ζk,0)(ζl − ζl,0)(ζm − ζm,0),

where ψ̄ lies on the path connecting ψ0 and ψ. We now investigate each of D1-D5.

(i) D1. By a straightforward calculation using Lemma 5,

D1 = (Sησn )′tn(ησ) +

(
1

n1/4

n∑
i=1

(2π(Z ′
iγ̂

∗)− 1)
DiH

1
i

2σ0

)
n1/4λ = (Sησn )′tn(ησ) + op(1)n

1/4λ,

where the second equality follows from Lemma 6(a).

(ii) D2. Let µ1, µ2 be any elements of ψ. Then∇µ1µ2 log f0 = ∇µ1µ2f0/f0−(∇µ1f0/f0)(∇µ2f0/f0).

When µ1, µ2 ∈ {ησ}, a straightforward calculation with Lemma 5 gives that E[∇µ1µ2f0/f0] = 0. In

particular, this implies

(ησ − ησ0)
′∇ηση′σ ln(ψ0, γ̂

∗)(ησ − ησ0) = tn(ησ)
′op(1)tn(ησ)− tn(ησ)

′Iησn tn(ησ), (16)

where op(1) follows from the law of large numbers. At the same time, a straightforward calcula-

tion with Lemma 5 gives that (ησ − ησ0)
′∇ησλln(ψ0, γ̂

∗)λ = tn(ησ)
′Sησλn n1/4λ − tn(ησ)

′Iησλn n1/4λ,

where we define Sησλn := n−3/4
∑n

i=1

(
(2π(Z ′

iγ̂
∗)− 1)U ′

iDiH
2
i /(2σ

2
0), (2π(Z

′
iγ̂

∗)− 1)DiH
3
i /(4σ

3
0)
)′

and Iησλn := n−3/4
∑n

i=1 s
ησ
i (2π(Z ′γ̂∗)− 1)DiH

1
i /(2σ0). By Lemma 6(b), Sησλn = op(1) and Iησλn =

op(1). Hence, we have

(ησ − ησ0)
′∇ησλln(ψ0, γ̂

∗)λ2 = tn(ησ)
′op(1)n

1/4λ. (17)

Lastly, by a straightforward calculation with Lemma 5, ∇λ2 ln(ψ0, γ̂
∗)λ2 equals(

n−1/2
n∑
i=1

DiH
2
i /(4σ

2
0)

)
n1/2λ2 −

(
n−1/2

n∑
i=1

(2π(Z ′
iγ̂

∗)− 1)2(DiH
1
i )

2/(2σ0)
2

)
n1/2λ2.

However, observe that n−1/2
∑n

i=1(2π(Z
′
iγ̂

∗)− 1)2(DiH
1
i )

2/(2σ0)
2 = op(1) by Lemma 6(c). Hence,

we have

∇λ2 ln(ψ0, γ̂
∗)λ2 =

(
n−1/2

n∑
i=1

DiH
2
i /(4σ

2
0)

)
n1/2λ2 + op(1)n

1/2λ2. (18)
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Combining (16), (17) and (18), we obtain

D2 = − 1

2
tn(ησ)

′Iησn tn(ησ) +

(
n−1/2

n∑
i=1

DiH
2
i /(8σ

2
0)

)
n1/2λ2

+ tn(ησ)
′op(1)tn(ησ) + tn(ησ)

′op(1)n
1/4λ+ op(1)n

1/2λ2.

(iii) D3. Note that

D3 =
1

2

∑
ζi∈{ησ}

∑
ζj∈{ησ}

r∑
k=1

∇ζiζjζk ln(ψ0; γ̂
∗)(ζi − ζi,0)(ζj − ζj,0)(ζk − ζk,0)

+
1

2

∑
ζ∈{ησ}

∇ζλ2 ln(ψ0; γ̂
∗)(ζ − ζ0)λ

2 +
1

3!
∇λ3 ln(ψ0; γ̂

∗)λ3. (19)

We take a close look at each term on the right side. First, by a straightforward calculation with

Lemma 5 and Assumption 2(a), for any elements µ1, µ2, µ3 of ψ, |∇µ1µ2µ3 log f0| is bounded by a

integrable function g(W, ε) that does not depend on γ̂∗. Hence, by the law of large numbers,

∑
ζi∈{ησ}

∑
ζj∈{ησ}

r∑
k=1

∇ζiζjζk ln(ψ0; γ̂
∗)(ζi − ζi,0)(ζj − ζj,0)(ζk − ζk,0)

=
∑

ζi∈{ησ}

∑
ζj∈{ησ}

Op(1)n
1/2(ζi − ζi,0)n

1/2(ζj − ζj,0)O(∥ψ − ψ0∥). (20)

Subsequently, for ζ ∈ {ησ}, a straightforward derivative calculation yields

∇ζλ2 log f0 =
∇ζλ2f0

f0
− 2

∇ζλf0
f0

∇λf0
f0

− ∇λ2f0
f0

∇ζf0
f0

+ 2
∇ζf0
f0

(
∇λf0
f0

)2

.

By Lemma 5, it is easy to verify that E[∇ζλ2f0/f0] = 0. Furthermore, Lemma 5 also suggests that

(∇ζλf0/f0)(∇λf0/f0) and (∇ζf0/f0)(∇λf0/f0)
2 can be written as the form V (π(Z ′γ̂∗)−1/2)2ρ(ε).

