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Abstract. Parametric binary choice models are studied from the view-
point of information geometry. The model set is a dually flat manifold
with dual connections, which are naturally derived from the Fisher in-
formation metric. Under the dual connections, the canonical divergence
and the Kullback-Leibler (KL) divergence of the binary choice model
coincide if and only if the model is a logit. The results are applied to a
logit estimation with linear constraints.

Keywords: Binary Choice Models · Discrete Choice Models · Logit ·
Multinomial Logit · Single-Index Models.

1 Introduction

Information geometry has been applied to econometric models such as the stan-
dard linear model, a Poisson regression, Wald tests, the ARMA model, and many
other examples [3, 4, 8, 10]. In this work, we apply the method to a standard bi-
nary choice model. Let x be an Rd-valued random vector. Let y ∈ {0, 1} be a
binary outcome such that

y =

{
1 if y∗ ≥ 0

0 if y∗ < 0
, (1)

where θ ∈ Rd, y∗ = x · θ − ϵ, ϵ ⊥⊥ x, and E[ϵ] = 0. The choice probability
conditioned on x is given by

P{y = 1 | x} = P{ϵ ≤ x · θ | x} = F (x · θ), (2)

where the distribution F of ϵ is known to a statistician. Let pθ be the density of
the binary response model given by

pθ(y, x) = F (x · θ)y(1− F (x · θ))1−ypX(x), (y, x) ∈ {0, 1} × Rd, (3)

where pX denotes the marginal density of x.
The model is widely used in social sciences to describe decision-makers’

choices between two alternatives. These alternatives may represent school, la-
bor supply, marital status, or transportation choices. See [9, 11] for a list of
empirical applications in social sciences.
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The model is called probit when F is the standard normal distribution, that
is,

F (u) =

∫ u

−∞

1√
2π

exp

(
−s

2

2

)
ds,

and logit when F is the standard logistic distribution, that is,

F (u) =
expu

1 + expu
. (4)

In particular, the logit model is widely used because the choice probability F (x·θ)
has a closed form and is readily interpretable [11]. A goal of the paper is to show
that, among parametric binary response models, the logit model exhibits good
geometric properties because of its ‘conditional’ exponentiality.

The remainder of this paper is organized as follows. In Section 2, the geometry
of the binary choice model is formulated. In Section 3, two divergences, the
canonical divergence and the Kullback-Leibler (KL) divergence, are introduced.
In particular, the logit is shown to be a unique model whose canonical divergence
is equal to the KL divergence. In Section 4, the logit model with linear constraints
is studied. In Section 5, the conclusions of this study are presented.

2 Geometry of the Binary Choice Models

Assume that F : R → [0, 1] is a smooth distribution function of ϵ. Let Θ ∈ O(Rd)
be a set of parameters θ. Given pX , the model set

P = {pθ | θ ∈ Θ} (5)

is considered as a d-dimensional C∞ manifold with a canonical coordinate system
θ 7→ pθ.

The tangent space of P at pθ is simply denoted as TθP and is given by

TθP = Span {(∂1)θ, · · · , (∂d)θ} ,

where ∂i = ∂
∂θi

for i = 1, · · · , d. The score of the model is

∂

∂θ
log pθ(y, x) =

y − F (x · θ)
F (x · θ)(1− F (x · θ))

f(x · θ)x (6)

and the Fisher information matrix is

G(θ) = E

(
∂

∂θ
log pθ

)(
∂

∂θ
log pθ

)⊤

= E

[
f(x · θ)2

F (x · θ)(1− F (x · θ))
xx⊤

]
because E

[
(y − F (x · θ))2

∣∣x] = F (x · θ)(1− F (x · θ)).
The Fisher information metric g is introduced on TθP by

gθ(X,Y ) = E

[
X

(∫ x·θ

0

f(u)√
F (u)(1− F (u))

du

)
Y

(∫ x·θ

0

f(u)√
F (u)(1− F (u))

du

)]
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for X, Y ∈ TθP. In particular, the (i, j) component of g at θ is

gij(θ) = gθ(∂i, ∂j) = E

[
f(x · θ)2

F (x · θ)(1− F (x · θ))
xixj

]
.

