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Abstract
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priced offers have higher prices, conditional on winning the auction. This difference might
reflect lower auction-winning chances of coarsely priced offers. The results are consistent with
the notion that dealers’ coarse pricing results from the information cost associated with pric-
ing precision, as proposed by Grossman et al. (1997), but not with dealer collusion. Topmost
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1 Introduction

In March 2009, the Fed launched a large-scale purchase program of long-term Treasury securities, now

marked as the beginning of its quantitative easing (QE) purchases of government bonds. After more than

a decade of the Fed’s QE, there is currently abundant and growing literature on its macroeconomic effects.

Yet, we still know little about the market where these massive purchases take place. This is rather puzzling

given the Fed’s enormous purchase sizes and the role of the U.S. Treasury market as the “single most im-

portant financial market in the world” (Group of Thirty, 2021). To fill this gap, this paper closely examines

offer-level data from the Fed’s reverse auctions (hereafter called QE auctions) for Treasury security pur-

chases,1 and document that primary dealers (PDs) of the Federal Reserve Bank of New York (FRBNY)—the

only direct participants in QE auctions—exhibit coarse pricing behavior.

Specifically, in QE auctions the Fed sets the uniform tick size of 1/256th (i.e., 0.390625 cents) per $100

par value for all target Treasury notes and bonds, although quotes of those securities are seldom posted at

this level of fineness in secondary trading venues. Figure 1 demonstrates the existence of coarse pricing

among (successful) offers in QE auctions, and perhaps more surprisingly, a striking difference between two

PDs: Morgan Stanley (with the second largest market share in my sample of QE auctions) and Credit Suisse

(with the seventh largest market share). Whereas Morgan Stanley’s price endings are almost uniformly

distributed, Credit Suisse’s distribution displays a strong clustering of price endings on 0, 4/256, 8/256,. . . ,

252/256 (i.e., 1/64ths).2 Coarse pricing has been documented in various financial (and non-financial) mar-

kets,3 but it is particularly surprising in this setting. First, Treasury securities are one of the world’s most

liquid and heavily researched asset classes. Second, PDs (and institutions indirectly participating in QE

auctions) are highly sophisticated investors with expertise in fixed-income valuation. Third, in QE auctions

there is no incentive to sacrifice pricing precision for execution priority; offers are treated equally as long as

1As discussed in Section 2, some of the reverse auctions in my sample period are better framed as traditional market
operations rather than QE. However, for convenience, I use the term QE auctions to refer to all the Fed’s reverse auctions
of Treasury coupons.

2Note that Credit Suisse’s smaller sample size can lead to greater variability in realized proportions of price endings,
but not clustering on a specific subset of price endings.

3They include stock exchanges (Harris, 1991; Ikenberry and Weston, 2008; Bhattacharya et al., 2012), gold markets
(Ball et al., 1985), future markets (Ap Gwilym et al., 1998a,b; Kuo et al., 2015), and particularly relevant to this research
are dealer markets such as NASDAQ (Christie et al., 1994; Christie and Schultz, 1994, 1999) and municipal bond markets
(Li, 2007; Griffin et al., 2023). Nikiforov and Pilotte (2017a,b, 2019) also document price-end clustering of Treasury
coupon securities in the secondary market.
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they are submitted by the QE auction closure.

This paper studies the causes and consequences of this previously undocumented practice in QE auc-

tions. Market microstructure literature suggests two possible reasons. First, dealers’ coarse pricing might

work as a mechanism to coordinate among themselves, thereby extracting higher profits. A well-discussed

example is NASDAQ market makers’ avoidance of odd-eighth quotes, first documented by Christie and

Schultz (1994). This practice was controversial especially because virtually no market makers deviated from

the practice for certain stocks (Christie and Schultz, 1994). While disagreement exists about what caused this

apparently anti-competitive practice,4 it is a fact that this practice mechanically limited the minimum pos-

sible bid-ask spread to two eighths for the affected stocks. Nevertheless, this collusion view is inconsistent

with the coarse pricing patterns observed in QE auctions. As suggested in Figure 1, top dealers, who by

definition account for the bulk of transactions, engage in coarse pricing much less frequently, regardless of

the Treasury security type.

An alternative view for dealers’ coarse pricing is the “competitive theory of clustering” of Grossman

et al. (1997), which was also proposed to explain the NASDAQ market maker behavior. According to this

view, dealers, even when competing in the financial market, engage in coarse pricing due to information

processing costs associated with increased pricing precision. Grossman et al. (1997, p. 25) state, “Finer units

of trade allow for more accurate pricing. But this is a mixed blessing. It takes time and effort to obtain

more precise valuations of assets,” and as a result, “[t]he precise degree of coarseness chosen will depend

on the balance between the benefits and costs of a finer grid.” In the QE auction context, pricing precision’s

information costs can lead PDs to price on grids coarser than the Fed’s 1/256ths grid, especially because

secondary-market transactions are predominantly based on coarser grids (mainly 1/64ths or 1/128ths).

My results are consistent with the theory of Grossman et al. (1997). First, there exists a positive and

strong association between the pricing fineness of (accepted) offers and the PD’s market share in QE auc-

tions. This result is expected if it is not costless for dealer banks to develop and employ sophisticated

pricing technology tailored for this special QE market. (Note that the costs include not only capital invest-

ments but also, and perhaps more importantly, the attraction, retention, and deployment of human capital;

4Christie and Schultz (1994) interpret it as indicating implicit collusion, yet others point out institutional features
limiting dealer competition (Demsetz, 1997; Kandel and Marx, 1997).
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highly-skilled traders are a critical asset in high finance). Because the return from pricing technology in-

creases with the investment size (Arrow, 1987; Peress, 2004), the cost-benefit tradeoff indicates a positive

association between the market share and sophisticated pricing.

The estimated between-PD difference is economically sizable. This paper proposes a method to quan-

tify PD-level pricing fineness in a manner that is directly interpretable and comparable. It infers the pro-

portion at which a particular PD used each of the following four possible pricing grids—1/32nds, 1/64ths,

1/128ths, and 1/256ths. Because offered Treasury security types vary by PD and time, this method controls

for this heterogeneity, estimating the proportions in case the PD prices a ‘typical’ security in QE auctions:

off-the-run Treasury note maturing in 5–10 years. Take Figure 1 again. The estimated proportion of using

the finest 1/256ths pricing grid is 94.9% for Morgan Stanley and 40.5% for Credit Suisse. More generally, ac-

cording to my baseline specification, a one percentage point increase in QE auction market share translates

into a 2.4 percentage point increase in the use of the finest 1/256ths grid.

Second, if the cost of increasing pricing precision drives dealers’ coarse pricing, we should observe

greater coarse pricing when it is more difficult—and therefore more costly—to precisely price the security

(Ball et al., 1985; Grossman et al., 1997). I find a number of results in line with this prediction. First, coarse

pricing is more pronounced for Treasury securities whose valuation is supposedly more difficult: those

with longer remaining maturities (i.e., greater interest rate risk) and with high volatility. The second and

perhaps more direct evidence is that offers for securities that are less finely priced in the secondary market

are also priced less finely in QE auctions.5 When a specific Treasury security’s secondary-market prices

are fine, it should be easier for PDs to price the security precisely in QE auctions—either because the fine

secondary-market prices directly help them confidently price the security on a less coarse grid, or because

fine prices in the secondary market indicate the intrinsic ease of precisely pricing the security. Moreover, I

document that this effect is particularly large for non-top dealers.

Over time, PDs price more finely in QE auctions. This competition between PDs in upgrading pricing

precision can be seen as direct micro-evidence of investor evolution in the adaptive markets view of Lo

(2019). Notably, the Treasury security trading landscape has undergone remarkable changes during the

5Specifically, I collect daily closing ask prices of Treasury securities on the trading day preceding each QE auction.

3



analysis period. Joint Staff Report (2015) and Brainard (2018) indicate that in the 2010s dealers increasingly

adopted fintech, such as systems for automated Treasury security trading, yet at different speeds.

The COVID-19 crisis period is, however, an exception to the trend toward greater pricing fineness. In

massive Treasury purchase auctions of March 2020, pricing fineness temporarily plunged. This is a period

in which the Treasury security market exhibited rare malfunctioning; in contrast to typical crisis episodes,

the prices of long-term Treasury securities—arguably the world’s safe haven—decreased in the wake of

the COVID-19 crisis.6 Yet, multivariate analysis indicates that the massive purchase sizes themselves, and

the resulting low offer-to-cover ratios, contributed to the rise of coarse prices during this period. The in-

verse relationship between the offer-to-cover ratio and the prevalence of coarse pricing indicates the role of

competition in curbing this phenomenon.

The last part of this paper investigates coarse pricing from the viewpoint of the Fed’s QE operation

costs. Admittedly, the lack of losing offer data limits the thoroughness of this analysis. My empirical

approach is to compare the levels of offer prices among accepted offers for the same Treasury security in

the same QE auction. The fixed-effects regressions show that conditional on winning, coarsely priced offers

are more highly priced. Note that this does not necessarily mean that coarsely priced offers are generally

more highly priced. To win a QE auction an offer needs to have a sufficiently low price. Consequently,

higher prices, conditional on winning, can be observed as a result of a reduced probability of winning the

auction. In any case, this exercise indicates that coarse pricing has cost implications for the Fed.

Two data limitations should be acknowledged. The first is that the offer-level data disclosed in ac-

cordance with the Dodd-Frank Act includes all accepted offers but not losing offers. This data curtailment

precludes recovering some key structural parameters, such as dealers’ marginal valuations (Boneva et al.,

2020). In the context of this paper, this limitation’s most direct consequence is that I can observe the pricing

fineness of only winning offers, although the main interest lies in understanding how PDs price in general.

This data curtailment can introduce a bias, as offers with different price-end fineness might have different

auction-winning probabilities. The previous paragraph’s finding suggests that coarsely priced offers have

lower auction-winning probabilities. If this is the case, the extent of coarse pricing observed among winning

6The driver was investors dashing for cash, selling even safe Treasury securities to dealers at a massive scale (Duffie,
2020; He et al., 2022; Schrimpf et al., 2020; Vissing-Jorgensen, 2021).
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offers should be regarded as a lower bound for dealers’ actual use of coarse pricing, i.e., the extent of coarse

pricing unconditional on the QE auction outcome.

Second, although QE auctions permit PDs to submit not only their own offers but also their clients’

offers, the data do not flag client offers.7 Consequently, the between-dealer variation might reflect different

proportions of client offers. For example, the positive association between PD market share and pricing

fineness can arise if client offers constitute a larger proportion for larger-market-share PDs and if client

offers tend to be more finely priced. It appears highly unlikely that different client proportions solely

explain the huge between-PD gap in pricing fineness.8 Nevertheless, this issue should be kept in mind

when interpreting the results concerning between-dealer differences.

This paper is policy-relevant. First, this paper sheds new light on the competition and microstructure

of this important yet understudied market. In implementing QE-driven purchases, the Fed monitors “the

performance of operations” and “the extent and concentration of dealer participation in operations” (Potter,

2013, p. 4). More broadly, there is an ongoing discussion about the optimal size—and “diversity”—of the

Fed counterparties.9 Based on the current primary dealer system, the Fed’s market operations are solely

intermediated by large Treasury security dealers designated as primary dealers. On one hand, Potter (2015)

says that the system requires “established, regulated market participants” and “must be of an appropriate

size to provide adequate execution capacity and competitive pricing.” On the other hand, he also notes that

“[s]taff time and resources are required to monitor and manage” relationships with counterparties.10 This

paper’s results highlight the special role of topmost dealers in facilitating and enhancing price competition

and market efficiency.

Second, the Fed’s massive purchase scale means that coarse pricing can lead to substantial cost impli-

cations. In my sample period, the total amount of QE purchases of Treasury coupons is $3.92 trillion (with

the average per auction being $4.12 billion). Then, one tick size change multiplied by the total purchase

7This is also the case of the proprietary U.K. QE auction data analyzed by Boneva et al. (2020).
8At the same time, I do not exclude the possibility that PDs’ precise pricing capabilities are influenced by client

offers. For example, finely priced offers from clients, or just receiving more client offers, might be helpful for the PD to
increase the precision of its own offers.

9The “diversity” debate has emerged due to the increasing presence of non-dealers (most notably the so-called
“principal trading firms”) in the secondary market.

10The Fed’s primary dealer pilot program (2013–2014), which temporarily allowed four relatively small dealers to
participate in the Fed’s operations, was one of the attempts to search for a better balance.
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size amounts to $15.3 billion. The tick size is also economically significant in comparison to the Fed’s trans-

action costs in QE auctions. Song and Zhu (2018) estimate that the weighted average cost (relative to the

best ask price at auction closing) is merely 0.71 cents per $100 par value. This is roughly equivalent to two

minimum ticks (0.78 cents per $100 par value).

This paper contributes to three strands of literature: First, this paper contributes to the literature on

dealers’ coarse pricing. In addition to the NASDAQ market maker behavior mentioned above, Li (2007) and

Griffin et al. (2023) document that municipal bond dealers often price on a coarse grid (in eighths). Griffin

et al. (2023) further show that dealers enjoy higher markups from such transactions. Note that the suspected

mechanism here is the conflict of interest between well-informed sellers (dealers) and less-informed buyers

(including retail customers) under decentralized bilateral transactions.11 These market characteristics are

quite different from QE auctions, where many PDs compete to sell more transparent Treasury securities. I

show that in QE auctions dealers’ coarse pricing is consistent with the theory of Grossman et al. (1997), in

which they face a tradeoff between the pricing precision’s cost and competitive advantage.

Second, this paper contributes to the emerging literature on the implementation mechanisms of QE.