Hence, by the law of large numbers, Lemma 6(b) and applying Lemma 5 to (∇λ2f0/f0)(∇ζf0/f0)

yield

1

2

∑
ζ∈{ησ}

∇ζλ2 ln(ψ0; γ̂
∗)(ζ − ζ0)λ̂

2 =
∑

ζ∈{ησ}

op(1)n
1/2(ζ − ζ0)n

1/2λ2

− tn(ησ)
′

(
n−1

n∑
i=1

sησi DiH
2
i /(8σ

2
0)

)
n1/2λ2. (21)

Lastly, by a straightforward derivative calculation with Lemma 5, ∇λ3 log f0 can be written as the

form D3(π(Z ′γ̂∗) − 1/2)kρ(ε) with k ∈ N. It follows from Lemma 6(b) that ∇λ3 ln(ψ0; γ̂
∗)λ3 =

19



op(1)n
1/4λn1/2λ2. Combining this with (19), (20) and (21) yields that

D3 =− tn(ησ)
′

(
n−1

n∑
i=1

sησi DiH
2
i /(8σ

2
0)

)
n1/2λ2

+
∑

ζi∈{ησ}

∑
ζj∈{ησ}

Op(1)n
1/2(ζi − ζi,0)n

1/2(ζj − ζj,0)O(∥ψ − ψ0∥)

+
∑

ζ∈{ησ}

op(1)n
1/2(ζ − ζ0)n

1/2λ2 + op(1)n
1/4λn1/2λ2.

(iv) D4. Observe that

D4 =
1

3

∑
ζ∈{ησ}

r∑
i=1

r∑
j=1

r∑
k=1

∇ζζiζjζk ln(ψ0; γ̂
∗)(ζ − ζ0)(ζi − ζi,0)(ζj − ζj,0)(ζk − ζk,0)

+
1

4!
∇λ4 ln(ψ0; γ̂

∗)λ4. (22)

For the summation on the right side, a straightforward calculation with Lemma 5 and Assumption

2(a) gives that, for any elements µ1, µ2, µ3, µ4 of ψ, |∇µ1µ2µ3µ4 log f0| is bounded by a integrable

function g(W, ε) that does not depend on γ̂∗. Hence, by the law of large numbers,

∑
ζ∈{ησ}

r∑
i=1

r∑
j=1

r∑
k=1

∇ζζiζjζk ln(ψ0; γ̂
∗)(ζ − ζ0)(ζi − ζi,0)(ζj − ζj,0)(ζk − ζk,0)

=
∑

ζ∈{ησ}

∑
µ∈{ησ ,λ2}

Op(1)n
1/2(ζ − ζ0)n

1/2(µ− µ0)O(∥ψ − ψ0∥), (23)

where {ησ, λ2} is a set consisting of the elements of ησ and λ2. Furthermore, a straightforward

derivative calculation yields

∇λ4 log f0 =
∇λ4f0
f0

− 4
∇λ3f0
f0

∇λf0
f0

− 3

(
∇λ2f0
f0

)2

+ 12
∇λ2f0
f0

(
∇λf0
f0

)2

− 6

(
∇λf0
f0

)4

.

By Lemma 5, E[∇λ4f0/f0] = 0. Furthermore, a straightforward calculation with Lemma 5 gives

that (∇λ3f0/f0)(∇λf0/f0), (∇λ2f0/f0)(∇λf0/f0)
2 and (∇λf0/f0)

4 all have the form V (π(Z ′γ̂∗) −
1/2)kρ(ε) where k ∈ N and V has the finite second moment. Combining these facts with applying

Lemma 5 to (∇λ2f0/f0)
2 in conjunction with the law of large numbers and Lemma 6(b),

1

4!
∇λ4 ln(ψ0, γ̂

∗)λ4 = −

(
1

2n

n∑
i=1

(DiH
2
i /(8σ

2
0))

2

)
(n1/2λ2)2 + op(1)(n

1/2λ2)2. (24)
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In view of (22), (23) and (24), we obtain

D4 = −

(
1

2n

n∑
i=1

(
DiH

2
i

8σ20

)2
)
(n1/2λ2)2 +

∑
ζ∈{ησ}

∑
µ∈{ησ ,λ2}

Op(1)n
1/2(ζ − ζ0)n

1/2(µ− µ0)O(∥ψ − ψ0∥)

+ op(1)(n
1/2λ2)2.

(v) D5. For any elements µ1, . . . , µ5 of ψ, a straightforward calculation with Lemma 5 in

conjunction with Assumptions 2(a) and 1′(a)-(c) implies that |∇µ1...µ5 log f(Y |W ; ψ̄, γ̂∗)| is bounded
by an integrable function independent of the values of ψ̄ and γ̂∗. Hence, the law of large numbers

implies that

D5 =
∑

ζ∈{ησ ,λ2},µ∈{ησ ,λ2}

Op,ψ̄(1)n
1/2(ζ − ζ0)n

1/2(µ− µ0)O(∥ψ − ψ0∥),

where |Op,ψ̄(1)| ≤ Op(1) for some Op(1) independent of ψ̄ and γ̂∗ as discussed above.

Collecting the terms from D1-D5, we obtain

l∗n(ψ, γ̂
∗)− l∗n(ψ0, γ̂

∗) = S′
ntn(ψ)−

1

2
tn(ψ)

′Intn(ψ) +Rn(ψ, γ̂
∗),

where, by a straightforward calculation, supψ∈{ψ∈Θψ :∥ψ−ψ0∥≤κ} |Rn(ψ, γ̂
∗)|/(1 + ∥tn(ψ)∥)2 = op(1)

for any sequence κ converging to zero. This completes the proof of part (a). Part (b) follows from

the central limit theorem. For part (c), the law of large numbers implies that In →p I := E[sis′i].
The nonsingularity of I follows from the nonsingularity of E[sηi s

η
i
′
] and E[sσλi sσλi

′
] by Assumption

2(b) and Assumption 2(d), respectively, and the fact that E[sηi sσλi
′
] = 0 because E[H1

i H
2
i ] = 0,

where sηi := (UiH
1
i /σ0) and s

σλ
i := (H2

i /(2σ
2
0), DiH

2
i /(8σ

2
0))

′.

Proof of Proposition 3. Part (a) follows from a simple adaptation of the proof of Proposition 3(a)

of Kasahara and Shimotsu (2015) to our quadratic approximation in Proposition 2(a). For part

(b), our proof is based on that of Proposition 3(b) and (c) of Kasahara and Shimotsu (2015).

