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Abstract

In this study, we employ non-linear discounting (NLD) utility in a multi-consumer
model and demonstrate that saving allocation in the stationary equilibrium is comono-
tonic to consumers’attitudes toward future consumption. Time-additively separable
(TAS) utility with a fixed discount factor is widely employed in dynamic macroeco-
nomics because of its tractability. However, this yields unrealistic results in a multi-
consumer model. The number of savers in the economy is only one, while the others
live on a day-to-day basis. On the contrary, NLD utility allows consumers to vary
their discounting of future utility depending on their consumption plan. Due to this
property, a comonotonic saving allocation can occur.
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1 Introduction

Many macroeconomic models assume a representative consumer. The sum of
consumption is seen as the result of the ”representative agent.” Some critics
argue that the behavior of the representative consumer cannot be constructed
from the results of each consumer’s utility maximization problem. Even if
the aggregability problem is solved, the multi-consumer model is significant
in discussing the equity of allocation or the effect of redistributive policy.

Many scholars have discussed wealth allocation. Ramsey (1928) conjected
that society will be divided into two classes, impatient laborers and pa-
tient capitalists. Becker (1980) and Mitra and Sorger (2013) formally proved
this. They employed time-additively separable (TAS) utility U(c0, c1 . . .) =∑∞

t=0 β
tu(ct) where c0, c1 . . . is a consumption stream, and the constant β is
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a discount factor. The discount factor of TAS utility remains constant and
independent of the consumption plan. A consumer with a higher discount
factor evaluates the utility from future consumption more than other con-
sumers do. This means that they are more patient. Moreover, they maintain
a high tendency to save even if their capital accumulation deepens. Hence,
they can offer a lower interest rate, while the others are excluded from the
capital market.

non-linear discounting (NLD) utility is described with W (c, u) = v(c) +
δ(u) where c is immediate utility, and u is future utility. This is a subclass
of recursive utility suggested by Koopmans (1960). Letting δ(u) = βu, TAS
utility is included in the class of NLD utility, although we limit ”NLD” utility
to that of non-TAS to avoid confusion of diction. A consumer’s attitude
toward the future is the response of lifetime utility to the variance of future
utility. We define the time perspective as

δ′(u) = lim
u′→u

W (c, u′)−W (c, u)

u′ − u
.

This discounts future utility as well as the discount factor of the TAS
utility. A consumer who is promised future welfare spares a larger portion
of the additional income to immediate consumption. Time perspective is
typically considered to decrease in future utility u. This property enables each
consumer to adjust their consumption plan to satisfy the necessary condition
of utility maximization.

Some studies employing non-TAS utility, such as Lucas and Stokey (1984)
and Epstein and Hynes (1983), demonstrate that saving is owned by multi-
ple agents. The former submits minimal knowledge on who saves and con-
sumes more money or goods. The latter specifies the utility function to the
Epstein-Hynes type, which describes the time perspective as dependent on
past consumption. In this study, we show that comonotonic saving allocation
can be viewed as the result of a consumer’s forward-looking behavior.

The rest of this paper is organized as follows. Section 2 introduces the
model and several assumptions. Section 3 examines the qualitative proper-
ties of stationary competitive equilibrium. A unique stationary competitive
equilibrium exists. The comonotonic relationship between saving and time
preferences always holds in the stationary competitive equilibrium. In Sec-
tion 4, we show an example of stationary allocation by specifying the utility
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function to the Koopmans-Diamond-Williamson (KDW) utility, which is one
of the NLD utilities. The stationary consumption level of each consumer is
determined by solving the Euler equation.

2 Model and Assumptions

We analyze a one-sector model and assume that time is discrete with index
t = 0, 1, 2 . . .. There are H consumers with indexes h = 1, 2 . . . H and only
one producer. This economy has capital and products markets, in which both
of are assumed to be competitive.

Let ch = (ch0 , c
h
1 , . . .) ∈ R∞

+ and kh = (kh0 , k
h
1 . . .) ∈ R∞

+ be the hth con-
sumer’s consumption and saving plans, respectively. We denote the consump-
tion and saving paths from period t by tc = (ct, ct+1 . . .) and tk = (kt, kt+1 . . .),
respectively. Let c̄ = (c̄, c̄ . . .) and k̄ = (k̄, k̄ . . .) be constant paths.