Song and Zhu (2018) study the Fed’s preference in QE auctions and PDs’ bidding behavior using the same

data as this paper.12 They first confirm that as the Fed’s public disclosures suggest, the Fed prefers “cheap”

Treasury securities, i.e., those whose secondary market prices are low relative to those implied by the yield-

curve model. Song and Zhu (2018) then show that PDs extract higher profits when offering such securities.

Boneva et al. (2020) analyze U.K. QE auction data containing both winning and losing offers. They struc-

turally estimate U.K. primary dealers’ marginal valuations of offered gilts, and show that these valuations

are related to the interest rate risk and the regulatory capital requirements the dealers face. Laséen (2023)

also uses comprehensive offer-level data in Sweden to study primary dealer behavior in those auctions.13

This paper complements these papers in understanding price competition in QE auctions, taking cues from

price-end patterns.

11The municipal bond market is unique among over-the-counter markets in that the participation of retail investors
is high (see Bessembinder et al. (2020)).

12PDs’ bidding behavior in Treasury issuance auctions is studied by Hortaçsu and Kastl (2012), Hortaçsu et al. (2018),
and Allen et al. (2020).

13More broadly, the implementation cost of QE is also studied by D’Amico and King (2013) in the U.S., Breedon (2018)
in the U.K., and Schlepper et al. (2020) in the Eurosystem. In addition, An and Song (2022) study the Fed’s purchase
prices in its agency MBS operations.
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Third, this paper adds to the literature on the limited sophistication of sophisticated investors. Previ-

ous papers study institutional investors’ herding (Wermers, 1999; Nofsinger and Sias, 1999; Griffin et al.,

2003) and heuristic decisions (Akepanidtaworn et al., 2021; Wang, 2020) in stock trading.14 This paper doc-

uments a manifestation of information processing constraints in the context in which it is arguably least

expected—pricing of Treasury securities, the world’s most heavily researched asset class, by the New York

Fed’s primary dealers, one of the most sophisticated and influential investor groups in the global economy

(He et al., 2017; Goldberg, 2020).15 Notably, pricing fineness of the market’s most sophisticated investors is

particularly interesting because it can even speak to the limit of market efficiency (Grossman and Stiglitz,

1980; Mondria et al., 2022).

2 Institutional background

2.1 Primary dealers

PDs are major dealers in U.S. Treasury securities designated by the FRBYNY as (sole) counterparties of the

Fed’s market operations. Most notably, PDs are allowed to submit competitive bids in Treasury issuance

auctions (and profit from selling the purchased securities in the secondary market). A primary dealer status

can also help the dealer attract large customers such as foreign central banks (Rennison and McLannahan,

2016). Their main requirements are as follows. First, PDs are expected to bid a certain amount in every

Treasury issuance auction. Second, for other Fed operations (including QE operations), each PD is expected

to participate “at levels commensurate with its size and presence in the market.”16 The last requirement

is assisting the Fed to formulate monetary policy. During my sample period, the number of PDs changed

14Wang (2020) shows that institutional investors, like retail investors but to a lesser extent, exhibit the “round-number
bias”—i.e., the tendency to submit orders with rounded price endings such as “.0”—in stock trading, and that this bias is
lower for larger institutions. Note that his research question is fundamentally different from mine. Price-end clustering
measured this way likely reflects traders’ cognitive reference points (also see Bhattacharya et al. (2012), whose method
Wang (2020) follows).

15Fleming et al. (2005) and Goldreich (2015) also study bounded rationality of PDs. They document evidence of sub-
optimal bids in Treasury bill issuance auctions (until an auction rule change in 2004). One notable difference between
their datasets and mine is that theirs are aggregated auction-level data, precluding PD-level analysis.

16The Fed’s “Administration of Relationships with Primary Dealers” statement published on March 24, 2016 (https:
//www.newyorkfed.org/markets/pridealers_policies.html)
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from 18 in 2010 to 24 in 2020.17 Table 1 lists PDs in my sample period.

2.2 Phases of the Fed’s QE

Table 2 lists major events among the Fed’s QE purchases of Treasury securities. As shown in the last column,

this paper divides the sample period into five sub-periods: QE2 (August 17, 2010–September 20, 2020), MEP

(September 21, 2011–December 11, 2012), QE3 (December 12, 2012–October 29, 2014), QE pause (October 30,

2014–March 11, 2020), and QE4 (March 12–June 29, 2020). Appendix A provides a summary of the history

of the Fed’s QE. Figure 2 shows the time series of the Fed’s purchases of Treasury coupon securities.

The following clarifications will prove useful. First, the first sub-period (QE2) centers around, but

is not limited to, the so-called “QE2” round, which was implemented from November 3, 2010 through

June 22, 2011. Before and after the round, the Fed reinvested the proceeds of maturing securities into

Treasury securities to maintain its balance sheet size. Those purchases are included in the QE2 sub-period.

Second, the MEP and QE3 sub-periods exactly match the periods of the Maturity Extension Program (MEP)

and the so-called “QE3,” respectively. Third, the MEP was different from the other QE rounds in that

the Fed financed the purchases of long-term Treasury securities by selling short-term securities (thereby

not changing the aggregate bank reserves). Fourth, although the QE pause sub-period starts in October

2014, most of the purchases took place in August 2019 or thereafter. During this period, the Fed resumed

reinvesting in Treasury securities to maintain a sufficient size of bank reserves. Lastly, the QE4 sub-period

covers QE purchases in response to the COVID-19 crisis (up to the sample conclusion of June 2020). Note

that the primary purpose of the post-pandemic purchases was to tame the disruptions in the market (see

Appendix A for more discussions).

2.3 Structure of QE auctions

The Desk of the FRBNY administers QE auctions, as in the case of other Fed market operations. Auction-

level summary statistics are provided in Table 3. Details of the QE auction protocol vary from phase to

phase, yet a typical timeline is as follows. First, the QE auction schedule for the next monthly cycle is

17The current and historical lists of PDs are available at https://www.newyorkfed.org/markets/primaryde
alers.
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announced around the previous monthly cycle’s end. The schedule lists the dates of auctions, together with

their target maturity ranges (e.g., Treasury coupons with 4.5 to 7 years remaining to maturity) and expected

purchase sizes.18 Securities excluded from the auction, such as those scarce in the secondary market, are

announced at the auction start. PDs are therefore well informed of which securities are included in the

auction.

Second, on the auction date, PDs can submit up to nine offers per security. Each offer consists of price

and quantity. Unlike Treasury issuance auctions, QE auctions are price-discriminatory; the offer price is the

price at which the PD sells the security to the Fed if the offer is accepted. While PDs are the only direct

participants, they can also place their clients’ offers on their behalf. Both the minimum offer size and the

price increment are set at $1 million. The tick size is 1/256th per $100 par value for all Treasury notes and

bonds.

The Fed’s QE auctions are multi-object auctions, as each auction accepts multiple Treasury securities

within the target maturity range.19 Therefore, the FRBNY adopts the following approach to rank offers

for different securities. It first calculates the benchmark price for each auction-target security by applying

its proprietary yield-curve model to secondary market prices (Sack, 2011). Then, offer prices normalized

by their benchmark prices are directly comparable regardless of the differences in the offered securities.

The FRBNY purchases from the offers with the lowest prices relative to the model-implied price until its

desired total purchase amount is reached. Note that this protocol means that the Fed prefers securities

whose market prices are below the prices implied by the Fed’s model, i.e., “cheap” securities (Song and

Zhu, 2018).

In my sample period, the median auction time is 45 minutes, and the auction close time ranges from

9:50 a.m. to 3:05 p.m., with 90.9% of them ending in the morning. It is exceedingly rare for an auction to

end after 2 p.m. (1.6%).20 The settlement is typically the next day, meaning that PDs can cover their short

18In early QE phases, the FRBNY disclosed the expected purchase ranges, while only the maximum purchase amounts
are announced in later phases.

19In the average QE auction, 30.7 unique Treasury securities meet the basic eligibility criteria of QE auctions, with 3.8
of them being explicitly excluded for other reasons. Among the remaining 26.9 CUSIPs, 17.0 are purchased (Panel B of
Table 3).

20More specifically, until 2019, the vast majority (95.9%) of QE auctions ended at 11:00 a.m. In the post-COVID-19
period, the Fed tended to hold multiple QE auctions (for different target maturities) at different times on the same day,
resulting in more diverse auction close time.
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positions anytime in the afternoon of the auction date.

Lastly, the FRBNY releases the auction result in three steps. First, immediately after each auction, the

FRBNY releases quantity-related information, such as the total offered and accepted amounts and the pur-

chased amount per security. Participating PDs are notified of their auction outcomes at this time. Second,

the price-related information is disclosed at the end of each monthly auction cycle. The information is ag-

gregated to the (purchased) security level. The disclosed items are the total offered and purchased amounts,

the weighted average and highest accepted prices, and the proportion of accepted offers among the highest

price offers. Lastly, about two years after the auction, the FRBNY releases disaggregated data on accepted

offers, which is the primary dataset used in this study.

3 Data

The FRBNY publicly discloses all accepted offers of QE auctions after the enactment of the Dodd-Frank Wall

Street Reform and Consumer Protection Act on July 21, 2010.21 The offer-level data includes the Treasury

CUSIP, offer price, offered amount, and the identity of the PD who submitted the offer. I retrieved all

accepted offers for nominal Treasury notes and bonds.22 My sample period spans from August 17, 2010

(the date of the first QE auction post-Dodd-Frank Act) to June 29, 2020 (the last auction date in 2020Q2).

Treasury security information was obtained from TreasuryDirect.23

Table 4 reports the descriptive statistics of my sample offers. Security types dramatically vary over

time. The vast majority of the purchased securities are off the run, with no on-the-run securities being

purchased after the QE3 period. Also, the composition of remaining maturities varies strikingly over time.

While 20–30 years account for 50.8% in the MEP period, 0–5 years is the majority (53.0%) in the QE4 period.

These target security composition changes highlight the importance of controlling for security types in the

empirical analysis. The bottom rows of Table 4 concern the market shares of PDs who submitted offers.

The market share is based on trade amounts and calculated for each sub-period. Following Song and Zhu

21https://www.newyorkfed.org/markets/omo_transaction_data.html
22Therefore, my sample does not include Treasury bills or TIPS.
23https://www.treasurydirect.gov/instit/annceresult/annceresult_query.htm
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(2018), I group PDs into top five PDs and non-top five PDs.24

4 Result

4.1 Setup

The market convention for quoting Treasury coupon securities is per $100 par value, with the decimal part

being a multiple of 1/32 or a multiple of a fraction of 1/32 (that is, 1/64, 1/128, or 1/256).25 In QE auctions,

the tick size is set to one eight of 1/32, i.e., 1/256. Throughout the paper, a Treasury security prices’ decimal

part is denoted as d/256. That is, d ∈ D = {0, 1, 2, . . . , 255} and d = 1 means the price ending is 1/256.

To analyze price-end clustering, which indicates dealers’ use of coarser pricing grids, I divide D into

four mutually exclusive subsets:

D = {0, 1, 2, . . . , 255} = X32 ∪ X64 ∪ X128 ∪ X256, where



X32 = {0, 8, 16, . . . , 248}

X64 = {4, 12, 20, . . . , 252}

X128 = {2, 6, 10, . . . , 254}

X256 = {1, 3, 5, . . . , 255}

(1)

In words, each subset represents the possible coarsest pricing grid that the PD could have used to arrive at

the particular d. For example, if d ∈ X64, the possible coarsest pricing grid used by the dealer is 1/64ths.

This is because the dealer can arrive at d ∈ X64 based on the pricing grid of 1/64ths, 1/128ths, or 1/256ths,

but not on the 1/32nds grid. Note that only in the case of d ∈ X256, the pricing grid used by the PD can be

identified with certainty (to be 1/256ths).

24The remaining results are robust to the use of alternative cut-off points, such as top four or top seven. Section 4.7
conducts detailed PD-level analysis.

25For example, given a $1,000 face value, a price quote of $101.09375 (= $101 + 3/32) indicates that the bond’s price
is $1,010.9375.
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4.2 Testing price-end clustering on coarser grids in QE auctions

I follow Kuo et al. (2015) and Bhattacharya et al. (2018) to statistically test the existence of price-end cluster-

ing on coarser grids. Specifically, for each price ending d ∈ D = {0, 1, 2, . . . , 255}, I calculate the percentage

of offers with this price ending among all offers. To facilitate interpretation, this percentage is then sub-

tracted by the expected percentage under the uniform priced-end distribution, which is 1/256 × 100 =

0.390625%. This outcome variable is regressed on the following variables:

Percentd − 0.390625 = α + β1D32 + β2D64 + β3D128 + ϵi,j, (2)

where D32, D64, and D128 take the value of one if the price ending d belongs to X32, X64, and X128, respec-

tively, and zero otherwise.

The regression results are reported in Panel A of Table 5. Column 1, which pools all sample (winning)

offers, shows strong price-end clustering on coarser grids. According to the constant, the percentage of

a d in X256 = {1, 3, 5, . . . , 255} being selected is 0.177% (as it is 0.213 percentage points less than what is

expected under the uniform distribution). This is due to clustering on grids coarser than 1/256ths; the three

price-end type dummy variables are positive and statistically significant, meaning that price endings in D32,

D64, and D128 are more likely to be selected. Based on Column 1, the probability of d in X32 being chosen

is 0.177% + 0.839% = 1.016%. Likewise, the probabilities of a price ending in X64 and X128 are 0.719%

and 0.340%. Importantly, the differences between D32 and D64 and between D64 and D128 are statistically

significant. This result implies that PDs tend to use all of the coarse pricing grids, namely 1/32nds, 1/64ths,

and 1/128ths.26

4.3 Estimating the proportions in which different pricing grids are used

The price-end clustering observed among accepted offers reflects dealers’ use of coarse pricing grids. To

directly gauge this behavior of dealers, I propose a method to infer the likelihoods that PDs employed

the four possible pricing grids, based on the coefficients of Specification 2 (i.e., the observed price-end

26For example, if PDs used only the pricing grids of 1/128ths and 1/256ths, the coefficients of D32 and D64 should
not be greater than that of D128.
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clustering). It is important to note that, given that my sample includes only accepted offers, the following

inference is based on an implicit assumption that the price-end type is independent of the auction-winning

probability.27 If PDs always use the finest 1/256ths pricing grid (grid-256ths), then Pr[d ∈ X32] = P[d ∈

X64] = 12.5%, Pr[d ∈ X128] = 25%, and Pr[d ∈ X256] = 50%. I denote these conditional probabilities

as ϕ
grid-256ths
32 , ϕ

grid-256ths
64 , ϕ

grid-256ths
128 , and ϕ

grid-256ths
256 , respectively. Table 6 summarizes these conditional

probabilities for all the pricing grids.

