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Abstract. This paper is concerned with estimation and inference on average treatment effects

in randomized controlled trials when researchers observe potentially many covariates. By em-

ploying Neyman’s (1923) finite population perspective, we propose a bias-corrected regression

adjustment estimator using cross-fitting, and show that the proposed estimator has favorable

properties over existing alternatives. For inference, we derive the first and second order terms in

the stochastic component of the regression adjustment estimators, study higher order properties

of the existing inference methods, and propose a bias-corrected version of the HC3 standard er-

ror. Simulation studies show our cross-fitted estimator, combined with the bias-corrected HC3,

delivers precise point estimates and robust size controls over a wide range of DGPs. To illus-

trate, the proposed methods are applied to real dataset on randomized experiments of incentives

and services for college achievement following Angrist, Lang, and Oreopoulos (2009).

1. Introduction

Randomized controlled trials (RCTs) remain among the foremost fundamental and influen-
tial causal inference tools for empirical researchers in a variety of fields of natural, social, and
biomedical sciences. See, for instance, Fisher (1925, 1935), Neyman (1923), and Kempthorne
(1952) for some early developments, and Imbens and Rubin (2015) and Rosenberger and Lachin
(2015) for modern textbook treatments. In order to conduct statistical inference for RCTs, two
distinctive perspectives are often taken, namely, the finite population and superpopulation ap-
proaches. First considered by Neyman (1923), the former assumes that underlying potential
outcomes are fixed and sole randomness comes from the treatment assignment mechanism, while
the latter considers that the variables observed are independently sampled from the distribution
of a hypothetical infinite superpopulation. Although these perspectives are both profoundly
influential and widely applied, econometric and statistical theory under the finite population
perspective is relatively less understood in more complex environments. This paper focuses on
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the finite population perspective and studies causal inference by regression adjustment methods
for RCTs.1

In various RCTs, researchers usually collect covariates that are predetermined characteristics
of the experimental subjects and conduct regression adjustments to estimate treatment effects of
interest since regression adjustments can potentially reduce variability of the estimates (see, for
example, Section 7 in Imbens and Rubin, 2015). However, different opinions exist on whether to
adjust for covariates; in an influential work, Freedman (2008) discourages the practice of using
regression adjustment for RCTs with three critiques: i) lack of efficiency guarantee of ad hoc
regression adjustment over the unadjusted estimator, ii) inconsistency of the classical regression
variance estimator, and iii) presence of a bias term of order Op(n−1). When the number of
covariates is treated as fixed, the first two critiques have been addressed by Lin (2013), in which
the author suggests running a regression of the observed outcomes on the treatment variable,
covariates, and their interactions. This approach is guaranteed to be more efficient than the
simple difference in means estimator without regression adjustment. In addition, Lin showed
that the heteroskedasticity robust variance estimators for linear regression is asymptotically
conservative and thus provides valid size control. Recently, Chang, Middleton, and Aronow
(2021) address the remaining criticism by providing analytic exact bias correction formulae for
the regression adjustment estimators in Freedman (2008) and Lin (2013). Thus far, at least under
the asymptotic framework where the number of covariates held fixed, Freedman’s critiques on
regression adjustment for RCTs have been fully resolved.

In addition to these remarkable progresses, attempts have been made to study asymptotic
regimes that allow the number of covariates to grow with the population size. Such analyses
are empirically important because in many RCT studies, researchers record a sizeable set of
covariates whose dimension is often not negligible compared to the number of experimental
subjects. Indeed, in such scenarios, theoretical guarantees derived under fixed dimensionality
may be far less than compelling; with a sizeable number of covariates, the bias, oftentimes non-
negligible, becomes even more problematic. In such asymptotic environments, an important
recent contribution came from Lei and Ding (2021); under fairly mild conditions, they establish
asymptotic normality permitting growing number of covariates, and characterize the leading
term of the bias for the regression adjustment estimator of Lin (2013). They go one step further
by providing an analytic bias-correction estimator. Despite its promising theoretical guarantees,
their proposed bias-corrected estimator does not appear to be nearly bias free in their simulation
studies when the DGPs contain more nonlinearity as well as larger numbers of covariates. As a
practical solution, they further recommend a trimming procedure for covariates to get around
the unreliable finite sample bias performances of their bias-corrected estimator. Nevertheless,
the means to effectively tackle the bias problem without resorting to artificial modification of the
covariates remain unclear. On the other hand, although the exact bias correction formula from
Chang, Middleton, and Aronow (2021) holds true regardless of the dimensionality of covariates,
the precision of the exactly unbiased estimator can potentially deteriorate rapidly in comparison

1It is not of our intension to promote either perspective; see Reichardt and Gollob (1999) for an in-depth philo-
sophical discussion to compare of these perspectives.
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with the alternatives as the number of covariates increases, as we shall see in our theoretical
analysis and simulation studies.

In this paper, we contribute to the endeavor of understanding regression adjustment in multiple
fronts. First, we propose a simple yet effective alternative for bias-corrected estimation, a cross-
fitted regression adjustment estimator for the average treatment effect in RCTs. Theoretically, we
study higher-order properties of the cross-fitted and existing regression adjustment estimators
and show that our cross-fitted estimator possesses improved bias properties compared to the
existing alternatives. Second, we derive a finer asymptotic variance expression for the estimators
that takes into account of the higher-order term. As pointed out in Lei and Ding (2021, Section
4.3), the asymptotic variance of the regression adjustment estimators can deviate significantly
from the theoretical ones in finite samples, especially when the dimensionality and/or nonlinearity
in the DGPs is non-negligible. This further motivates us to propose an alternative bias-corrected
version of the HC3 standard error. Our simulation studies unveil supporting evidences that our
proposed cross-fitted estimator has favorable performances robustly over a variety of scenarios.
Coupled with our bias-corrected HC3, it delivers more precise inference results than existing
alternative estimation and inference methods when researchers utilize a modest or large number
of covariates for causal inference in RCTs.

In both social and natural sciences, researchers often find RCTs involve a sizeable number of
available covariates in their empirical applications. To formally cope with such settings, Bloniarz,
Liu, Zhang, Sekhon, and Yu (2016) and Wager, Du, Taylor, and Tibshirani (2016) studied
regression adjustments by machine learning techniques in a high-dimensional setup where the
dimensionality p may be larger than the population size n. On the other hand, Lei and Ding
(2021) investigated the situation where p � n but p may grow with n, and developed a bias
correction method for the regression adjustment estimator; as eloquently argued by Lei and
Ding (2021), this moderately growing p asymptotics is of particular importance in a wide range
of applications that involve RCTs, and hence out focus shall be on this practically relevant
asymptotic framework.

1.1. Relationship to the literature. This paper is built upon a growing body of the important
recent forays into innovating theory of RCTs under finite population asymptotics; these include
but are not limited to, Freedman (2008), Lin (2013), Aronow, Green, and Lee (2014), Dasgupta,
Pillai, and Rubin (2015), Bloniarz, Liu, Zhang, Sekhon, and Yu (2016), Wager, Du, Taylor,
and Tibshirani (2016), Fogarty (2018), Li, Ding, and Rubin (2018), Abadie, Athey, Imbens, and
Wooldridge (2020), Li and Ding (2020), Chang, Middleton, and Aronow (2021), Imbens and
Menzel (2021), and Lei and Ding (2021). It is also closely related to the studies of regression
models with many regressors under superpopulation setups such as, e.g. Cattaneo, Jansson, and
Newey (2018a,b); Cattaneo, Jansson, and Ma (2019), to list a few. The idea of cross-fitting or
sample splitting has been widely applied in causal inference literature; in fact, it is a common
strategy to reduce bias terms in many semiparametric and high-dimensional models, see, e.g.,
Schick (1986), Zheng and van der Laan (2011), Chernozhukov, Chetverikov, Demirer, Duflo,
Hansen, Newey, and Robins (2018), Newey and Robins (2018), Spiess (2018), Bradic, Wager,
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and Zhu (2019), to list a few. Our work sheds new light on these literatures by providing a
novel bias-corrected estimation procedure that combines the idea of cross-fitting and efficient
regression-assisted estimation for RCTs, and further establishes formal theoretical justification
for its advantages in performances for models in RCTs with large numbers of covariates under
design-based finite population asymptotics.

2. Methodology

Consider a treatment-control RCT, where yi(1) and yi(0) are potential outcomes of unit i =

1, . . . , n for treatment and control, respectively, and Ti is an indicator for assignment (Ti = 1

corresponds to the treatment, and Ti = 0 corresponds to the control). A researcher randomly
assigns Ti for each unit, and wishes to conduct estimation and inference on the average treatment
effect τ = µ1 − µ0 with µt = n−1

∑n
i=1 yi(t) based on the observed outcome Yi = yi(Ti) and

(p − 1)-dimensional pretreatment covariates xi. In this paper, we employ the finite population
perspective (Neyman, 1923), where the potential outcomes yi(1) and yi(0) are non-random and
randomness comes solely from the treatment indicator Ti (see, e.g., Imbens and Rubin (2015),
for an overview).

The simplest estimator of τ is the difference in means τ̂dif = n−11

∑n
i=1 TiYi − n

−1
0

∑n
i=1(1 −

Ti)Yi, where n1 and n0 are the sizes of the treatment and control groups, respectively. Although
this estimator is unbiased and asymptotically normal, Lin (2013) showed that a regression adjust-
ment using xi yields a more efficient estimator than τ̂dif . This regression adjustment estimator
τ̂adj is obtained as the OLS coefficient on Ti from the regression of Yi on (1, Ti, (xi−x̄)′, Ti(xi−x̄)′).
To facilitate our discussion on bias correction below, we present an alternative expression for τ̂adj.
Let zi = (1, x′i)

′, where n−1
∑n

i=1 xi is normalized to be zero for each coordinate, and β̂1 and
β̂0 be the OLS estimators for the regression of Yi on zi by the treatment (Ti = 1) and con-
trol (Ti = 0) groups, respectively. Then the regression adjustment estimator can be written
as τ̂adj = µ̂adj1 − µ̂adj0 , where µ̂adjt = n−1

∑n
i=1 z

′
iβ̂t. Lin (2013) showed that τ̂adj is consistent,

asymptotically normal, and more efficient than the difference in means τ̂dif . It should be noted
that these results hold true under the finite population setup with fixed p without assuming
correct specification of the linear model.