The producer lends capital Kt ∈ R++ to consumers with an interest rate
rt ∈ R++ at the beginning of period t. To analyze consumption and saving
distributions, we exclude zero input and output. For simplicity, the pro-
ducer is assumed to have linear production function F (K) = AK (A > 1).
The interest rate is always r = A − 1; otherwise, the solution to the profit
maximization problem does not exist. If the interest rate is r = A − 1, the
producer’s profit is always zero, and the capital is never accumulated in the
economy. The producer’s behavior is described by the solution to the static
profit maximization problem (PMP)

max
Kt∈R++

AKt − (1 + rr)Kt

rt ∈ R++ : given

Consumers are given an initial endowment kh0 in period 0. They lend saving
kht to the producer and obtain interest at rate rt. We define set X∞

t=1[0, A
tk0]

as

X∞
t=1[0, A

tk0] = {(c0, c1 . . .) ∈ R∞
+ |(∀t = 1, 2 . . .) 0 ≤ ct ≤ Atk0}

Any feasible consumption path starting from kh0 is included inX∞
t=1[0, A

tkh0 ].
A lifetime utility function Uh defined over R∞

+ is represented by
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Uh(c) = vh(c0) + δh[Uh(1c)]

where vh;R+ → R and δh : X∞
t=1[0, A

tkh0 ] → (R ∪ {+∞}).
Functions vh, δh, and Uh are assumed to satisfy (U1)-(U7).

(U1) Strict Monotonicity
The functions vh and δh are strictly increasing.

(U2) Existence and Negativeness of Second-Order Derivative
Functions vh and δh are twice continuously differentiable over their do-

mains. It holds that (vh)′′(c) < 0 and (δh)′′(u) < 0 for any c ∈ R+ and
u ∈ Uh

[
X∞

t=1[0, A
tkh0 ]

]
.

Condition (δh)′′(u) < 0 implies that a consumer who is promised high
future utility will increase immediate consumption rather than saving after
obtaining additional one unit of income.

(U3) Real Valued
For any u ∈ Uh

[
X∞

t=1[0, A
tkh0 ]

]
, δh(u) takes a real value.

(U4) Postponing Damages Lifetime Utility
For any u ∈ Uh

[
X∞

t=1[0, A
tkh0 ]

]
such that u > Uh(0), it holds that u >

vh(0) + δh(u).

This implies that if a consumer postpones the beginning of their consump-
tion plans and consumes nothing today, their lifetime utility decreases.

(U5) Compensation for Postponing
For any u ∈ Uh

[
X∞

t=1[0, A
tkh0 ]

]
, there exists c′ ∈ R+ such that u ≤ vh(c′)+

δh(u).

The function vh is strictly increasing; hence, such c′ is unique. This im-
plies that even if a consumer postpones the beginning of their consumption
plan, sufficient consumption today can compensate for the decrease in lifetime
utility caused by postponing.

(U6) Asymptotic Boundedness
It holds that

e∗ = ¯lim
c→+∞

ln{vh(c) + δh(0)}
ln c

is finite
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d̄ = ¯sup
(c,u)

sup
u′∈(u,+∞)

W (c, u′)−W (c, u)

u′ − u
< 1

(d∗)Ae∗ < 1

where d∗ = ¯lim
u→+∞

sup
c

sup
u′∈(u,+∞)

W (c, u′)−W (c, u)

u′ − u

This condition and linear production function compose a sufficient condi-
tion of Lower Convergence suggested by Streufert (1990). Lower Convergence
can be described as follows:

For any k0 ∈ R+ and c ∈ X∞
t=0[0, A

tk0], it holds that

lim
t→∞

Uh(ct,0) = Uh(c).

This implies that an agent evaluates their distant future utilities much
less.

(U7) Range of Time Perspective
There exists some u′ ∈ Uh

[
X∞

t=1[0, A
tkh0 ]

]
such that

(δh)′(u′) <
1

A

It holds that

1

A
< (δh)′[Uh(0)] < 1

This implies that there exists an attainable future utility level u′ that
satisfies the Euler equation (δh)′(u′)A = 1.

Lemma 2.1. Given that (U2) is satisfied, the utility function Uh(c) is par-
tially differentiable with respect to any ct, and the partial derivative is

DctU(c) =
t−1∏
s=0

(δ′[U(s+1c)]) · v′(ct)
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Proof)
This is derived by repeatedly applying the chain rule.

□

Consumers are assumed to perfectly foresee future interest rates. Thus,
the behavior of each consumer is described by the solution to the dynamic
utility maximization problem (UMP)

max
ch,kh∈R∞

+

Uh(ch)

sub.to (∀t = 0, 1 . . .) cht + kht+1 ≤ (1 + rt)k
h
t

(∀t = 0, 1, . . .) rt ∈ R++ : given

kh0 ∈ R+ : given

The inner solution to the UMP is characterized by the Euler equation

t∏
s=0

(δ′[U(s+1c)]) · v′(ct+1)(1 + rt) =
t−1∏
s=0

(δ′[U(s+1c)]) · v′(ct)

In particular, in the stationary state, the equation is reduced to

δ′[U(c̄)] =
1

1 + r̄
.

