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Abstract

The rise of market power in the last decades is primarily driven by the largest
(superstar) �rms. The current paper examines the impact on aggregate �uctu-
ations of these multi-product superstars through their interaction with smaller
competitors. Market share reallocation and product scope adjustments generate
heterogeneous markup dynamics across �rms and time. Moreover, the prevalence
of superstar �rms increases the parameter space for macroeconomic indeterminacy.
The endogenous ampli�cation mechanism of product creation improves the �t of the
estimated general equilibrium model and implies animal spirits play a non-trivial
role in driving U.S. business cycles.

1 Introduction

Firms are not identical. Many markets are polarized and populated by a few relatively

big �rms mixed in with a greater number of smaller �rms that extort less market power.

Empirically such dispersion is well documented.1 In the last thirty years, this polarization

of markets has become more accentuated. De Loecker et al. (2020) report a steady and

signi�cant increase of market power but this increase of the average markup in the U.S.

was foremost driven by the �rms in the top percentiles.

What are the e¤ects of increasing product market concentration on the workings of the

macroeconomy? And what is the role of the competition among big and smaller �rms?

This paper proposes a dynamic economy that emphasizes the role of �rm heterogeneity

�Preliminary draft. We thank seminar participants at Aarhus Universitet, The University of Ade-
laide, ASSET 2023, Cardi¤ University, Le Mans Université and University of Sydney for their excellent
comments. Weder acknowledges generous support from the Australian Research Council under the grant
DP200101963. Keywords: Superstar �rms, animal spirits, multi-product �rms, business cycles, Bayesian
estimation. JEL Classi�cation: E32.

yTasmanian School of Business and Economics, University of Tasmania, Sandy Bay TAS 7005, Aus-
tralia. oscar.pavlov@utas.edu.au.

1See for example Bartelsman et al. (2013), De Loecker et al. (2020), Baqaee and Farhi (2020), Kehrig
and Vincent (2021) and Edmond et al. (2023).
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and, in particular, it examines the in�uence of superstar �rms on aggregate �uctuations.

What makes superstar �rms special? In our arti�cial economy, large �rms have access to

di¤erent technologies and markets that results in more market power and larger market

shares. Neary suggests the following characteristics of superstars:

�So far, the advantage of superstar �rms has not been speci�ed exactly.

One interesting and important case is where the superstar technology in-

volves the ability to produce a large number of products. In that case, the

small number of superstar �rms are multi-product �rms, while the remaining

insiders which constitute the competitive fringe are single-product �rms. This

con�guration is consistent with the empirical evidence [...].� [Neary, 2010, p

15]

We follow Neary�s suggestion and propose a model in which �rm heterogeneity man-

ifests itself in a grouping of �rms being able to produce multiple products and to gain

larger market power relative to mono-product �rms. This characterization parallels em-

pirical work as in Broda et al. (2010) and particular Bernard et al. (2010) who report

that a considerable fraction of U.S. manufacturing �rms produces in multiple �ve-digit

SIC industries and these �rms account for well over 80 percent of total sales. The theoret-

ical framework then allows to shed light on the e¤ects of the superstar �rm environment

involving changes in market concentration and also of the dispersion of market power. Of

particular importance to us is explaining in a uni�ed way the observed market power by a

restricted group of �rms, their interactions with conventional �rms and the impact of that

environment on the macroeconomic dynamics �either via the propagation of impulses

or multiple equilibria. We show that a rising market share of superstar �rms allows for

greater divergence in markups between large and small �rms. Our theory predicts that

superstars charge a higher price, they set larger markups and grab a larger market share.

Our paper, thus, provides a quantitative theory of superstar �rms�divergence from the

rest and it can explain various empirical �ndings such as in De Loecker et al. (2020). We

also show how this divergence increases the parametric space for macroeconomic indeter-

minacy. This indeterminacy implies that pro�t-seeking businessmen�animal spirits can

lead to self-ful�lling macroeconomic outcomes. This indeterminacy mechanism is novel as

it comes about from the superstars�endogenous and time-varying product creation even

when we keep constant the number of �rms. The estimated version of the model suggests

that the endogenous ampli�cation mechanism of product creation within superstar �rms

is empirically important and that a non-trivial portion of U.S. aggregate �uctuations

is driven by realized animal spirits, i.e. non-fundamental swings between euphoria and

pessimism.

This article is in �ve parts. It begins by presenting the baseline model from which

we have stripped o¤ various bells and whistles that we insert into the full model when
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estimating it. This approach allows us to highlight the main mechanisms that drive

our results. Section 3 analyses the local dynamics by presenting the parametric zones
for indeterminacy and impulse responses of macroeconomic variables to animal spirits

(i.e. to a animal spirits or expectational error shock). The fourth Section presents the

Bayesian estimation of the fuller model. We end the article by listing our conclusions.

2 Model

The economy is populated by two groups of �rms. One group consists of smaller mono-

product �rms. We will coin them ordinary �rms. The other grouping are superstars: they

produce multiple products, and consequently, have more market power. Both groups of

�rms produce di¤erentiated goods and adjust their markups according to �uctuations in

their market shares. The �rms�goods are bought by perfectly competitive �rms that weld

the varieties together into the �nal good that is used for consumption purposes or added

to the capital stock. People rent out labor and capital services. Firms and households

are price takers on factor markets.