Now, suppose that dealers use the 1/32nds pricing grid (grid-32nds) with probability λ32, and the pric-

ing grids of 1/64ths, 1/128ths, and 1/256ths with probabilities λ64, λ128, and λ256, respectively. Then, the

unconditional probabilities of price-end types are:

ϕ32 = λ32 × ϕ
grid-32nds
32 + λ64 × ϕ

grid-64ths
32 + λ128 × ϕ

grid-128ths
32 + λ256 × ϕ

grid-256ths
32 ,

ϕ64 = λ32 × ϕ
grid-32nds
64 + λ64 × ϕ

grid-64ths
64 + λ128 × ϕ

grid-128ths
64 + λ256 × ϕ

grid-256ths
64 ,

ϕ128 = λ32 × ϕ
grid-32nds
128 + λ64 × ϕ

grid-64ths
128 + λ128 × ϕ

grid-128ths
128 + λ256 × ϕ

grid-256ths
128 ,

ϕ256 = λ32 × ϕ
grid-32nds
256 + λ64 × ϕ

grid-64ths
256 + λ128 × ϕ

grid-128ths
256 + λ256 × ϕ

grid-256ths
256 .

The log-likelihood function can be defined as follows:

ln L(λ) = Fraction32 × ln ϕ32 + Fraction64 × ln ϕ64 + Fraction128 × ln ϕ128 + Fraction256 × ln ϕ256, (3)

where Fraction32 is the observed fraction of d ∈ X32, and Fraction64, Fraction128, and Fraction256 are sim-

ilarly defined.28 I maximize this function to obtain the estimates of λ = {λ32, λ64, λ128, λ256}, with a con-

straint of each element of λ being between 0 and 1.

Panel B of Table 5 reports the predicted proportions in which the four pricing grids are used. The finest

1/256ths grid is predicted to be employed 45.4% of the time, and the coarsest 1/32nds grid 9.5% of the time.

The rest is accounted for by the two pricing grids between these two extremes.

27As discussed later, I find some evidence suggesting that coarsely priced offers have a lower chance of winning a
QE auction. If this is true, coarsely priced offers are underrepresented within the sample of accepted offers, leading to
a downward bias in the predicted proportions of using coarse pricing grids. This potential sampling bias, arising from
the data limitation, should be kept in mind.

28These ratios can be computed from the coefficients of Specification 2.
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4.4 Price-end clustering by time and by PD

Table 5 also shows that price-end clustering in QE auctions greatly varies by time and the PD submitting

the offer. In Columns 2–4, I repeat Specification 2 separately for each sub-period. There are two notable

findings. First, PDs tend to price more finely over time. While the predicted proportion of the 1/256ths

grid use is only 14.5% in the QE2 period, it accounts for more than 50% in the subsequent periods. Second,

the predicted proportion of the coarsest 1/32nds grid use jumped to a much higher value than the earlier

periods (21.2%) in the QE4 period. More specifically, Figure 3 illustrates that this surge in the coarsest

pricing took place during the massive purchases of March 2020. The extent to which changing auction

characteristics can explain these time-series patterns is examined in the next section.

The remaining columns of Table 5 show a stark difference in pricing fineness between top and non-

top dealers. The last column of Panel A establishes the statistical significance, with the coefficients of all

of D32, D64, and D128 being significantly lower for top dealers. Panel B also indicates that the difference is

economically sizable; for instance, the predicted proportion of the 1/256ths grid use is 66.2% for top dealers

and 26.3% for non-top dealers.

4.5 Determinants of coarse pricing in QE auctions

To analyze heterogeneity in coarse pricing, I regress the fineness of offer prices on security-, offer-, and

auction-characteristics. The key idea is that the price-end type, X32, X64, X128, or X256, indicates the like-

lihood with which coarser pricing grids are used, with X32 being the highest and X256 the least. (To be

precise, the probability of coarse pricing is zero if d is in X256.) I therefore perform the ordered logit anal-

ysis with the dependent variable being Price-end fineness, which takes the value of one if the offer’s price

ending is in X32, two if it is in X64, three if it is in X128, and four if it is in X256. This analysis aims to uncover

which factors increase (or decrease) the likelihood of precise pricing. Table 7 lists the definitions of variables

used in this offer-level analysis. The descriptive statistics are provided in Table 8.

One key explanatory variable is Cheapness, which is included to analyze the effect of the Fed’s algorithm

in ranking offers. As explained in Section 2.3, the Fed’s protocol prefers securities that are deemed under-

valued based on the Fed’s yield curve model. Although the model is not publicly disclosed, it is a standard
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cubic spline model (Sack, 2011), and Song and Zhu (2018) find that their yield curve estimation result—and

the ensuing cheapness measure—can explain the Fed’s purchase behavior. I thus estimate a cubic spline

model following Song and Zhu (2018), and define Cheapness as the percentage difference between the yield-

curve-implied price and the actual secondary-market price. The details of the yield curve estimation are

summarized in Internet Appendix A.

Table 9 shows the estimation results. Panel A reports the coefficients and the marginal effects on the

probability of Price-end fineness = 4, that is, D256 = 1.29 The coefficient of Top five is positive and significant

in all models. According to Model 1, the probability of the price ending being the finest type (i.e., D256 = 1)

is 14.9 percentage points higher for top dealers’ offers. This is sizable given that only 22.7% of sample offers

have this finest price-end type (Table 8). Models 2 and 3 show that the marginal effect remains stable even

when additional control variables are added.

In Model 1, Cheapness is negative and significant, meaning that prices are coarser when the Treasury

security is deemed undervalued and therefore preferred by the Fed. Because strategic dealers can extract

higher profits when delivering cheaper securities in QE auctions (Song and Zhu, 2018), those dealers might

be using coarse pricing as a device to set a higher price for cheaper securities. However, the evidence is not

consistent with this view.

First, Panel B further investigates this association by splitting the sample by Top five and reporting the

marginal effect of Cheapness on all possible values of Price-end fineness. It shows that the marginal effects

of Cheapness are generally more pronounced for non-top dealers. Strikingly, the marginal effect on the

probability of Price-end fineness = 1 is 0.357 for those dealers, meaning that a one standard deviation change

of Cheapness translates into an 8.50 percentage point increase in this probability. The stronger association

for non-top dealers does not align well with the narrative that the effect of Cheapness is a result of dealers’

deliberate coarse pricing for cheap securities. Instead, a more plausible explanation is that when the security

is deemed undervalued by the Fed, it is more likely that even coarsely priced—or less sophisticatedly

priced—offers can win the QE auction. (In Section 4.8, I show that coarsely priced offers are more highly

priced among accepted offers.) This is because offers for cheap securities have an intrinsically higher chance

29The ordered logit model can derive marginal effects for each possible value of the outcome variable.
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of winning a QE auction based on the Fed’s algorithm to rank offers.

Second, the effect of Cheapness is sensitive to the inclusion of controls, with the coefficient even changing

its sign. In particular, Cheapness is no longer negatively associated with Price-end fineness after controlling

for three basic security types—on-the-run status, maturity, and Treasury bond dummy (Model 2 in Panel

A of Table 9). On one hand, this result relates to the fact that Cheapness is highly positively correlated with

remaining maturity.30 On the other hand, this result is inconsistent with the view that dealers use coarse

pricing deliberately and specifically for cheap securities. Rather, this result indicates that certain security

types (most notably maturity) are associated with both pricing fineness and Cheapness.

Model 3 provides three additional insights. First, Voaltility, the standard deviation of the offered secu-

rity in the five-day period leading up to the auction date, is negatively associated with pricing fineness.

This finding is consistent with the hypothesis of Ball et al. (1985) and Grossman et al. (1997) that valuation

uncertainty, and the resulting greater cost in precise pricing, drives coarse pricing.

Second, the result of Offer-to-cover suggests the role of competition in restricting coarse pricing. Ac-

cording to Model 3, one standard deviation increase in Offer-to-cover translates into a 1.99 percentage point

increase in the probability of D256 = 1. Note that this is the effect after controlling for period dummies, and

moreover, this result is not driven by massive post-COVID-19 purchases; the coefficient remains significant

at the 1% level even if the QE4 period is dropped.

Third, pricing fineness is greater in later phases than in the first QE2 phase (the model’s baseline period),

and this is more evident after controlling for security- and auction-characteristics. In Model 1, the coefficient

of QE4 is not significant with a low marginal effect on the probability of D256 = 1 (a 3.8 percentage point

increase). Yet, the variable is significant at the 1% level in Model 3, which controls for security- and auction-

type variables. Most notably, Volatility is high and Offer-to-cover is low in the QE4 period, and these factors

contributed to deteriorated pricing fineness in the post-pandemic QE operations.

30The correlation between Cheapness and remaining maturity in years is 0.754.
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4.6 Pricing fineness in the secondary market for Treasury securities

I now turn my attention to the secondary market for Treasury securities with the purpose of better under-

standing the QE auction market’s coarse pricing.

4.6.1 Trading venues and tick sizes

Since the launches of eSpeed and BrokerTec in 1999 (the latter of which started service in 2000), trades of

on-the-run Treasuries have almost entirely moved to fully electronic systems (Mizrach and Neely, 2006).

These markets now accommodate non-dealers, with the most significant non-dealer participants being the

so-called principal trading firms (PDFs) (Harkrader and Puglia, 2020). However, once a security goes off-

the-run, the trading volume plunges, and most of the trading migrates to more traditional voice-assisted

systems (Barclay et al., 2006). Off-the-run trading is also characterized by high market fragmentation, as

opposed to the on-the-run trading arena, where two platforms, BrokerTec and Dealerweb, dominate others

(McPartland, 2018).

Tick sizes vary by transaction venue and maturity. The main electronic venues of on-the-run securities,

such as BrokerTec and eSpeed (then acquired by Dealerweb), set the tick sizes of 1/128th for 2-, 3-, and 5-

year notes and 1/64th for 7- and 10-year notes and 30-year bonds in the period investigated in this section.31

Conversely, in the case of off-the-run trading on voice-assisted markets, it is customary, albeit not a rule, that

brokers display tick sizes coarser than 1/256th (such as 1/64th and 1/128th), except for securities nearing

maturity.

4.6.2 Pricing fineness in the secondary market for Treasury securities

To understand pricing fineness in the secondary market, I repeat the price-end clustering regression with

secondary-market price data. For each Treasury security purchased in a QE auction, I obtained the se-

curity’s daily closing ask price on the preceding trading day from Bloomberg.32 The result of repeating

31These venues lowered the tick size of 2-year notes to 1/256th on November 19, 2018 (Fleming et al., 2022). Note,
however, that the Fed purchased on-the-run securities only until August 2014.

32I do not use the CRSP Treasury data for studying price endings due to its apparent anomaly. For unknown reasons,
the proportion of price endings in D128 doubled on March 7, 2012; while the average proportion was 23% for the
preceding ten trading days, it jumped to 48% in the next ten trading days, and this was not a temporary phenomenon
but a permanent shift. Bloomberg data does not exhibit such dramatic and puzzling price-end patterns.
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Specification 2 with the secondary-market price data is reported in Table 10. According to Column 1 of

Panel B, the predicted proportion of the 1/256ths grid use is 13.4%. The sub-period analysis reveals that

this value remained virtually zero for the first three sub-periods (QE2, MEP, and QE3). The 1/64ths and

1/128ths grids account for a large fraction, and, there is little evidence of the coarsest 1/32nds grid use.33

Table 11 then estimates the ordered logit model of the determinants of pricing fineness of the secondary-

market price data. Importantly, maturity exhibits a strong nagative association with pricing fineness, as

was the case for QE auction offers. (On-the-run and Bond have the same signs, but they are not statistically

significant in this secondary-market data analysis.) For example, relative to the baseline maturity of five to

ten years, maturity of less than five years is associated with a 9.7 (18.6) percentage point higher probability

of DSecondary
256 = 1 (DSecondary

128 = 1). To sum up, Table 11 suggests a link in pricing fineness between the

secondary market and QE auctions.

4.6.3 Relating pricing fineness in the secondary market to that in QE auctions

To directly test the association, Table 12 regresses QE auction offers’ Price-end fineness on the price-end type

dummies of the security’s secondary market price; DSecondary
256 is a dummy variable taking the value of one

if the price ending of the Treasury security’s closing ask on the trading day preceding the QE auction is in

X256, and I similarly define DSecondary
32 , DSecondary

64 , and DSecondary
128 . Specifically, I estimate the ordered logit

model with the baseline category being DSecondary
32 = 1. The coefficients show whether finer prices in the

secondary market indicate finer offer prices in QE auctions (i.e., a higher Price-end fineness).