3 Stationary Competitive Equilibrium

If the combination < (ch)Hh=1, (k
h)Hh=1,K, r > satisfies (1)–(5), then it is a

competitive equilibrium.

(1) Non Negativeness of Variables
In all periods t and for all consumers h, the hth consumer’s consumption

cht and saving kht are non-negative. The capital input Kt and interest rate rt
are positive for all t = 0, 1, . . ..

(2) Consumers’ Optimality
For all h = 1, 2 . . . H, (ch,kh) is the solution for the h-th consumer’s UMP.

(3) Producer’s Optimality
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For all t = 0, 1 . . ., Kt is the solution for the PMP.

(4) Balance of the Capital Market
For all t = 0, 1 . . ., it holds that

∑H
h=1 k

h
t = Kt.

(5) Balance of Products Market
For all t = 0, 1 . . ., it holds that

∑H
h=1 c

h
t +

∑H
h=1 k

h
t+1 = F (Kt).

If < (ch)Hh=1, (k
h)Hh=1,K, r > satisfies (6), in addition to (1)–(5), this is

called a stationary competitive equilibrium.
　
(6) Constant Level of Consumption, Capital, and Input
The paths r, (ch,kh)Hh=1, and K satisfy constancy.

”Stationarity” requires that all variables maintain the same level over time.

Due to the concavity of the production and utility functions, the inner
stationary competitive equilibrium is likely characterized by the following
conditions:

(I) Interest Rate: r̄ = A− 1

(II) Euler Equation: (∀h = 1, 2, . . . H), (δh)′[Uh(c̄)] =
1

A
(III) Budget Constraints
　For all h = 1, 2, . . . H , it holds that

k̄h = kh0

c̄h + k̄h = (1 + r̄)k̄h

(IV) Balance of the Capital Market:
∑H

h=1 k̄
h = K̄

Note that the balance of the products market is automatically achieved
due to Walras ’Law.
Lemma 3.1. Assume that the production function is F (K) = AK, and each
consumer has a utility that satisfies (U1)−(U7). Then, < H, r, (c̄h, k̄h)Hh=1, K̄ >
satisfying (I)–(IV) is the unique inner stationary competitive equilibrium.

This theorem asserts the uniqueness of ”inner” and ”stationary” compet-
itive equilibrium. Hence, corner or nonstationary equilibria may also exist.

Proof)
First, we demonstrate the existence of the inner stationary competitive

equilibrium. Choose h ∈ {1, 2, . . . H} arbitrarily. We demonstrate that there
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exists a unique c̄h ∈ R++ satisfying (II). (U2) ensures the continuity of the
derivative δ′. According to (U7) and the intermediate value theorem, there
exists uh

′ ∈ R such that (δh)′(uh
′
) = 1/A . . . (a). From (U4), we have vh(0) <

uh
′−δh(uh

′
). From (U5), there exists c′ ∈ R+ such that uh

′−δh(uh
′
) ≤ vh(c′).

Thus, vh(0) < uh
′ − δh(uh

′
) ≤ vh(c′). According to the intermediate value

theorem, there must be c̄h ∈ R++ such that vh(c̄h) = uh
′ − δh(uh

′
) > vh(0).

Owing to the concavity of δh, we obtain

uh
′ − Uh(c̄h) = {vh(c̄h) + δh(uh

′
)} − {vh(c̄h) + δh[Uh(c̄h)]}

≤ (δh)′[Uh(c̄h)]{uh′ − Uh(c̄h)}

By repeating this inequality, we obtain

uh
′ − Uh(c̄h) ≤(δh)′[Uh(c̄h)]{uh′ − Uh(c̄h)}

≤{(δh)′[Uh(c̄h)]}2{uh′ − Uh(c̄h)}
...

≤{(δh)′[Uh(c̄h)]}t{uh′ − Uh(c̄h)}

for any t = 3, 4 . . . ,. Taking the limits of both sides with respect to t, then
it holds that

uh
′ − Uh(c̄h) ≤ lim

t→∞
{(δh)′[Uh(c̄h)]}t{uh′ − Uh(c̄h)} = 0

Due to (a), (δh)′(uh
′
) is less than 1. We obtain

Uh(c̄h)− uh
′ ≤ lim

t→∞
{(δh)′(uh′)}t{Uh(c̄h)− uh

′} = 0

by reversing uh
′
and Uh(c̄h). Thus, we obtain uh

′
= Uh(c̄h) and (II)

(δh)′[Uh(c̄)] =
1

A

Set the interest rate to satisfy the equation (I). The producer’s optimality
automatically holds under condition (I). Therefore we can take each con-
sumer’s savings to satisfy the equation (III). Capital input can also be set to
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satisfy the balance of the capital market in the equation (IV).
The uniqueness of the stationary competitive equilibrium is derived di-

rectly from the condition (δh)′′ < 0.

