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Abstract

Empirical researchers often perform model specification tests, such as the Hausman test

and the overidentifying restrictions test, to confirm the validity of estimators rather than the

validity of models. This paper examines the effectiveness of specification pretests in finding

invalid estimators. We study the local asymptotic properties of test statistics and estimators

and show that locally unbiased specification tests cannot determine whether asymptotically

efficient estimators are asymptotically biased. The main message of the paper is that correct

specification and valid estimation are different issues. Correct specification is neither necessary

nor sufficient for asymptotically unbiased estimation under local overidentification.
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1 Introduction

Model specification tests such as the Hausman test (Hausman 1978) and the overidentifying

restrictions test (Sargan 1958, Hansen 1982) are commonly used in empirical studies, even

though finding a true model is rarely the focus of the studies. Empirical researchers often

conduct these tests to find an appropriate estimator rather than to assess the correctness of

the model. For example, the Durbin-Wu-Hausman test is used to determine whether to adopt

the ordinary least squares (OLS) estimator or the two-stage least squares (2SLS) estimator.

Acceptance (or rejection) of the null hypothesis is interpreted as evidence of the validity of

the OLS (or 2SLS) estimator.

This paper examines the effectiveness of specification pretests in finding invalid estima-

tors. It is commonly recognized that an estimator based on a null model is valid (or invalid)

if a specification test accepts (or rejects) the null hypothesis. Thus, we investigate whether

specification tests have nontrivial power against a local alternative when estimators are asymp-

totically biased. We show that even though specification tests have nontrivial power for local

misspecification, they are not useful for detecting asymptotically biased estimators.

The analytical framework is as follows. The parameter of interest θ0 is given by θ0 = ψ(P )

for a distribution P and a functional ψ. The distribution P may be suggested by an underlying

economic theory. An estimator θ̂n for θ0 is asymptotically normally distributed and efficient

if the data generating process (DGP) is P , but a sample of size n may be drawn from a local

deviation from P . The deviation is due to data contamination, measurement error, model

misspecification, or other reasons. If the deviation disappears at the rate n−1/2, then θ̂n is

consistent for θ0 but may be asymptotically biased in the sense that the asymptotic distribution

of
√
n(θ̂n − θ0) has a nonzero mean. Alternatively, a specification test may have nontrivial

power against the local deviation. The asymptotic bias of the estimator and the local power

of the test depend on the direction of the local deviation from P . If the directions that cause

the asymptotic bias are different from those that can be detected by the test, then we cannot

avoid the asymptotically biased estimator.

The main contribution of the paper is to show that locally unbiased specification tests

cannot detect asymptotic bias in asymptotically efficient estimators. To show this, we borrow

the framework of Chen and Santos (2018). We describe the deviation from P by a path that

goes through P . We then define the direction of the deviation by the score function of the

path, which can be decomposed into two orthogonal parts. We show that the asymptotic bias

of asymptotically efficient estimators depends only on one part of the decomposition, while

the local power of locally unbiased tests depends only on the other part of the decomposition.

Since two parts are orthogonal to each other, specification tests provide no information about

the existence of asymptotic bias.

Our orthogonality result is a generalization of Section 5.1.3 of Hall (2005), which examined

the connection between the efficient GMM estimator and the J test. Hall (2005) gave an or-

thogonal decomposition of moment restrictions into identifying restrictions and overidentifying

restrictions, and showed that the asymptotic bias of the GMM estimator is only affected by a
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local violation of identifying restrictions, while the local power of the J test is only affected

by a local violation of overidentifying restrictions. Thus, the J test does not detect asymp-

totic bias in the GMM estimator. As discussed in Section 4, the decomposition of moment

restrictions is essentially the same as the decomposition of a score function.

Another contribution of the paper is to point out a common misconception about the Ha-

suman test. The Hausman test compares asymptotically efficient and inefficient estimators.

There it is assumed that the inefficient estimator is consistent for the parameter of interest

under both null and alternative hypotheses. This assumption is inappropriate because differ-

ent hypotheses correspond to different DGPs. No estimator can be consistent for the same

parameter under two different DGPs in general. Although we can assume that a maintained

model is correctly specified under both hypotheses, we cannot assume that an estimator is con-

sistent under both hypotheses. We show that the Hausman test may reject the null hypothesis

even when the efficient estimator is asymptotically unbiased and the inefficient estimator is

asymptotically biased.