2.1 Final goods

Similar to Shimomura and Thisse (2012), �nal output is a combination of products pro-

duced by M ordinary �rms and N superstar �rms.2 M and N are constant for now but

this will be relaxed later. With this assumption on �rm numbers, we can pinpoint to the

role of time-varying product scopes as opposed to �rm dynamics of entry and exit. Final

output Y is then

Y =

 
MX
i=1

x(i)
��1
� +

NX
j=1

Y (j)
��1
�

! �
��1

(1)

in which � > 1 stands for the elasticity of substitution and x(i) is the amount produced by

mono-product �rm i: Since superstar �rms are multi-product �rms, Y (j) is a composite

good

Y (j) =

 Z S(j)

0

x(j; s)
��1
� ds

! �
��1

(2)

in which S(j) stands for the product scope and x(j; s) denotes variety s of superstar

j. The CES aggregators imply a love of variety e¤ect of 1=(� � 1): This variety e¤ect
in (2) provides the bene�t of product creation for the superstar �rm.3 The �nal pro�t

2We suppress the time index in these static equations for notational ease.
3More broadly, the love of variety can be interpreted as a stand-in for other e¢ ciency gains of product

creation within multi-product �rms. Pavlov (2021) discusses an alternative way of modelling e¢ ciency
gains of product creation without the love of variety.

3



maximization problem yields two demand functions

x(i) =

�
p(i)

P

���
Y;

x(j; s) =

�
p(j; s)

P

���
Y

and the aggregate price index

P =

 
MX
j=1

p(i)1�� +

NX
j=1

P (j)1��

! 1
1��

with

P (j) =

 Z St(j)

0

p(j; s)1��ds

! 1
1��

:

2.2 Intermediate good �rms

Varieties supplied by superstar �rms are produced using labor h(j; s) and capital services

Uk(j; s). U stands for the utilization rate set by the owners of physical capital. Superstar

�rm j maximizes pro�ts

�(j) =

Z S(j)

0

p(j; s)x(j; s)� wh(j; s)� rUk(j; s)ds

subject to the production technologyZ S(j)

0

x(j; s)ds =

Z S(j)

0

[U�k(j; s)�h(j; s)1�� � �s]ds� �f 0 < � < 1:

Here, w is the wage and r the rental rate for labor and capital services. The variety-level

�xed cost �s is paid each period and it restricts the amount of varieties the �rm produces.

The �rm-level �xed cost �f provides economies of scope and helps to pin down steady

state pro�ts. Ordinary �rm i only produces a single variety and its production technology

is

x(i) = U�k(i)�h(i)1�� � �o

in which the �xed cost �o is calibrated so that regular �rms have zero pro�ts at the steady

state. The �rst-order conditions are

w = (1� �)�U�k(j; s)�h(j; s)�� = (1� �)�U�k(i)�h(i)�� (3)

r = ��U��1k(j; s)��1h(j; s)1�� = ��U��1k(i)��1h(i)1�� (4)

where

� � ���(1� �)��1r�w1�� (5)
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are the marginal costs that are the same for both �rm types. In the spirit of Yang and

Heijdra (1993), �rms take into account the e¤ect of their prices on the aggregate price

index P .4 Due to each variety having the same production technology, superstar j charges

the same price for all of its varieties i.e. p(j; s) = p(j; k) = p(j). The markups are then

�(j) � p(j)

�
=

�

�
1�

�
P (j)
P

�1���
�

�
1�

�
P (j)
P

�1���
� 1

and

�(i) � p(i)

�
=

�

�
1�

�
p(i)
P

�1���
�

�
1�

�
p(i)
P

�1���
� 1

:

From the above demand functions we �nd that�
P (j)

P

�1��
=
P (j)Y (j)

PY
� �(j)

and �
p(i)

P

�1��
=
p(i)x(i)

PY
� �(i):

The markups are thus positively related to the �rms�market shares and for the superstar

�rm this market share is increasing in the number of varieties S(j).

Superstar j maximizes pro�ts

�(j) =

�
p(j)� �
p(j)

�
PY �(j)� �[S(j)�s + �f ]

with respect S(j) and takes into account the e¤ect of its product scope on its own prices,

prices of other �rms, and the aggregate price index. The �rst-order condition, @�(j)
@S(j)

= 0,

implies

��s = �PY

�
p(j)� �
p(j)

�2
@�(j)

@S(j)
+ Y �(j)

�
p(j)� �
p(j)

�
@P

@S(j)
: (6)

It can be shown that @�(j)
@S(j)

> 0 and @P
@S(j)

< 0: The term on the left-hand side represents

the direct cost of expanding the product scope. The �rst term on the right-hand side

represents the gain to market share due to the love of variety in the CES aggregator

(2). The second term indicates that pro�ts are reduced due to the higher product scope

reducing the aggregate price index. Again, as demonstrated in Pavlov and Weder (2017),

given the Dixit and Stiglitz (1977) demand system and �xed costs structure, a form of

variety e¤ect is required for multi-product �rms to exist.