□

Theorem 3.1. Assume that there uniquely exists an inner stationary com-
petitive equilibrium < (c̄h)Hh=1, (k̄

h)Hh=1, K̄, r̄ >. If it holds that

(δ1)′[U 1(c̃)] < (δ2)′[U 2(c̃)] < . . . < (δH)′[UH(c̃)] . . . (1)

for any c̃ = (c̃, c̃, . . .) ∈ R∞
++ satisfying (∀h = 1, 2, . . . H) Uh(c̃) < +∞,

then the allocation is comonotonic to the order in (1), that is,

0 < c̄1 < c̄2 < . . . < c̄H

0 < k̄1 < k̄2 < . . . < k̄H .

Inequality (1) implies that if each consumer takes the same consumption
plan c̃, a consumer with a larger index exhibits a larger time perspective.

Proof)
Choose two consumers with indexes i, j(i < j) arbitrarily. In Lemma 3.1,

we show that c̄i and c̄j must satisfy

(δi)′[U i(c̄i)] = (δj)′[U j(c̄j)] =
1

A
. . . (a)

If they take the same consumption path ci, (1) implies that

(δi)′[U i(c̄i)] < (δj)′[U j(c̄i)] . . . (b)

(a) and (b) yield

(δj)′[U j(c̄j)] < (δj)′[U j(c̄i)]

From δ′′ < 0, it holds that U j(c̄i) < U j(c̄j). From (U1), c̄i < c̄j. The
equation (c) in Lemma 3.1 implies that it also holds that k̄i < k̄j.

□
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The assertion of this theorem in a three-consumer economy is summarized
in Figure 1. The downward slope of each δh curve originates from (δh)′′ < 0.
Moreover, δ3 is the highest level owing to the order in (1).

Figure 1: Consumer’s time perspective DuW (c, u) in a three-consumers economy

c̄

(δh)′[Uh(c̄)]

(δ1)′[U1(c̄)]
(δ2)′[U2(c̄)]
(δ3)′[U3(c̄)]

c̄1 c̄2 c̄3

1/(1 + r̄) • • •

4 An Example of Stationary Competitive Equilibrium

We assume that each consumer has KDW utility

Uh(ch) = (ch0)
a + lim

t→∞
dh log[1 + (ch1)

a + dh log{1 + (ch2)
a + . . .+ dh log(1 + (cht )

a)}]

where a ∈ (0, 1), dh ∈ (1/(A− logA), 1).

Parameter dh represents the intensity of a consumer’s time preference.
A consumer with a larger dh evaluates future utility more. A range of dh
is required to guarantee an inner solution. The second term of the right-
hand side is monotonically increasing in t; therefore, a limit exists if ∞ is
permitted for the limit value. The KDW utility has an aggregator function
W h(c, u) = ca+dh log(1+u) and a time perspective DuW

h(c, u) = dh/(1+u).
Thus, it satisfies (U1)-(U7).

Assuming that d1 < d2 < . . . < dH . . . (b), The equation (1) in Theorem
3.1 holds.

The Euler equation at the stationary competitive equilibrium is
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dh

1 + Uh(c̄h)
(1 + r̄) = 1

The interest rate is r = A − 1; hence, we have Uh(c̄h) + 1 = dhA. We
substitute it into Uh(c̄h) = (c̄h)a + dh log{Uh(c̄h) + 1}, and then, we obtain

dhA− 1 = (c̄h)a + dh log(dhA)

⇒ c̄h = {dhA− 1− dh log(dhA)}1/a . . . (c)

dh ∈ (0, 1) implies that dh log(dhA) < logA, (d) yields

dhA− 1− dh log(dhA) > dhA− 1− logA ≥ 0

Hence, each consumer’s stationary consumption level is strictly positive.

Next, we check for comonotonicity. By differentiating both sides of (c)
with respect to dh, it follows that

Ddh c̄
h =

1

a
{dhA− 1− dh log(dhA)}1/a−1{A− 1− log(dhA)}

(d) and dh ∈ (0, 1) result in A−1−log(dhA) > 0. Therefore, the derivative
Ddh c̄

h is positive. This implies that consumers with higher dh enjoy a larger
consumption that is

0 < c̄1 < c̄2 . . . < c̄H

From (III), we obtain k̄h = c̄h/r̄. Thus, the order of saving follows that of
consumption, that is,

0 < k̄1 < k̄2 < . . . < k̄H
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