This paper is inspired by Chen and Santos (2018), who introduced the notion of local

identification for general semiparametric models and showed that local overidentification is

equivalent to both the existence of specification tests with nontrivial local power and the

existence of asymptotically efficient estimators. In fact, main results of this paper are obtained

by a simple application of their results. However, given the current state of how specification

tests are used in practice, this study has its own importance.

There are many studies that investigate the impact of pretest or model selection on subse-

quent inference. Examples include Judge and Bock (1978), Pötscher (1991), Kabaila (1995),

Leeb and Pötscher (2005, 2006), and Andrews and Guggenberger (2009a,b). Guggenberger

(2010a,b), Guggenberger and Kumar (2012), and Doko Tchatoka andWang (2021) investigated

the impact of specification tests on subsequent inference. These studies show that inference

that ignores the effect of pretest can be highly misleading.

The study of the local power properties of specification tests can be traced back to Newey

(1985a,b). These papers pointed out that specification tests may fail to detect local deviations

that make estimators asymptotically biased, although they did not investigate the orthogo-

nality property considered in this paper.

The local asymptotic framework is also used in the context of robust estimation and in-

ference. Kitamura et al. (2013) proposed a robust point estimator for θ0 when a sample is

obtained from a local deviation from P . Armstrong and Kolesár (2021) proposed confidence

intervals that takes into account the potential bias resulting from a local deviation. See also

Andrews et al. (2017) and Bonhomme and Weidner (2022) for a related issue. Given the re-

sult of this paper, it would be preferable to use robust inference methods rather than perform

specification pretests to check the validity of conventional inference methods.

The organization of the rest of the paper is as follows. Section 2 introduces the setting of

our analysis. Section 3 gives the main results of the paper. Sections 4 and 5 show that the

results of Section 3 hold in popular models. Section 4 investigates the connection between

the efficient GMM estimator and the J test statistic. Section 5 investigates the properties of
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the Durbin-Wu-Hausman test to test exogeneity. Section 6 concludes. The Appendix gives an

auxiliary result to Section 5.

2 Preliminaries

Let P be a probability distribution defined on a set X and let M be the set of all distributions

on X . The distribution P may be suggested by an underlying economic theory, or it may be

an ideal distribution from which researchers hope to draw a sample. We assume that P is

an element of a semiparametric model P ⊂ M. The finite-dimensional parameter of interest

θ0 ∈ Θ is given by θ0 = ψ(P ) for some functional ψ : P → Θ.

A random sample {X1, . . . , Xn} is drawn from a distribution µ. Let θ̂n = θ̂n(X1, . . . , Xn)

be an asymptotically efficient estimator for θ0 if µ = P , that is, it attains the minimum

asymptotic variance among all regular estimators. The estimator may perform poorly if µ

deviates from P . To detect the deviation, we conduct a specification test φn : {Xi}ni=1 → [0, 1]

for the following null and alternative hypotheses:

H0 : µ ∈ P vs. H1 : µ ∈ M \P. (2.1)

The test may reject the null hypothesis if µ 6= P .

We investigate the relationship between θ̂n and φn when µ is a local deviation from P . Our

concern is whether the test can detect local deviations that make the estimator asymptotically

biased. Throughout the paper, we say that θ̂n is asymptotically biased if the asymptotic mean

of
√
n(θ̂n − θ0) is nonzero. As we shall see shortly, not all local deviations cause asymptotic

bias in θ̂n. Thus, if the test is used to check the validity of the estimator, it should have

nontrivial local power if and only if the estimator is asymptotically biased. The asymptotic

behavior of θ̂n and φn depends on the direction of local deviation. We borrow the setting of

Chen and Santos (2018) to define the direction.

The direction of the deviation from P is defined in terms of the score function of a path. A

path t→ Pt is a function defined on [0, ǫ) for some ǫ > 0 that satisfies Pt ∈ M for all t ∈ [0, ǫ)

and P0 = P . We consider a path t→ Pt,g ∈ M that satisfies

lim
t→0

∫

(

dP
1/2
t,g − dP 1/2

t
− 1

2
gdP 1/2

)2

= 0 (2.2)

for some function g : X 7→ R. We say that the path is Hellinger differentiable or differentiable

in quadratic mean at t = 0 if (2.2) is satisfied for some g. The function g is referred to as the

score function because it is usually given by

g(x) =
∂

∂t
log dPt,g(x)

∣

∣

∣

∣

t=0

.