We suppress ψ from tn(ψ), and let t̂n := tn(ψ̂
∗). Define Iλ := E[D2

i (H
2
i )

2/(8σ20)
2], Iησλ :=

(01,q+1,E[Di(H
2
i )

2/(16σ40)])
′,

Iησ :=

[
E[UiU ′

i(H
1
i )

2/σ20] 0q+1,1

01,q+1 E[(H2
i )

2/(2σ20)
2]

]
, I :=

[
Iησ Iησλ
I ′
ησλ

Iλ

]
,

where 0s,t is a s × t zero matrix. For ϑ := (α′, β, σ2)′, let l0,n(ϑ) :=
∑n

i=1 log g(Yi|Wi;ϑ) be a

log-likelihood function under the null model, where g(Y |W ;ϑ) := ϕσ(Y −X ′α−Dβ) for a density

function ϕσ of the normal distribution with mean zero and variance σ2. Letting ϑ̂ denote the MLE

under the null model, observe that SLRT = 2(ln(ψ̂
∗, γ̂∗)− ln(ψ0, γ̂

∗))−2(l0,n(ϑ̂)− l0,n(ϑ0)) because
ln(ψ0, γ̂) = l0,n(ϑ0). We investigate each of (i) 2(ln(ψ̂

∗, γ̂∗)− ln(ψ0, γ̂
∗)) and (ii) 2(l0,n(ϑ̂)− l0,n(ϑ0))

below.
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(i) 2(ln(ψ̂
∗, γ̂∗)− ln(ψ0, γ̂

∗)). Because ln(ψ̂
∗, γ̂∗)− ln(ψ0, γ̂

∗) = l∗n(ψ̂
∗, γ̂∗)− l∗n(ψ0, γ̂

∗), Proposi-

tion 2(a) and part (a) of this proposition yields ln(ψ̂
∗, γ̂∗) − ln(ψ0, γ̂

∗) = S′
nt̂n − 1

2 t̂
′
nInt̂n + op(1).

Let Wψ = (W ′
ησ ,Wλ)

′ := I−1Sn, where Wησ is the first q + 2 elements of Wψ. It now follows from

2S′
nt̂n− t̂′nI t̂n =W ′

ψIWψ− (t̂n−Wψ)
′I(t̂n−Wψ), Proposition 2(c) and part (a) of this proposition

that

2(ln(ψ̂, γ̂)− ln(ψ0, γ̂)) =W ′
ψIWψ − (t̂n −Wψ)

′I(t̂n −Wψ) + op(1). (25)

Partition Sn = (S′
ησ , Sλ)

′ with Sησ being the first q + 2 elements of Sn. Furthermore, define

W̄ησ := I−1
ησ Sησ and Iησ ·λ := Iλ−I ′

ησλ
I−1
ησ Iησλ. By a tedious but straightforward calculation using

the formula of inverse of a partitioned matrix for I−1 (e.g., Exercise 5.16(a) of Abadir and Magnus

(2005)), we have

W ′
ψIWψ = W̄ ′

ησIησW̄ησ +W ′
λIησ ·λWλ. (26)

For the second term on the right side of (25), the proof of Theorem 2 of Andrews (1999) gives

that (t̂′n −Wψ)
′I(t̂n −Wψ) = inft∈Λn(t −Wψ)

′I(t −Wψ) + op(1), where Λn := {tn(ψ) : ψ ∈ Θψ}.
By Assumption 1′(a)-(c) and (e), the set {tn(ψ)/bn : ψ ∈ Θψ} is locally approximated by a cone

Λ := Rq+2 × [0,∞) for any sequence bn such that bn → ∞ and bn = o(n1/2) (see page 1358

of Andrews (1999) for the definition of “locally approximated by a cone”). Hence, Lemma 2 of

Andrews (1999) yields inf t∈Λn(t −Wψ)
′I(t −Wψ) = inft∈Λ(t −Wψ)

′I(t −Wψ) + op(1), by which

we have

(t̂′n −Wψ)
′I(t̂n −Wψ) = inf

t∈Λ
(t−Wψ)

′I(t−Wψ) + op(1). (27)

Furthermore, a straightforward calculation with the formula of inverse of a partitioned matrix for

I−1, (t−Wψ)
′I(t−Wψ) = (t1+I−1

ησ Iησλt2−W̄ησ)
′Iησ(t1+I−1

ησ Iησλt2−W̄ησ)+(t2−Wλ)
′Iησ ·λ(t2−Wλ),

where we partition t = (t′1, t2)
′ with t1 being the first q + 2 elements of t. Because t1 ranges over

Rq+2 independently of the value of t2, we observe

inf
t∈Λ

(t−Wψ)
′I(t−Wψ) = inf

t1∈Rq+2
(t1 − W̄ησ)

′Iησ(t1 − W̄ησ) + inf
t2∈[0,∞)

(t2 −Wλ)
′Iησ ·λ(t2 −Wλ)

= inf
t1∈Rq+2

(t1 − W̄ησ)
′Iησ(t1 − W̄ησ) + 1{Wλ < 0}W ′

λIησ ·λWλ. (28)

Combining (25), (26), (27) and (28) gives

2(ln(ψ̂, γ̂)− ln(ψ0, γ̂))

= W̄ ′
ησIησW̄ησ + 1{Wλ ≥ 0}W ′

λIησ ·λWλ − inf
t1∈Rq+2

(t1 − W̄ησ)
′Iησ(t1 − W̄ησ) + op(1)

(ii) 2(l0,n(ϑ̂)− l0,n(ϑ0)). Define un(ϑ) := (n1/2(α−α0)
′, n1/2(β−β0), n1/2(σ2−σ20))′ and s

ησ
i :=

(U ′
iH

1
i /σ0,H

2
i /(2σ

2
0))

′. By a similar argument to the proof of Proposition 2, we obtain the following

quadratic approximation.

l0,n(ϑ)− l0,n(ϑ0) = Sησn
′un(ϑ)−

1

2
un(ϑ)

′Iησn un(ϑ) +Rn(ϑ),
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where Sησn := n−1/2
∑n

i=1 s
ησ
i and Iησn := n−1

∑n
i=1 s

ησ
i s

ησ
i

′
, and supϑ:∥ϑ−ϑ0∥≤κ |Rn(ϑ)|/(1+∥un(ϑ)∥)2 =

op(1) for any κ converging to zero. Then, similarly to part (a) of this proposition, we can show

un(ϑ̂) = Op(1). In view of the above quadratic approximation and un(ϑ̂) = Op(1), repeating the

argument for part (i) gives that

2(l0,n(ϑ̂)− l0,n(ϑ0)) = W̄ ′
ησIησW̄ησ − inf

t1∈Rq+2
(t1 − W̄ησ)

′Iησ(t1 − W̄ησ) + op(1).