In practice, it is often the case that researchers observe many covariates. Lei and Ding (2021)
studied asymptotic properties of the regression adjustment estimator when the number of co-
variates p grows with the sample size, and developed a bias-corrected estimator. To define Lei
and Ding (2021)’s approach, we introduce some notation. Let êi be the OLS residual (i.e.,
êi = Yi− z′iβ̂1 for treated units, and Yi− z′iβ̂0 for control units), Z = (z1, . . . , zn)′, and Pij be the
(i, j)-th element of the projection matrix P = Z(Z ′Z)−1Z ′. Lei and Ding’s (2021) bias-corrected
estimator for τ is defined as

τ̂bc =

(
µ̂adj1 +

n0
n1

∆̂1

)
−
(
µ̂adj0 +

n1
n0

∆̂0

)
, (2.1)

where ∆̂1 = n−11

∑n
i=1 TiPiiêi and ∆̂0 = n−10

∑n
i=1(1 − Ti)Piiêi. Note that n0

n1
∆̂1 and n1

n0
∆̂0 are

correction terms to estimate the higher-order bias terms of µ̂adj1 and µ̂adj0 under the moderate-p
asymptotics, respectively. The terms involving ∆̂t are analytic bias estimates that replace the
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unknown bias terms in their asymptotic theory. Although this bias correction method works in
theory, the quality of these bias estimates may not be ideal, as illustrated in Section 4.4 of Lei
and Ding (2021).

This paper proposes an alternative bias correction approach via cross-fitting. To gain intuition
for our approach, it is insightful to note that the regression adjustment estimators for µ1 and µ0
can be alternatively written as

µ̂adj1 =
1

n

n∑
i=1

{
Ti
π
Yi −

(
Ti
π
− 1

)
(z′iβ̂1)

}
, µ̂adj0 =

1

n

n∑
i=1

{
1− Ti
1− π

Yi −
(

1− Ti
1− π

− 1

)
(z′iβ̂0)

}
,

(2.2)

where π = n1/n. Albeit the implementation differences, the estimation based on (2.2) is equiv-
alent to the full-sample regression adjustment estimation with treatment-covariate interactions
first proposed by Lin (2013) and the regression adjustment estimator in Lei and Ding (2021).
The key idea of our bias correction is to replace the OLS estimators β̂1 and β̂0 with their leave-

one-out counterparts β̂(i)1 =
(∑

j 6=i Tjzjz
′
j

)−1 (∑
j 6=i TjzjYj

)
for i ∈ {1, ..., n : Ti = 1}, and

β̂
(i)
0 =

(∑
j 6=i(1− Tj)zjz′j

)−1 (∑
j 6=i(1− Tj)zjYj

)
for i ∈ {1, ..., n : Ti = 0}, respectively. Then

our cross-fitted estimator of the average treatment effect τ is defined as τ̂ cf = µ̂cf1 − µ̂cf0 , where

µ̂cf1 =
1

n

n∑
i=1

{
Ti
π
Yi −

(
Ti
π
− 1

)
(z′iβ̂

(i)
1 )

}
, µ̂cf0 =

1

n

n∑
i=1

{
1− Ti
1− π

Yi −
(

1− Ti
1− π

− 1

)
(z′iβ̂

(i)
0 )

}
.

(2.3)

Although this estimator may appear to be computationally demanding, in practice, one may
utilize the identity for leave-one-out OLS estimation (see, e.g., Theorem 3.7 in Hansen (2022)):

β̂
(i)
t = β̂t − (Z ′tZt)

−1Ziẽi,

for i ∈ {1, ..., n : Ti = t}, where ẽi = êi/(1 − Pt,ii), Pt,ij is the (i, j)-th entry of the matrix
Pt = Zt(Z

′
tZt)

−1Z ′t, and Zt is the nt × p submatrix that consists of nt-rows of matrix Z with
Tj = t. This identity significantly lessens the computational burden to implement our cross-fitted
estimator.

3. Asymptotic theory

In this section, we study asymptotic properties of the cross-fitted estimator τ̂ cf to compare with
the existing ones, τ̂adj and τ̂bc, and associated variance estimators. Furthermore, in Section 3.3,
we discuss exactly unbiased estimation based on our representation of the regression adjustment
estimator in (2.2).

3.1. Bias correction. We first establish stochastic expansions for the estimators of τ and in-
vestigate their bias terms. To this end, we consider the setup employed by Lei and Ding
(2021), where the number of covariates p is allowed to grow with the sample size n. Let
ei(t) = yi(t) − z′iβt for t = 0, 1, where βt = (Z ′Z)−1Z ′Y (t) is the population OLS coefficients
of Y (t) = (y1(t), . . . , yn(t))′ on Z. Denote κ = max1≤i≤n Pii, E2 = maxt∈{0,1}{n−1

∑n
i=1 ei(t)

2},
and E∞ = maxt∈{0,1}max1≤i≤n |ei(t)|. We impose the following assumptions.

5



Assumption.

(i): n/n1 = O(1) and n/n0 = O(1).
(ii): κ log p = o(1).
(iii):

∑n
i=1 ei(1)ei(0)/

√∑n
i=1 ei(1)2

∑n
i=1 ei(0)2 > −1 + η, for some constant η > 0 inde-

pendent of n.
(iv): E2∞/(nE2) = o(1).

Assumptions (i)-(iv) are identical to Assumptions 1-4 in Lei and Ding (2021), respectively.
Condition (i) holds if the proportions of treatment and control groups are fixed. Condition
(ii) allows influential observations as long as their leverages are of smaller orders than 1/ log p.
Condition (iii) imposes a mild restriction on the correlation between the potential residuals from
the population ordinary least squares. It rules out perfectly negative correlation between the
treatment and control potential residuals. Finally, Condition (iv) imposes a Lindeberg-Feller
type condition that none of potential residual dominates the others, while permitting heavy-
tailed outcomes with E2 growing with n.

Let

Li =

(
Ti
π
− 1

)(
ei(1) +

π

1− π
ei(0)

)
,

Wij = −
(
Ti
π
− 1

)(
Tj
π
− 1

)
z′iΣ
−1zj{ei(1) + ej(1)}

+

(
1− Ti
1− π

− 1

)(
1− Tj
1− π

− 1

)
z′iΣ
−1zj{ei(0) + ej(0)}. (3.1)

Under the above assumptions, the stochastic expansions and bias terms for the estimators of τ
are obtained as follows.

Theorem 1. Consider the setup in Section 2, and suppose Assumptions (i)-(iv) hold true.

(i): Stochastic expansions of the estimators are

τ̂a − τ = Ba +
1

n

n∑
i=1

Li +
1

n2

∑
1≤i<j≤n

Wij +Op(n
−1/2{E2κ2p1/2 + E2κ3p(log p)2)}1/2), (3.2)

for a ∈ {adj, bc, cf}, where the bias terms are

Badj = − 1

n

n∑
i=1

(
Ti
π
− 1

)2

Piiei(1) +
1

n

n∑
i=1

(
1− Ti
1− π

− 1

)2

Piiei(0), (3.3)

Bbc = − 1

n

n∑
i=1

{(
Ti
π
− 1

)2

− n0
n1

Ti
π

}
Piiei(1)

−n0
n1

(
1

n1

n∑
i=1

TiPiizi

)′(
1

n1

n∑
i=1

Tiziz
′
i

)−1(
1

n1

n∑
i=1

Tiziei(1)

)

+
1

n

n∑
i=1

{(
1− Ti
1− π

− 1

)2

− n1
n0

1− Ti
1− π

}
Piiei(0)

+
n1
n0

(
1

n0

n∑
i=1

(1− Ti)Piizi

)′(
1

n0

n∑
i=1

(1− Ti)ziz′i

)−1(
1

n0

n∑
i=1

(1− Ti)ziei(0)

)
,
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Bcf = 0.

(ii): The bias terms are characterized as

Badj = O(n−1/2(E2κp)1/2), Bbc = Op(n
−1/2(E2κ2p)1/2), Bcf = 0,

and

E[Badj] = −n0
n1

1

n

n∑
i=1

Piiei(1) +
n1
n0

1

n

n∑
i=1

Piiei(0),

E[Bbc] = −
(
n0
n1

)2 1

n− 1

n∑
i=1

P 2
iiei(1) +

(
n1
n0

)2 1

n− 1

n∑
i=1

P 2
iiei(0),

E[Bcf ] = 0.

Theorem 1 (i) decomposes the estimation errors into a first-order dominant linear term,
n−1

∑n
i=1 Li, a second-order quadratic term, n−2

∑
1≤i<j≤nWij , and a bias term, Ba. Note

that the linear and quadratic terms are identical for all the estimators, and the differences are
attributed to the bias term. The bias terms Badj and Bbc for the conventional regression ad-
justment and bias-corrected estimators are studied by Lei and Ding (2021). As presented in
Theorem 1 (ii), Bbc has smaller order than Badj. It should be noted that compared to these ex-
isting estimators, the corresponding bias term Bcf of our cross-fitted estimator τ̂ cf is completely
eliminated to be zero. Furthermore, since the linear and quadratic terms are identical, such a bias
reducing feature of τ̂ cf does not inflate the variance compared to the other estimators. Finally,
compared to Lei and Ding (2021), our expansions also characterize the second order quadratic
term n−2

∑
1≤i<j≤nWij , which will be useful to investigate properties of the variance estimators

in the next subsection.

3.2. Variance estimation. We now analyze the stochastic components, L = n−1
∑n

i=1 Li and
W = n−2

∑
1≤i<j≤nWij , in the estimation errors in Theorem 1. Let σ2L = V(

√
nL) and σ2W =

V(
√
nW). The stochastic orders and variances of these terms are characterized as follows.

Theorem 2. Consider the setup in Section 2, and suppose Assumptions (i)-(iv) hold true.

(i): The first- and second-order dominant terms of the estimation errors satisfy

L = Op(n
−1/2E1/22 ), W = Op(n

−1/2(E2κp1/2)1/2).