If (2.2) holds for some g, then g must satisfy E[g(X)] = 0 and E[g2(X)] <∞, where E denotes

the expectation with respect to P . Thus, the set of all possible score functions is given by

L2
0(P ) ≡

{

g : X → R : E[g(X)] = 0 and E[g2(X)] <∞
}

.
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The directions consistent with the null hypothesis are specified by the tangent set. We

define

T (P ) =
{

g ∈ L2
0(P ) : (2.2) holds for some t 7→ Pt,g ∈ P

}

.

The set T (P ) is called the tangent set of model P at P . The tangent set is the set of directions

along which a path Pt can deviate from P when Pt ∈ P is imposed. We consider the case

where T (P ) is a linear space, which is the typical case in many semiparametric models.

As stated in Chen and Santos (2018), any score g ∈ L2
0(P ) can be decomposed into two

orthogonal parts. Let T̄ (P ) be the closure of T (P ) and let

T̄ (P )⊥ =
{

f ∈ L2
0(P ) : E[f(X)g(X)] = 0 for all g ∈ T̄ (P )

}

,

which is the orthogonal complement of T̄ (P ). Then, we obtain L2
0(P ) = T̄ (P ) ⊕ T̄ (P )⊥.

Thus, for any g ∈ L2
0(P ), we have g = ΠT (g) + ΠT⊥(g) and Var[g(X)] = Var[ΠT (g)(X)] +

Var[ΠT⊥(g)(X)], where ΠT and ΠT⊥ denote the projection onto T̄ (P ) and T̄ (P )⊥, respectively,

and Var denotes the variance with respect to P .

Chen and Santos (2018) showed that local overidentification is necessarily and sufficient

for the existence of an asymptotically efficient estimator for θ0 and the existence of a locally

unbiased test for (2.1). They define that P is locally overidentified by P if T̄ (P ) 6= L2
0(P ).

This definition generalizes the classical definition of overidentification defined by the number

of moments and the number of parameters. Our aim is to investigate the relationship between

the asymptotically efficient estimator and the locally unbiased test when µ is a local deviation

from P .

Example 2.1 (J test)

The parameter of interest θ0 ∈ Θ ⊂ R
p is a unique vector that satisfies

0 = E[mθ0(X)] =

∫

mθ0dP, (2.3)

where m : X × Θ → R
l is a known vector-valued function with l > p. If a random sample is

obtained from µ, then the null hypothesis of the J test is

H0 :

∫

mθdµ = 0 for some θ ∈ Θ.

The null hypothesis can be alternatively written as µ ∈ P where

P =

{

Q ∈ M :

∫

mθdQ = 0 for some θ ∈ Θ

}

.

See Chen et al. (2007) and Chen and Santos (2018).

Suppose that µ is a local deviation from P . Then, the efficient GMM estimator for θ0 may

be asymptotically biased, while the J test may have nontrivial local power to the deviation.

Our concern is whether the J test has nontrivial local power when the GMM estimator is

asymptotically biased.

Remark 2.1

Overidentifying restrictions tests are often used to test the following null hypothesis:

H0 : E[mθ0(X)] = 0 (2.4)
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when X ∼ P is known. A problem of testing (2.4) has been pointed out by some studies

(see Deaton 2010 and Parente and Santos Silva 2012 among others). The point is that (2.3)

is the identifying assumption for θ0 that must be made before the analysis. Overidentifying

restrictions tests do not check whether (2.4) holds because they do not have power when

E[mθ(X)] = 0 for some θ 6= θ0.

3 Main Results

This section shows that the directions of local deviation that can be detected by locally unbi-

ased specification tests are orthogonal to those that induce asymptotic bias in asymptotically

efficient estimators. This means that it is impossible to know whether efficient estimators

are asymptotically biased by using any locally unbiased specification tests. This section also

discusses some problems with the Hausman test. We clarify what the null and alternative hy-

potheses of the Hausman test are and show that the Hausman test cannot be used to confirm

the validity of estimators.

3.1 Orthogonality

We introduce some more definitions given by Chen and Santos (2018). The test φn has local

asymptotic level α if

lim sup
n→∞

∫

φndP
n
1/

√
n,g ≤ α

for any path t 7→ Pt,g ∈ P. The test has a local asymptotic power function π : L2
0(P ) → [0, 1]

if

lim
n→∞

∫

φndP
n
1/

√
n,g = π(g)

for any path t → Pt,g ∈ M. Finally, the test is locally unbiased if it satisfies π(g) ≤ α for all

t→ Pt,g ∈ P and π(g) ≥ α for all t 7→ Pt,g ∈ M \P.