Consequently, combining the results from (i) and (ii) yields SLRT = 1{Wλ ≥ 0}W ′
λIησ ·λWλ +

op(1) = 1{I1/2
ησ ·λWλ ≥ 0}(I1/2

ησ ·λWλ)
2 + op(1) from Iησ ·λ > 0. By the central limit theorem and

Slutsky’s theorem, Wψ →d N(0, I−1). In particular, because Wλ is the last coordinate of Wψ and

I−1
ησ ·λ is the bottom right element of I−1, Wλ →d N(0, I−1

ησ ·λ). Hence, I
1/2
ησ ·λWλ →d N(0, 1). Because

the map x → 1{x ≥ 0}x2 is continuous almost everywhere with respect to Lebesgue measure, the

continuous mapping theorem completes the proof.

B Auxiliary results

Lemma 1 compactifies the parameter space Θ× Γ in Assumption 1, which is helpful for the proofs

in Appendix A.

Lemma 1. Assume Assumptions 1 and 2 hold. Then (θ̂∗, γ̂∗) = argmaxθ∈Θ̃,γ∈ΓM l∗n(θ, γ) with

probability approaching one, where Θ̃ := Θα × Θβ × Θλ × Θ̃σ2
with Θ̃σ2

:= [lσ2
0
, uσ2

0
] for some

0 < lσ2
0
< σ20 < uσ2

0
<∞ and ΓM := {γ ∈ Γ : ∥γ∥1 ≤Mn/p} for some finite M > 0.

Proof of Lemma 1. We first prove (θ̂∗, γ̂∗) = argmaxθ∈Θ̃,γ∈Γ l
∗
n(θ, γ) with probability approaching

one. Our argument is based on Lemma 3.1 of Chen (2017). By a straightforward calculation,

log f(y|w; θ, γ) ≤ − log(2π)

2
− log σ2

2
− (y − x′α− d(β + λ))2 ∧ (y − x′α− dβ)2

2σ2
, (29)

which implies that supα∈Θα,β∈Θβ ,λ∈Θλ,γ∈Γ n
−1l∗n(θ, γ)− n−1l∗n(θ0, 0) is bounded by

− log(2π) + log σ2

2
− 1

2σ2
inf

α∈Θα,β∈Θβ ,λ∈Θλ
Pn(Y −X ′α−D(β+λ))2∧(Y −X ′α−Dβ)2− l

∗
n(θ0, 0)

n
. (30)

Let An = ∥(Pn − P )(Y − X ′α − D(β + λ))2 ∧ (Y − X ′α − Dβ)2∥Θα×Θβ×Θλ . Then, for (30),

infα∈Θα,β∈Θβ ,λ∈Θλ Pn(Y −X ′α−D(β + λ))2 ∧ (Y −X ′α−Dβ)2 is no smaller than

−An + inf
α∈Θα,β∈Θβ ,λ∈Θλ

P (Y −X ′α−D(β + λ))2 ∧ (Y −X ′α−Dβ)2. (31)

We consider bounding the right side from below. For An, it follows from Lemma 2.6.15, Lemma

2.6.18(v), Theorem 2.6.7 and Theorem 2.4.3 of van der Vaart and Wellner (1996) and Assumption

2(a) that each of {Yi−X ′
iα−Di(β+λ) : α ∈ Θα, β ∈ Θβ , λ ∈ Θλ} and {Yi−X ′

iα−Diβ : α ∈ Θα, β ∈
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Θβ} is a Glivenko-Cantelli class. Then, by Theorem 3 of van der Vaart and Wellner (2000) and

Assumption 2(a), An →p 0. For infα∈Θα,β∈Θβ ,λ∈Θλ P (Y −X ′α−D(β+λ))2∧(Y −X ′α−Dβ)2, note
that Y −X ′α−D(β+λ) = ε+X ′(α0−α)+D(β0−β+δλ0−λ). Then P(Y −X ′α−D(β+λ) = 0) =

E[P(ε+X ′(α0−α)+D(β0−β+δλ0−λ) = 0|X,D, δ)]. Because ε and (X,D, δ) are independent, the

conditional probability inside the expectation on the right side is zero so that P(Y −X ′α−D(β+λ) =

0) = 0. Similarly, P(Y −X ′α−Dβ = 0) = 0. Hence, P (Y −X ′α−D(β+λ))2∧(Y −X ′α−Dβ)2 > 0

over Θα×Θβ×Θλ. Because P (Y −X ′α−D(β+λ))2∧ (Y −X ′α−Dβ)2 is continuous in (α′, β, λ)′

from Assumption 2(a) and the dominated convergence theorem, and Θα ×Θβ ×Θλ is compact, it

holds that infα∈Θα,β∈Θβ ,λ∈Θλ P (Y − X ′α − D(β + λ))2 ∧ (Y − X ′α − Dβ)2 > 0. Combining this

inequality with An →p 0 and (31) yields that there exists a finite positive constant M1 such that

inf
α∈Θα,β∈Θβ ,λ∈Θλ

Pn(Y −X ′α−D(β + λ))2 ∧ (Y −X ′α−Dβ)2 > M1 (32)

with probability approaching one.