4Our economy can also be interpreted as a representative sector where �rms take into account the
e¤ect of their prices on the sectoral price index. We abstract from explicitly modelling sectors to keep
the presentation tidy.
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2.3 Symmetric equilibrium

In the symmetric equilibrium each superstar �rm produces the same number of varieties

S(j) = S, charges the same price p(j) = ps; and has the same market share �(j) = �s:

Similarly, for the ordinary �rm p(i) = po and �(i) = �o hold. The markups arrange to

�s =
� (1� �s)

� (1� �s)� 1
> �o =

� (1� �o)

� (1� �o)� 1
>

�

� � 1 (7)

and

�z = Sp1��s > �o = p1��o

with the �nal good set as the numeraire P = 1: Superstar �rms have larger market shares

and markups than regular �rms due to producing multiple products. Since both ordinary

and superstar �rms hire labor and capital services from the same factor markets and both

have constant returns to scale (abstracting from �xed costs) production functions, from

(3) and (4) we obtain
w

r
=
1� �

�

KoU

Ho

=
1� �

�

KsU

Hs

in whichHs = NShs andHo =Mho: Therefore, all �rms choose an identical capital-labor

intensities
Ko

Ho

=
Ks

Hs

:

From the marginal costs (5) we get

ps = �s�
��(1� �)��1r�w1�� > po

thus, superstars charge a higher price than their ordinary counterparts. Moreover, sum-

ming production and demand functions of ordinary �rms
MX
i=0

x(i) =
MX
i=0

�
p(i)

P

���
Y =

MX
i=0

�
U�k(i)�h(i)1�� � �o

�
then applying symmetry yields

Y =
po
M�o

�
U�K�

oH
1��
o �M�o

�
:

Similarly, for superstar �rms
NX
j=1

Z S(j)

0

x(j; s)ds =

NX
j=1

Z S(j)

0

�
p(j; s)

P

���
Y ds =

NX
j=1

 Z S(j)

0

�
U�k(j; s)�h(j; s)1�� � �s

�
ds� �f

!
which yields

Y =
ps
N�s

(U�K�
sH

1��
s �NS�s �N�f ):

Lastly, the �rst-order condition (6) rearranges for the product scope

S = f(�s; �o; N;M; �)
Y

�sps

where the function f > 0. We delegate details on the derivation of the product scope

to Appendix A.1. Finally, the capital and labor markets must be in equilibrium, that is

K = Ko +Ks and H = Ho +Hs:
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2.4 People

People are personi�ed by a representative agent who chooses sequences of consumption

Ct and hours worked Ht to maximize lifetime utility

1X
t=0

�t
�
lnCt � �

H1+�
t

1 + �

�
� > 0; � > 0; � � 0

in which � is the discount rate, � denotes the disutility of working and � is the inverse

of the Frisch labor supply elasticity. The agent owns all �rms and receives the pro�ts �t
that they potentially generate. The budget is thus constrained by

wtHt + rtUtKt +�t � It + Ct

in which It is investment that adds to the capital stock

Kt+1 = (1� �t)Kt + It

and the depreciation rate varies according to

�t =
1

�
U �
t � > 1:

The �rst-order conditions from the agent�s maximization problem combine for the labor

supply

�H�
t Ct = wt

the Euler equation
1

Ct
=

1

Ct+1
� (rt+1Ut+1 + 1� �t)

and the optimal rate of capital utilization

rt = U ��1
t :

The steady state versions of these equations then pin down � = (1=� � 1 + �) =�.

3 Dynamics

Let us now analyze the local dynamic properties of the model. The equilibrium conditions

are log-linearized and the dynamical system is arranged to" bKt+1bCt+1
#
= J

" bKtbCt
#
:

Hatted variables denote percent deviations from their steady-state values and J is the 2�2
Jacobian matrix of partial derivatives. Note that Ct is a non-predetermined variable and

that Kt is predetermined. Indeterminacy, and the potential presence of animal spirits,
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requires both roots of J to be inside the unit circle. For easier comparison to previous

studies, the standard parameters are calibrated at a quarterly frequency as � = 0:3,

� = 0:99, � = 0:025 and � = 0. We directly calibrate the steady state markups and the

elasticity of substitution �: From (7), these parameters then determine the market shares

�s = 1�
�s

�s � 1
1

�
> �o = 1�

�o
�o � 1

1

�
:

Since market shares sum to unity,M�o+N�s = 1; we can then calibrate the market share

of superstar �rms, N�s, to pin down the number of �rms at the steady state

M =
1�N�s

�o

N =
1

�s

�
1 + M�o

N�s

� :
It is then straightforward to show that for each calibration of �o, the lower bound on � is

�o=(�o � 1): As � approaches this lower bound, the number of regular �rms approaches
in�nity and their markups become constant at �=(�� 1) as in the monopolistic competi-
tion version of the model. This is also where the love of variety 1=(�� 1) implied by the
CES aggregator (2) is at its maximum. For the upper bound, � must be smaller than

both �o=(�o � 1)(1 + M�o
N�s
) and �s=(�s � 1)(1 + N�s

M�o
) to guarantee M > 1 and N > 1;

respectively.

Figure 1 plots the feasible parameter space for indeterminacy and determinacy. We

can clearly see that a rise in the market share of superstars increases both zones and allows

for greater di¤erences between the markups of superstar and regular �rms. Animal spirits

arise more easily in situations where substantial markup di¤erences, as documented by

many studies mentioned previously, exist between small and large �rms. When markups

approach unity, the implied variety e¤ect 1= (� � 1) becomes too small and indeterminacy
cannot arise. That is, low markups imply a small gain to product creation and a weak

endogenous ampli�cation mechanism.

The way indeterminacy arises is best explained via the equilibrium wage-hours locus.

Product creation within superstar �rms makes this locus upwardly sloping and indeter-

minacy arises when it becomes steeper than the labor supply curve. The reason is the

presence of love of variety in the CES aggregator (2). The composite good from each

superstar can be created more e¢ ciently the greater the product scope. Endogenous

variations in superstars�product scopes thus generates an endogenous e¢ ciency wedge

that expands production possibilities. If people feel optimistic about the future path of

income and consumption, the labor supply curve shifts up along the upwardly sloping

wage-hours locus, thereby raising employment and output, validating the initial optimistic

expectation.
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Figure 1: Indeterminacy (blue) and determinacy (orange) zones.