It is clear from above definitions that locally unbiased tests do not have nontrivial local

power if g ∈ T̄ (P ) because the local deviation is consistent with the null hypothesis. Thus,

locally unbiased tests cannot distinguish between P and P1/
√
n,g if g ∈ T̄ (P ). The power of

locally unbiased tests depends only on ΠT⊥(g).

Local unbiasedness of a test implies that its test statics is asymptotically composed of

elements of T̄ (P )⊥. For instance, if the test statistic is asymptotically chi-squared distributed

under P , then it satisfies

Tn =

K
∑

j=1

(

1√
n

n
∑

i=1

f(Xi)

)2

+ oP (1)

where f1, . . . , fK are orthonormal and K determines the degrees of freedom. Moreover, by the

Hellinger differentiability of the path, Pt,g satisfies

log

n
∏

i=1

dP1/
√
n,g

dP
(Xi) =

1√
n

n
∑

i=1

g(Xi)−
1

2
E[g2(X)] + oP (1)

6



for all g ∈ L2
0(P ). Thus, by the LeCam’s third lemma, we obtain

Tn
g
 χ2

K





K
∑

j=1

E[fj(X)g(X)]2



 ,

where
g
 denotes the weak convergence under P1/

√
n,g and χ2

k(a) denotes the noncentral chi-

squared distribution with degrees of freedom k and the noncentrality parameter a. Because

the locally unbiased test has nontrivial local power if and only if Var[ΠT⊥(g)(X)] 6= 0, it must

be the case that fj ∈ T̄ (P )⊥ for all j = 1, . . . ,K.

Next, we see that asymptotic bias of asymptotically efficient estimators depends only on

ΠT (g). Note that any asymptotically efficient regular estimator for θ0 satisfies

√
n(θ̂n − θ0) =

1√
n

n
∑

i=1

ν(Xi) + oP (1),

where ν is an efficient influence function. Hence, by the LeCam’s third lemma, we obtain

√
n(θ̂n − θ0)

g
 N(E[ν(X)g(X)],E[ν(X)ν(X)′]).

This means that the asymptotic distribution of θ̂n is unaffected by the local deviation if ν(X)

is uncorrelated with g(X). It is known in the semiparametric estimation literature that each

element of the efficient influence function belongs to T̄ (P ). Therefore, the asymptotic bias

depends only on ΠT (g). If g ∈ T̄ (P )⊥, then the asymptotic distribution of θ̂n under P1/
√
n,g

is the same as that of under P .

Combining these results, we obtain the following proposition.

Proposition 3.1

Suppose that P is locally overidentified by P. Let θ̂n be an asymptotically efficient estimator

for θ0 under P . Moreover, let φn be a locally unbiased asymptotic level α test for (2.1) whose

local asymptotic power function is π. Suppose further that a random sample is drawn form

µ = P1/
√
n,g. Then, θ̂n is asymptotically biased only if Var[ΠT (g)(X)] 6= 0. Moreover, φn

satisfies π(g) > α only if Var[ΠT⊥(g)(X)] 6= 0.

Proposition 3.1 states that the directions of local deviation that can be detected by locally

unbiased specification tests are orthogonal to those cause asymptotic bias in asymptotically

efficient estimators. Therefore, specification tests provide no information on the validity of

estimators. It is true that if both Var[ΠT (g)(X)] 6= 0 and Var[ΠT⊥(g)(X)] 6= 0 hold, then

the test has nontrivial local power and the estimator is asymptotically biased. However, it is

impossible to distinguish cases between Var[ΠT (g)(X)] = 0 and Var[ΠT (g)(X)] 6= 0 by using

any locally unbiased specification test. Thus, the detection of the bias is merely coincidental.

Example 3.1 (J test)

Suppose that a random sample is drawn from P1/
√
n,g. Then, the efficient GMM estimator

for θ0 is asymptotically biased only if Var[ΠT (g)(X)] 6= 0. In contrast, the J test statistic

converges to a noncentral chi-squared distribution only if Var[ΠT⊥(g)(X)] 6= 0. Since ΠT (g)
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and ΠT⊥(g) are orthogonal to each other, the J test cannot be used to detect the asymptotic

bias of the GMM estimator. This result is essentially the same as the one shown by Hall

(2005). We further investigate this issue in Section 4.