The positive coefficients of DSecondary
128 and DSecondary

256 in Column 1 confirm the association. They remain

statistically significant even when security-type controls (On-the-run, Maturity0-5, Maturity10-20, Maturity20-30,

and Bond) are added (Column 4). To demonstrate the economic significance, Figure 4 plots the predicted

probabilities according to the models of Columns 2 and 3 of Table 12. In particular, the predicted proba-

bilities for the two extreme price-end types, X256 and X32, greatly vary by the secondary-market price-end

type for non-top dealers (Panel B of Figure 4). When DSecondary
32 = 1, the predicted probability of X256 is

merely 11.5%. However, it jumps to 29.2% (i.e., a 153.9% increase) when DSecondary
256 = 1. On the other hand,

33Nikiforov and Pilotte (2017a) document a similar price-end distribution using tick-level data on Treasury notes.
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the predicted probability of X32 drops from 42.8% to 19.1%.

These results strongly substantiate the costly nature of pricing precision as a driver of coarse pricing

in QE auctions. There are two possible channels through which finer prices in the secondary market are

associated with a lower cost of precise pricing for PDs. First, having fine secondary-market prices as inputs

to the model makes it easier for dealers to confidently price securities on a fine grid. Second, securities with

fine prices in the secondary market (e.g., short-maturity securities) are expected to be intrinsically easier

to precisely price. That non-top dealers’ pricing fineness is highly sensitive to the fineness of secondary

market prices suggests that pricing easiness relaxes the limit of precise pricing that lagging PDs face.

4.7 Dealer-level analysis

4.7.1 PD-level pricing fineness

This section looks more closely at PD-level differences in coarse pricing. Pricing fineness varies by not only

PD but also offered security type (Table 9). I thus quantify pricing fineness of each PD, after controlling

for basic security characteristics. More specifically, I employ a variant of Specification 2, in which the

right-hand side of the model includes dummy variables for three basic security characteristics—on-the-

run status, remaining maturity, and Treasury note vs. bond—and PD × sub-period fixed effects. Appendix

B explains more details about this method.34 This approach allows for predicting the probabilities of price

endings in X32, X64, X128, and X256 for each PD in each sub-period in the case of offering ‘typical’ security

in QE auctions, namely, off-the-run Treasury note maturing in 5–10 years. These predicted probabilities are

then fed into the method of Section 4.3 to estimate the proportions in which different price grids were used.

The summary statistics of the estimated PD-level proportions can be found in Table A.2 of Appendix B.

4.7.2 Pricing fineness and market share

PD-level analysis also points to a strong association between pricing fineness and market share. Figure 5

plots dealer market share and the predicted proportion of using the finest 1/256ths grid. Panel A of Table

34To include those dummy variables and fixed effects, the outcome variable, Percent − 0.390625, is calculated for
each security type s, PD j, and sub-period t. Because this means that the ratios are calculated from different numbers of
offers, the regression weights observations by the number of underlying offers.
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13 shows that market share is significantly and positively associated with the use of the finest pricing grid

for all the sub-periods other than QE2. The association becomes somewhat weaker but still remains, even

if I use the predicted proportion of using the 1/128ths or 1/256ths grid (Columns 5–8).

In Column 1 of Panel B, which pools the four sub-periods, Market share is statistically and economically

significant. The coefficient indicates that a one percentage point increase in Market share translates into a 2.4

percentage point increase in the finest 1/256ths grid use. Notably, this result is not driven by a few of the

largest PDs, as it is robust to the exclusions of Goldman Sachs (Column 2) and Morgan Stanley (Column 3).

In Column 4, I also remove small PDs (with less than 2% market share in the period). The result remains

highly similar. Panel C shows that the coefficients of Market share remain similar even if the regressions are

performed on the first differences.

Having established a strong positive association between pricing fineness and QE auction market share,

I also ask whether pricing fineness is related to more primitive dealer characteristics such as balance sheet

size, location, and experience. Internet Appendix B summarizes the data collection and the analysis result.

Panel A of Table IA.4 shows that the use of the finest 1/256ths grid is positively associated with the balance

sheet size and its use is lower for foreign PDs (i.e., PDs that are a subsidiary of a foreign-based financial

group). However, these results are statistically significant only at the 10% level and become insignificant

if the dependent variable is replaced with the probability of using the 128ths or 256ths grid (Panel B).

Therefore, these variables’ explanatory power is weak at best. In contrast, the market share remains highly

significant even if PD-level controls are added. One interpretation is that the key driver of the between-

PD variation in the tendency of precise pricing in QE auctions is their presence in this specific market,

rather than their overall size or experience. At the same time, I note substantial measurement issues of my

dealer-level variables; dealer size is measured infrequently and noisily,35 and experience is only roughly

measured.
35For most PDs, a separate balance sheet item for Treasury securities does not exist, and I simply analyze the balance

sheet size.
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4.8 Coarse pricing and the level of offer prices

Does coarse pricing relate to the level of offer prices, which ultimately determines the Fed’s QE purchase

costs? I examine this question by looking at differences in the level of prices within accepted offers for a

given Treasury security in the QE auction. Specifically, I define Price diff as the percentage difference (in

basis points) between the offer price and the lowest accepted offer price for the same security in the same

QE auction, and run the following regression:

Price di f f = β1D32 + β2D64 + β3D128 + γ + ϵi,j, (4)

where D32, D64, and D128 take the value of one if the (accepted) offer’s price ending d belongs to X32, X64,

and X128, respectively, and zero otherwise, and γ is CUSIP × QE-auction fixed effects. I measure Price diff

only when multiple accepted offers exist for the security in the QE auction.36 Absorbing between-security

variation, γ ensures that D32, D64, and D128 compare Price diff —the offer price normalized by the lowest

accepted offer for the security—for accepted offers with different price-end types within accepted offers for

the same security in the same QE auction.

Panel A of Table 14 shows that the mean Price diff, which is winsorized at the 2.5% and 97.5%, is 3.6

basis points. This is fairly small, being less than the average bid-ask spread for my sample QE auction

securities, 4.3 basis points (Table 8). This result is consistent with the claim of Song and Zhu (2018) that the

QE auctions’ operation costs are fairly moderate.

The regression results are documented in Panel B of Table 14. Column 1 is the result of estimating Spec-

ification 4, and it shows that (accepted) offers with coarse price endings have significantly higher prices

compared to those with price endings in X256. The differences are also economically significant. The coeffi-

cient of D32 (0.282) indicates that, relative to the mean value (3.61), (accepted) offers with the coarsest price

endings have, on average, a 7.81% higher Price diff, which is the percentage difference between the offer’s

price and the minimum accepted offer price for the security in the QE auction.

36This restriction only slightly decreases the number of sample (accepted) offers: from 90,022 to 86,611. Conditional
on having multiple accepted offers, the average (median) number of accepted offers for a Treasury security in a QE
auction is 12.4 (10).
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Therefore, coarsely priced offers on average have higher prices, conditional on winning. Note that this

result does not necessarily mean that coarsely priced offers, unconditional on the QE auction outcome,

are on average more highly-priced. For an offer to win a QE auction, its price needs to be sufficiently low

relative to competing offers. Therefore, coarsely priced offers can have a higher average price conditional

on winning simply because they have a lower chance of winning a QE auction in the neighborhood of the

lowest acceptable price.

The remaining columns in Panel B of Table 14 show that who submits offers also matters. While the

offer amount (Ln(offer amount)) has only an insignificant effect, Top five, the dummy for offers submitted by

a top five dealer, is negative and significant at the 5% level in Columns 3 and 4.37 Importantly, the inclusion

of Top five materially lowers the effects of coarse pricing; the coefficients of D32 and D64 in Column 3 are

slightly less than half of those in Column 1.

To summarize, Table 14 demonstrates that coarse pricing does indeed matter from the viewpoint of the

Fed’s QE operation costs. At the same time, prices are lower for accepted offers submitted by top dealers,

and the association between pricing fineness and the offer price level is nearly halved when the top five

dealer dummy is added to the right-hand side of the model. Therefore, the association partially reflects the

fact that coarsely priced offers are more likely to come from non-top five dealers, whose accepted prices

tend to be more highly priced.

5 Discussion of client offers

The positive association between market share and pricing fineness is consistent with the notion that larger-

market-share PDs are more willing to seek precise pricing; the information processing costs of pricing

precision can lead to increasing returns from pricing technology (Arrow, 1987; Peress, 2004). This section

discusses how the existence of client offers can affect this interpretation.

In QE auctions non-PDs (such as hedge funds and money managers) are allowed to submit offers in-

directly through PDs (Sack, 2011). Unfortunately, these client offers cannot be discerned in my data. Con-

37Note that in the presence of CUSIP × QE-auction fixed effects, any Treasury security-characteristic variables will
be subsumed.

22



sequently, one concern is that the positive association between pricing fineness and market share might

reflect different proportions of client offers and different extent of coarse pricing between PDs and clients.

Consider a (seemingly more plausible) situation in which top PDs route more client offers due to their more

extensive customer network. In such a case, in order for client offers alone to produce the positive asso-

ciation between PD market share and pricing fineness, clients must have a tendency to price more finely

than PDs. There is one institutional reason to suspect this. In these primary dealer-intermediated markets,

clients are aware that PDs can revise their own offers after observing client offers, possibly deliberately

undercutting them (Hortaçsu and Kastl, 2012). As such, coarse pricing can be particularly costly for clients.

The observed between-PD variation, however, still rejects client offers as a sole explanation. Consider

the MEP period as an example (Panel B of Figure 5). In this period, the estimated proportion of using the

1/256ths pricing grid reached 100% for Morgan Stanley, the market share leader. Of course, this should be

the case only if both the PD (Morgan Stanley) and its clients always used the finest pricing grid. This result,

however, is inconsistent with the assumption that clients tend to price more finely than PDs. Therefore,

there must be at least some between-PD differences in the tendency of coarse pricing.38

6 Conclusion

This paper sheds new light on price competition in a massive, important, yet still understudied market:

QE reverse auctions of Treasury securities. To my knowledge, this paper is the first to document dealers’

practice of submitting coarsely priced offers in this market. As such, it complements the work of Song and

Zhu (2018), who conduct auction theory-based analysis of dealer behavior in the Fed’s QE auctions. On

one hand, coarse pricing is on a downward trend. On the other hand, coarse pricing surged during the

Fed’s massive pandemic-driven purchases in March 2020. I also show that conditional on winning a QE auc-

tion, coarsely priced offers are more highly priced. Therefore, this practice has relevance for policymakers

designing and monitoring this market.

The cross-sectional analysis of pricing fineness reveals that it varies by the ease of precisely pricing the

38Notably, this logic does not exclude the possibility that PDs learn from client offers; observing a larger number of
client offers might help top PDs to price more finely than others.
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security. Offer prices are more finely priced when valuation uncertainty is limited (e.g., low volatility) and

when the security is finely priced in the secondary market prior to the auction. This paper also documents

strong association between PD market share and pricing fineness—offers submitted by larger-market-share

PDs are more finely priced. The relationship is economically significant; my benchmark specification indi-

cates a one percentage point increase in market share translates into a 2.39 percentage point increase in the

estimated proportion of using the finest 1/256ths grid. Collectively, my results are consistent with Gross-

man et al.’s (1997) theory that information costs of increasing pricing precision lead to coarse pricing of

dealers. In contrast, I do not find evidence that coarse pricing works as a coordinating mechanism for PDs

to maintain high spreads. Yet, the results do imply that competition plays a role in constraining coarse

pricing.

This paper thus illustrates the special importance of the topmost dealers in the Fed’s counterparty

framework—they can uniquely facilitate price competition and market efficiency in Fed operations. Also,

from a theoretical standpoint, this paper presents rare micro-level evidence that information processing

costs can lead to a trade-off in pricing precision even among highly sophisticated investors.
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Figures

Figure 1: Price-end clustering of QE auction offers: Morgan Stanley vs. Credit Suisse

Probability of each d under the uniform distribution = 0.39%
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Panel B: Credit Suisse

d ∈ {0,2,4,...,254} d ∈ {1,3,5,...,255}

This figure shows the distributions of the decimal part of the offer price as a multiple of 1/256 (d). The sample
is (winning) offers in QE auctions from August 17, 2010 to June 29, 2020. The data is obtained from the FRBNY.
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Figure 2: QE operations of Treasury notes and bonds
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This figure shows the time series of the Fed’s QE purchases of Treasury notes and bonds from August 17,
2010 to June 29, 2020. The data source is the Treasury securities operation results disclosed by the FRBNY at
https://www.newyorkfed.org/markets/desk-operations/treasury-securities.
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Figure 3: Price-end types of (successful) offers in QE auctions
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In this figure, successful offers in QE auctions are aggregated monthly, and each displayed symbol’s size cor-
responds to the amount purchased in the month. For each month, the price-end types of (successful) offers are
computed. The sample period is from August 17, 2010 to June 29, 2020.
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Figure 4: Predicted probabilities of price-end types of QE auction offers based on Models 2 and 3
of Table 12
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This figure shows the predicted probabilities of price-end types of QE auction offers based on Models 2 and 3
of Table 12. Model 2 uses the sample of Top f ive = 1, and Model 3 that of Top f ive = 0. The predicted proba-
bilities are calculated for each of the four possible types of the secondary-market price ending: DSecondary

32 = 1,

DSecondary
64 = 1, DSecondary

128 = 1, and DSecondary
256 = 1. DSecondary

32 takes the value of one if the decimal part of the
Treasury security’s closing ask quote on the trading day preceding the QE auction is in X32, and zero otherwise.
DSecondary

64 = 1, DSecondary
128 = 1, and DSecondary

256 = 1 are similarly defined.
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Figure 5: Market share and the predicted proportion of using the finest 1/256ths pricing grid
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The x-axis measures the (traded amount-based) market share in QE auctions in the sub-period. The y-axis
represents the estimated proportion of using the finest 1/256ths pricing grid. A PD is included in a panel only
if it has at least 100 winning offers in the sub-period and if it was designated as a PD at the beginning of the
sub-sample period. Each panel includes the fitted line.
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Tables