Hence, the Levi-Civita connection ∇ of (P, g) is given by the connection coeffi-
cients

Γij,k(θ) =
1

2

[
(∂i)θgkj(θ) + (∂j)θgik(θ)− (∂k)θgij(θ)

]
= E

[(
f(x · θ)f ′(x · θ)

F (x · θ)(1− F (x · θ))
+
f(x · θ)3(F (x · θ)− 1/2)

F (x · θ)2(1− F (x · θ))2

)
xixjxj

]
for 1 ≤ i, j, k ≤ n. The coefficients show symmetry on (i, j, k). In particular,
Γij,k(θ) = Γji,k(θ), which implies that (P, g,∇) is a tortion-free manifold.

The symmetry of the connection is caused by the single-index structure of
the model: pθ depends on θ only through the linear index x · θ. To see this,
consider a general linear-index model p(y, x ·θ) of the joint density of (y, x). The
score is

∂

∂θ
log p(y, x · θ) = p2(y, x · θ)

p(y, x · θ)
x,

where p2(y, x · θ) := ∂
∂up(y, u)

∣∣
u=x·θ. The Fisher information matrix is G(θ) =

E[γ(y, x · θ)xx⊤] with

γ(y, x · θ) =
(
p2(y, x · θ)
p(y, x · θ)

)2

.

Then,

(∂i)θgkj(θ) = (∂j)θgik(θ) = (∂k)θgij(θ) = E [γ2(y, x · θ)xixjxk]

with γ2(y, x · θ) := ∂
∂uγ(y, u)

∣∣
u=x·θ, and symmetric connection coefficients

Γij,k(θ) =
1

2
E [γ2(y, x · θ)xixjxk]

are obtained.
By the symmetry of the Levi-Civita connection, the α-connection ∇(α) is

naturally defined by

Γ
(α)
ij,k(θ) =

1− α

2
Γij,k(θ) (7)

for each α ∈ R. A pair (∇(α),∇(−α)) provides the dual connections of (P, g),
such that

Xgθ(Y, Z) = gθ(∇(α)
X Y, Z) + gθ(Y,∇(−α)

X Z)

for every X,Y, Z ∈ X (P), where X (P) is the family of smooth vector fields on
P.
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Theorem 1. (P, g,∇(+1),∇(−1)) is a dually flat space with dual affine cordi-
nates (θ, η); θ is the ∇(+1)-affine coodinate and η = (η1, · · · , ηd) given by

ηj = E

[(∫ x·θ

0

f(u)2

F (u)(1− F (u))
du

)
xj

]
(8)

for 1 ≤ j ≤ d is the ∇(−1)-affine coodinate.

Proof. For α = 1, Γ (+1)
ij,k ≡ 0 holds for all i, j, and k. Moreover, since

gij(θ) = ∂i∂jψ(θ)

holds with potential ψ : Θ → R defined by

ψ(θ) = E

[∫ x·θ

0

(∫ v

0

f(u)2

F (u)(1− F (u))
du

)
dv

]
,

the dual-affine coordinates are obtained as follows:

ηj = ∂jψ(θ) = E

[(∫ x·θ

0

f(u)2

F (u)(1− F (u))
du

)
xj

]
for 1 ≤ j ≤ d. ut

For later convenience, we denote the inverse function of

∂ψ : Θ → Rd, θ 7→ η = (∂1ψ(θ), · · · , ∂dψ(θ))

by (∂ψ)−1. Because the Hesse matrix ∂2ψ(θ) is equal to the Fisher information
matrix G(θ) and is therefore positive definite, ∂ψ : Θ → ∂ψ(Θ) is invertible at
any η ∈ ∂ψ(Θ).