The same orthogonality as in Proposition 3.1 holds even when a maintained hypothesis

exists. If a maintained hypothesis exists, we consider the following null and alternative hy-

potheses:

H0 : µ ∈ P vs. H1 : µ ∈ M \P, (3.1)

where M is another semiparametric model corresponding to the maintained hypothesis and

satisfies P ⊂ M ⊂ M. That is, µ ∈ M is assumed to be true under both the null and

alternative hypotheses.

We can decompose L2
0(P ) using the tangent set of model M at P . Let

M(P ) =
{

g ∈ L2
0(P ) : (2.2) holds for some t 7→ Pt,g ∈ M

}

and let M̄(P ) be the closure of M(P ). Since T̄ (P ) ⊂ M̄(P ), we have

L2
0(P ) = T̄ (P )⊕

{

T̄ (P )⊥ ∩ M̄(P )
}

⊕ M̄(P )⊥.

Thus, g ∈ L2
0(P ) can be decomposed as g = ΠT (g) + ΠT⊥∩M (g) + ΠM⊥(g).

It is clear that locally unbiased tests have nontrivial local power for the deviation P1/
√
n,g

only if Var[ΠT⊥∩M (g)(X)] 6= 0. In contrast, asymptotically efficient estimators for θ0 are

asymptotically biased only if Var[ΠT (g)(X)] 6= 0. Thus, again, specification tests cannot

detect local deviations that cause asymptotic bias in efficient estimators.

Remark 3.1

Since θ̂n is a best regular estimator, it satisfies

√
n(θ̂n − ψ(P1/

√
n,g))

g
 N(0,E[ν(X)ν(X)′]) (3.2)

for any g ∈ T (P ). The limiting distribution does not depend on g. Regularity is a desirable

property because (3.2) implies that a small change in the DGP does not change the distribution

of the estimator. The estimator is not asymptotically biased if the parameter of interest is

ψ(P1/
√
n,g) rather than ψ(P ). It follows from (3.2) that the asymptotic bias of θ̂n for estimating

θ0 is given by

lim
t→0

ψ(Pt,g)− ψ(P )

t
.

The above derivative coincides with E[ν(X)g(X)] (see van der Vaart 1998).

3.2 Hausman test

The Hausman test statistic is constructed by comparing two estimators. Let θ̂n and θ̃n be

estimators for θ0. Then the test statistic is given by

Tn = n(θ̂n − θ̃n)
′V̂ −1

θ̃−θ̂
(θ̂n − θ̃n),
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where V̂θ̂−θ̃ is a consistent estimator for the asymptotic variance of θ̂n − θ̃n. If the inverse

matrix does not exist, then it is replaced with the Moore-Penrose generalized inverse.

We assume that θ̂n is asymptotically efficient in model P and that θ̃n is asymptotically

efficient in model M. Moreover, we assume that θ̂n is asymptotically more efficient than θ̃n,

which implies P ⊂ M. Let T (P ) andM(P ) be the tangent set at P for P and M, respectively.

Since θ̂n and θ̃n are asymptotically efficient under corresponding models, they can be written

as

√
n(θ̂n − θ0) =

1√
n

n
∑

i=1

ν(Xi) + oP (1)

√
n(θ̃n − θ0) =

1√
n

n
∑

i=1

τ(Xi) + oP (1)

for some ν ∈ T̄ (P ) and τ ∈ M̄(P ), where ν ∈ T̄ (P ) means that all elements of ν belong to

T̄ (P ) and the same for τ ∈ M̄(P ).

Under the above conditions, the Hausman test is a locally unbiased test for (3.1). The

reason is as follows. It is known in the semiparametric literature that the efficient influence

function is obtained by projecting any other influence function onto the tangent space (see

van der Vaart 1998). Since θ̂n is more efficient than θ̃n, we have ν = ΠT (τ) and τ − ν ∈
T̄ (P )⊥ ∩M̄(P ). This implies that the well-known fact that the asymptotic variance of θ̂n− θ̃n
is the same as the difference of the asymptotic variances of θ̃n and θ̂n when θ̂n is asymptocially

efficient. Moreover, the test statistic can be written as

Tn =

K
∑

j=1

(

1√
n

n
∑

i=1

fj(Xi)

)2

+ oP (1)

for some K, where f1, . . . , fK ∈ T̄ (P )⊥ ∩ M̄(P ) are orthonormal. Under P1/
√
n, Tn converges

weakly to χ2
K(
∑K

j=1 E[fj(X)g(X)]2). Therefore, the test has nontrivial local power only if

Var[ΠT⊥∩M (g)(X)] 6= 0.