Table 1: Primary dealer list

Name Parent location PD designation date
(post-8/17/2010) Amount sold ($ billions) N. of offers accepted

Goldman Sachs Domestic 595.787 8,612
Morgan Stanley Domestic 503.859 16,245
Citigroup Domestic 256.365 4,103
Barclays Foreign 253.379 6,915
BofA/Merrill Domestic 253.098 5,725
HSBC Foreign 207.759 2,930
Credit Suisse Foreign 190.467 2,672
RBS/NatWest Foreign 187.855 2,820
Deutsche Bank Foreign 186.736 4,112
J.P. Morgan Domestic 167.096 2,836
BMO Foreign 10/4/2011– 126.949 2,896
Nomura Foreign 119.014 2,782
BNP Paribas Foreign 114.229 11,117
Daiwa Foreign 98.555 1,577
Jefferies Domestic 90.034 1,903
Bank of Nova Scotia Foreign 10/4/2011– 89.314 1,711
RBC Foreign 88.638 1,610
Amherst Pierpont Domestic 5/6/2019– 85.405 1,572
Mizuho Foreign 67.256 1,637
TD Foreign 2/11/2014– 66.321 424
Wells Fargo Domestic 4/18/2016– 56.648 883
UBS Foreign 56.207 1,607
Societe Generale Foreign 2/2/2011– 36.135 1,531
Cantor Fitzgerald Domestic 17.174 1,338
MF Global Domestic 2/2/2011–10/31/2011 2.847 110

Pilot program primary dealers (July 2013–July 2014)
Cabrera 0.477 162
G.X. Clarke 0.315 154
Loop 0.044 23
Mischler 0.023 15

Primary dealers during my sample period (2010Q3–2020Q2) are listed. Note that four dealers participated in the pri-
mary dealer pilot program in July 2013–July 2014. See Internet Appendix B.1 for data sources of the parent location and
period as a primary dealer. The amount sold and the number of winning offers are based on my sample QE auctions
of Treasury notes and bonds.
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Table 2: Timeline of major events in the Fed’s QE purchases of Treasury securities

Date Event Period
March 18, 2009 Announcement of “QE1” of Treasury securities: The Fed would purchase up to

$300 billion of Treasury coupon securities in the next six months.
March 25, 2009 Purchases of Treasury coupon securities began.
October 29, 2009 QE1 ended.
August 10, 2010 The FOMC announced the plan to reinvest proceeds of maturing Treasury securi-

ties, agency debt, and agency MBS in Treasury coupon securities.

August 17, 2010 The Fed started disclosing detailed operation result data (roughly two years after
the operation date).

QE2

November 3, 2010 Announcement of “QE2”: The Fed would purchase $600 billion of Treasury
coupon securities by June 2011.

June 22, 2011 The FOMC announced the end of QE2 and the plan to reinvest proceeds of ma-
turing debt in Treasury coupon securities.

September 21, 2011 Announcement of the Maturity Extension Program: The Fed would purchase $400
billion of long-term Treasury securities (maturing in 6 to 30 years) based on pro-
ceeds from selling short-term ones (maturing in less than 6 years) by June 2012.

MEP

June 20, 2012 The termination date of the Maturity Extension Program was extended to Decem-
ber 2012. The Fed would continue the purchases of long-term Treasuries (and
sales of short-term Treasuries) at the same pace.

December 12, 2012 Announcement of “QE3” of Treasury securities: The Fed would continue the pur-
chases of long-term Treasury securities, but unlike in the previous Maturity Exten-
sion Program, it would not match the purchase amounts with the proceeds from
selling short-term securities.

QE3

October 29, 2014 QE3 ended. However, the Fed would continue reinvesting in Treasury coupon
securities to maintain its balance sheet size at $4.5 trillion.

QE
pause

June 14, 2017 The FOMC announced the intention of initiating the balance sheet normalization
program (reducing reinvestment in Treasury securities) this year, if the economic
condition allows.

September 20, 2017 The FOMC announced the start of the balance sheet normalization program in
October 2017.

July 31, 2019 The balance sheet normalization program was concluded. The Fed would reinvest
up to $20 billion per month in Treasury securities.

March 12, 2020 Beginning of QE4” round: The Fed would purchase Treasury securities of vari-
ous maturities to address highly unusual disruptions in Treasury financing mar-
kets associated with the coronavirus outbreak.” The massive purchases started on
March 13, 2020.

QE4

March 15, 2020 Announcement of QE4: The Fed would purchase at least $500 billion of Treasury
securities “over coming months.”

Sources: Announcements and events listed on the website of the Federal Reserve.
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Table 3: Descriptive statistics of QE auctions

Panel A: N. of QE auctions per auction date

Period Mean number of
QE auctions

Distribution of the number of QE auctions
1 2 3 4 5 6 Total

QE2 1.019 159 3 0 0 0 0 162
MEP 1.049 176 9 0 0 0 0 185
QE3 1.012 343 4 0 0 0 0 347
QE pause 1.017 58 1 0 0 0 0 59
QE4 2.493 39 9 4 4 5 12 73
Total 1.153 775 26 4 4 5 12 826

Panel B: N. of eligible, included, and purchased securities per QE auction

Period N Eligible securitis Included securities Purchased securities

Mean S.d. Median Mean S.d. Median Mean S.d. Median
QE2 165 27.4 6.08 28.0 25.2 5.28 26.0 13.2 5.20 13.0
MEP 194 19.1 4.11 19.0 16.5 4.54 17.0 13.6 4.02 14.0
QE3 351 22.2 3.07 22.0 18.3 2.76 19.0 12.9 4.64 13.0
QE pause 60 38.0 7.84 40.0 33.8 8.56 36.5 11.4 6.41 10.0
QE4 182 60.0 30.41 52.0 53.9 29.12 49.0 33.8 19.68 29.0
Total 952 30.7 20.42 24.0 26.9 19.23 20.0 17.0 12.61 14.0

Panel C: Submitted and purchased amounts per QE auction

Period N Submitted amount ($ milllions) Accepted amount ($ millions) Offer-to-cover ratio

Mean S.d. Median Mean S.d. Median Mean S.d. Median
QE2 165 20,641 8,481 20,949 5,182 2,414 6,260 4.996 4.212 3.899
MEP 194 9,223 4,914 6,486 3,193 1,406 2,512 2.838 0.599 2.774
QE3 351 8,004 4,250 5,870 2,264 1,268 1,575 3.775 1.373 3.521
QE pause 60 9,549 4,172 9,530 1,768 520 1,801 5.549 2.279 5.189
QE4 182 18,797 12,725 14,270 8,477 5,967 6,000 2.344 0.853 2.104
Total 952 12,603 9,227 10,426 4,116 3,797 3,000 3.634 2.301 3.159

Panel D: Winning offers and dealers per QE auction

Period N N. of winning offers N. of winning dealers
Mean N. of winning offers

per winning dealer

Mean S.d. Median Mean S.d. Median Mean S.d. Median
QE2 165 94.2 55.3 89 15.2 3.33 16 5.96 3.12 5.61
MEP 194 128.4 58.5 117 16.2 3.64 17 7.71 2.75 7.38
QE3 351 80.1 42.9 72 15.6 3.88 16 5.03 2.30 4.64
QE pause 60 30.9 23.8 24 11.0 4.33 11 2.65 1.35 2.16
QE4 169 115.8 66.0 110 19.3 4.09 20 5.66 2.59 5.13
Total 939 95.9 58.3 86 16.0 4.26 17 5.71 2.86 5.18

This table presents desctiptive statistics of QE auctions of Treasury notes and bonds held from August 17, 2010
to June 29, 2020. The sample period is divided into five sub-periods based on QE phases: QE2 (8/17/2010–
9/19/2011), MEP (9/23/2011–12/10/2012), QE3 (12/13/2012–10/27/2014), QE pause (2/23/2016–3/3/2020),
and QE4 (3/13/2020–6/29/2020). Panel A reports the number of separate QE auctions (based on the Fed’s
operation ID) that the Fed conducted per QE auction date. Panels B–D report QE auction-level characteristics.
The sample size for Panel D is slightly smaller because there were 13 instances in which two separate QE auctions
targeting the same set of Treasury securities were held on the same date. Panel D treats those pairs of QE
auctions as a single observations, because the publicly disclosed offer-level data does not indicate which of the
two auctions each offer belongs to in such cases.
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Table 4: Descriptive statistics of (accepted) offers in QE auctions

QE2 MEP QE3 QE pause QE4 Total
N 15,549 24,912 28,126 1,857 19,578 90,022

Offer size ($ millions)
Mean 55 24.9 28.3 57.1 78.8 43.5
S.d. 121.1 78.2 65.5 129.8 128.1 99.7
Min 1 1 1 1 1 1
Median 25 5 10 25 49 15
Max 5,008 1,875 1,500 2,150 4,749 5,008

On-the-runs vs. off-the-runs (%)
Off-the-run 89.0 96.0 95.8 100.0 100.0 95.7
On-the-run 11.0 4.0 4.2 0.0 0.0 4.3

Remaining maturities (years; %)
0–5 34.4 0.0 10.7 46.3 53.0 21.8
5–10 50.8 37.3 37.9 30.7 22.7 36.5
10–20 6.6 7.0 4.7 5.4 2.1 5.1
20–30 8.2 55.8 46.7 17.5 22.2 36.6

Security types (%)
2Y notes 1.0 0.0 0.0 7.5 8.6 2.2
3Y notes 10.2 0.0 0.0 8.5 11.8 4.5
5Y notes 18.3 0.0 6.3 18.1 18.8 9.6
7Y notes 22.6 15.3 15.7 22.5 17.5 17.3
10Y notes 23.8 18.3 21.6 19.3 18.0 20.3
30Y bonds 24.0 66.4 56.5 24.0 25.2 46.2

Market share of the primary dealer (%)
Top five dealers 33.6 57.0 56.1 31.1 37.4 47.9
Non-top five dealers 66.4 43.0 43.9 68.9 62.6 52.1

This table reports the types of the sample offers for QE auctions of Treasury notes and bonds from August 17, 2010 to
June 29, 2020. Primary dealer market shares are measured based on the trade amount in QE auctions in the sub-period.
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Table 5: Price-end clustering on coarser grids

Panel A: Regression results
All Sub-period PD market share

QE2 MEP QE3 QE pause QE4 Top five Non-top five
(1) (2) (3) (4) (5) (6) (7) (8) (7) - (8)

D32 0.839*** 1.155*** 0.794*** 0.584*** 0.571*** 1.037*** 0.493*** 1.157*** -0.665***
(0.017) (0.024) (0.020) (0.017) (0.052) (0.048) (0.012) (0.023) (0.026)

D64 0.542*** 0.872*** 0.536*** 0.492*** 0.378*** 0.374*** 0.332*** 0.735*** -0.403***
(0.008) (0.020) (0.016) (0.014) (0.042) (0.013) (0.007) (0.011) (0.013)

D128 0.163*** 0.322*** 0.093*** 0.156*** 0.196*** 0.134*** 0.117*** 0.206*** -0.089***
(0.004) (0.011) (0.007) (0.008) (0.025) (0.007) (0.005) (0.005) (0.007)

Constant -0.213*** -0.334*** -0.189*** -0.174*** -0.168*** -0.210*** -0.132*** -0.288*** 0.156***
(0.002) (0.002) (0.003) (0.003) (0.012) (0.004) (0.003) (0.002) (0.003)

N 256 256 256 256 256 256 256 256
Adjusted R2 0.980 0.967 0.956 0.937 0.542 0.910 0.954 0.981

D32 − D64 0.297*** 0.282*** 0.259*** 0.093*** 0.194*** 0.663*** 0.161*** 0.423***
[265.535] [79.976] [107.412] [18.534] [9.090] [181.815] [154.367] [264.990]

D64 − D128 0.378*** 0.550*** 0.443*** 0.335*** 0.182*** 0.240*** 0.215*** 0.528***
[1977.001] [578.012] [684.574] [467.250] [15.948] [296.327] [866.277] [1894.439]

Panel B: Estimated proportions in which different pricing grids are used (%)
grid-32nds 9.52 9.04 8.28 2.96 6.19 21.21 5.15 13.53
grid-64ths 24.22 35.2 28.36 21.47 11.63 15.36 13.76 33.82
grid-128ths 20.89 41.23 11.84 19.99 25.09 17.15 14.92 26.37
grid-256ths 45.38 14.53 51.53 55.58 57.08 46.28 66.17 26.28

C Panel A reports the results of estimating Specification 2. The dependent variable, Percentd − 0.390625, is the percentage of
offers with price endings being d among all offers, minus 0.390625. The right-hand side variables are D32, D64, and D128, which
take the value of one if the price ending d belongs to X32, X64, and X128, respectively, and zero otherwise. Column 1 uses all
sample (winning) offers. In Columns 2–6, the ratios are calculated separately for each sub-period: QE2, MEP, QE3, QE pause,
and QE4. Columns 7 and 8 repeat the analysis for offers of top five PDs and non-top five PDs, respectively. PDs are ranked
based on trade amounts in QE auctions in each sub-period. Column 9 tests the differences in the coefficients between Columns
7 and 8. Heteroskedasticity-robust standard errors are reported in parentheses. At the bottom, differences between coefficients
are tested and their F statistics are reported in bracket parentheses. ***, **, and * indicate significance at 1%, 5%, and 10% levels.
Panel B reports the predicted proportions in which PDs used the 1/32nds, 1/64ths, 1/128ths, and 1/256ths pricing grids, based
on the method described in Section 4.3.