The dual potential φ(η) is given by

φ(η) = max
θ

η · θ − ψ(θ) = η · (∂ψ)−1(η)− ψ((∂ψ)−1(η)), (9)

which is the Legendre transformation of ψ(θ). Let ∂i = ∂
∂ηi

for 1 ≤ i ≤ d, then
θi = ∂iφ(η) holds.

Corollary 1. The ∇(±1)-geodesic path connecting p, q ∈ P is given by t ∈
[0, 1] → p

θ
(±1)
t

∈ P, where

θ
(+1)
t = (1− t)θp + tθq (10)

and
θ
(−1)
t = (∂ψ)−1((1− t)ηp + tηq) (11)

for 0 ≤ t ≤ 1.
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The ∇(−1)-geodesic is a solution to the ordinary differential equation,

θ̇t = G(θt)
−1(ηq − ηp), θ0 = θp.

To see this, let η(−1)
t = ∂ψ(θ

(−1)
t ) = (1− t)ηp + tηq. Then,

d

dt
η
(−1)
t = ∂2ψ(θ

(−1)
t )

d

dt
θ
(−1)
t = ηq − ηp,

where G(θ(−1)
t ) = ∂2ψ(θ

(−1)
t ).

3 The Logit Model

For a dually flat manifold with dual affine coordinates (θ, η) and dual potentials
(ψ,φ), the canonical divergence (or U -divergence with U = ψ) is defined as

D(p‖q) = φ(ηp) + ψ(θq)− ηp · θq (12)

[2, 6, 7]. In the case of the binary response model, the divergence is shown as

D(p‖q) = [ηp · θp − ψ(θp)] + ψ(θq)− ηp · θq

= E

[∫ x·θq

x·θp

(∫ v

0

f(u)2

F (u)(1− F (u))
du

)
dv

]

−E

[(∫ x·θp

0

f(u)2

F (u)(1− F (u))
du

)
x · (θq − θp)

]
(13)

for each p and q in P because φ(ηp) = ηp · θp − ψ(θp) and

ψ(θq)− ψ(θp) = E

[∫ x·θq

x·θp

(∫ v

0

f(u)2

F (u)(1− F (u))
du

)
dv

]
.

The following results are standard:

Theorem 2. Let p, q, r be in P. Let θ(+1) be the ∇(+1)-geodesic path connecting
p and q, and let θ(−1) be the ∇(−1)-geodesic path connecting q and r. If θ(+1)

and θ(−1) are orthogonal at the intersection q in the sense that

gq

((
d

dt

)
q

θ
(+1)
t ,

(
d

dt

)
q

θ(−1)
q

)
= 0,

then we have
D(p‖r) = D(p‖q) +D(q‖r). (14)

Corollary 2. The Pythagorean formula (14) holds if (ηp − ηq) · (θq − θr) = 0.



6 H. Tanaka

An alternative choice for the divergence on P is the KL divergence,

KL(p‖q) = Ep

[
log

p(y, x)

q(y, x)

]
.

In the case of the binary response model, the KL divergence is

KL(p‖q) = Ep

[
log

yF (x · θp) + (1− y)(1− F (x · θp))
yF (x · θq) + (1− y)(1− F (x · θq))

]
= E

[
F (x · θp) log

(
F (x · θp)
F (x · θq)

)]
+E

[
(1− F (x · θp)) log

(
1− F (x · θp)
1− F (x · θq)

)]
(15)

because Ep[y|x] = F (x·θp). The canonical divergence (13) and the KL divergence
(15) generally do not coincide. In a special case where F is a logistic distribution,
they are equivalent.

Theorem 3. D = KL holds for arbitrary pX if and only if F is a logistic
distribution; that is,

F (u) =
exp(βu)

1 + exp(βu)
(16)

where β > 0.

Proof. If F is a logistic distribution, βF (1 − F ) = f is true. This equation is
substituted on the right-hand side of (13) to obtain D = KL.