For n−1l∗n(θ0, 0) on the right side of (30), we first note the following inequality: for any positive

real numbers a and b, | log(a/2+b/2)| ≤ | log(a∧b)|∨| log(a∨b)| = | log a|∨| log b| ≤ | log a|+ | log b|.
Applying this inequality to | log f(Y |W ; θ0, 0)|, P | log f(Y |W ; θ0, 0)| is bounded by∣∣∣log σ0√2π

∣∣∣+ 1

4σ20

(
P (Y −X ′α0 −D(β0 + λ0))

2 + P (Y −X ′α0 −Dβ0)
2
)
,

which is finite by Assumption 2(a). Hence, by the law of large numbers, there exists a finite positive

constant M2 such that |n−1l∗n(θ0, 0)| ≤M2 holds with probability approaching one.

In view of this bound, (30) and (32),

sup
α∈Θα,β∈Θβ ,λ∈Θλ,γ∈Γ

n−1l∗n(θ, γ)− n−1l∗n(θ0, 0) ≤ − log(2π)

2
− log σ2

2
− M1

2σ2
+M2

holds for any σ2 with probability approaching one. Because the right side tends to minus in-

finity as σ2 → 0 or σ2 → ∞, supα∈Θα,β∈Θβ ,λ∈Θλ,σ2∈(0,l)∪(u,∞),γ∈Γ n
−1l∗n(θ, γ) − n−1l∗n(θ0, 0) < 0

holds with probability approaching one for some 0 < l < σ20 < u < ∞. This proves (θ̂∗, γ̂∗) =

argmaxθ∈Θ̃,γ∈Γ l
∗
n(θ, γ) with probability approaching one.

We move on to verify (θ̂∗, γ̂∗) = argmax
θ∈Θ̃,γ∈ΓM l∗n(θ, γ) with probability approaching one. De-

fine (θ̃∗, γ̃∗) := argmaxθ∈Θ̃,γ∈Γ l
∗
n(θ, γ). Then P(n−1l∗n(θ̃

∗, γ̃∗) ≥ −M2) ≥ P(n−1l∗n(θ0, 0) ≥ −M2) →
1 because |n−1l∗n(θ0, 0)| ≤ M2 with probability approaching one. Furthermore, (29) implies that

n−1ln(θ̃
∗, γ̃∗) ≤ − log(2π)/2− log(lσ2

0
)/2. Consequently,

P
(
n−1l∗n(θ̃

∗, γ̃∗) ≥ −M2, n
−1ln(θ̃

∗, γ̃∗) ≤ − log(2π)/2− log(lσ2
0
)/2
)

≤ P
(
p/n∥γ̃∗∥1 ≤ − log(2π)/2− log(lσ2

0
)/2 +M2

)
.
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Because the left side converges to one, the desired result follows by setting M = − log(2π)/2 −
log(lσ2

0
)/2 +M2.

The following lemma is the key to proving the consistency and the convergence rate in Propo-

sition 1. This result is an adaptation of Lemma A1 of Andrews (1993) to our high-dimensional

setting.

Lemma 2. Assume the assumption of Proposition 1 holds. Let {cn}n∈N be a sequence of posi-

tive real numbers converging to zero and an := E[supθ∈Θ̃,γ∈ΓM |n−1l∗n(θ, γ) − E[log f(Y |W ; θ, γ)] +

pn/n∥γ∥1|]. For ε > 0, define bε,n = E[log f(Y |W ; θ0, 0)] − sup(θ′,γ′)′∈Ξε,n(E[log f(Y |W ; θ, γ)] −
p/n∥γ∥1) with Ξε,n := {(θ, γ) ∈ Θ̃ × ΓM : ∥θ − θ0∥ + c−1

n ∥γ∥1 ≥ ε}. Then if an = o(bε,n) for each

ε > 0, it holds that θ̂∗ →p θ0 and ∥γ̂∗∥1 = op(cn).

Proof of Lemma 2. The proof is based on Lemma A1 of Andrews (1993). By the assumption on

bε,n,

P((θ̂∗, γ̂∗) ∈ Ξε,n) ≤ P
(
E[log f(Y |W ; θ0, 0)]− (E[log f(Y |W ; θ̂∗, γ̂∗)]− pn/n∥γ̂∗∥1) ≥ bε,n

)
(33)

Now, for the term inside the probability on the right side, E[log f(Y |W ; θ0, 0)]−(E[log f(Y |W ; θ̂∗, γ̂∗)]−
pn/n∥γ̂∗∥1) is bounded by

E[log f(Y |W ; θ0, 0)]− n−1l∗n(θ̂
∗, γ̂∗) + n−1l∗n(θ̂

∗, γ̂∗)− E[log f(Y |W ; θ̂∗, γ̂∗)] + pn/n∥γ̂∗∥1
≤ E[log f(Y |W ; θ0, 0)]− n−1l∗n(θ0, 0) + n−1l∗n(θ̂

∗, γ̂∗)− E[log f(Y |W ; θ̂∗, γ̂∗)] + pn/n∥γ̂∗∥1
≤ 2 sup

θ∈Θ̃,γ∈ΓM

∣∣n−1l∗n(θ, γ)− E[log f(Y |W ; θ, γ)] + pn/n∥γ∥1
∣∣ ,

where the first inequality follows from the definition of (θ̂∗, γ̂∗). Combining this inequality with (33)

and Markov’s inequality gives P((θ̂∗, γ̂∗) ∈ Ξε,n) ≤ an/bε,n = o(1). This completes the proof.

Lemma 3 is multivariate contraction principle, which is instrumental in handling the high-

dimensionality in the proof of Proposition 1. Similar but slightly different results are obtained in

Theorem 4.1 of van de Geer (2013) and Theorem 16.2 of van de Geer (2016).