Figure 2 illustrates the dynamics of the model in response to an animal spirits shock

that raises output one percent above its steady state. We set the two markups at 1.4

and 1.8 as well as the market share of superstars at 60 percent which, as we argue below,

matches broadly the reported values in De Loecker et al. (2020) and Bernard et al.

(2010). Conditional on an animal spirits shock, product creation and the markups of large

�rms are procyclical whereas smaller �rms�markups are countercyclical. This pattern

is not unlike the unconditional correlations of markups and output that are reported

by Burstein et al. (2023). Unlike, Minniti and Turino (2013) and Pavlov and Weder

(2017), where markups are countercyclical, the number of �rms here is constant. Product

scope adjustments together with �rm heterogeneity thus provide a novel indeterminacy

mechanism for market share reallocation and markup dynamics without entry and exit.

The model�s multiplicity carries over to environments with endogenous entry and exit as

in the following section.

4 Estimation

So far, we have shown that superstar �rms can lead to macroeconomic instability which

opens the possibility of animal spirits driving business cycles. The current section esti-

mates both the indeterminate and the determinate model to assess the importance of the

product creation mechanism within superstars on explaining aggregate �uctuations. In

doing so, we examine the importance of animal spirits versus other fundamental shocks

and see whether they help to replicate the basic business cycle facts by comparing the

model�s second moments to the U.S. quarterly time series counterparts. Appendix A.4
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Figure 2: Impulse responses to an ouput sunspot shock, percent deviations from the
steady state, �s = 1:8; �o = 1:4; � = 4:5:

sets out the exact data sources. The models used here are extended by exogenous growth,

fundamental aggregate supply and demand shocks, external habits in consumption, sep-

arable love of variety, and endogenous entry and exit of ordinary �rms.

4.1 The extended model

Since entry and exit of superstar �rms is not likely to be signi�cant at business cycle

frequencies, we have continued with the assumption that N is constant, but Mt now

adjusts via free entry of ordinary �rms that forces their pro�ts to zero. That is, each

period �rm i�s pro�ts are

�t(i) =

�
pt(i)� �t
pt(i)

�
PtYt�t(i)� �t�o = 0

which in symmetric equilibrium boils down to

po;t = (�o;t � 1)
�o;tYt
�o

to determine the number of ordinary �rms. Similar to product scope adjustments, en-

try and exit enlarges the indeterminacy region due to the e¢ ciency gains in product

aggregation from the love of variety in the CES aggregator (1).5

The love of variety governs the gain to product creation for superstar �rms and is the

central ampli�cation mechanism in our model, leading to equilibrium indeterminacy as

5The entry decision is static to keep the model tractable. Appendix A.2 shows that indeterminacy
remains when we introduce dynamic entry as in Bilbiie et al. (2012).
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explained in Section 3. Similar to Pavlov and Weder (2017), here we separate the variety

e¤ect from the elasticity of substitution � and we do it for two main reasons. First,

isolating the variety e¤ect allows us to estimate the direct bene�t of product creation

separately from the parameter that primarily determines the markup elasticities and the

steady state number of �rms. Second, it gives us an option to estimate a determinate

version of the model where the gain to product creation is too small for animal spirits to

play a role. Speci�cally, the CES aggregators are now

Yt =

 
M

�(��1)�1
�

t

MtX
i=1

xt(i)
��1
� +N

�(��1)�1
�

NX
j=1

Yt(j)
��1
�

! �
��1

and

Yt(j) =

 
St(j)

�(��1)�1
�

Z St(j)

0

xt(j; s)
��1
� ds

! �
��1

in which � > 0 debotes the love of variety. Setting � = 1=(� � 1) would bring back the
CES aggregators from Section 2. As � is a key parameter that transports the economy

between the determinacy and indeterminacy zones, in the following estimation we will

let data decide its magnitude.

We include a mix of fundamental supply and demand disturbances to the model. The

�rst such fundamental shock takes the form of labor augmenting technological progress

At and it a¤ects all �rms equally. Aggregate output is now

Yt =
ps;t
N�s;t

[(UtKs;t)
�(AtHs;t)

1�� � �sNSt � �fN ] =
po;t
Mt�o;t

[(UtKo;t)
�(AtHo;t)

1�� �Mt�o]:

Technological progress is non-stationary and follows the process

lnAt = lnAt�1 + ln at

ln at = (1�  A) ln a+  A ln at�1 + "At

where 0 �  A < 1 governs the persistence of the shock, ln a is the average growth rate

and "At is an i.i.d. disturbance with variance �
2
A. Next, shifts of marginal e¢ ciency of

investment zt a¤ect the transformation of investment to physical capital as in Greenwood

et al. (1988)

Kt+1 = (1� �t)Kt + ztIt:

The technological shifter follow the exogenous process

ln zt =  z ln zt�1 + "zt :

As laid out by Justiniano et al. (2011), this shock can be a stand-in for disturbances of

�nancial markets on investment behavior. Intuitively, a positive shock to zt represents

a boom in �nancial markets that reduces borrowing costs for �rms, leading to a rise in

investment.
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The �rst fundamental demand disturbance is a taste shock �t to the agent�s period

utility that increases the marginal utility of consumption as in Christiano (1988). Lifetime

utility becomes

E0

1X
t=0

�t
�
�t ln(Ct � bCt�1)� �

H1+�
t

1 + �

�
where E0 denotes the expectations operator and parameter 0 � b < 1 determines the

degree of external habits in consumption. The taste shock follows the process

�t =  ��t�1 + "�t :