Now, we assume that D ≡ KL holds for an arbitrary pX . Since

(∂θ)p(∂θ)qD(p‖q) = −E
[

f(x · θp)2

F (x · θp)(1− F (x · θp))
xx⊤

]
and

(∂θ)p(∂θ)qKL(p‖q) = −E
[

f(x · θp)f(x · θq)
F (x · θq)(1− F (x · θq))

xx⊤
]
,

D(p‖q) ≡ KL(p‖q) implies that

f(x · θp)2

F (x · θp)(1− F (x · θp))
≡ f(x · θp)f(x · θq)
F (x · θq)(1− F (x · θq))

for arbitrary p and q. This is possible only if there exists a positive constant β
such that

f(u)

F (u)(1− F (u))
≡ β.

Therefore, F is the logistic distribution. ut
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In the case of β = 1, the results in the previous section are largely simplified.
The Fisher information metric is given by

gij(θ) = E [f(x · θ)xixj ]

for 1 ≤ i, j ≤ d. The ∇(−1)-affine coordinate η is expressed as

ηj = E [F (x · θ)xj ]

for 1 ≤ j ≤ d. The potential is

ψ(θ) = E [log (1 + exp(x · θ))] . (17)

The canonical divergence is expressed as follows:

D(p‖q) = E

[
log

(
1 + exp(x · θq)
1 + exp(x · θp)

)]
− E

[
exp(x · θp)

1 + exp(x · θp)
x

]
· (θq − θp), (18)

which is equal to KL(p‖q).
The logit model exhibits geometrically desirable properties not only because

of the explicit integrability of F . We say that a statistical model P = {pθ | θ ∈ Θ}
is an exponential family if it is expressed as

p(z, θ) = exp

[
C(z) +

d∑
i=1

θiβi(z)− ψ(θ)

]
. (19)

It is widely known that the (curved) exponential family possesses desirable prop-
erties such as higher-order efficiency of the maximum likelihood estimation [1,
5]. Although the logit model is not truely exponential, the conditional density
pθ(y|x) is still written as

pθ(y|x) = exp ((x · θ)δ1(y) + δ0(y)− ψ(θ|x)) , (20)

where

δi(y) =

{
1 if y = i

0 if y 6= i
,

and
ψ(θ|x) = log (1 + exp(x · θ)) .

Conditioned by x, the model (20) belongs to an exponential family with potential
ψ(θ|x). Notably, ψ(θ) = E [ψ(θ|x)].

The marginal density pX does not appear in the score of the model (6).
Hence, pX plays a minor role in the estimation of θ. The statistical properties
of the model are primarily determined by pθ(y|x). In fact, the following result is
obtained.
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Theorem 4. Assume that the density of z conditioned on w is given by

qθ(z|w) = exp (θ · β(z|w)− ψ(θ|w)) , (21)

where θ ∈ Θ ∈ O(Rd), β(z|w) is an Rd-valued function of (z, w), and

ψ(θ|w) := log

∫
exp (θ · β(z|w)) dz. (22)

Then, the KL divergence of Q = {qθ|θ ∈ Θ} is equivalent to the canonical
divergence D of Q with potential ψ(θ) = E [ψ(θ | w)].

We can generalize Theorem 3 to cover the multinomial discrete choice model.
Let {1, · · · , k} be the choice set. Assume that the choice probability conditioned
on x is now given by

P{y = i | x} = F (x · θi)

for 1 ≤ i ≤ k, where F is a smooth distribution function and θ =
[
θ1 · · · θk

]
∈

(Rd)k with θi = (θ1i , · · · , θdi ) ∈ Rd. Let pX be the marginal density of x, and
let Θ ∈ O((Rd)k) be the parameter set. Then, the multinomial choice model
{ρθ | θ ∈ Θ} is given by

ρθ(y, x) =

k∑
i=1

δi(y)F (x · θi)pX(x). (23)

In particular, when F is the standard logit distribution, the model becomes the
multinomial logit model with the choice probability