Next, we investigate the asymptotic properties of two estimators. By the LeCam’s third

lemma, we have

√
n(θ̂n − θ0)

g
 N(E[ν(X)g(X)],E[ν(X)ν(X)′])

√
n(θ̃n − θ0)

g
 N(E[τ(X)g(X)],E[τ(X)τ(X)′]).

Since ν ∈ T̄ (P ), the asymptotic bias of θ̂n depends only on ΠT (g). Thus, the Hausman test

cannot detect asymptotic bias in θ̂n. Furthermore, if g ∈ T̄ (P )⊥ ∩ M̄(P ), then only θ̃n can

be asymptotically biased. Thus, the test may reject the null hypothesis due to the bias of the

inefficient estimator rather than that of the efficient estimator. The Hasuman test has a risk

of selecting the biased inefficient estimator even when the efficient estimator is asymptotically

unbiased.

The above result is incompatible with a common setting of the Hausman test, which as-

sumes that the inefficient estimator is consistent under both null and alternative hypotheses.
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In fact, this common setting is inappropriate. Because the DGP differs between null and al-

ternative hypotheses, no estimator can be assumed to have the same asymptotic distribution

under two different hypotheses. What we can assume is that µ ∈ M is true under both null

and alternative hypotheses.

Another important feature of the Hausman test is that the estimators that construct the

test statistic determine the null and alternative (maintained) hypotheses. For example, con-

sider a linear model

Y = X ′β0 + e = X ′
1β01 +X ′

2β02 + e,

where X1 is possibly endogenous and X2 is exogenous. Let Z1 be a vector of instrumental

variables for X1 and let Z = (Z ′
1, X

′
2)

′. Suppose that we test the exogeneity of X1 by com-

paring the OLS and 2SLS estimators. Since the 2SLS estimator is asymptotically efficient in

homoskedastic linear instrumental variable model, the maintained hypothesis is that

Eµ[Z(Y −X ′β)] = 0 and Eµ[(Y −X ′β)2|Z] = σ2 (3.3)

hold for some (β, σ2), where Eµ[·] and Eµ[·|·] denote the unconditional and conditional ex-

pectations with respect to µ. On the other hand, since the OLS estimator is asymptotically

efficient in homoskedastic linear regression model, the null hypothesis is that

Eµ[Y −X ′β|X1, Z] = 0 Eµ[(Y −X ′β)2|X1, Z] = σ2 (3.4)

hold for (β, σ2) that satisfies (3.3). Notice that the conditioning variables in (3.4) are (X1, Z)

rather than X . We need this condition so that Z satisfies an exclusion restriction. If we only

impose E[e|X ] = 0 and E[e2|X ] = σ2
0 (constant), then the OLS estimator for β0 may not be

asymptotically efficient because the use of Z1 may improve efficiency.

4 J test

This section shows that the orthogonality result of Section 3 holds for the overidentified mo-

ment restriction model.

We first rewrite the model by using the method of Sueishi (2022). This formulation is useful

for obtaining the tangent set in a conventional way in the semiparametric literature (see, e.g.,

Section 25.4 of van der Vaart 1998). Since (2.3) involves two unknown parameters θ0 and P ,

we write the model as a set of distributions indexed by the finite-dimensional parameter θ ∈ Θ

and the infinite-dimensional nuisance parameter η ∈ M. Specifically, for given θ ∈ Θ and

η ∈ M, we define Pθ,η as the solution to

min
Q∈Pθ

∫

log
dQ

dη
dQ, (4.1)

where Pθ = {Q ∈ M :
∫

mθdQ = 0}. That is, Pθ,η is the projection of η onto Pθ in terms of

the Kullback–Leibler divergence (I- divergence). By a duality theorem, Pθ,η satisfies

dPθ,η

dη
=

exp(λ′θ,ηmθ)
∫

exp(λ′θ,ηmθ)dη
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where λθ,η = argminλ∈Rl

∫

exp(λ′mθ)dη. See Borwein and Lewis (1991) and Komunjer and

Ragusa (2016) for details.