Lemma 3. Let {Xi}ni=1 be X -valued i.i.d. random variables for some measurable space (X ,S) and
F be a class of Rr-valued measurable functions on X . Consider L1-Lipschitz functions ρi : Rr → R
such that |ρi(z)−ρi(z̃)| ≤ ∥z−z̃∥1 for all z, z̃ ∈ Rr and i = 1, . . . , n. Let {ξi}ni=1 be i.i.d. Rademacher

random variables and {ωi,k : 1 ≤ i ≤ n, 1 ≤ k ≤ r} be a collection of i.i.d. standard normal random

variables, both of which are independent of each other and of {Xi}ni=1. Then it holds that

E

[
sup
f,g∈F

∣∣∣∣∣
n∑
i=1

ξi(ρi(f(Xi))− ρi(g(Xi)))

∣∣∣∣∣
]
≲ E

[
sup
f∈F

r∑
k=1

n∑
i=1

ωi,kfk(Xi)

]
,

with f := (f1, . . . , fr)
′.
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Proof of Lemma 3. We follow the proof of Theorem 4.1 of van de Geer (2013) and that of Theorem

16.2 of van de Geer (2016). Observe that

E

[
sup
f,g∈F

∣∣∣∣∣
n∑
i=1

ξi(ρi(f(Xi))− ρi(g(Xi)))

∣∣∣∣∣
]
= E

[
E

[
sup
f,g∈F

∣∣∣∣∣
n∑
i=1

ξi(ρi(f(Xi))− ρi(g(Xi)))

∣∣∣∣∣
∣∣∣∣∣X(n)

]]
,

where X(n) := (X1, . . . , Xn)
′. We investigate the tail behavior of a centered, symmetric stochastic

process (
∑n

i=1 ξiρi(f(Xi)))f∈F with X(n) fixed. Note that, for any f, g ∈ F ,

n∑
i=1

(ρi(f(Xi))− ρi(g(Xi)))
2 ≤

n∑
i=1

∥f(Xi)− g(Xi)∥21 ≤ r
n∑
i=1

r∑
k=1

(fk(Xi)− gk(Xi))
2, (34)

where g = (g1, . . . , gr)
′ and the last inequality follows from the Cauchy-Schwarz inequality for

∥f(Xi) − g(Xi)∥1. For u > 0 and (ρ1(f(Xi)), . . . , ρn(f(Xn)))
′ ̸= (ρ1(g(X1)), . . . , ρn(g(Xn)))

′,

Lemma 2.2.7 of van der Vaart and Wellner (1996) yields that

P

(∣∣∣∣∣
n∑
i=1

ξi(ρi(f(Xi))− ρi(g(Xi)))

∣∣∣∣∣ ≥ u

∣∣∣∣∣X(n)

)
≤ 2 exp

−u
2

2

(
n∑
i=1

(ρi(f(Xi))− ρi(g(Xi)))
2

)−1
 .

(35)

It now follows from (34) and (35) that

P

(∣∣∣∣∣r−1/2
n∑
i=1

ξi(ρi(f(Xi))− ρi(g(Xi)))

∣∣∣∣∣ ≥ u

∣∣∣∣∣X(n)

)
≤ 2 exp

−u
2

2

(
n∑
i=1

r∑
k=1

(fk(Xi)− gk(Xi))
2

)−1
 .

(36)

Let e(f, g) :=
(∑n

i=1

∑r
k=1(fk(Xi)− gk(Xi))

2
)1/2

. This e is the canonical semi-metric as in

(2.113) of Talagrand (2021) for a centered Gaussian process (
∑r

k=1

∑n
i=1 ωi,kfk(Xi))f∈F with X(n)

fixed because, for any f, g ∈ F ,

E

( r∑
k=1

n∑
i=1

ωi,k(fk(Xi)− gk(Xi))

)2
∣∣∣∣∣∣X(n)

 =
r∑

k=1

n∑
i=1

(fk(Xi)− gk(Xi))
2,

by the assumption on {ωi,k : 1 ≤ i ≤ n, 1 ≤ k ≤ r}. In view of (36), Theorem 2.10.11 of Talagrand

(2021) gives that

E

[
sup
f,g∈F

∣∣∣∣∣
n∑
i=1

ξi(ρi(f(Xi))− ρi(g(Xi)))

∣∣∣∣∣
∣∣∣∣∣X(n)

]
≲ r1/2E

[
sup
f∈F

r∑
k=1

n∑
i=1

ωi,kfk(Xi)

∣∣∣∣∣X(n)

]
.

Taking the expectation with respect to X(n) completes the proof.

The following lemma plays an important role in the proof of Proposition 1.
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Lemma 4. Assume the assumption of Proposition 1 holds. Then it holds that

(a) E
[
∥PnωZ ′γ∥ΓM

]
≲

√
n log d/p,

(b) E
[∥∥∥Pnω (Y−X′α−D(β+λ))2

2σ2

∥∥∥
Θ̃

]
≲ n−1/2,

(c) E
[∥∥∥Pnω (Y−X′α−Dβ)2

2σ2

∥∥∥
Θ̃

]
≲ n−1/2.

Proof of Lemma 4. (a). Observe that

E
[∥∥PnωZ ′γ

∥∥
ΓM

]
= E

∥∥∥∥∥
(
1

n

n∑
i=1

ωiZi

)′

γ

∥∥∥∥∥
ΓM

 ≤ E
[
max
1≤j≤d

∣∣PnωZ(j)

∣∣] sup
γ∈ΓM

∥γ∥1. (37)

By Lemma 8 of Chernozhukov et al. (2015),

E
[
max
1≤j≤d

∣∣PnωZ(j)

∣∣] ≲ 1√
n

√√√√max
1≤j≤d

1

n

n∑
i=1

E
[
Z2
(j),i

]√
log d+

1√
n

√
E
[

max
1≤i≤n,1≤j≤d

(
ωiZ(j),i

)2]
log d

 .