(ii): The estimation variances are characterized as

V(
√
n(τ̂a − τ −Ba)) = σ2L + σ2W +O(E2κ2p1/2 + E2κ3p(log p)2)),

for a ∈ {adj, bc, cf}, where

σ2L =
n

n1(n− 1)

n∑
i=1

ei(1)2 +
n

n0(n− 1)

n∑
i=1

ei(0)2 − 1

n− 1

n∑
i=1

(ei(1)− ei(0))2

= O(E2),

σ2W =
n20
n21n

n∑
i=1

Piiei(1)2 +
n21
n20n

n∑
i=1

Piiei(0)2 − 2

n

n∑
i=1

Piiei(1)ei(0)
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+
n20
n21n

n∑
i=1

n∑
j 6=i

P 2
ij

{
−ei(1) +

(
π

1− π

)2

ei(0)

}{
−ej(1) +

(
π

1− π

)2

ej(0)

}
= O(E2κp1/2).

Combining this theorem with Theorem 1, we can see that the cross-fitted estimator τ̂ cf is
consistent if n−1E2(κp1/2 +κ3p(log p)2 + 1) = o(1). In contrast, Lei and Ding (2021, Theorem 2)
requires the condtion n−1E2(κ2p log p + 1) = o(1) to achieve consistency of their bias-corrected
estimator τ̂bc, which is more stringent if κp1/2 log p diverges. Also according to this theorem,
under the additional condition κ2p log p = o(1), we can see that for all estimators a ∈ {adj,bc, cf},
the dominant term of τ̂a − τ −Ba is L, and its limiting distribution is obtained as

√
n(τ̂a − τ −

Ba)/σL
d→ N(0, 1).

In addition to the linear component L, Theorem 2 (ii) takes into account of the variance of
the second-order quadratic term W. The term σ2L is identical to the conventional variance term
for the regression adjustment estimator as in Lin (2013). Note that the third component in the
expression of σ2L, (n − 1)−1

∑n
i=1(ei(1) − ei(0))2, has no consistent estimator in general. The

additional term σ2W also contains a component which cannot be consistently estimated (i.e., the
third term of σ2W ).

Compared to the existing results such as Lei and Ding (2021), the results on the second-order
term W and its variance σ2W are new. Indeed, in their simulation study, Lei and Ding (2021)
reported that σ2L tends to be lower than the Monte Carlo variance of the point estimator for τ
for larger values of p. Based on our higher-order analysis, we argue that this discrepancy can be
explained by the second-order component σ2W whose order increases with p.

We next consider variance estimation of the treatment effect estimator, particularly the HC0
and HC3 variance estimators

σ̂2HC0 =
n

n1(n1 − 1)

n∑
i=1

Tiê
2
i +

n

n0(n0 − 1)

n∑
i=1

(1− Ti)ê2i ,

σ̂2HC3 =
n

n1(n1 − 1)

n∑
i=1

Tiẽ
2
i +

n

n0(n0 − 1)

n∑
i=1

(1− Ti)ẽ2i .

Under our setup, the properties of these variance estimators are characterized as follows.

Theorem 3. Consider the setup in Section 2, and suppose Assumptions (i)-(iv) hold true. The
variance estimators satisfy

E[σ̂2HC0] ∼ n

n1(n− 1)

n∑
i=1

ei(1)2 +
n

n0(n− 1)

n∑
i=1

ei(0)2 − n0
n21

n∑
i=1

Piiei(1)2 − n1
n20

n∑
i=1

Piiei(0)2,

E[σ̂2HC3] ∼ n

n1(n− 1)

n∑
i=1

ei(1)2 +
n

n0(n− 1)

n∑
i=1

ei(0)2 +
n0
n21

n∑
i=1

Piiei(1)2 +
n1
n20

n∑
i=1

Piiei(0)2.

This theorem depicts the means of the HC0 and HC3 variance estimators, taking into account
of the higher-order terms. First, the first two terms of E[σ̂2HC0] and E[σ̂2HC3] are the exact match
to the first two terms of σ2L. However, the third term of σ2L is not consistently estimable. Thus,
as far as we are concerned with the first-order dominant terms, HC0 and HC3 are conservative
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estimators of the asymptotic variance of the treatment effect estimators. Second, the third and
fourth terms of E[σ̂2HC3] closely match to the first and second terms of σ2W , except for the factors
n0/n and n1/n, respectively. It is interesting to note that the HC3 estimator is interpreted
as a jackknife variance estimator. So these multiplicative discrepancies can be understood as
emergence of Efron and Stein’s (1981) bias for the jackknife variance in higher-order terms in
the context of the design-based asymptotic analysis. Third, it should be noted that the signs
of the third and fourth terms of E[σ̂2HC0] are opposite to the corresponding ones in the first and
second terms of σ2W (or the signs of the third and fourth terms of E[σ̂2HC3]). Therefore, the
higher-order term of HC3 slightly overestimates σ2W , while HC0 severely underestimates σ2W .
This explains relatively poor performances of HC0 in finite samples, as observed in the literature
(e.g., simulation studies in Lei and Ding (2021)). Finally, we note that the last component in the
expression of σ2W can be consistently estimated. This motivates us to modify the HC3 variance
estimator into the following partially bias-corrected HC3 variance estimator

σ̂2dbHC3 = σ̂2HC3 +
n20n

n41

n∑
i=1

n∑
j 6=i

P 2
ijTiTj ẽiẽj +

n21n

n40

n∑
i=1

n∑
j 6=i

P 2
ij(1− Ti)(1− Tj)ẽiẽj

− 2n

n0n1

n∑
i=1

n∑
j 6=i

P 2
ijTi(1− Tj)ẽiẽj .

We investigate its finite sample performance in our simulation study.

3.3. Unbiased estimation. In this subsection, we propose an alternative bias correction that
results in an exactly unbiased estimator and illustrate its pros and cons. Indeed our repre-
sentation of the regression adjustment estimator in (2.2) is also insightful to derive an exactly
unbiased estimator for the average treatment effect τ . Based on (2.2), the error of the regression
adjustment estimator can be decomposed as τ̂adj − τ = a+ b1 + b0, where

a =
1

n

n∑
i=1

(
Ti
π
− 1

)
(ei(1) + z′iβ1)−

1

n

n∑
i=1

(
1− Ti
1− π

− 1

)
(ei(0) + z′iβ0),

b1 = − 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iβ̂1, b0 =

1

n

n∑
i=1

(
1− Ti
1− π

− 1

)
z′iβ̂0.

Since E[a] = 0, the exact bias E[τ̂adj]− τ is due to the terms b1 and b0. Letting Σ = 1
n

∑n
i=1 ziz

′
i

and Σ1 = 1
n1

∑n
i=1 Tiziz

′
i, the term b1 is further decomposed as b1 = b

(1)
1 + b

(2)
1 , where

b
(1)
1 = − 1

n

n∑
i=1

(
Ti
π
− 1

)
z′i(Σ

−1
1 − Σ−1)

1

n1

n∑
i=1

TiziYi,

b
(2)
1 = − 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1 1

n

n∑
i=1

Ti
π
ziYi.

Since E
[(

Ti
π − 1

)
Ti
π

]
= n0

n1
and E

[(
Ti
π − 1

)
Tj
π

]
= − n0

n1(n−1) , an unbiased estimator of E[b
(2)
1 ] is

given by

b̂
(2)
1 = − n0

n21n

n∑
i=1

Tiz
′
iΣ
−1ziYi +

n0
n21(n− 1)n

n∑
i=1

n∑
j 6=i

z′iΣ
−1TjzjYj .
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By applying the same argument to the term b0, an unbiased estimator of τ can be obtained as

τ̂adj−unbiased = τ̂adj − b(1)1 − b̂
(2)
1 − b

(1)
0 − b̂

(2)
0 ,

where Σ0 = 1
n0

∑n
i=1(1− Ti)ziz′i, and

b
(1)
0 =

1

n

n∑
i=1

(
1− Ti
1− π

− 1

)
z′i(Σ

−1
0 − Σ−1)

1

n0

n∑
i=1

(1− Ti)ziYi,

b̂
(2)
0 =

n1
n20n

n∑
i=1

(1− Ti)z′iΣ−1ziYi −
n1

n20(n− 1)n

n∑
i=1

n∑
j 6=i

z′iΣ
−1(1− Tj)zjYj .

When the dimension of the covariates p does not vary with the sample size, all of the adjust-
ment terms are of orderOp(n−1) so that the unbiased estimator τ̂adj−unbiased has the same limiting
distribution as the original regression adjustment estimator τ̂adj, i.e.,

√
n(τ̂adj − τ̂adj−unbiased) =

op(1) under the fixed-p asymptotics.
However, when p grows with n, the above adjustment terms may substantially inflate the

variance of the unbiased estimator τ̂adj−unbiased. To see this, we note that the estimation error
can be decomposed as

τ̂adj−unbiased − τ

=
1

n

n∑
i=1

Li +
1

n2

∑
1≤i<j≤n

Wij +
1

n

n∑
i=1

(
Ti
π
− 1

)
Piiei(1)− 1

n

n∑
i=1

(
1− Ti
1− π

− 1

)
Piiei(0)

+
1

n

n∑
i=1

(
Ti
π
− 1

)
z′i(β1 − Σ−1Σ

(i)
1 β1)−

1

n

n∑
i=1

(
1− Ti
1− π

− 1

)
z′i(β0 − Σ−1Σ

(i)
0 β0)

− n0
n21(n− 1)n

n∑
i=1

n∑
j 6=i

z′iΣ
−1Tjzjyj(1) +

n1
n20(n− 1)n

n∑
i=1

n∑
j 6=i

z′iΣ
−1(1− Tj)zjyj(0), (3.4)

where Σ
(i)
1 = 1

n1

∑n
j 6=i Tjzjz

′
j and Σ

(i)
0 = 1

n0

∑n
j 6=i(1−Tj)zjz′j . The additional terms are all mean

zero. Among these terms, particularly the fifth and sixth terms tend to be larger orders than
one of the main stochastic terms, 1

n2

∑
1≤i<j≤nWij . For example, by applying Lemma 1, we can

see that the fifth term in (3.4) (denoted by M5) satisfies

E[M2
5 ] ∼ 1

n2

n∑
i=1

n∑
j=1

P 2
ij(z

′
jβ1)

2 +
1

n2

n∑
i=1

n∑
j=1

P 2
ij(z

′
iβ1)(z

′
jβ1) +

1

n2

(
n∑
i=1

Pii(z
′
iβ1)

)2

. (3.5)

If z′iβ1 > 0 for all i = 1, . . . , n, then the third term in (3.5) is bounded from below as
1
n2 (
∑n

i=1 Pii(z
′
iβ1))

2 ≥ {mini=1,...,n(z′iβ1)}2
p2

n2 , and thus the term 1
n2

∑
1≤i<j≤nWij is dominated

by M5 as far as p{mini=1,...,n(z′iβ1)}4 → ∞. Therefore, researchers need to be cautious for
applying unbiased estimation when the number of covariates is moderately large.