Table 6: Price-end type distributions conditional on a pricing grid used
Conditional on using grid-g = . . .

grid-32nds grid-64ths grid-128ths grid-256ths
ϕ

grid-g
32 = Pr[d ∈ X32 | grid-g] 1 0.5 0.25 0.125

ϕ
grid-g
64 = Pr[d ∈ X32 | grid-g] 0 0.5 0.25 0.125

ϕ
grid-g
128 = Pr[d ∈ X128 | grid-g] 0 0 0.5 0.25

ϕ
grid-g
256 = Pr[d ∈ X256 | grid-g] 0 0 0 0.5

This table summarizes the conditional probabilities of price ending d in X32, X64, X128, and X256, for each of the four pricing
grids, grid-32nds, grid-64ths, grid-128ths, grid-256ths.
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Table 7: Definitions of the variables for the analysis of the determinants of pricing fineness

Variable Description Data sources

D32
A dummy variable that takes a value of one if the price ending is in X32 =
{0/256, 8/256, 16/256, . . . , 248/256} FRBNY

D64
A dummy variable that takes a value of one if the price ending is in X64 =
{4/256, 12/256, 20/256, . . . , 252/256} FRBNY

D128
A dummy variable that takes a value of one if the price ending is in X128 =
{2/256, 6/256, 10/256, . . . , 254/256} FRBNY

D256
A dummy variable that takes a value of one if the price ending is in X256 =
{1/256, 3/256, 5/256, . . . , 255/256} FRBNY

Top f ive A dummy variable that takes the value of one if the PD is a top five dealer based on the
trade amount in QE auctions in the sub-period FRBNY

Cheapness Yield-curve-implied price minus market mid-price, divided by market mid-price (based
on the previous trading day’s close price; in percent; winsorized at the 2.5% and 97.5%) CRSP

On-the-run A dummy variable that takes a value of one if the security is an on-the-run security TreasuryDirect
Maturity0-5 A dummy variable that takes a value of one if the remaining maturity is in (0,5) years TreasuryDirect
Maturity5-10 A dummy variable that takes a value of one if the remaining maturity is in [5,10) years TreasuryDirect
Maturity10-20 A dummy variable that takes a value of one if the remaining maturity is in [10,20) years TreasuryDirect
Maturity20-30 A dummy variable that takes a value of one if the remaining maturity is in [20,30) years TreasuryDirect
Bond A dummy variable that takes a value of one if the security is a Treasury bond TreasuryDirect

Bid-ask Bid-ask spread, divided by the mid quote (based on the previous trading day’s
end-of-the-day bid and ask quotes; in percent; winsorized at the 2.5% and 97.5% levels) CRSP

Volatility Standard deviation of the security’s returns in the previous five trading days (percent;
winsorized at the 1% and 99% levels) CRSP

Ln(offer amount) Natural logarithm of the amount of the offer FRBNY
Ln(outstanding) Natural logarithm of the publicly-held outstanding par value of the offered CUSIP CRSP
Ln(total purchases) Natural logarithm of the total purchase amount of the QE auction FRBNY
Offer-to-cover Offer-to-cover ratio of the QE auction (winsorized at the 2.5% and 97.5% levels) FRBNY

This table lists the definitions and data sources of the variables used in the subsequent cross-sectional analysis of price-end
fineness of QE auction offers.

Table 8: Descriptive statistics of the variables for the analysis of the determinants of pricing fine-
ness

Mean S.d. Min. Median Max. N

D32 0.325 0.468 0.000 0.000 1.000 90,022
D64 0.230 0.421 0.000 0.000 1.000 90,022
D128 0.218 0.413 0.000 0.000 1.000 90,022
D256 0.227 0.419 0.000 0.000 1.000 90,022
Top f ive 0.479 0.500 0.000 0.000 1.000 90,022
Cheapness 0.180 0.238 -0.251 0.101 0.723 89,964
On-the-run 0.043 0.204 0.000 0.000 1.000 90,022
Maturity0-5 0.218 0.413 0.000 0.000 1.000 90,022
Maturity5-10 0.365 0.481 0.000 0.000 1.000 90,022
Maturity10-20 0.051 0.220 0.000 0.000 1.000 90,022
Maturity20-30 0.366 0.482 0.000 0.000 1.000 90,022
Bond 0.462 0.499 0.000 0.000 1.000 90,022
Bid-ask 0.043 0.015 0.012 0.044 0.074 89,964
Volatility 0.552 0.455 0.027 0.434 2.079 89,281
Ln(offer amount) 23.153 1.782 20.723 23.431 29.242 90,022
Ln(outstanding) 24.013 0.620 21.409 24.122 25.041 85,974
Ln(total purchases) 22.023 0.797 19.052 22.032 23.942 90,022
Offer-to-cover 2.968 0.993 1.459 2.773 5.778 90,022

This table reports the descriptive statistics of the variables used in the subsequent cross-sectional analysis of price-end fineness
of QE auction offers. See Table 7 for variable definitions. Cheapness, Bid-ask, Volatility, and O f f er-to-cover are winsorized at
the 2.5% and 97.5% levels.
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Table 9: Ordered logit regression of the determinants of price-end fineness of QE auction offers

Panel A: Ordered logit regression of Price-end fineness
(1) (2) (3)

Coef. Marg. eff. Coef. Marg. eff. Coef. Marg. eff.
Top f ive 0.895*** 0.149*** 0.929*** 0.151*** 0.966*** 0.156***

(0.217) (0.039) (0.216) (0.038) (0.228) (0.038)

Cheapness -1.072*** -0.179*** 0.429*** 0.069*** 0.252* 0.041*
(0.226) (0.029) (0.142) (0.021) (0.138) (0.022)

On-the-run -0.385*** -0.062*** -0.532*** -0.086***
(0.122) (0.024) (0.118) (0.024)

Maturity0-5 0.623*** 0.117*** 0.410*** 0.072***
(0.089) (0.020) (0.076) (0.016)

Maturity10-20 -0.419*** -0.063*** -0.405*** -0.059***
(0.113) (0.018) (0.152) (0.019)

Maturity20-30 -0.456*** -0.068*** -0.139 -0.022
(0.096) (0.016) (0.134) (0.021)

Bond -0.443** -0.072** -0.462** -0.075***
(0.219) (0.030) (0.201) (0.027)

Bid-ask 0.484 0.078
(0.657) (0.105)

Volatility -0.484*** -0.078***
(0.104) (0.017)

Ln(offer amount) -0.066 -0.011
(0.060) (0.010)

Ln(outstanding) -0.006 -0.001
(0.039) (0.006)

Ln(total purchases) -0.012 -0.002
(0.058) (0.009)

Offer-to-cover 0.125*** 0.020***
(0.027) (0.004)

MEP 0.476 0.070 0.919*** 0.136*** 0.900*** 0.129***
(0.309) (0.052) (0.261) (0.050) (0.227) (0.043)

QE3 0.812*** 0.132*** 1.011*** 0.153*** 0.930*** 0.134***
(0.214) (0.038) (0.197) (0.035) (0.186) (0.033)

QE pause 0.898*** 0.149*** 0.871*** 0.127*** 0.749*** 0.103***
(0.207) (0.037) (0.203) (0.033) (0.206) (0.032)

QE4 0.270 0.038 0.238 0.029 0.613*** 0.081***
(0.193) (0.028) (0.172) (0.022) (0.212) (0.031)

N 89,964 89,964 85,866
Pseudo R2 0.036 0.053 0.060

(Continued)
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Table 9: Continued

Panel B: The association of Cheapness and Price-end fineness for Top five = 1 and Top five = 0
Marginal effect of Cheapness on the probability of. . .

Price-end fineness = 1 Price-end fineness = 2 Price-end fineness = 3 Price-end fineness = 4
Coefficient (⇐⇒ D32 = 1) (⇐⇒ D64 = 1) (⇐⇒ D128 = 1) (⇐⇒ D256 = 1)

Sample: Top five = 1
Cheapness -0.633*** 0.112** 0.038*** -0.013 -0.136***

(0.210) (0.044) (0.011) (0.016) (0.040)

Period dummies ✓

N 43,077
Pseudo R2 0.017

Sample: Top five = 0
Cheapness -1.540*** 0.357*** -0.026 -0.157*** -0.173***

(0.207) (0.045) (0.018) (0.032) (0.032)

Period dummies ✓

N 46,887
Pseudo R2 0.017

Test of the difference in the marginal effects
χ2 statistics 17.33*** 6.11** 22.92*** 0.94

This table estimates the ordered logit model in which the dependent variable is Price-end fineness, which takes the value of one
if D32 = 1, two if D64 = 1, three if D128 = 1, and four if D256 = 1. Panel A uses all sample (accepted) offers in QE auctions and
reports the coefficients and marginal effects on the probability of Price-end fineness = 4 (i.e., D256 = 1). For the definitions of the
variables, see Table 7. In Panel B, the sample is split by Top five. In addition to the coefficients, the table reports the marginal
effects on the probabilities of Price-end fineness = 1, 2, 3, and 4. Standard errors are three-way clustered by CUSIP, auction date,
and PD. They are reported in parentheses. Standard errors for marginal effects are obtained by using the delta method. At the
bottom, the differences in the marginal effects between Top f ive = 1 and Top f ive = 0 are tested. To preferm this test, I pool the
two sub-samples and run the ordered logit model in which the independent variables are Top five, Cheapness, the dummies for
the sub-periods, the interaction term of Top five and Cheapness, and those of Top five and the sub-period dummies. ***, **, and *
indicate significance at 1%, 5%, and 10% levels.
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Table 10: Price-end clustering on coarser grids of secondary market prices

Panel A: Regression results
All Sub-period

QE2 MEP QE3 QE pause QE4
(1) (2) (3) (4) (5) (6)

DSecondary
32 1.159*** 1.426*** 1.465*** 1.481*** 0.848*** 0.708***

(0.017) (0.045) (0.030) (0.031) (0.067) (0.025)

DSecondary
64 1.173*** 1.304*** 1.513*** 1.500*** 0.748*** 0.768***

(0.015) (0.043) (0.034) (0.038) (0.059) (0.025)

DSecondary
128 0.187*** 0.186*** 0.074*** 0.072*** 0.350*** 0.309***

(0.005) (0.013) (0.007) (0.006) (0.030) (0.010)

Constant -0.338*** -0.388*** -0.391 -0.391 -0.287*** -0.262***
(0.002) (0.001) (.) (.) (0.012) (0.004)

N 256 256 256 256 256 256
Adjusted R2 0.990 0.947 0.978 0.976 0.674 0.927

DSecondary
32 − DSecondary

64 -0.014 0.122* -0.048 -0.019 0.100 -0.059*
[0.400] [3.807] [1.126] [0.146] [1.315] [2.950]

DSecondary
64 − DSecondary

128 0.986*** 1.119*** 1.439*** 1.427*** 0.399*** 0.459***
[4052.203] [621.373] [1693.223] [1397.315] [38.994] [310.069]

Panel B: Estimated proportions in which different pricing grids are used (%)
grid-32nds 0.00 3.90 0.00 0.00 3.21 0.00
grid-64ths 62.66 71.60 90.56 90.75 25.51 27.46
grid-128ths 23.95 23.76 9.44 9.25 44.75 39.55
grid-256ths 13.38 0.74 0.00 0.00 26.53 32.99

Panel A tests the price-end clustering on coarser grids of my sample Treasury securities in the secondary market. For each
Treasury security purchased in a QE auction, I obtain that security’s closing ask price on the trading day preceding the QE
auction from Bloomberg. The regression specifications are identical to Specification 2, except that this analysis uses not offer
prices in QE auctions but secondary market prices. The dependent variable, PercentSecondary

d − 0.390625, is the percentage of

price endings being d, minus 0.390625. The right-hand side variables are DSecondary
32 , DSecondary

64 , and DSecondary
128 , which take the

value of one if the price ending d belongs to X32, X64, and X128, respectively, and zero otherwise. Heteroskedasticity-robust
standard errors are reported in parentheses. At the bottom, differences between coefficients are tested and their F statistics are
reported in bracket parentheses. ***, **, and * indicate significance at 1%, 5%, and 10% levels. Panel B reports the predicted
proportions in which PDs used the 1/32nds, 1/64ths, 1/128ths, and 1/256ths pricing grids, based on the method described in
Section 4.3.
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Table 11: Ordered logit regression of the determinants of price-end fineness of secondary market
prices

Dependent variable: Price-end f inenessSecondary

Marginal effect on the probability of Price-end f inenessSecondary =...