ρθ(y = i|x) = exp(x · θi)∑k
j=1 exp(x · θj)

(24)

for 1 ≤ i ≤ k. The model is a conditional exponential family because

ρθ(y|x) = exp

[
k∑

i=1

δi(y)x · θi − ψ(θ|x)

]

with conditional potential ψ(θ|x) = log
∑k

j=1 exp(x · θj). Hence, the model
set {ρθ|θ ∈ Θ} is a dually flat space with dual affine coordinates (θ, η) and
potential ψ(θ) = E

[
log
∑k

j=1 exp(x · θj)
]
, where η =

[
η1 · · · ηk

]
∈ (Rd)k,

ηi = (ηi,1, · · · , ηi,d) ∈ Rd, and

ηi,l = E

[
exp(x · θi)∑k
j=1 exp(x · θj)

xl

]

for 1 ≤ i ≤ k and 1 ≤ l ≤ d. Furthermore, the canonical divergence D is
equivalent to the KL divergence.
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4 Linearly Constraint Logistic Regression

In this section, the results of the previous section are applied to the logit model
with linear constraints. In empirical applications, we often want to estimate θ
under the linear constraint hypothesis, H0 : H⊤θ = c, where H =

[
h1 · · · hm

]
is an d × m matrix with rank(H) = m < d, and c = (c1, · · · , cm) ∈ Rm. Let
PH = {pθ ∈ P | θ ∈ H}, where H = {θ ∈ Θ | H⊤θ = c}. Suppose that the true
model p does not belong to P(H). Then, the KL projection Π : P → P(H) is
given by

Πp = argmin KL(p‖q) subject to q ∈ P(H). (25)

In the following, we assume that F is a standard logistic distribution.

Theorem 5. q = Πp if and only if ηq − ηp ∈ Image(H).

Proof. Let L(θ, λ) = KL(p‖pθ) −
∑l

i=1 λ
i(hi · θ − ci) be the Lagrangian corre-

sponding to (25) with Lagrange multipliers λ = (λ1, · · · , λm). As θ 7→ KL(p‖pθ)
is convex, a necessary and sufficient condition for minimization is

∂

∂θ
KL(p‖pθ) =

m∑
i=1

λihi ∈ Image(H).

As KL = D, on the other hand,

∂

∂θ
KL(p‖pθ) =

∂

∂θ

[
φ(ηp) + ψ(θ)− ηp · θ

]
= ηq − ηp.

ut

The condition ηq − ηp ∈ Image(H) is satisfied if λ1, · · · , λm ∈ R such that
ηq−ηp =

∑m
i=1 λ

ihi exist. Hence, the conditions given in the theorem are written
as 

η −
∑m

i=1 λ
ihi = ηp

H⊤θ = c

η = ∂ψ(θ)

,

which are 2d+m equations with 2d+m variables (θ, η, λ). The solution is given
by θ = (∂ψ)−1(ηp+Hλ), where λ solvesH⊤(∂ψ)−1(ηp+Hλ) = c. The solution is
well approximated by λ = (H⊤G(θp)

−1H)−1(c−H⊤θp) if θp locates sufficiently
close to H and might be recursively updated by the standard Newton-Raphson
method.

5 Conclusions

In this study, the geometry of parametric binary response models was studied.
The model was demonstrated to be a dually flat space, where the canonical coef-
ficient parameter θ acts as an affine coordinate. The dual flat property introduces
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a canonical divergence into the model. The divergence is equivalent to the KL
divergence if and only if the model is a logit. As an application example, the KL
projection of the logit model onto an affine linear subspace was geometrically
characterized.

The dual flatness of the binary response model is caused by the single-index
structure of the model, which depends on the parameter θ only through the
linear index x · θ, making the Levi-Civita connection coefficients Γij,k symmet-
rical on (i, j, k). Therefore, the results of this study can be extended to a more
general class of single-index models, including nonlinear regressions, truncated
regressions, and ordered discrete response models.
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