Remark 1 (Chang, Middleton, and Aronow (2021)’s unbiased estimator). We are not the first
to suggest an unbiased estimator for the average treatment effect in the current design-based
context. Chang, Middleton, and Aronow (2021) proposed unbiased estimators for regression
adjustment estimators with and without interaction terms. Although not numerically equivalent,
the behaviors of the unbiased estimator in (3.4) closely resemble those of the unbiased estimator

10



for interacted regression proposed in Theorem 4.2 of Chang, Middleton, and Aronow (2021). For
detailed comparisons, see additional simulations in Appendix B.

4. Simulation

In this section, we illustrate our theoretical results through a number of different simulation
studies. The simulation designs here follow closely of those in Lei and Ding (2021). Specifically,
we set n = 500 and n1 = nπ1 with π1 = 0.2, and the covariate matrix X ∈ Rn×n contains i.i.d.
entries generated from a student’s t-distribution t(df) for df = 3, 4. The matrix X is generated
once and subsequently kept fixed throughout the simulation. Similarly, a vector b ∈ Rn is
generated from i.i.d. N(0, 1) in the beginning of the simulation and is then held fixed. For
p ∈ {5, 10, ..., 75}, we form the covariate matrix X ∈ Rn×p by extracting the first p columns of
X , as well as the first p entries of b to form two parameter vectors β∗1 = β∗0 = (b1, ..., bp)

′. We
subsequently construct potential outcomes following Y (t) = Xβ∗t + ε(t) for some error vectors
ε(t) ∈ Rn to be specified later. For t ∈ {0, 1}, denote ∆t = n−1

∑n
i=1 ei(t)Pii. We consider two

types of error structures, namely, the worst case errors (worst) and normal errors (normal). For
the worst case errors, we generate vectors ε(0) = ε and ε(1) = 2ε, where the vector ε ∈ Rn solves
the constrained optimization problem:

max
ε∈Rn

∣∣∣∣n1n0∆0 −
n0
n1

∆1

∣∣∣∣ s.t. ε′ε/n = 1 and X ′ε = (1, ..., 1)′ε = 0.

This maximizes the first order theoretical bias of the regression adjustment estimator τ̂adj under
the current increasing dimensionality asymtotics, as characterized by Lei and Ding (2021). For
the normal errors, we consider designs with homoskedastic normal errors generated following
ε(0) = ε(1) = ε, where ε is drawn from i.i.d. N(0, 1). For the normal case, the potential
outcome equations are linear and thus the biases are small in general. The number of Monte
Carlo replications in each simulation design is set to be 10, 000.

We compare four alternative estimators for the average treatment effect of interest: (i) the
original regression adjustment estimator based on (2.2) (un-debiased), (ii) the bias-corrected
regression adjustment estimator (2.1) from Lei and Ding (2021) (db_LD), (iii) the unbiased
estimator as in (3.4) (db_unbiased),2 and (iv) the cross-fitted estimator (2.3) (cross-fitted) pro-
posed in this paper. The standard errors used for regression adjustment and the two debiased
regression adjustment estimators are HC2 and HC3 from the Eicker-Huber-White family. Note
that HC3 seems to deliver the most robust overall performance in the simulation studies in
Lei and Ding (2021), especially when covariates have larger dimensions. For our cross-fitted
estimator, in addition to HC2 and HC3, we also conduct inference with the newly proposed
bias-corrected HC3 (dbHC3), which, in theory, delivers certain higher-order improvement over
HC3 for the cross-fitted estimator.

Figures B.1 and B.2 present the average relative biases for the four estimators, i.e., their aver-
age biases divided by σL, the theoretical standard deviation of the common linear component of

2We also examined the performances of the the unbiased estimator for interacted regression from Chang, Mid-
dleton, and Aronow (2021) in our simulations. As the results are qualitatively nearly identical to those of
db_unbiased, they are not displayed here.
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the regression adjustment estimators defined in Theorem 2. One can observe that the cross-fitted
estimator demonstrates superior bias behaviors across the board when the DGP yields significant
bias, while all methods work similarly when the DGP yields small biases. The differences are
particularly profound in the designs with worse case errors and X ∼ t(3). These results suggest
both the superiority of the cross-fitted estimator in its performance even in extreme and unfa-
vorable environments as well as its robustness over different scenarios. Also note that although
the db_unbiased appears to have large biases with larger covariate dimensions when the errors
are normally distributed, this can be misleading as this is due to the high variability of the exact
bias correction in the unbiased estimator under these settings, rather than actually having large
true biases. This can be seen in Figure B.3, which displays the ratios of standard deviations of
the alternative estimators over the standard deviation of the cross-fitted estimator. Note that
when the covariate dimensionality is large, db_unbiased shows significantly less precision than
all other alternatives. For instance, under normal errors, when the number of covariates is greater
or equal to 30, the standard deviation of the unbiased estimator is over 10 times larger than the
standard deviations of all other estimators.

The results for coverage rates with nominal coverage of 0.95 are given in Figures B.4 and B.5.
As the coverage rates of the cross-fitted estimator coupled with HC3 and dbHC3 standard errors
are close in Figure B.4, we provide a zoomed-in comparison of them in Figure B.5. For coverage
rates, the cross-fitted estimator coupled with HC3 or the dbHC3 show significantly more precise
coverage probabilities than the other estimators regardless of the choice of standard errors. In
the case of normal errors, all three estimators exhibit nearly negligible biases and thus all work
decently in inference. In particular, the proposed cross-fitted estimator behaves nearly identically
to the debiased estimator of Lei and Ding (2021) when the theoretical bias in the DGP is small.
Figure B.5 also illustrates further higher-order improvement dbHC3 over HC3.

5. Real data illustration

In this section, we apply the proposed cross-fitted estimator and the bias-corrected HC3
(dbHC3) to real data and compare with the existing alternatives. We use the dataset from the
Student Achievement and Retention (STAR) project, a series of RCTs for evaluating academic
services and incentives on freshmen undergraduate students in one of the satellite campuses of
a large Canadian university. For more details on the STAR project and the relevant empirical
research, see Angrist, Lang, and Oreopoulos (2009). The set of predetermined covariates include
gender, age, high school GPA, mother language, indicator on whether living at home, frequency
on putting off studying for tests, education, mother education, father education, intention to
graduate in four years and indicator whether being at the preferred school, and the interactions
between age, gender, high school GPA, and all other variables. The treatment consists of three
arms: whether a freshman undergraduate student is offered a service strategy called Student
Support Program (SSP), an incentive strategy known as the Student Fellowship Program (SFP),
or is offered both (SFSP).

We consider the three treatment arms separately, set the treatment variable to be one of the
three and, in each case, limit our population to the set of individuals that either received only the
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treatment of interest or is in the control group. We are interested in how the treatment affects
the students official GPAs at the end of the first year of study. We implement four estimator, the
simple difference in means of the treated and control groups without any covariate, regression ad-
justment (un-debiased) as defined in (2.2), regression adjustment with bias-correction (debiased
LD) of Lei and Ding (2021) as defined in (2.1), the unbiased estimator as in (3.4) (db_unbiased),
as well as our cross-fitted regression adjustment estimator (cross-fitted) as defined in (2.3).

The estimates and the t-statistics are displayed in Tables 1 and 2, respectively. A couple of
remarks are in order. First, the difference-in-mean estimator and the unbiased estimator behave
qualitatively different from all other regression adjustment estimators; even the sign is sometimes
different. Second, HC2 standard error is notably smaller than HC3 and dbHC3. Based on the
observation from our simulation studies that inference based on HC2 may be overly rejecting
when dimensionality is large, the significant results for un-debiased and debiased estimators
for the treatment SFSP can potentially be overly optimistic. Third, the cross-fitted estimator
coupled with HC3 and dbHC3 appears to provide further confirmation to the empirical findings
in Angrist, Lang, and Oreopoulos (2009).

Treatment effects on first year GPA
treatment SSP SFP SFSP

sample size
n 1064 1072 974
n1 208 261 118

estimator estimate
difference-in-mean 0.014 -0.033 0.119

un-debiased -0.026 -0.082 0.303
debiased LD -0.033 -0.082 0.297
unbiased 0.026 -0.058 0.184
cross-fitted -0.064 -0.081 0.275

standard errors estimate
no covariate 0.0707 0.0646 0.0900

HC2 0.0646 0.0590 0.0877
HC3 0.0796 0.0676 0.1279

dbHC3 0.0789 0.0672 0.1247
Table 1. Estimates for the average treatment effects.
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Treatment effects on first year GPA
standard error no covariate HC2 HC3 dbHC3

t-statistic
estimator treatment: SSP

difference-in-mean 0.204 - - -
un-debiased - -0.404 -0.328 -
debiased LD - -0.504 -0.409 -
unbiased - 0.405 0.328 -
cross-fitted - -0.998 -0.809 -0.816

treatment: SFP
difference-in-mean -0.512 - - -

un-debiased - -1.39 -1.21 -
debiased LD - -1.40 -1.22 -
unbiased - -0.98 -0.86 -
cross-fitted - -1.38 -1.20 -1.21

treatment: SFSP
difference-in-mean 1.32 - - -

un-debiased - 3.46*** 2.37** -
debiased LD - 3.39*** 2.32** -
unbiased - 2.10** 1.44 -
cross-fitted - 3.13*** 2.15** 2.20**

Table 2. t-statistics for the average treatment effect estimates.
*** Significant at 1 percent level.
** Significant at 5 percent level.
* Significant at 10 percent level.