This shock a¤ects the economy�s labor wedge, i.e. the gap between the marginal rate

of consumption-leisure substitution and the marginal product of labor and hence can be

interpreted as a stand-in for other shocks that a¤ect this wedge. The second demand

shock is to government expenditures, Gt, �nanced by lump sum taxes. Consequently, the

economy�s resource constraint becomes

Yt = Ct + It +Gt:

Lastly, government spending Gt follows a stochastic trend

Agt = (A
g
t�1)

 ag(At�1)
1� ag

where  ag governs the smoothness of the trend relative to the trend in output. Then,

detrended government spending is gt � Gt=A
g
t and follows

ln gt =  g ln gt�1 + "gt :

As in Pavlov and Weder (2017), the non-fundamental animal spirits shock is modelled

as an expectation error to output that is unrelated to any fundamental changes in the

economy6. Under indeterminacy, the economy�s response to fundamentals is not uniquely

determined, and we model the behavior of output as

bYt = Et�1bYt + 
A"At + 
z"zt + 
�"�t + 
g"gt + "st

where the parameters 
A, 
z, 
� and 
g determine the e¤ect of technology, investment,

preference and government shocks on output. The term "st is i.i.d., independent of fun-

damentals and comes with variance �2s. It can be thought of pro�t-seeking businessmen

exercising their animal spirits.

6Farmer et al. (2015) show that estimation results are robust to the choice of expectation error.
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4.2 Bayesian estimation

The model is estimated via Bayesian methods with the procedure largely following Farmer

et al. (2015) and Pavlov and Weder (2017). U.S. data includes quarterly real per capita

growth rates of output, consumption, investment, government spending and the logarithm

of per capita hours worked from 1990:I-2019:IV as observables. We use credit spread data

to identify investment shocks ẑt as in Justiniano et al. (2011). Concretely, we adopt the

credit spread between BAA corporate bonds and the market yield on 30 year Treasury

securities to identify disturbances to the marginal e¢ ciency of investment

spreadt = {bzt { < 0:

We focus on the period post 1990 to coincide with the rise of superstar �rms as reported

by De Loecker et al. (2020) and abstract from the COVID-19 pandemic as our small

scale model is not designed to deal with its complexities.

We follow Bilbiie et al. (2012) and de�ate Yt; Ct; It; and Gt in the model by a data-

consistent price index to obtain variables that are more comparable to the data, which

does not take into account the welfare improvements of product variety at quarterly

frequency. For example, data-consistent output is

Y d
t �

PtYt
pt

� PtYt
po;t

Mt�t;o +
PtYt
ps;t

N�t;s

which removes the welfare gains coming from entry and product scope adjustments. The

measurement equation is thus

26666664
lnYt � lnYt�1
lnCt � lnCt�1
ln It � ln It�1
lnGt � lnGt�1
lnHt � lnH
spreadt

37777775 =
2666666664

cY d
t � cY d

t�1 + batcCd
t � cCd

t�1 + batbIdt � bIdt�1 + batcGd
t � cGd

t�1 + bagt � bagt�1 + batbHt

{bzt

3777777775
+

26666664
ln a
ln a
ln a
ln a
0
0

37777775+
26666664
"m:e:t

0
0
0
0
0

37777775
where agt = Agt=At = (a

g
t�1)

 aga�1t , "
m:e:
t is a measurement error restricted to account for

not more than ten percent of output growth and lnH is the logarithm of the average

hours worked over the sample period. We calibrate a subset of the model parameters

to avoid identi�cation issues. We set the quarterly growth rate of labor augmenting

technological progress to 0:34 percent to be consistent with the growth rate of per capita

real GDP over the sample period. The share of government expenditures in output G=Y

is 0:19 and the values of standard parameters remain the same as in previous sections.

In line with Barkai (2020), we calibrate the share of �xed costs in output so that the

steady state pro�ts are ten percent. We calibrate �s, �o, �, and N�s as follows. A large

portion of �rms are multi-product producers. Bernard et al. (2010) report that close

13



Table 1: Prior and posterior distributions
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.075 0.05 0.19 [0.16,0.22]
b [0,1) Beta 0.5 0.1 0.52 [0.43,0.60]
 A [0,1) Beta 0.5 0.2 0.00 [0.00,0.01]
 z [0,1) Beta 0.5 0.2 0.79 [0.73,0.86]
 � [0,1) Beta 0.5 0.2 0.95 [0.93,0.97]
 g [0,1) Beta 0.5 0.2 0.99 [0.98,0.99]
 ag [0,1) Beta 0.5 0.2 0.86 [0.65,0.99]
�s R+ Inverse Gamma 0.1 Inf 0.26 [0.23,0.29]
�A R+ Inverse Gamma 0.1 Inf 0.70 [0.63,0.78]
�z R+ Inverse Gamma 0.1 Inf 0.07 [0.04,0.10]
�� R+ Inverse Gamma 0.1 Inf 0.47 [0.42,0.52]
�g R+ Inverse Gamma 0.1 Inf 0.81 [0.72,0.89]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]

A [-3,3] Uniform 0 1.73 -0.53 [-0.63,-0.42]

z [-3,3] Uniform 0 1.73 1.60 [0.72,2.57]

� [-3,3] Uniform 0 1.73 0.67 [0.54,0.79]

g [-3,3] Uniform 0 1.73 0.09 [-0.01,0.19]
{ [-20,0] Uniform -10 5.77 -4.71 [-6.73,-2.75]