(38)

For the second term on the right side, the independence of {ωi}ni=1 and {Z(j),i}1≤i≤n,1≤j≤d implies

that E
[
max1≤i≤n,1≤j≤d(ωiZ(j),i)

2
]
≤ E

[
max1≤i≤n ω

2
i

]
E
[
max1≤i≤n,1≤j≤d Z

2
(j),i

]
. The right side is

further bounded by ∥max1≤i≤n |ωi|∥2ψ2
∥max1≤i≤n,1≤j≤d |Z(j),i|∥2ψ2

by page 95 of van der Vaart and

Wellner (1996). Here, ∥ ·∥ψ2 is the Orlicz norm for a function ψ2(x) = ex
2 −1 as defined on page 95

of van der Vaart and Wellner (1996). Then, by Lemma 2.2.1 and 2.2.2 of van der Vaart and Well-

ner (1996) in conjunction with Assumption 2(c), ∥max1≤i≤n |ωi|∥2ψ2
∥max1≤i≤n,1≤j≤d |Z(j),i|∥2ψ2

≲
log(n+ 1) log(nd+ 1). Consequently, we obtain√

E
[

max
1≤i≤n,1≤j≤d

(
ωiZ(j),i

)2] ≲√log n
√
log(nd). (39)

Because E
[
Z2
(j),i

]
is bounded uniformly in i and j from Lemma 2.2.1 of van der Vaart and Wellner

(1996) and Assumption 2(c), it follows from (38) and (39) that

E
[
max
1≤j≤d

∣∣PnωZ(j)

∣∣] ≲√ log d

n
+

√
log n

√
log(n ∨ d) log d
n

≲
√

log d

n
, (40)

where the last inequality follows from Assumption 3(b). We complete the proof by (37) and (40)

in conjunction with supγ∈ΓM ∥γ∥1 ≲ n/p from Assumption 1′(d).

(b). Observe that, by the assumption on ω,

E
[∥∥∥∥Pnω (Y −X ′α−D(β + λ))2

2σ2

∥∥∥∥
Θ̃

]
= E

[∥∥∥∥(Pn − P )ω
(Y −X ′α−D(β + λ))2

2σ2

∥∥∥∥
Θ̃

]
. (41)

Let θ1 = (α′
1, β1, λ1, σ

2
1)

′ and θ2 = (α′
2, β2, λ2, σ

2
2)

′ ∈ Θ̃ be arbitrary. By the mean value theorem
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and the Cauchy-Schwarz inequality,∣∣∣∣ω (Y −X ′α1 −D(β1 + λ1))

2σ21
− ω

(Y −X ′α2 −D(β2 + λ2))

2σ22

∣∣∣∣
≤
∥∥∥∥∇θω

(Y −X ′ᾱ−D(β̄ + λ̄))

2σ̄2

∥∥∥∥ ∥θ1 − θ2∥, (42)

where θ̄ lies on the path connecting θ1 and θ2. By a straightforward derivative calculation in con-

junction with Assumption 2(d) and 1′,
∥∥∥∇θω

(Y−X′ᾱ−D(β̄+λ̄))
2σ̄2

∥∥∥ is bounded by F := C|ω|(|Y |+∥X∥+
1)2. Taking C sufficiently large, this F can be an envelope function (see page 84 of van der Vaart and

Wellner (1996) for the definition) for the functional class F :=
{
ω (Y−X′α−D(β+λ))

2σ2 : θ ∈ Θ̃
}
by As-

sumption 1′. Then, in view of (42), Lemma 26 of Kato (2019) yields supQN(ε∥F∥Q,2,F , L2(Q)) ≤
(A/ε)ν for all 0 < ε < 1 with some A ≥ e and ν ≥ 1, where N(·, ·, ·) is a covering number (see

page 84 of van der Vaart and Wellner (1996) for the definition) and the supremum is taken over

all discrete probability measures. Because E[F 2] is finite from Assumption 2(a), it follows from

Corollary 5.1 of Chernozhukov et al. (2014) that

E
[∥∥∥∥(Pn − P )ω

(Y −X ′α−D(β + λ))2

2σ2

∥∥∥∥
Θ̃

]
≲ 1√

n

1 +

√
E
[
max1≤i≤n F 2

i

]
√
n

 ≲ n−1/2, (43)

where the second inequality follows from the fact that
√
E
[
max1≤i≤n F 2

i

]
≤

√
n
√
E[F 2]. (41) and

(43) now complete the proof.

(c). The proof is similar to that of (b) and thus omitted.

Lemma 5 provides a simplified form of derivatives of the density function for the normal dis-

tribution and is cited multiple times in the proof of Proposition 2. This result is essentially due to

Proposition A of Kasahara and Shimotsu (2015).

Lemma 5. Let η = (η1, . . . , ηq+1)
′ and U = (U(1), . . . , U(q+1))

′. Then the following equalities hold

for any nonnegative integer k1, . . . , kq, kλ and l:

∇k1
η1 . . .∇

kq
ηq∇

kλ
λ ∇l

σ2ϕσ(Y − U ′η −Dλ/2)

=

 q∏
j=1

U
kj
(j)

(D
2

)kλ (1

2

)l ( 1

σ

)k+2l

Hk+2l

(
Y − U ′η −Dλ/2

σ

)
ϕσ(Y − U ′η −Dλ/2)

∇k1
η1 . . .∇

kq
ηq∇

kλ
λ ∇l

σ2ϕσ(Y − U ′η +Dλ/2)

=

 q∏
j=1

U
kj
(j)

(−D
2

)kλ (1

2

)l ( 1

σ

)k+2l

Hk+2l

(
Y − U ′η +Dλ/2

σ

)
ϕσ(Y − U ′η +Dλ/2),

where k := k1 + · · ·+ kq + kλ.
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Proof of Lemma 5. The statement follows from a minor modification of the proof of Proposition A

of Kasahara and Shimotsu (2015).

This lemma is the key to showing that the effect of γ̂∗ on quadratic approximation for the

penalized log-likelihood function vanishes asymptotically in the proof of Proposition 2.

Lemma 6. Assume the assumption of Proposition 2 holds. Let {Vi}ni=1 be i.i.d. random variables

with finite second moment and ρ(εi) be a polynomial of εi. Suppose that {Vi}ni=1 and {εi}ni=1 are

independent. Then, for any k ∈ N, it holds that

(a) Pn(2π(Z ′γ̂∗)− 1)DH1 = op(n
−3/4),

(b) PnV (π(Z ′γ̂∗)− 1/2)kρ(ε) = op(n
−1/4),

(c) PnD2(π(Z ′γ̂∗)− 1/2)2ρ(ε) = op(n
−1/2).