Appendix A. Mathematical appendix

In this appendix we use the following notation. Let

Σ =
1

n

n∑
i=1

ziz
′
i,=

1

n
Z ′Z Σ1 =

1

n1

n∑
i=1

Tiziz
′
i, Σ

(i)
1 =

1

n1

n∑
j 6=i

Tjzjz
′
j ,

Σ0 =
1

n0

n∑
i=1

(1− Ti)ziz′i, Σ
(i)
0 =

1

n0

n∑
j 6=i

(1− Tj)zjz′j .

We repeatedly use the following facts. Since ei(t) is the OLS residual, it holds
n∑
i=1

ziei(t) = 0,
n∑
i=1

xiei(t) = 0,
n∑
i=1

ei(t) = 0, (A.1)

for t = 0, 1. Also the projection matrix P = Z(Z ′Z)−1Z ′ satisfies
n∑
i=1

Pii = p,

n∑
j=1

P 2
ij = Pii,

n∑
j=1

PijPjk = Pik. (A.2)

Finally, we note that
1− Ti
1− π

− 1 = − π

1− π

(
Ti
π
− 1

)
. (A.3)

A.1. Proof of Theorem 1.
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A.1.1. Proof of (i). First, we consider τ̂adj = µ̂adj1 − µ̂
adj
0 . By (A.1) and (A.3), we decompose

τ̂adj − τ = (µ̂adj1 − µ1)− (µ̂adj0 − µ0)

=
1

n

n∑
i=1

(
Ti
π
− 1

)
{ei(1)− z′i(β̂1 − β1)} −

1

n

n∑
i=1

(
1− Ti
1− π

− 1

)
{ei(0)− z′i(β̂0 − β0)}

=
1

n

n∑
i=1

(
Ti
π
− 1

)(
ei(1) +

π

1− π
ei(0)

)
−

{
1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−11

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

}

+

(
π

1− π

)2
{

1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−10

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(0)

}
=: M1 +M2 +M3. (A.4)

Since Li =
(
Ti
π − 1

)(
ei(1) + π

1−πei(0)
)
by (A.3), we have M1 = n−1

∑n
i=1 Li.

For M2 +M3, using the relation

Σ−1t = Σ−1 − Σ−1(Σt − Σ)Σ−1 + Σ−1(Σt − Σ)′Σ−1t (Σt − Σ)Σ−1,

for t = 0, 1, we decompose

M2 = −

{
1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

}

+

{
1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−1(Σ1 − Σ)Σ−1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

}

−

{
1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−1(Σ1 − Σ)′Σ−11 (Σ1 − Σ)Σ−1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

}
=: M21 +M22 +M23,

and

M3 =

(
π

1− π

)2
{

1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(0)

}

−
(

π

1− π

)2
{

1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−1(Σ0 − Σ)Σ−1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(0)

}

+

(
π

1− π

)2
{

1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−1(Σ0 − Σ)′Σ−10 (Σ0 − Σ)Σ−1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(0)

}
=: M31 +M32 +M33,

The term M21 +M31 can be written as

M21 +M31 = Badj +
1

n2

∑
1≤i<j≤n

Wij , (A.5)

where

Badj = − 1

n

n∑
i=1

(
Ti
π
− 1

)2

Piiei(1) +
1

n

n∑
i=1

(
Ti
π
− 1

)2

Pii

(
π

1− π

)2

ei(0),
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Wij =

(
Ti
π
− 1

)(
Tj
π
− 1

)
z′iΣ
−1zj

{
−(ei(1) + ej(1)) +

(
π

1− π

)2

(ei(0) + ej(0))

}
.(A.6)

Note that Badj and Wij are identical to the definitions in (3.3) and (3.1), respectively, due to
(A.3). Combining (A.14) and (A.3), we have

τ̂adj − µ = Badj +
1

n

n∑
i=1

Li +
1

n2

∑
1≤i<j≤n

Wij +M22 +M23 +M32 +M33.

Thus, it is sufficient to show (3.2) by proving that

(M22 +M32) +M23 +M33 = Op(n
−1/2{E2κ(κ2p(log p)2 + κp1/2)}1/2). (A.7)

We now show (A.7). Since
Σ0 − Σ = − π

1− π
(Σ1 − Σ),

we have

M22+M32 =

{
1

n

n∑
i=1

(
Ti
π
− 1

)
z′i

}
Σ−1(Σ1−Σ)Σ−1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
zi

(
ei(1) +

(
π

1− π

)3

ei(0)

)}
.

Letting ri = ei(1) +
(

π
1−π

)3
ei(0), we obtain

E[(M22 +M32)
2] = E

 1

n

n∑
i=1

n∑
j=1

n∑
k=1

(
Ti
π
− 1

)(
Tj
π
− 1

)(
Tk
π
− 1

)
PijPjkrk


2

.
1

n2

n∑
i=1

n∑
j=1

n∑
k=1

E

[(
Ti
π
− 1

)2(Tj
π
− 1

)2(Tk
π
− 1

)2
]
PijPikP

2
jkrjrk

.
1

n2

n∑
j=1

n∑
k=1

P 3
jkrjrk ≤

1

n2

√√√√ n∑
j=1

n∑
k=1

P 6
jk

√√√√ n∑
j=1

n∑
k=1

r2j r
2
k

= O(n−1E2κ2p1/2), (A.8)

where the first equality follows from Σ1 − Σ = n−1
∑n

i=1

(
Ti
π − 1

)
ziz
′
i and z′iΣ

−1zj = nPij ,
the first wave inequality follows from tedious calculations combined with Lemma 1, (A.1), and
(A.2), the second wave inequality follows from Lemma 1 and

∑n
i=1 PijPik = Pjk in (A.2), the

first inequality follows from the Cauchy-Schwarz inequality, and the equality follows from the
definition of E2 and

n∑
j=1

n∑
k=1

P 6
jk ≤ (max

i,k
P 4
jk)

n∑
j=1

n∑
k=1

P 2
jk ≤ κ4p,

by (A.2). Therefore, Chebyshev’s inequality implies M22 +M32 = Op(n
−1/2(E2κ2p1/2)1/2).

For M23, the norm inequality implies

M23 ≤

∥∥∥∥∥ 1

n

n∑
i=1

(
Ti
π
− 1

)
zi

∥∥∥∥∥
2

∥∥Σ−1
∥∥2
op

∥∥Σ−11

∥∥
op
‖Σ1 − Σ‖2op

∥∥∥∥∥ 1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

∥∥∥∥∥
2

= Op(n
−1/2(E2κ3p(log p)2)1/2),
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where the equality follows from Lei and Ding (2021, Lemmas A.8 and A.9), i.e.,∥∥∥∥∥ 1

n

n∑
i=1

(
Ti
π
− 1

)
zi

∥∥∥∥∥
2

= Op(
√
p/n),

∥∥∥∥∥ 1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

∥∥∥∥∥
2

= Op(
√
E2κ),

‖Σ1 − Σ‖2op = Op(
√
κ log p),

∥∥Σ−1
∥∥
op

= Op(1),
∥∥Σ−11

∥∥
op

= Op(1),

that hold under our Assumption 3.1. The same argument yieldsM33 = Op(n
−1/2(E2κ3p(log p)2)1/2).

Therefore, we obtain (A.7) and the conclusion in (3.2) follows for τ̂adj.
Next, we consider τ̂bc. By the expansion for τ̂adj, we have

τ̂bc − τ =

(
Badj +

n0
n1

∆̂1 −
n1
n0

∆̂0

)
+

1

n

n∑
i=1

Li +
1

n2

∑
1≤i<j≤n

Wij

+Op(n
−1/2(E2κ2p1/2)1/2 + n−1/2(E2κ3p(log p)2)1/2).

Observe that

n0
n1

∆̂1 =
n0
n1

1

n1

n∑
i=1

TiPiiei(1)− n0
n1

1

n1

n∑
i=1

TiPiiz
′
i(β̂1 − β1)

=
n0
n1

1

n1

n∑
i=1

TiPiiei(1)− n0
n1

(
1

n1

n∑
i=1

TiPiizi

)′
Σ−11

(
1

n1

n∑
i=1

Tiziei(1)

)
,

where the first equality follows from the definitions of ∆̂1 and êi, and the second equality follows
from the definitions of β̂1 and β1, and (A.1). A similar argument yields

n1
n0

∆̂0 =
n1
n0

1

n0

n∑
i=1

(1− Ti)Piiei(0)− n1
n0

(
1

n0

n∑
i=1

(1− Ti)Piizi

)′
Σ−10

(
1

n0

n∑
i=1

(1− Ti)ziei(0)

)
.

Thus, we obtain the expansion in (3.2) for τ̂bc.
Finally, let us consider τ̂ cf . Observe that

τ̂ cf − τ =
1

n

n∑
i=1

(
Ti
π
− 1

)
{ei(1)− z′i(β̂

(i)
1 − β1)} −

1

n

n∑
i=1

(
1− Ti
1− π

− 1

)
{ei(0)− z′i(β̂

(i)
0 − β0)}

=
1

n

n∑
i=1

(
Ti
π
− 1

)
ei(1)− 1

n

n∑
i=1

(
Ti
π
− 1

)
z′i(Σ

(i)
1 )−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)− 1

n
ziei(1)


+

(
π

1− π

)2 1

n

n∑
i=1

(
Ti
π
− 1

)
z′i(Σ

(i)
0 )−1

 1

n

n∑
j 6=i

(
Ti
π
− 1

)
ziei(0)− 1

n
ziei(0)


=: M1 +M cf

2 +M cf
3 ,

where the first equality follows from the same argument in (A.4), the second equality follows
from the definition of β̂(i)t , yj(t) = z′jβt + ej(t), and (A.1).