This table presents the prior and posterior distributions for model parameters and shocks. Inf
implies two degrees of freedom for the inverse gamma distribution. Standard deviations are in
percent terms. Log-data density (modi�ed harmonic mean): -780.60.

to half of U.S. manufacturing �rms produce in multiple �ve-digit SIC industries. These

�rms account for well over 80 percent of total sales. We accordingly calibrate the market

share of superstars to 60 percent, i.e. N�s = 0:6. A conservative interpretation of the

composition of markups reported in De Loecker et al. (2020) suggests a markup of large

�rms to be around �s = 1:8 as this is the rough average for the (revenue weighted) top

75 to top 90 percentiles of �rms. Smaller �rms, say the top 50 percentile, have seen a

steady markup at around �o = 1:3. Lastly, we agnostically pick a number for � = 5 that

falls in the middle of its admissible values. We take these numbers as our benchmark

calibration. We can demonstrate robustness.

The remaining parameters are estimated. These include the love of variety, �, ex-

ternal habits, b; the coe¢ cient mapping the credit spread to investment shocks, {, and
parameters that govern the stochastic processes:  A,  z,  �,  g,  ag, �s, �A, �z, ��, �g,


A, 
z, 
�, 
g, and �m:e:. Table 1 presents the initial prior and posterior distributions.

We employ a normal distribution, truncated at zero, for the variety e¤ect �. Since this

parameter is central to our ampli�cation mechanism which generates indeterminacy, we

set the mean to 0:075 to give a prior probability of determinacy of about 50 percent.

A wide uniform distribution is employed for the expectation error parameters 
A, 
z,


�, 
g and the credit spread coe¢ cient {. The shock processes follow the standard

inverse gamma distribution. The Metropolis-Hastings algorithm is employed to obtain
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Table 2: Business cycle dynamics
Data Model

x �x �(x; ln(Yt=Yt�1)) ACF �x �(x; ln(Yt=Yt�1)) ACF
ln(Yt=Yt�1) 0.58 1 0.29 0.79 1 0.49
ln(Ct=Ct�1) 0.47 0.67 0.38 0.63 0.49 0.48
ln(It=It�1) 1.66 0.79 0.62 2.97 0.82 0.62
ln(Gt=Gt�1) 0.77 0.25 0.24 0.83 0.13 0.04
ln(Ht=H) 6.16 0.20 0.99 4.80 0.12 0.99
spreadt 0.60 -0.58 0.85 0.56 -0.25 0.79

Business cycle statistics for the arti�cial economy are calculated at the posterior mean. �x
denotes the standard deviation of variable x, �(x; ln(Yt=Yt�1)) is the correlation of variable x
and output growth, and ACF is the �rst order autocorrelation coe¢ cient.

500; 000 draws from the posterior mean for each of the two chains. Half of the draws

are discarded and the scale in the jumping distribution is adjusted to achieve a 25 � 30
percent acceptance rate for each chain. The table shows that the parameters are precisely

estimated and consistent with previous studies. The love of variety is estimated at 0:19,

which suggests a strong ampli�cation mechanism of product creation within superstars

that guarantees indeterminacy but is below the value that would be implied under the

original CES con�guration in Section 2, i.e. 1=(� � 1) = 0:25. The persistence of the

permanent technology shock is essentially zero and, consistent with a determinate real

business cycle model, a positive shock causes a fall in detrended output. The investment

shock is moderately persistent and as expected, raises output on impact. Finally, both

demand shocks are highly persistent and also cause an increase in output.

The choice of priors leads to a prior predictive probability of indeterminacy of 0:50

and indicates no prior bias toward either determinacy or indeterminacy. The �rst main

result is that, through the lens of our model, the post 1990 period, is best characterized

by the indeterminacy version of our model. Speci�cally, the log data densities come in as

�780:60 for the indeterminacy model versus �914:96 for its competitor (see Appendix
A.3). Thus, since data prefers the indeterminacy, and in winner takes it all fashion, the

below will present the results for the animal spirits driven model.

Table 2 reports the theoretical second moments of the main macroeconomic aggre-

gates and the credit spread at the posterior mean. Our admittedly small scale model

replicates the behavior of the considered U.S. macroeconomic variables quite well. The

relative volatilities and correlations are consistent with the data. The model slightly over-

predicts the volatilities of output and consumption but underpredicts for hours worked.

Government expenditures and the credit spread are matched well. The sole outlier is

investment, where the model strongly overpredicts its variance. As a result of the richer

internal propagation mechanism under indeterminacy, the autocorrelation functions are

able to show persistence in the growth rates despite the lack of the many real frictions

employed in the literature.
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Table 3: Unconditional variance decomposition (in percent)

ln
�

Yt
Yt�1

�
ln
�

Ct
Ct�1

�
ln
�

Xt

Xt�1

�
ln
�

Gt

Gt�1

�
ln
�
Ht

H

�
spreadt

"st 13.18 0.38 20.49 0 2.81 0
"At 30.26 34.74 18.65 5.42 16.46 0
"zt 19.23 0.69 29.00 0 20.21 100
"�t 34.80 64.12 28.10 0 51.29 0
"gt 2.53 0.08 3.76 94.58 9.23 0

Variance decompositions are performed at the posterior mean.