Proof of Lemma 6. (a). By Proposition 1, there exists a sequence rn converging to zero such

that P(n1/4
√
log d log n∥γ̂∗∥1 ≥ rn) → 0. Hence, it suffices to show ∥Pn(2π(Z ′γ) − 1)DH1∥Γn =

op(n
−3/4), where Γn :=

{
γ ∈ Γ : ∥γ∥1 ≤ n−1/4(log d log n)−1/2rn

}
. Because E[(2π(Z ′γ)−1)DH1] =

0, the symmetrization inequality gives that

E
[∥∥Pn(2π(Z ′γ)− 1)DH1

∥∥
Γn

]
≲ E

[∥∥Pnξ(2π(Z ′γ)− 1)DH1
∥∥
Γn

]
,

≲ E

[
max
1≤i≤n

|εi|E

[
sup
γ∈Γn

∣∣∣∣∣ 1n
n∑
i=1

ξi(π(Z
′γ)− 1/2)Diεi

max1≤i≤n |εi|

∣∣∣∣∣ |D(n), Z(n), ε(n)

]]
,

(44)

where ξ is a Rademacher random variable independent of (D,Z, ε), and D(n) := (D1, . . . , Dn),

Z(n) := (Z1, . . . , Zn) and ε(n) := (ε1, . . . , εn). From Assumption 2(d), we may assume |D| ≤ 1

without the loss of generality. Then a function φi(t) :=
(π(t)−1/2)Diεi
max1≤i≤n |εi| is contraction with φi(0) = 0.

It follows from Theorem 4.12 of Ledoux and Talagrand (1991) that

E

[
sup
γ∈Γn

∣∣∣∣∣n−1
n∑
i=1

ξi(π(Z
′γ)− 1/2)Diεi

max1≤i≤n |εi|

∣∣∣∣∣ |D(n), Z(n), ε(n)

]
≤ 2E

[∥∥PnξZ ′γ
∥∥
Γn

|D(n), Z(n), ε(n)
]
.

(45)

Combining (44) and (45), we obtain

E
[∥∥Pn(2π(Z ′γ)− 1)DH1

∥∥
Γn

]
≲ E

[
max
1≤i≤n

|εi|∥PnξZ ′γ∥Γn
]
= E

[
max
1≤i≤n

|εi|
]
E
[
∥PnξZ ′γ∥Γn

]
, (46)

where the equality follows from the independence of ε and (ξ, Z). For the right side of the equal-

ity, E[max1≤i≤n |εi|] ≲
√
log n follows from Lemma 2.2.1 and Lemma 2.2.2 of van der Vaart

and Wellner (1996) in conjunction with sub-Gaussianity of ε. Additionally, E [∥PnξZ ′γ∥Γn ] ≲√
log d
n n−1/4(log d log n)−1/2rn from a similar argument to the proof of (a) in Lemma 4. Those two

inequality combined with (46) give that E
[∥∥Pn(2π(Z ′γ)− 1)DH1

∥∥
Γn

]
≲ rnn

−3/4 = o(n−3/4). We

now complete the proof by applying Markov’s inequality.
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(b). Similarly to (a), it suffices to show that ∥PnV (π(Z ′γ)− 1/2)kρ(ε)∥Γn = op(n
−1/4). By the

mean value theorem and |π(z)− 1/2| ≤ 1 for any z ∈ R,

E
[
∥PnV (π(Z ′γ)− 1/2)kρ(ε)∥Γn

]
≲ E

[∥∥Pn|V ||Z ′γ||ρ(ε)|
∥∥
Γn

]
≤ E

[
|V | sup

γ∈Γn
|Z ′γ||ρ(ε)|

]

≤ E
[
|V | max

1≤j≤d
|Z(j)|

]
E[|ρ(ε)|] sup

γ∈Γn
∥γ∥1, (47)

where the last inequality follows from the independence of V and ε. By the Cauchy-Schwarz in-

equality, E
[
|V |max1≤j≤d |Z(j)|

]
≤ (E[|V |2])1/2(E[max1≤j≤d |Z(j)|2])1/2 ≲

√
log d, where the last

inequality follows from the assumption on the moment of V and the argument leading to (39).

Combining this inequality with (47), the finiteness of the moment E[|ρ(ε)|] and supγ∈Γn ∥γ∥1 ≤
n−1/4(log d log n)−1/2rn yields E

[
∥PnV (π(Z ′γ)− 1/2)kρ(ε)∥Γn

]
≲ rnn

−1/4/
√
log n = o(n−1/4). Ap-

plying Markov’s inequality completes the proof.

(c). Similarly to (a), it suffices to show that ∥PnD2(π(Z ′γ)− 1/2)2ρ(ε)∥Γn = op(n
−1/2). By the

mean value theorem in conjunction with Assumption 2(d),

E
[
∥PnD2(π(Z ′γ)− 1/2)2ρ(ε)∥Γn

]
≲ E

[
sup
γ∈Γn

|Z ′γ|2|ρ(ε)|

]
≲ E

[
max
1≤j≤d

Z2
(j)

]
sup
γ∈Γn

∥γ∥21,

where the second inequality follows from the independence of ε and Z, and the finiteness of

the moment E[|ρ(ε)|]. For the right side, a similar argument to the proof of (b) gives that

E
[
max1≤j≤d Z

2
(j)

]
≲ log d. Additionally, we have supγ∈Γn ∥γ∥

2
1 ≤ n−1/2(log d log n)−1r2n from

the choice of Γn. Therefore, we arrive at E
[
∥PnD2(π(Z ′γ)− 1/2)2ρ(ε)∥Γn

]
≲ r2nn

−1/2/ log n =

o(n−1/2). We complete the proof by applying Markov’s inequality.
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