For M cf
2 , using the relation

(Σ
(i)
t )−1 = Σ−1 − Σ−1(Σ

(i)
t − Σ)Σ−1 + Σ−1(Σ

(i)
t − Σ)(Σ

(i)
t )−1(Σ

(i)
t − Σ)Σ−1, (A.9)
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for t ∈ {0, 1}, we decompose

M cf
2 = − 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)− 1

n
ziei(1)


+

1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1(Σ

(i)
1 − Σ)Σ−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)− 1

n
ziei(1)


− 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1(Σ

(i)
1 − Σ)(Σ

(i)
1 )−1(Σ

(i)
1 − Σ)Σ−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)− 1

n
ziei(1)


=: M cf

21 +M cf
22 +M cf

23,

and

M cf
3 =

(
π

1− π

)2 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(0)− 1

n
ziei(0)


−
(

π

1− π

)2 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1(Σ

(i)
0 − Σ)Σ−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(0)− 1

n
ziei(0)


+

(
π

1− π

)2 1

n

n∑
i=1

 (Tiπ − 1
)
z′iΣ
−1(Σ

(i)
0 − Σ)′(Σ

(i)
0 )−1(Σ

(i)
0 − Σ)Σ−1

×
{

1
n

∑n
j 6=i

(
Tj
π − 1

)
zjej(0)− 1

nziei(0)
} 

=: M cf
31 +M cf

32 +M cf
33.

The term M cf
21 +M cf

31 can be written as

M cf
21 +M cf

31

= − 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)

+
1

n

n∑
i=1

(
Ti
π
− 1

)
Piiei(1)

+

(
π

1− π

)2 1

n

n∑
i=1

(
Ti
π
− 1

)
z′iΣ
−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(0)

−
(

π

1− π

)2 1

n

n∑
i=1

(
Ti
π
− 1

)
Piiei(0)

=
1

n2

∑
1≤i<j≤n

Wij +Op(n
−1/2(E2κ2)1/2), (A.10)

where the second equality follows from the definition of Wij in (A.6) and, following Lemma 1,

E

( 1

n

n∑
i=1

(
Ti
π
− 1

)
Pii

{
ei(1)−

(
π

1− π

)2

ei(0)

})2


=
1− π
π

1

n2

n∑
i=1

P 2
ii

{
ei(1)−

(
π

1− π

)2

ei(0)

}2

= O(n−1E2κ2).

Combining (A.10) and the bound from (A.14) that we shall derive later, we have

τ̂ cf − τ =
1

n

n∑
i=1

Li +
1

n2

∑
1≤i<j≤n

Wij +M cf
22 +M cf

23 +M cf
32 +M cf

33.
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Thus, it is sufficient for (3.2) to show that

M cf
22 +M cf

23 +M cf
32 +M cf

33 = Op(n
−1/2{E2κ(κ2p(log p)2 + κp1/2)}1/2). (A.11)

We now show (A.11). By applying a same argument as in (A.8), we obtain

E[(M cf
22)

2] = O(n−1E2κ2p1/2),

which impliesM cf
22 = Op(n

−1/2(E2κ2p1/2)1/2). Similarly, we obtainM cf
32 = Op(n

−1/2(E2κ2p1/2)1/2).
For M cf

23, we have

M cf
23 .

∥∥∥∥∥ 1

n

n∑
i=1

(
Ti
π
− 1

)
zi

∥∥∥∥∥
2

∥∥Σ−1
∥∥2
op
‖Σ1 − Σ‖2op

∥∥∥(Σ
(i)
1 )−1

∥∥∥
op

×


∥∥∥∥∥∥ 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)

∥∥∥∥∥∥
2

+

∥∥∥∥ 1

n
ziei(1)

∥∥∥∥
2


= Op(n

−1/2(E2κ3p(log p)2)), (A.12)

where the wave inequality follows from Cauchy-Schwarz inequality and repeated applications of
(A.9), and the equality follows from∥∥∥∥∥ 1

n

n∑
i=1

(
Ti
π
− 1

)
zi

∥∥∥∥∥
2

= Op(
√
p/n),

∥∥∥∥∥∥ 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)

∥∥∥∥∥∥
2

= Op(
√
E2κ),

∥∥∥∥ 1

n
ziei(1)

∥∥∥∥ = Op(n
−1/2(E2∞κ)1/2),

∥∥∥Σ
(i)
1 − Σ

∥∥∥
op

= Op(
√
κ log p),

∥∥∥(Σ
(i)
1 )−1

∥∥∥
op

= Op(1),

under Assumption 3.1.

A.1.2. Proof of (ii). First, we derive the stochastic order of Badj. By using the expression for
Badj in (A.6) and Lemma 1, we have

E[(Badj)2] =
(1− π){1− 3π(1− π)}

π3
1

n2

n∑
i=1

P 2
ii

{
−ei(1) +

(
π

1− π

)2

ei(0)

}2

+
(1− π)2

π2
1

n(n− 1)

n∑
i=1

n∑
j 6=i

PiiPjj

{
−ei(1) +

(
π

1− π

)2

ei(0)

}{
−ej(1) +

(
π

1− π

)2

ej(0)

}
.

By Cauchy-Schwarz inequality, we have

1

n2

n∑
i=1

P 2
ii

{
−ei(1) +

(
π

1− π

)2

ei(0)

}2

≤ E2κ
2

n
, and

1

n(n− 1)

n∑
i=1

n∑
j 6=i

PiiPjj

{
−ei(1) +

(
π

1− π

)2

ei(0)

}{
−ej(1) +

(
π

1− π

)2

ej(0)

}
≤ E2
n− 1

n∑
i=1

P 2
ii ≤

E2κp
n− 1

,

where the last inequality follows from (A.2). Thus, E[(Badj)2] = O(n−1E2κp) and subsequently
by Chebyshev’s inequality we have Badj = Op(n

−1/2(E2κp)1/2).
Second, the stochastic order of Bbc is derived from Lei and Ding (2021, Section B.1) under

our Assumption 3.1.
Third, the expression of E[Badj] is obtained following Lemma 1.
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Finally, for E[Bbc], denote Bbc = Bbc
1 +Bbc

0 , where Bbc
1 is the first two terms of Bbc, and Bbc

0

is the last two terms. Here we only derive E[Bbc
1 ] since the derivation of E[Bbc

0 ] is similar. Note
that

E[Bbc
1 ] = −E

[
1

n

n∑
i=1

{(
Ti
π
− 1

)2

− n0
n1

Ti
π

}
Piiei(1)

]

−n0
n1

E

( 1

n1

n∑
i=1

TiPiizi

)′(
1

n

n∑
i=1

ziz
′
i

)−1(
1

n1

n∑
i=1

Tiziei(1)

) .
Since E

[(
Ti
π − 1

)2
− n0

n1

Ti
π

]
= 0 by Lemma 1, the first term is zero. The second term satisfies

Q2 = −n0
n1

E

[(
1

n1

n∑
i=1

TiPiizi

)′
Σ−1

(
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

)]

= −
(
n0
n1

)2 1

n

n∑
i=1

P 2
iiei(1) +

(
n0
n1

)2 1

n(n− 1)

n∑
i=1

n∑
j 6=i

PiiPijej(1)

= −
(
n0
n1

)2 1

n− 1

n∑
i=1

P 2
iiei(1),

where the first equality follows from (A.1), the second equality follows from Lemma 1, and the last
equality follows from

∑n
j 6=i Pijej(1) = −z′i(Z ′Z)−1ziei(1) (by (A.1)). Therefore, the expression

for E[Bbc
1 ] follows.

A.2. Proof of Theorem 2.

A.2.1. Proof of (i). Note that

E

[
1

n

n∑
i=1

Li

]
= E

[
Ti
π
− 1

]
1

n

n∑
i=1

(
ei(1) +

π

1− π
ei(0)

)
= 0,

by Lemma 1, and

V

(
1

n

n∑
i=1

Li

)
=

1

n2

n∑
i=1

V
((

Ti
π
− 1

)(
ei(1) +

π

1− π
ei(0)

))
+

2

n2

∑
1≤i<j≤n

C
((

Ti
π
− 1

)(
ei(1) +

π

1− π
ei(0)

)
,

(
Tj
π
− 1

)(
ej(1) +

π

1− π
ej(0)

))

=
1− π
π

1

n2

n∑
i=1

(
ei(1) +

π

1− π
ei(0)

)2

−1− π
π

2

n2(n− 1)

∑
1≤i<j≤n

(
ei(1) +

π

1− π
ei(0)

)(
ej(1) +

π

1− π
ej(0)

)

=
1− π
π

1

n

{
1

n− 1

n∑
i=1

(
ei(1) +

π

1− π
ei(0)

)2
}

=
n0
n1

1

n(n− 1)

n∑
i=1

ei(1)2 +
n1
n0

1

n(n− 1)

n∑
i=1

ei(0)2 +
2

n(n− 1)

n∑
i=1

ei(1)ei(0)
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.
E2
n
, (A.13)

where the second equality follows from Lemma 1, the third equality follows from the relation
1

n−1
∑n

i=1(ai − ā)2 = 1
n

∑n
i=1 a

2
i − 2

n(n−1)
∑

i<j aiaj and (A.1), and the wave inequality follows
from the definition of E2 and Cauchy-Schwarz inequality. Thus, Chebyshev’s inequality implies

1

n

n∑
i=1

Li = Op(n
−1/2E1/22 ). (A.14)

Next, we consider n−2
∑

1≤i<j≤nWij . Let ρi = −ei(1) +
(

π
1−π

)2
ei(0). By (A.6), it can be

written as Wij =
(
Ti
π − 1

)(
Tj
π − 1

)
z′iΣ
−1zj(ρi + ρj), and we have

E

 1

n2

∑
1≤i<j≤n

Wij

2 . 1

n4

∑
1≤i<j≤n

E[W 2
ij ] =

(1− π)2

π2
1

2n(n− 1)

n∑
i=1

n∑
j 6=i

P 2
ij(ρi + ρj)

2,

where the first equality follows from Lemma 1. By using (A.2), we have

1

n(n− 1)

n∑
i=1

n∑
j 6=i

P 2
ijρ

2
i =

1

n(n− 1)

n∑
i=1

(Pii − P 2
ii)ρ

2
i = O(n−1E2κ) +O(n−1E2κ2),

and this implies

1

n(n− 1)

n∑
i=1

n∑
j 6=i

P 2
ijρiρj =

1

n(n− 1)

n∑
i=1

n∑
j=1

P 2
ijρiρj +O(n−1E2κ2)

≤ 1

n(n− 1)

√√√√ n∑
i=1

n∑
j=1

P 4
ij

√√√√ n∑
i=1

n∑
j=1

ρ2i ρ
2
j +O(n−1E2κ2)

= O(n−1E2κp1/2) +O(n−1E2κ2),

where the inequality follows from Cauchy-Schwarz inequality, and the last equality follows
from

∑n
i=1

∑n
j=1 P

4
ij ≤ κ2

∑n
i=1

∑n
j=1 P

2
ij = κ2p (by (A.2)). Thus, E[(n−2

∑
1≤i<j≤nWij)

2] =

O(n−1E2κp1/2) and Chebyshev’s inequality implies n−2
∑

1≤i<j≤nWij = Op(n
−1/2(E2κp1/2)1/2).