Table 3 displays the variance decomposition which reveals the relative contribution

of each of the shocks to the macroeconomic aggregates. As discussed earlier, the non-

fundamental animal spirits propagate the fundamental disturbances, while also causing

�uctuations on their own. The e¤ect of "pure" animal spirits on the U.S. business cycle is

non-trivial: they drive a modest fraction of output and a sizeable portion of investment.

We see this as success as these shocks primarily stand for business� expectations and

their alternations between euphoric and pessimistic states. The technology shock o¤ers a

good explanation of output and consumption, while the marginal e¢ ciency of investment

shock best explains investment data. In fact, its importance shrinks considerably when

compared to Justiniano et al. (2011). The preference shock is the dominant shock and

explains most of consumption, half of hours worked, and about a third of output and

investment. Finally, the government expenditure shock is a negligible source of business

cycles.

5 Concluding remarks

Recent empirical research has highlighted the signi�cant rise of market power in the last

few decades primarily driven by the largest (superstar) �rms. The current paper exam-

ines the impact on aggregate �uctuations of these multi-product superstars through their

interaction with smaller competitors. We �nd that the rising market share of superstar

�rms increases the parameter space for indeterminacy and allows for greater divergence

between markups of large and small �rms. Market share reallocation between super-

stars and ordinary �rms via product scope adjustments generates heterogeneous markup

dynamics across �rms and time. The endogenous ampli�cation mechanism of product

creation within superstars improves the �t of the estimated general equilibrium model

and implies animal spirits play a non-trivial role in driving U.S. business cycles.
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A Appendix

A.1 Product scope

This Appendix derives the �rm�s optimal product scope. Product scope determination

largely follows the approach of Minniti and Turino (2013) and Pavlov and Weder (2017).

Firm j maximizes pro�ts with respect to S(j) and takes into account the e¤ect of its

product scope on its own prices, prices of other �rms, and the aggregate price index.

First we rewrite pro�ts as

�(j) =

�
p(j)� �
p(j)

�
PY �(j)� �[S(j)�s + �f ]

and obtain the �rst-order condition

@�(j)

@S(j)
= �PY

�
p(j)� �
p(j)

�2
@�(j)

@S(j)
+ Y �(j)

�
p(j)� �
p(j)

�
@P

@S(j)
� ��s = 0:

Then
@�(j)

@S(j)
=
�(j)

S(j)
� (� � 1)�(j)

�
1

p(j)

@p(j)

@S(j)
� 1

P

@P

@S(j)

�
and for other multi-product �rms

@�(k)

@S(j)
= �(� � 1)�(k)

�
1

p(k)

@p(k)

@S(j)
� 1

P

@P

@S(j)

�
and regular �rms

@�(i)

@S(j)
= �(� � 1)�(i)

�
1

p(i)

@p(i)

@S(j)
� 1

P

@P

@S(j)

�
:

Next, rewrite the aggregate price index as

P =

 
MX
i=1

p(i)1��di+

NX
k=1

S(k)p(k)1��

! 1
1��

:
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From here, we use symmetry to simplify. After some algebra @P=@S(j) can be ex-

pressed as

@P

@S(j)
=M

�o
po

@p(i)

@S(j)
+
�s
ps

�
(N � 1)@p(k)

@S(j)
+
@p(j)

@S(j)

�
+

1

1� �

�s
S

where
@p(i)

@S(j)
= ��(� � 1)(�o � 1)(1� 1=�o)�o

�
@p(i)

@S(j)
� po

@P

@S(j)

�
@p(k)

@S(j)
= ��(� � 1)(�s � 1)(1� 1=�s)�s

�
@p(k)

@S(j)
� ps

@P

@S(j)

�
@p(j)

@S(j)
= �(�s � 1)(1� 1=�s)

�
ps
�s
S
� (� � 1)�s

�
@p(j)

@S(j)
� ps

@P

@S(j)

��
:

Putting all these together, it can then be shown that @P
@S(j)

< 0, @p(k)
@S(j)

< 0; @p(i)
@S(j)

< 0,
@p(j)
@S(j)

> 0; @�(j)
@S(j)

> 0; @�(k)
@S(j)

< 0; and @�(i)
@S(j)

< 0: Finally, @�(j)
@S(j)

; @P
@S(j)

; and @p(j)
@S(j)

can be

substituted in the �rst-order condition @�(j)
@S(j)

= 0 to �nd the product scope

S = f(�s; �o; N;M; �)
Y

�sps

where f > 0.

A.2 Dynamic entry

This Appendix presents the version of the model where the entry of mono-product �rms is

dynamic as in Bilbiie et al. (2012) and shows that indeterminacy remains. A prospective

entrant i computes their expected value

vt(i) = Et

1X
s=1

Qt;s�o;t+s(i)

where Qt;s is the stochastic discount factor and �o;t(i) denotes pro�ts of ordinary �rms.

There is a time-to-build lag in that period t entrants begin operating in period t+1 and

the number of �rms evolves according to

Mt = (1� �M)(Mt�1 +ME;t�1)

where �M is the exogenous exit probability and ME;t is the number of entrants. Entry

occurs until the expected value, vt(i); is equal to the sunk cost of entry. To enter, fE
amount of labor needs to be hired and since labor is paid the real wage wt; this sunk cost

is equal to

vt(i) = wtfE:

The production function for new �rms is thus

ME;t =
HE;t

fE
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where HE;t is the amount of labor hired for the production of new �rms. In a symmetric

equilibrium, a representative household enters period t with mutual fund share holdings

xt and has the budget constraint

Ct + It + vt(Mt +ME;t)xt+1 = (�o;t + vt)Mtxt + wtHt + rtUtKt +N�s;t

where �s;t are pro�ts from a constant number of superstar �rms andHt = HE;t+Ho;t+Hs;t.