1 2 3 4
Coefficient (⇐⇒ DSecondary

32 = 1) (⇐⇒ DSecondary
64 = 1) (⇐⇒ DSecondary

128 = 1) (⇐⇒ DSecondary
256 = 1)

On-the-run -0.179 0.034 -0.009 -0.015 -0.011
(0.136) (0.026) (0.006) (0.012) (0.008)

Maturity0-5 1.506*** -0.269*** -0.014 0.186*** 0.097***
(0.117) (0.019) (0.014) (0.012) (0.014)

Maturity10-20 -0.345** 0.081** -0.042** -0.030** -0.009**
(0.145) (0.034) (0.019) (0.012) (0.004)

Maturity20-30 -0.435*** 0.102*** -0.055*** -0.036*** -0.011***
(0.133) (0.031) (0.017) (0.012) (0.004)

Bond -0.131 0.025 -0.006 -0.011 -0.008
(0.135) (0.026) (0.006) (0.012) (0.008)

MEP 0.696*** -0.145*** 0.059*** 0.060*** 0.026***
(0.118) (0.024) (0.012) (0.009) (0.005)

QE3 0.556*** -0.116*** 0.050*** 0.047*** 0.019***
(0.118) (0.024) (0.013) (0.009) (0.004)

QE pause 1.177*** -0.238*** 0.075*** 0.109*** 0.054***
(0.177) (0.035) (0.013) (0.017) (0.011)

QE4 1.250*** -0.251*** 0.075*** 0.116*** 0.059***
(0.133) (0.027) (0.013) (0.012) (0.008)

N 15,872
Pseudo R2 0.114

This table reports the result of estimating the ordered logit model of the price-end fineness of my sample Treasury securities
in the secondary market. For each Treasury security purchased in a QE auction, I obtain that security’s closing ask price
on the trading day preceding the QE auction from Bloomberg. Therefore, the outcome variable, Price-end f inenessSecondary,
is the price-end fineness of the secondary market price and takes the value of one if DSecondary

32 = 1, two if DSecondary
64 = 1,

three if DSecondary
128 = 1, and four if DSecondary

256 = 1. The remaining columns show the marginal effects on the probabilities of
Price-end f inenessSecondary = 1, 2, 3, and 4. For the definitions of the explanatory variables, see Table 7. Standard errors are
two-way clustered by CUSIP and auction date, and they are reported in parentheses. Standard errors for marginal effects are
obtained by using the delta method. ***, **, and * indicate significance at 1%, 5%, and 10% levels.
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Table 12: Ordered logit regression of the price-end fineness of QE auction offers on the price-end
fineness of secondary market prices

Sample: All Top f ive = 1 Top f ive = 0 All Top f ive = 1 Top f ive = 0
(1) (2) (3) (4) (5) (6)

DSecondary
64 -0.017 -0.023 -0.030 -0.014 -0.027 -0.018

(0.014) (0.015) (0.024) (0.012) (0.020) (0.022)

DSecondary
128 0.594*** 0.440*** 0.734*** 0.114*** 0.065 0.132**

(0.075) (0.096) (0.093) (0.042) (0.062) (0.058)

DSecondary
256 0.904*** 0.695*** 1.164*** 0.336*** 0.214 0.468***

(0.137) (0.176) (0.152) (0.104) (0.149) (0.117)

Security-type controls ✓ ✓ ✓
Period dummies ✓ ✓ ✓ ✓ ✓ ✓

N 90,022 43,096 46,926 90,022 43,096 46,926
Pseudo R2 0.014 0.018 0.014 0.031 0.026 0.045

This table reports the coefficients of the ordered logit regressin in which the dependent variable is Price-end fineness, which
takes the value of one if the QE auction offer’s price ending is in X32, two if it is in X64, three if it is in X128, and four if it is in
X256. DSecondary

64 takes the value of one if the price ending of the Treasury security’s closing ask on the trading day preceding

the QE auction is in X64, and zero otherwise. DSecondary
128 and DSecondary

256 are similarly defined. The secondary market price-
end data come from Bloomberg. In Columns 4–6, the following scurity-type controls are included: On-the-run, Maturity0-5,
Maturity10-20, Maturity20-30, and Bond. Standard errors are three-way clustered by CUSIP, auction date, and PD. ***, **, and *
indicate significance at 1%, 5%, and 10% levels.
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Table 13: Market share and the predicted proportion of using fine pricing grids

Panel A: Sub-period analysis
Dependent var.: Pricing grid256 Pricing grid128or256

Period QE2 MEP QE3 QE4 QE2 MEP QE3 QE4
(1) (2) (3) (4) (5) (6) (7) (8)

Market share 1.006 2.395∗∗∗ 3.384∗∗∗ 2.970∗∗ 1.332 2.071∗∗∗ 2.158∗∗∗ 1.193
(0.774) (0.293) (0.859) (1.069) (0.975) (0.519) (0.504) (0.993)

Constant 15.166∗∗ 25.941∗∗∗ 32.692∗∗∗ 31.388∗∗∗ 45.762∗∗∗ 48.700∗∗∗ 67.630∗∗∗ 56.978∗∗∗

(6.143) (6.623) (6.919) (6.336) (6.024) (6.825) (5.084) (5.479)

N 18 19 21 23 18 19 21 23
Adjusted R2 0.031 0.326 0.363 0.244 0.110 0.266 0.305 0.044

Panel B: Pooled analysis in levels
Dependent var.: Pricing grid256 Pricing grid128or256

Sample All
Excl.

Goldman
Sachs

Excl.
Morgan
Stanley

Excl.
< 2% market

share
All

Excl.
Goldman

Sachs

Excl.
Morgan
Stanley

Excl.
< 2% market

share
(1) (2) (3) (4) (5) (6) (7) (8)

Market share 2.393∗∗∗ 2.431∗∗∗ 2.438∗∗∗ 2.402∗∗∗ 1.836∗∗∗ 1.703∗∗∗ 2.264∗∗∗ 1.665∗∗∗

(0.313) (0.386) (0.521) (0.295) (0.405) (0.435) (0.490) (0.439)

Period dummies ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
N 81 77 77 55 81 77 77 55
Adjusted R2 0.383 0.344 0.299 0.486 0.360 0.317 0.335 0.444

Panel C: Pooled analysis in first differences
Dependent var.: ∆Pricing grid256 ∆Pricing grid128or256

Sample All
Excl.

Goldman
Sachs

Excl.
Morgan
Stanley

Excl.
< 2% market

share
All

Excl.
Goldman

Sachs

Excl.
Morgan
Stanley

Excl.
< 2% market

share
(1) (2) (3) (4) (5) (6) (7) (8)

∆Market share 2.431∗∗∗ 2.413∗∗∗ 2.297∗∗ 2.574∗∗∗ 2.137∗∗∗ 2.284∗∗∗ 2.260∗∗∗ 1.908∗∗∗

(0.457) (0.523) (0.893) (0.330) (0.400) (0.471) (0.736) (0.410)

Period dummies ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
N 63 60 60 38 63 60 60 38
Adjusted R2 0.278 0.266 0.156 0.473 0.383 0.375 0.330 0.439

This table reports the results of the OLS regressions in which the dependent variable is the predicted proportion of using the
finest 1/256ths pricing grid (Price grid256) or that of using the pricing grids of either 1/128ths or 1/256ths (Price grid128or256).
A PD is included in the sample if it has at least 100 winning offers in the sub-period and if it was designated as a PD at the
beginning of the sub-sample period. Market share is the trade amount-based market share of the PD in the sub-period. In Panel
A, heteroskedasticity-robust standard errors are reported in parentheses. In Panels B and C, standard errors clustered for PD
are reported in parentheses. ***, **, and * indicate significance at 1%, 5%, and 10% levels.
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Table 14: Coarse pricing and the level of prices among accepted offers in QE auctions

Panel A: Summary statistics of Price diff
N Mean S.d. Min 25%tile Median 75%tile Max

Price diff 86,611 3.61 3.93 0 0.81 2.62 4.82 18.50

Panel B: Regressions of Price diff
(1) (2) (3) (4)

D32 0.282* 0.278** 0.138 0.127
(0.139) (0.127) (0.117) (0.107)

D64 0.247** 0.243** 0.119 0.108
(0.117) (0.108) (0.110) (0.100)

D128 0.181** 0.178** 0.116* 0.109*
(0.073) (0.068) (0.062) (0.056)

Ln(offer amount) 0.035 0.050
(0.052) (0.045)

Top five -0.415** -0.431**
(0.177) (0.165)

CUSIP × QE auction FEs ✓ ✓ ✓ ✓

N 86,611 86,611 86,611 86,611
Adjusted R2 0.566 0.566 0.569 0.569

D32 − D64 0.035 0.035 0.020 0.019
[0.484] [0.481] [0.195] [0.175]

D64 − D128 0.066 0.066 0.002 -0.001
[0.978] [1.062] [0.001] [0.000]

Panel A shows the summary statistics of Price diff, which is the percentage difference (in basis points) between the offer price
and the minimum accepted price of offers for the same security in the same QE auction. Price diff is defined only when there
exist multiple winning offers for the security in the QE auction. This variable is winsorized at the 2.5% and 97.5%. Panel B
reports the OLS regression results with the dependent variable Price diff. All the models include CUSIP × QE-auction fixed
effects. D32, D64, and D128 take the value of one if the price ending d belongs to X32, X64, and X128, respectively, and zero
otherwise. Ln(Total assets) is the natural logarithm of the offer amount. Top five takes the value of one if the PD is one of the top
five dealers based on the trade amount in QE auctions in the sub-period, and zero otherwise. Standard errors are three-way
clustered by CUSIP, auction date, and PD. They are reported in parentheses. At the bottom, differences between coefficients are
tested and their F statistics are reported in bracket parentheses. ***, **, and * indicate significance at 1%, 5%, and 10% levels.
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Appendices

Appendix A A brief history of the Fed’s QE purchases of Treasury securities

Table 2 lists major events of the Fed’s QE purchases of Treasury securities. The phases can be classified

as follows. First, on March 18, 2009, the Fed announced the commencement of purchasing up to $300

billion of Treasury coupon securities. The purchases of this so-called “QE1” round began on March 25 and

ended as planned six months later (on October 29).39 The Fed then announced on August 10, 2010 that it

would reinvest proceeds from maturing Treasury securities and other debt into Treasury coupon securities

to maintain its balance sheet size. The Fed resumed Treasury coupon security purchases following the

announcement.

Second, the “QE2” phase was announced on November 3, 2010. The announced purchase size of Trea-

sury coupon securities was $600 billion. As planned, QE2 ended in June 2011, with the last purchase taking

place on June 22. Proceeds from maturing debt continued to be reinvested into Treasury securities.

Third, the Maturity Extension Program (MEP) was announced on September 21, 2011.40 While the

MEP still purchased long-term Treasury securities, the MEP differed from the preceding programs in that

it did not change the size of bank reserves—the purchases were funded by sales of shorter-term Treasury

securities (maturing in less than 3 years). The original plan was to purchase $400 billion of long-term

Treasury securities by June 2012. It was announced on June 20, 2012, however, that the Fed would continue

the purchases (and sales of shorter-term Treasuries) at the same pace until December 2012.

Fourth, the Fed announced the replacement of the MEP with “QE3” on December 12, 2012. Like QE1

and QE2, QE3 did not entail sales of shorter-term Treasury securities. Unlike them, QE3 was open-ended

as it specified the (initial) monthly purchase amount, $45 billion, but neither the total purchase size nor the

termination date.41 QE3 was concluded on October 29, 2014.

Fifth, in the years following the QE3 conclusion, purchases of Treasury coupon securities were sporadic

and quite small. Moreover, purchases of long-term Treasuries were completely halted following the initia-

39The purchases of agency MBS and agency debt continued until March 2010.
40The MEP is also referred to as the “Operation Twist” after a similar program the Fed launched in 1961.
41The announcement says, “If the outlook for the labor market does not improve substantially, the Committee will

continue its purchases of Treasury and agency mortgage-backed securities” (https://www.federalreserve.gov
/newsevents/pressreleases/monetary20121212a.htm).
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tion of the balance sheet normalization program in October 2017. The balance sheet normalization program

was then concluded in August 2019, and the Fed resumed reinvesting proceeds of maturing securities in

Treasury coupon securities (with the first purchase taking place on August 15, 2019). The reinvestment con-

tinued at the pace of roughly $15 billion per month until February 2020. The FOMC emphasized, however,

that the purpose of Treasury security purchases during this period was to maintain a sufficient level of bank

reserves, instead of restarting QE (Bernanke, 2022, pp. 248–252).

Lastly, the COVID-19 crisis led the Fed to launch massive operations in the Treasury market. On March

12, 2020, the Fed announced that, among other interventions, it would purchase Treasury securities of

various maturities from the next day. The massive new round of QE, which this paper dubs “QE4,” was

announced on March 15. According to it, the Fed would purchase at least $500 billion of Treasury securities

“over coming months.” While previous QE rounds had the main policy objective of stimulating the econ-

omy through lowering long-term rates, that of QE4 was different. The March 12 announcement clarified

that the purpose was “to address highly unusual disruptions in Treasury financing markets associated with

the coronavirus outbreak.”42

Appendix B Dealer-level estimation of the proportions of pricing grids used

To quantify the extent of coarse pricing for each PD while controlling for offered security heterogeneity,

I employ a more elaborate version of Specification 2. The dependent variable, Percents,j,t,d − 0.390625,

is the percentage of offers with price endings being d among all offers for security type s submitted by

PD j during period t, minus 0.390625. More specifically, three basic Treasury security characteristics are

taken into account: on-the-run status, remaining maturity, and Treasury note vs. bond. Therefore, the

ratio is calculated for each possible combination of security type s, PD j, and period t. The full regression

42https://www.newyorkfed.org/markets/opolicy/operating_policy_200312a
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specification is:

Percents,j,t,d − 0.390625 = β1D32 + β2D64 + β3D128 + β4On-the-runs + β5Maturity0-5Y + β6Maturity10-20Y

+β7Maturity20-30Y + β8Bond + (β9D32 + β10D64β11D128)× On-the-run

+(β12D32 + β13D64 + β14D128)× Maturity0-5Y

+(β15D32 + β16D64 + β17D128)× Maturity10-20Y

+(β18D32 + β19D64 + β20D128)× Maturity20-30Y

+(β21D32 + β22D64 + β23D128)× Bond

+γZj,t + (δD32 + ζD64 + ηD128)× Zj,t + ϵi,d,

(5)

where D32, D64, and D128 take the value of one if the cell’s price ending d (∈ D = {0, 1, 2, . . . , 255}) belongs

to X32, X64, and X128, respectively, and zero otherwise; On-the-runs is the dummy variable for on-the-run

securities; Maturity0-5Y, Maturity10-20Y, and Maturity20-30Y are dummy variables for remaining maturities

being in (0, 5), [10, 20), and [20, 30) years, respectively; Bond is the dummy variable for Treasury bonds; Zj,t

is the fixed effects for PD × period. (In this PD-level analysis I merge the QE-pause period into the QE3

period due to its small sample size.) Since Percents,j,t,d’s are calculated from different numbers of offers, the

regression weights the observations by the number of offers in the cell. The regression result is reported in

Table A.1.