A.2.2. Proof of (ii). For σ2L = V(n−1/2
∑n

i=1 Li), (A.13) implies σ2L = O(E2) and

σ2L =
n0
n1

1

n− 1

n∑
i=1

ei(1)2 +
n1
n0

1

n− 1

n∑
i=1

ei(0)2 +
2

n− 1

n∑
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ei(1)ei(0)

=
n

n1(n− 1)

n∑
i=1

ei(1)2 +
n

n0(n− 1)

n∑
i=1

ei(0)2 − 1

n− 1

n∑
i=1

(ei(1)− ei(0))2,

by direct algebra.
For σ2W = V(n−3/2

∑
1≤i<j≤nWij), the above argument implies σ2W = Op(E2κp1/2) and

σ2W ∼ 1

2n3

n∑
i=1

n∑
j 6=i

E

(Tiπ − 1

)2(Tj
π
− 1

)2

 z′iΣ
−1zj
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π
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}
+z′jΣ
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{
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π
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ej(0)

}
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2
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=

(
1− π
π

)2 1
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2

∼ n20
n21

n∑
i=1

Piiei(1)2 +
n21
n20

n∑
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by Lemma 1 and nPij = z′iΣ
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A.3. Proof of Theorem 3. We first show the statement on E[σ̂2HC3]. Decompose
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)
zjej(1)− 1

n
ziei(1)


+

2n

n1

{
1

n

n∑
i=1

(
Ti
π
− 1

)
ziei(1)

}′
Σ−1(Σ

(i)
1 − Σ)(Σ

(i)
1 )−1

 1

n

n∑
j 6=i

(
Tj
π
− 1

)
zjej(1)− 1

n
ziei(1)


=: σ̂2131 + σ̂2132,

where the first equality follows from (A.1), and the second equality follows from the relation
(Σ

(i)
1 )−1 = Σ−1 − Σ−1(Σ

(i)
1 − Σ)(Σ

(i)
1 )−1.

By the same argument as in (A.12), we have σ̂2132 = op(E2κp1/2). For σ̂2131, we have

E[σ̂2131] = − 2

n1

n∑
i=1

n∑
j 6=i

E
[(

Ti
π
− 1

)(
Tj
π
− 1

)]
Pijei(1)ej(1) +

2

n1

n∑
i=1

E
[
Ti
π
− 1

]
Piiei(1)2
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∼ 2n0
n21n

n∑
i=1

n∑
j 6=i

Pijei(1)ej(1) = − 2n0
n21n

n∑
i=1

Piiei(1)2

= O

(
E2κ
n

)
,

where the wave relation follows from Lemma 1 and the second and third equalities follow from
(A.1) and (A.2). Thus, σ̂213 is asymptotically negligible and we obtain E[σ̂21] ∼ E[σ̂211 + σ̂212].

By E[Ti] = π, we have E[σ̂211] ∼ n
n1

(
1

n−1
∑n

i=1 ei(1)2
)
. Furthermore, by using the relation

(Σ
(i)
1 )−1 = Σ−1 − Σ−1(Σ

(i)
1 − Σ)(Σ

(i)
1 )−1 and similar argument to (A.12), we have

E[σ̂212] ∼
1

n21n

n∑
i=1

n∑
j 6=i

n∑
k 6=i

E
[
Ti

(
Tj
π
− 1

)(
Tk
π
− 1

)]
z′iΣ
−1zjz

′
kΣ
−1ziej(1)ek(1)

∼ n0
n21

n∑
i=1

n∑
j 6=i

P 2
ijej(1)2 − n0n

n31(n− 1)

n∑
i=1

n∑
j 6=i

n∑
k 6=i,j

PijPkiej(1)ek(1)

=
n0
n21


n∑
i=1

n∑
j=1

P 2
ijej(1)2 −

n∑
i=1

P 2
iiei(1)2


− n0n

n31(n− 1)

{
n∑
i=1

n∑
j=1

n∑
k=1

PijPkiej(1)ek(1)−
n∑
i=1

n∑
j 6=i

P 2
ijej(1)2

−2
n∑
j=1

n∑
k 6=j

PjjPkjej(1)ek(1)−
n∑
i=1

P 2
iiei(1)2

}

=
n0
n21

n∑
i=1

(Pii − P 2
ii)ei(1)2 − n0n

n31(n− 1)

n∑
j=1

P 2
jjej(1)2

∼ n0
n21

n∑
i=1

Piiei(1)2,

where the second wave relation follows from Lemma 1, the second equality follows from (A.1)
and (A.2), and the last wave relation follows from Pii ≤ κ. Combining these results, we obtain

E[σ̂21] ∼ n

n1

(
1

n− 1

n∑
i=1

ei(1)2

)
+
n0
n21

n∑
i=1

Piiei(1)2.

The same argument yields E[σ̂20] ∼ n
n0

(
1

n−1
∑n

i=1 ei(0)2
)

+ n1

n2
0

∑n
i=1 Piiei(0)2, and the conclusion

for E[σ̂2HC3] follows.
We next show the result for E[σ̂2HC0]. The proof is same as the one for E[σ̂2HC3] above except for

the terms corresponding to E[σ̂212] and E[σ̂2131]. By a similar argument, the term corresponding
to E[σ̂212] for the case of E[σ̂2HC0] is written as

n

n21

n∑
i=1

n∑
j=1

n∑
k=1

E
[
Ti

(
Tj
π
− 1

)(
Tk
π
− 1

)]
PijPkiej(1)ek(1) ∼ n0

n21

n∑
i=1

Piiei(1)2.
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On the other hand, the term corresponding to E[σ̂2131] is written as

E

− 2

n1

n∑
i=1

n∑
j=1

(
Ti
π
− 1

)(
Tj
π
− 1

)
Pijei(1)ej(1)


=

1− π
π

2

n1n

n∑
i=1

n∑
j 6=i

Pijei(1)ej(1)− 1− π
π

2

n1

n∑
i=1

Piiei(1)2

= − 2n0
n21n

n∑
i=1

Piiei(1)2︸ ︷︷ ︸
O
(

E2κ
n

)
− 2n0

n21

n∑
i=1

Piiei(1)2︸ ︷︷ ︸
O(E2κ)

,

where the first equality follows from Lemma 1 and the second equality follows from (A.1) and
(A.2). Therefore, due to the second term, we obtain the conclusion for E[σ̂2HC0].

A.4. Auxiliary Lemmas.

Lemma 1. For random variables {Ti}ni=1 sampled without replacement with probability P{Ti =

1} = n1/n = π → π∞ ∈ (0, 1), it holds

E[Ti] = π, V(Ti) = π(1− π), E[(Ti − π)(Tj − π)] = −π(1− π)

n− 1
,

E[(Ti − π)3] = π(1− π)(1− 2π),

E[(Ti − π)2(Tj − π)] = −π(1− π)(1− 2π)

n− 1
,

E[(Ti − π)(Tj − π)(Tk − π)] =
2π(1− π)(1− 2π)

(n− 1)(n− 2)
,

E[(Ti − π)4] = π(1− π){1− 3π(1− π)}

E[(Ti − π)2(Tj − π)2] =
n

n− 1
π2(1− π)2 +O(n−1),

E[(Ti − π)2(Tj − π)(Tk − π)] = − n

(n− 1)(n− 2)
π2(1− π)2 +O(n−2),

E[(Ti − π)(Tj − π)(Tk − π)(Tl − π)] =
3n

n− 1

π2(1− π)2

(n− 2)(n− 3)
+O(n−3),

E[(Ti − π)3(Tj − π)3] = O(1),

E[(Ti − π)4(Tj − π)2] = O(1),

E[(Ti − π)5(Tj − π)] = O(n−1),

E[(Tq − π)4(Ti − π)(Tj − π)] = O(n−1),

E[(Tq − π)2(Ti − π)2(Tj − π)(Tk − π)] = O(n−1),

E[(Tq − π)3(Ti − π)(Tj − π)(Tk − π)] = O(n−2),

E[(Tq − π)2(Ti − π)(Tj − π)(Tk − π)(Tl − π)] = O(n−2),

E[(Ti − π)(Tj − π)(Tk − π)(Tl − π)(Tm − π)(Tq − π)] = O(n−3).

for any six mutually distinctive i, j, k, l,m, q ∈ {1, ..., n}.
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This Lemma is a direct implication of the following Lemmas 2, 3, 4, 5, and 6.

Lemma 2. Under the conditions of Lemma 1, it holds

E[TiTj ] = π2 +O(n−1), E[TiTjTk] = π3 +O(n−1),

E[TiTjTkTl] = π4 +O(n−1), E[TiTjTkTlTm] = π5 +O(n−1),

E[TiTjTkTlTmTq] = π6 +O(n−1).

Proof. Observe that

E[TjTk] =
n1(n1 − 1)

n(n− 1)
= π2 +

n1(n1 − n)

n2(n− 1)
= π2 +O(n−1),

E[TjTkTl] =
n1(n1 − 1)(n1 − 2)

n(n− 1)(n− 2)
= π3 +

n1[n
2
1(3n− 2)− n2(3n1 − 2)]

n3(n− 1)(n− 2)
= π3 +O(n−1).