The Euler equation for share holding is then

vt = Et�(1� �M)
Ct
Ct+1

(�o;t+1 + vt+1):

Imposing the equilibrium condition xt+1 = xt = 1 for all t gives

Ct + It + vtME;t = �o;tMt + wtHt + rtUtKt +N�s;t � Yt

where Yt is GDP consisting of consumption, investment in capital, and investment in new

�rms. Total investment is then

Xt � It + vtME;t

and the CES aggregator is now

Yg;t = Ct + It =

 
MX
i=1

xt(i)
��1
� +

NX
j=1

Yt(j)
��1
�

! �
��1

:

Small �rms no longer have �rm-level �xed costs and the symmetric equilibrium goods

production is then

Yg;t =
po;tU

�
t K

�
o;tH

1��
o;t

Mt�o;t
=
ps;tU

�
t K

�
s;tH

1��
s;t � ps;tNSt�s � ps;tN�f

N�s;t
:

We calibrate the model as in Section 3 and additionally set �M = 0:025: Analogous to

Figure 1, Figure A1 plots the indeterminacy and determinacy zones for di¤erent levels

of superstar market shares. Indeterminacy not only remains but now exists for a greater

range of parameters. The reason is due to the interaction between entry of ordinary �rms

and the product scope of superstars. Entry pushes the market shares and markups of

both �rm types downwards. However, superstar �rms are able to defend their market

shares by increasing their product scopes. Since higher product scopes and more small

�rms both increase e¢ ciency via the love of variety e¤ect, the wage-hours locus becomes

steeper relative to the labor supply curve and indeterminacy becomes more plausible.

A.3 Determinacy model

Table 4 presents the prior and posterior distributions of the estimated determinate version

of the model. The main di¤erence here is that the animal spirits shock is no longer
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Figure A1: Dynamic entry model: indeterminacy (blue) and determinacy (orange).

available and in order to keep the number of shocks equal to observables, we introduce a

temporary technology shock, ATt , that a¤ects all �rms equally with persistence  T and

variance �T : For example, the output of an ordinary �rm is now

xt(i) = ATt kt(i)
� [Atht(i)]

1�� � �o;t

where

lnATt =  T lnA
T
t�1 + "Tt :

Comparing the log-data densities between Tables 1 and 4, data clearly favors the inde-

terminate model with a strong product creation mechanism and animal spirits shocks.

A.4 Data sources

This Appendix details the source and construction of the U.S. data used in Section 4.

All data is quarterly and for the period 1990:I-2019:IV.

1. Gross Domestic Product. Seasonally adjusted at annual rates, billions of chained

(2009) dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.6.

2. Gross Domestic Product. Seasonally adjusted at annual rates, billions of dollars.

Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

3. Personal Consumption Expenditures, Nondurable Goods. Seasonally adjusted at

annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

4. Personal Consumption Expenditures, Services. Seasonally adjusted at annual rates,

billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.
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Table 4: Prior and posterior distributions for the determinate model
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.075 0.05 0.01 [0.00,0.02]
b [0,1) Beta 0.5 0.1 0.42 [0.34,0.48]
 T [0,1) Beta 0.5 0.2 0.90 [0.87,0.92]
 A [0,1) Beta 0.5 0.2 0.07 [0.05,0.09]
 z [0,1) Beta 0.5 0.2 0.90 [0.83,0.98]
 � [0,1) Beta 0.5 0.2 0.99 [0.98,0.99]
 g [0,1) Beta 0.5 0.2 0.98 [0.97,0.99]
 ag [0,1) Beta 0.5 0.2 0.99 [0.99,0.99]
�T R+ Inverse Gamma 0.1 Inf 0.12 [0.10,0.14]
�A R+ Inverse Gamma 0.1 Inf 0.78 [0.69,0.87]
�z R+ Inverse Gamma 0.1 Inf 0.02 [0.02,0.03]
�� R+ Inverse Gamma 0.1 Inf 0.47 [0.41,0.53]
�g R+ Inverse Gamma 0.1 Inf 0.80 [0.71,0.89]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]
{ [-20,0] Uniform -10 5.77 -15.03 [-19.20,-11.37]

This table presents the prior and posterior distributions for model parameters and shocks of
the determinate model. Log-data density (modi�ed harmonic mean): -914.66.

5. Personal Consumption Expenditures, Durable Goods. Seasonally adjusted at an-

nual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

6. Gross Private Domestic Investment, Fixed Investment, Residential. Seasonally

adjusted at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

7. Gross Private Domestic Investment, Fixed Investment, Nonresidential. Seasonally

adjusted at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

8. Government consumption expenditures and gross investment. Seasonally adjusted

at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA Table

1.1.5.

9. Nonfarm Business Hours. Index 2009=100, seasonally adjusted. Source: Bureau

of Labor Statistics, Series Id: PRS85006033.

10. Civilian Noninstitutional Population. 16 years and over, thousands. Source:

Bureau of Labor Statistics, Series Id: LNU00000000Q.

11. GDP De�ator = (2)=(1):

12. Real Per Capita Output, Yt = (1)=(10):

13. Real Per Capita Consumption, Ct = [(3) + (4)]=(11)=(10):

14. Real Per Capita Investment, Xt = [(5) + (6) + (7)]=(11)=(10):

15. Real Per Capita Government Expenditures, Gt = (8)=(11)=(10):

16. Per Capita Hours Worked, Ht = (9)=(10):
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