Based on Specification 5, the baseline security is an off-the-run Treasury note maturing in [5, 10) years,

which is the most common security type in my sample of QE auction offers. Moreover, by combining the

coefficients reported in Table A.1 with the coefficients of Zj,t and the interaction terms of Zj,t with D32, D64,

and D128, I can predict the price-end type distributions at the PD × period level in the case of offering

the most common Treasury security type. These predicted PD × period-level values are then fed into the

maximum likelihood procedure detailed in Section 4.3 for estimating the proportions in which the four

pricing grids were used.

Table A.2 summarizes the estimated PD × period-level proportions in which the four pricing grids were
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used. There are two notable time-series patterns (which are in line with Table 5). First, PDs tend to price

more finely over time. The median PD increases the use of the 1/256ths pricing grid from 15.6% in QE2 to

29.6% in MEP and 48.5% in QE3. Second, the pricing fineness deteriorated in the QE4 period. The median

probability of using the coarsest 1/32nds grid increased from 0% in QE3 to 18.2%.

Table A.1: OLS estimation of Specification 5

Coefficient Standard error
D32 1.132*** (0.037)
D64 1.038*** (0.023)
D128 0.492*** (0.013)
On-the-run -0.062*** (0.020)
Maturity0-5Y 0.054*** (0.012)
Maturity10-20Y -0.025** (0.012)
Maturity20-30Y -0.027* (0.015)
Bond -0.029 (0.018)
On-the-run × D32 0.185* (0.106)
On-the-run × D64 0.168 (0.106)
On-the-run × D128 0.071* (0.042)
Maturity0-5Y × D32 -0.440*** (0.073)
Maturity10-20Y × D32 0.192** (0.092)
Maturity20-30Y × D32 0.109** (0.053)
Maturity0-5Y × D64 -0.165*** (0.039)
Maturity10-20Y × D64 0.011 (0.077)
Maturity20-30Y × D64 0.042 (0.058)
Maturity0-5Y × D128 0.087*** (0.033)
Maturity10-20Y × D128 -0.001 (0.030)
Maturity20-30Y × D128 0.033 (0.034)
Bond × D32 0.415*** (0.093)
Bond × D64 0.074 (0.055)
Bond × D128 -0.130*** (0.024)

Zj,t ✓
Zj,t × (δD32 + ζD64 + ηD128) ✓

Number of observations. . .
before weighting 161,024
after weighting 23,045,632

Adjusted R2 0.324

This table reports the OLS estimation of Specification 5. The dependent variable, Percents,j,t,d − 0.390625, is the percentage of
offers with price endings being d among all offers for security type s submitted by PD j during period t, minus 0.390625. D32,
D64, and D128 take the value of one if the price ending d belongs to X32, X64, and X128, respectively, and zero otherwise. On-
the-run takes the value of one if the offered Treasury security is on-the-run. Maturity0-5Y , Maturity10-20Y , and Maturity20-30Y
are dummy variables for remaining maturities being in (0, 5), [10, 20), and [20, 30) years, respectively. Bond takes the value of
one if the offered security is a Treasury bond and zero if it is a Treasury note. Zj,t is the fixed effects for PD × period. Given
that the ratios are calculated from different numbers of offers, the OLS regression is weighted by the respective number of
offers. Standard errors clustered by price ending (d) and PD (j) are reported in parentheses. ***, **, and * indicate significance
at 1%, 5%, and 10% levels.
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Table A.2: Predicted proportions of using the 1/32nds, 1/64ths, 1/128ths, and 1/256ths pricing
grids for each PD

N Mean S.d. Min p25 Median p75 Max
Panel A: Estimated proportion of using the 1/32nds grid
QE2 19 8.70 8.40 0.00 3.83 5.54 13.11 35.78
MEP 21 10.29 14.95 0.00 0.00 6.50 15.11 62.80
QE3 23 3.44 6.47 0.00 0.00 0.00 4.52 20.64
QE4 23 18.87 10.82 0.00 9.54 18.15 25.25 47.89

Panel B: Estimated proportion of using the 1/64ths grid
QE2 19 38.21 14.45 8.39 27.83 38.02 46.60 70.05
MEP 21 29.06 22.62 0.00 8.86 29.09 46.30 70.35
QE3 23 18.14 14.60 0.00 8.14 16.47 30.78 53.65
QE4 23 18.98 7.46 1.19 14.77 19.36 23.88 33.76

Panel C: Estimated proportion of using the 1/128ths grid
QE2 19 32.75 12.82 13.51 25.38 30.53 39.11 63.52
MEP 21 21.01 9.21 0.00 15.95 22.00 25.52 40.21
QE3 23 29.74 15.21 0.93 19.49 31.94 35.50 72.98
QE4 23 17.88 10.98 0.00 11.35 16.54 23.35 45.42

Panel D: Estimated proportion of using the 1/256ths grid
QE2 19 20.34 16.94 3.22 7.73 15.60 25.20 60.04
MEP 21 39.64 28.77 8.37 18.36 29.59 52.24 100.00
QE3 23 48.68 25.79 14.04 26.55 48.48 66.17 99.07
QE4 23 44.28 18.27 15.44 33.30 41.01 51.79 88.00

This table reports the estimated proportions of using the 1/32nds, 1/64ths, 1/128ths, and 1/256ths pricing grids,
for each PD in each sub-period, in the case of offering an off-the-run Treasury note maturing in [5, 10) years.
Therefore, N refers to the number of sample PDs in the sub-period. Note that in this analysis the QE3 period
incorporates the QE-pause period due to a small sample size of the latter. A PD is included in the sample only if
it has at least 100 winning offers in the sub-period. See text for the method of estimating these proportions.
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Internet Appendix A Fitting a Fed-style yield curve model

Song and Zhu (2018) estimate a yield curve model based on the Fed’s public information. Unless stated oth-

erwise, I replicate their method to the greatest extent possible. The model is a standard cubic spline model.

There are two important choices to consider. First, some prefer setting a positive smoothness parameter,

which effectively prioritizes curve smoothness at the expense of the model’s fit. Following the baseline

approach of Song and Zhu (2018), I set the smoothness parameter to zero. The second consideration is the

number and location of knots. Again, I employ their choice: 2, 5, 10, 20, and 30 years.

Like Song and Zhu (2018), I exclude Treasury bills and on-the-run securities from the yield curve es-

timation. One difference between their sample selection and mine is the remaining maturity. Song and

Zhu (2018) discard securities whose remaining maturities are less than one year. This selection makes sense

in their setting; Treasury securities nearing maturity occasionally exhibit large, idiosyncratic price fluctua-

tions, and during the period they examine, the Fed did not purchase any securities maturing in less than

1.5 years. In contrast, in my sample period, the shortest maturity purchased by the Fed was 32 days. I

therefore set a minimum remaining maturity restriction of one month.

While Song and Zhu (2018) use the Fed’s internal secondary-market price data (New Price Quote Sys-

tem), my data source is the CRSP Treasury data. For each QE auction, I estimate the yield curve using

the daily closing mid price of the previous trading day. I then measure Treasury securities’ cheapness by

comparing the model-implied prices and their actual closing mid prices on the day of the yield curve esti-

mation. Note that cheapness is measured even for on-the-run securities, which are not included in the yield

curve estimation.
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Internet Appendix B Dealer characteristics and coarse pricing

B.1 Data

Does the degree of pricing fineness relate to the PD’s characteristics (other than QE auction market share)?

To explore this question, I look at three dimensions of PD characteristics.

Location of the parent bank: First, I examine whether PDs have a foreign parent company or not,

referring to the PD lists of He et al. (2017) and Giannone and Robotti (2022). Foreign takes the value of one

if the PD has a foreign parent bank, and zero otherwise.

Number of years as a primary dealer: Second, To shed light on varying experiences of PDs in the

Treasury market, I measure the number of years as a PD. One challenge is how to handle mergers & acqui-

sitions, which have been pervasive from time to time in this industry. I thus checked the historical primary

dealer lists of the FRBNY. Table IA.1 summarizes the designation dates of domestic PDs, and Table IA.2

those of foreign PDs. The identification of the designation date is particularly challenging for some foreign

PDs. Therefore, for some foreign PDs, I assign both the baseline and earliest start dates. Old takes the value

of one if the (baseline) PD designation date is earlier than the median date, and zero otherwise. The use of

the earliest start dates, instead of the baseline dates, does not much change the result.

Balance sheet size: Third, I hand-collected each PD’s balance sheet information from Form X-17A-5,

as done by Gupta (2021). An advantage of using this form is that I can obtain balance sheet data of dealer

subsidiaries, as opposed to the group-wide consolidated financial data reported in 10-Ks, etc. Note that this

data is also available for foreign bank-affiliated PDs because they are still incorporated as a U.S. subsidiary,

and large U.S. broker-dealers are mandated to file (audited) Form X-17A-5. I was able to locate all my

sample PDs’ Form X-17A-5, except for that of the Bank of Nova Scotia, although there exist some gap years

and non-reported items for some PDs.1 Ln(Total assets) is the natural logarithm of the total assets measured

at the beginning of each sub-period.

1Ownership structures of PDs were examined using the National Information Center repository (https://www.
ffiec.gov/NPW). See Avraham et al. (2012) for its details.
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B.2 Result

Table IA.3 shows the correlation matrix of PD-level variables. The results of pooled regressions are reported

in Table IA.4.

Table IA.3: Correlation matrix of PD-level variables

Price grid256 Price
grid128or256

Market share Ln(Total assets) Foreign Old

Price grid256 1

Price grid128or256 0.843*** 1
[0.000]

(81)

Market share 0.457*** 0.428*** 1
[0.000] [0.000]

(81) (81)

Ln(Total assets) 0.254** 0.271** 0.615*** 1
[0.030] [0.020] [0.000]

(73) (73) (73)

Foreign –0.300*** –0.169 –0.313*** –0.158 1
[0.006] [0.132] [0.004] [0.181]

(81) (81) (81) (73)

Old 0.211* 0.076 0.363*** 0.488*** –0.343*** 1
[0.059] [0.498] [0.001] [0.000] [0.002]

(81) (81) (81) (73) (81)

This table presents the correlation matrix of PD-level variables, pooling the data from the four sub-periods. Price grid256 is the
predicted proportion of using the finest 1/256ths pricing grid, and Price grid128or256 is that of using the pricing grid of either
1/128ths or 1/256ths. Market share is the trade amount-based market share of the PD in the sub-period. See Section B.1 for the
definitions and data sources for the other variables. A PD is included in the sample only if it has at least 100 winning offers
in the sub-period. The number of observations used for calculating the pair-wise correlation is shown in round brackets and
p-values in square brackets.
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Table IA.4: PD characteristics and the predicted proportions of using fine pricing grids

Panel A: Dependent variable: Pricing grid256
(1) (2) (3) (4) (5)

Market share 2.393∗∗∗ 2.084∗∗∗

(0.313) (0.414)

Ln(Total assets) 7.513∗

(4.112)

Foreign -16.004∗ -8.603
(7.958) (7.469)

Old 12.025 1.492
(7.330) (5.738)

MEP 18.436∗∗∗ 17.370∗∗∗ 17.700∗∗∗ 17.689∗∗∗ 18.514∗∗∗

(4.625) (5.909) (5.991) (5.999) (4.790)

QE3 29.844∗∗∗ 29.541∗∗∗ 28.799∗∗∗ 28.769∗∗∗ 30.178∗∗∗

(5.301) (6.276) (5.437) (5.505) (5.385)

QE4 26.378∗∗∗ 28.257∗∗∗ 23.528∗∗∗ 24.874∗∗∗ 26.156∗∗∗

(5.230) (6.796) (4.825) (4.981) (5.367)

Constant 7.512 -169.328 30.495∗∗∗ 14.702∗∗∗ 13.731
(5.202) (106.113) (7.406) (4.574) (9.768)

N 81 73 81 81 81
Adjusted R2 0.383 0.223 0.232 0.191 0.397

Panel B: Dependent variable: Pricing grid128or256
(6) (7) (8) (9) (10)

Market share 1.836∗∗∗ 1.878∗∗∗

(0.405) (0.490)

Ln(Total assets) 5.826
(3.386)

Foreign -8.062 -3.277
(6.335) (6.752)

Old 4.008 -3.981
(5.772) (5.357)

MEP 6.910 5.591 6.259 6.199 6.890
(5.653) (6.360) (6.530) (6.537) (5.751)

QE3 26.165∗∗∗ 25.414∗∗∗ 25.129∗∗∗ 24.967∗∗∗ 26.096∗∗∗

(4.519) (5.537) (4.713) (4.746) (4.517)

QE4 11.204∗∗ 11.952∗∗ 9.027∗ 9.482∗∗ 10.812∗∗

(4.108) (5.134) (4.546) (4.322) (4.140)

Constant 42.982∗∗∗ -93.763 58.037∗∗∗ 51.106∗∗∗ 46.745∗∗∗

(4.340) (86.682) (6.698) (3.851) (8.699)

N 81 73 81 81 81
Adjusted R2 0.360 0.226 0.185 0.158 0.354

This table reports the results of the regressions in which the dependent variable is the predicted proportion of using
the finest pricing grid of 1/256ths (Price grid256) or that of using the pricing grids of either 1/128ths or 1/256ths
(Price grid128or256). A PD is included in the sample only if it has at least 100 winning offers in the sub-period. Market
share is the trade amount-based market share of the PD in the sub-period. MEP, QE3, and QE4 are indicator variables
for the sub-periods. (QE2 is the reference category.) See Section B.1 for the definitions and data sources for the other
variables. Standard errors clustered for PD are reported in parentheses. ***, **, and * indicate significance at 1%, 5%,
and 10% levels.
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