Similarly, direct calculations yield that

E[TiTjTkTl] =π4 +
n1[n

3
1(6n

2 − 11n+ 6)− n3(6n21 − 11n1 + 6)]

n4(n− 1)(n− 2)(n− 3)
= π4 +O(n−1),

E[TqTiTjTkTl] =π5 +
n1[n

4
1(10n3 − 35n2 + 50n− 24)− n4(10n31 − 35n21 + 50n1 − 24)]

n5(n− 1)(n− 2)(n− 3)(n− 4)
.

Finally, it holds that

E[TiTjTkTlTmTq]

=π6 +
n1[n

5
1(15n4 − 85n3 + 225n2 − 274n+ 120)− n5(15n41 − 85n31 + 225n21 − 274n1 + 120)]

n6(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

=π6 +O(n−1).

�

Lemma 3. Under the conditions of Lemma 1, it holds

E[(Tj − π)2(Tk − π)2] = π2(1− π)2 +O(n−1),

E[(Tj − π)2(Tk − π)2(Tl − π)2] = −π3(1− π)3 +O(n−1),

E[(Tj − π)4] = π(1− π)[1− 3π(1− π)].

Proof. For the first result, by the fact that (Tj − π)2 = (1− 2π)Tj + π2, we have

E[(Tj − π)2(Tk − π)2] =E[(Tj(1− 2π) + π2)(Tk(1− 2π) + π2)]

=
n1(n1 − 1)

n(n− 1)

(
1− 2

n1
n

)2
+

2n31
n3

(
1− 2

n1
n

)
+
n41
n4

=
n

n− 1
π2(1− π)2 +O(n−1).

For the second result, using the fact that (Tj − π)2 = (1− 2π)Tj + π2, one has

E[(Tj − π)2(Tk − π)2(Tl − π)2]

=(1− 2π)3E[TjTkTl] + (1− 2π)2π23E[TjTk] + (1− 2π)π43E[Tj ] + π6

=− π3(1− π)3 +O(n−1).
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Finally, notice that

E[(Ti − π)4] =E[((1− 2π)Ti + π2)2] = −3π4 + 6π3 − 4π2 + π = π(1− π)[1− 3π(1− π)].

�

Lemma 4. Under the conditions of Lemma 1, it holds

E[(Ti − π)(Tj − π)] = −π(1− π)

(n− 1)
= O(n−1),

E[(Ti − π)(Tj − π)(Tk − π)] =
2π(1− π)(1− 2π)

(n− 1)(n− 2)
= O(n−2),

E[(Ti − π)(Tj − π)(Tk − π)(Tl − π)] =
3nπ2(1− π)

(n− 1)(n− 2)(n− 3)
+O(n−3) = O(n−2).

Proof. First, observe that

E[(Ti − π)(Tj − π)] =E[TiTj ]− π2 =
n1(n1 − n)

n2(n− 1)
= −π(1− π)

(n− 1)
= O(n−1).

and, similarly

E[(Ti − π)(Tj − π)(Tk − π)] =
n1(n1 − 1)(n1 − 2)

n(n− 1)(n− 2)
− 3

n21(n1 − 1)

n2(n− 1)
+ 2

n31
n3

=
2π(1− π)(1− 2π)

(n− 1)(n− 2)
= O(n−2),

which shows the first statement.
Secondly, note that using Lemma 1, direct calculations yield that

E[(Ti − π)(Tj − π)(Tk − π)(Tl − π)] =E[TiTjTkTl]− 4πE[TiTjTk] + 6π3E[TiTj ]− 3π4

=
3n1(n1 − n)(n21n− n1n2 + 6n1(n1 − n) + 2n2)

n4(n− 1)(n− 2)(n− 3)

=
3nπ2(1− π)

(n− 1)(n− 2)(n− 3)
+O(n−3) = O(n−2).

�

Lemma 5. Under the conditions of Lemma 1, it holds

E[(Ti − π)2(Tj − π)] = −π(1− π)(1− 2π)

(n− 1)
, E[(Ti − π)2(Tj − π)(Tk − π)] = − nπ2(1− π)2

(n− 1)(n− 2)
+O(n−2).

Proof. The first result follows from the calculation that

E[(Ti − π)2(Tj − π)] =E[((1− 2π)Ti + π2)(Tj − π)] = −π(1− π)(1− 2π)

(n− 1)
.

For the second statement, note that

E[(Ti − π)2(Tj − π)(Tk − π)] =
n1n0(n

2
1n− n1n2)

n4(n− 1)(n− 2)
+
n1n0(6n

2
1 − 6n1n+ 2n2)

n4(n− 1)(n− 2)

=− nπ2(1− π)2

(n− 1)(n− 2)
+O(n−2).
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�

Lemma 6. Under the conditions of Lemma 1, it holds

E[(Ti − π)(Tj − π)(Tk − π)(Tl − π)(Tm − π)(Tq − π)] = O(n−3),

E[(Ti − π)3(Tj − π)3] = O(1), E[(Ti − π)4(Tj − π)2] = O(1),

E[(Ti − π)5(Tj − π)] = O(n−1), E[(Tq − π)4(Ti − π)(Tj − π)] = O(n−1),

E[(Tq − π)2(Ti − π)2(Tj − π)(Tk − π)] = O(n−1),

E[(Tq − π)3(Ti − π)(Tj − π)(Tk − π)] = O(n−2),

E[(Tq − π)2(Ti − π)(Tj − π)(Tk − π)(Tl − π)] = O(n−2).

Proof. By a brute force calculation, we have

E[(Tq − π)(Ti − π)(Tj − π)(Tk − π)(Tl − π)(Tm − π)]

=E[TqTiTjTkTlTm]− 6πE[TqTiTjTkTl] + 15π2E[TqTiTjTk]− 20π3E[TqTiTj ] + 15π4E[TqTi]− 5π6

=
5n1[−24n5 + 2n1n

4(72 + 13n)− 3n21n
3(120 + 46n+ n2) + n51(120 + 86n+ 3n2)]

n6(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

+
5n1[−3n41n(120 + 86n+ 3n2) + n31n

2(480 + 284n+ 9n2)]

n6(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

=O(n8n−11) = O(n−3).

Next, note that

(Ti − π)3 = (3π2 − 3π + 1)Ti − π3,

Thus

E[(Ti − π)3(Tj − π)3] =E[((3π2 − 3π + 1)Ti − π3)((3π2 − 3π + 1)Tj − π3)]

=π − 6π2 + 15π3 − 20π4 + 15π5 − 7π6.

The third statement can be shown similarly. Next, as

(Ti − π)5 = (5π4 − 10π3 + 10π2 − 5π + 1)Ti − π5,

we have

E[(Ti − π)5(Tj − π)] =(5π4 − 10π3 + 10π2 − 5π + 1)E[TiTj ]− (5π4 − 10π3 + 10π2 − 5π + 1)π2 − π6 + π6

=O(n−1).

Next, by Lemma 3, it holds that

E[(Tq − π)4(Ti − π)(Tj − π)] = O(1)E[(Ti − π)(Tj − π)] = O(n−1),

E[(Tq − π)2(Ti − π)2(Tj − π)(Tk − π)] = O(1)E[(Tj − π)(Tk − π)] = O(n−1),

E[(Tq − π)3(Ti − π)(Tj − π)(Tk − π)] = O(1)E[(Ti − π)(Tj − π)(Tk − π)] = O(n−2).
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Similarly, by Lemma 4, we have

E[(Tq − π)2(Ti − π)(Tj − π)(Tk − π)(Tl − π)] = O(1)E[(Ti − π)(Tj − π)(Tk − π)(Tl − π)] = O(n−2),

E[(Tq − π)2(Ti − π)(Tj − π)(Tk − π)(Tl − π)] = O(1)E[(Ti − π)(Tj − π)(Tk − π)(Tl − π)] = O(n−2).

�
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Appendix B. Extra simulations

In this section, we examine the behaviors of the unbiased estimator in (3.4) and compare
it with the unbiased estimator for interacted regression proposed in Theorem 4.2 of Chang,
Middleton, and Aronow (2021) (CMA (interacted)). We follow the simulation design schemes
1.1-1.3 and 2.1-2.3 from Chang, Middleton, and Aronow (2021); specifically, we set n = 24,
n1 = 8, and p = 2. For 1.1-1.3 we generate the i-th unit of the two the observed covariates as
the i/(n + 1)-th quantile of Beta(2.5, 2.5) and Tri(0, 1) distributions, respectively. For 2.1-2.3,
the units of two observed covariates are generated as the i/(n+ 1)-th quantile of Beta(2, 5) and
N(0, 1) distributions, respectively. For scheme 1.1 and 2.1, (Yi(0), Yi(1)) = (0, 2nPii), for 1.2 and
2.2, (Yi(0), Yi(1)) = (−nPii, nPii), and for 1.3 and 2.3, (Yi(0), Yi(1)) = (nPii, nPii). We simulate
each design scheme 106 times. The results are presented in Table 3.

CMA (interacted) unbiased (3.4)
DGP1.1

Bias -0.000 -0.000
Variane 0.325 0.323

DGP1.2
Bias -0.000 -0.000

Variane 0.331 0.330

DGP1.3
Bias 0.000 0.000

Variane 0.166 0.165

DGP2.1
Bias -0.000 -0.000

Variane 0.193 0.170

DGP2.2
Bias 0.000 0.000

Variane 0.051 0.048

DGP2.3
Bias -0.000 -0.000

Variane 0.057 0.047
Table 3. Comparison of unbiased estimators.
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Figure B.1. Relative biases for X ∼ t(3) (n = 500).
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Figure B.2. Relative biases for X ∼ t(4) (n = 500).
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Covariates: X ∼ t(3)
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Covariates: X ∼ t(4)
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Figure B.3. Standard deviation of alternative estimators relative to the stan-
dard deviation of the cross-fitted estimator (n = 500).
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Covariates: X ∼ t(3)
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Figure B.4. Coverage rates (n = 500).
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Covariates: X ∼ t(3)
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Figure B.5. Comparing coverage rates of HC3 and dbHC3 (n = 500).
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