We specify the tangent set of P = {Pθ,η : θ ∈ Θ, η ∈ M} at P . To do this, we consider a

path of the form Pt = Pθ0+th,ηt
, where h ∈ R

p is a p-dimensional vector and ηt is a perturbation

from P that coincides with P at t = 0. Under certain conditions, Pt satisifies

lim
t→0

∫

(

dP
1/2
t − dP 1/2

t
− 1

2
(h′ℓ̇θ0,η0

+ l̇)dP 1/2

)2

= 0

where

ℓ̇θ0,η0
= −E[∇mθ0(X)]′Σ−1mθ0

with ∇mθ = ∂mθ/∂θ
′ and Σ = E[mθ0(X)mθ0(X)′]. Moreover, l̇ : X → R is an element of the

set Ṗη = {l̇ ∈ L2
0(P ) : E[mθ0(X)l̇(X)] = 0}. See Sueishi (2022) for details. The function ℓ̇θ0,η0

is interpreted as the score function for θ0 when η0 is fixed while l̇ is interpreted as the score

function for η0 when θ0 is fixed. The tangent set is given by T (P ) = {lin ℓ̇θ0,η0
+ Ṗη}, where

lin denotes the linear span.

Notice that ℓ̇θ0,η0
is orthogonal to the all elements of Ṗη. Thus, ℓ̇θ0,η0

is the efficient score

function for estimating θ0. Because the efficient information matrix is given by

Iθ0,η0
= E[ℓ̇θ0,η0

(X)ℓ̇θ0,η0
(X)′] = E [∇mθ0(X)]

′
Σ−1

E [∇mθ0(X)] ,

the efficient influence function is I−1
θ0,η0

ℓ̇θ0,η0
.

Now, we investigate the local asymptotic property of the GMM estimator. The efficient

GMM estimator can be expressed as

√
n(θ̂n − θ0) =

1√
n

n
∑

i=1

I−1
θ0,η0

ℓ̇θ0,η0
(Xi) + oP (1).

Thus, it follows from the LeCam’s third lemma that

√
n(θ̂n − θ0)

g
 N(I−1

θ0,η0
E[ℓ̇θ0,η0

(X)(ΠT (g)(X) + ΠT⊥(g)(X))], I−1
θ0,η0

)

for any g ∈ L2
0(P ). Here, the efficient influence function clearly belongs to T̄ (P ) and is

therefore orthogonal to ΠT⊥(g). Thus, the asymptotic bias depends only on ΠT (g).

The GMM estimator can be asymptotically unbiased even under local deviation because

it utilizes only a part of moment restrictions. The expected value of mθ0(X) under P1/
√
n,g

is approximately given by E[mθ0(X)g(X)]/
√
n, and the GMM estimator is asymptotically

unbiased if

E[∇mθ0(X)]′Σ−1
E[mθ0(X)g(X)] = 0.

Although E[mθ0(X)g(X)] 6= 0, the left-hand side of the above equation can be 0 because the

rank of E[∇mθ0(X)]′Σ−1 is p. Thus, the GMM estimator can be asymptotically unbiased even

when moment restrictions are locally violated.

Next, we investigate the local asymptotic property of the J test statistic. The test statistic

satisfies

Jn =

(

1√
n

n
∑

i=1

mθ̂n
(Xi)

)′

Σ−1

(

1√
n

n
∑

i=1

mθ̂n
(Xi)

)

+ oP (1).
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Some calculation yields

Σ−1/2 1√
n

n
∑

i=1

mθ̂n
(Xi)

g
 N((I − P (θ0))Σ

−1/2
E[mθ0(X)g(X)], I − P (θ0)),

where P (θ0) = Σ−1/2
E[∇mθ0(X)]

(

E[∇mθ0(X)]′Σ−1
E[∇mθ0(X)]

)−1
E[∇mθ0(X)]′Σ−1/2 is a

projection matrix. Moreover, for any g, ΠT (g) can be written as ΠT (g) = h′ℓ̇θ0,η0
+ l̇ for some

h ∈ R
p and l̇ ∈ Ṗη. Thus, we have

(I − P (θ0))Σ
−1/2

E[mθ0(X)ΠT (g)(X)] = (I − P (θ0))Σ
−1/2

E[∇mθ0(X)]h = 0, (4.2)

which implies that Jn converges in distribution to the noncentral chi-square distribution with

degrees of freedom l − p and noncentrality parameter

E[mθ0(X)ΠT⊥(g)(X)]′Σ−1/2(I − P (θ0))Σ
−1/2

E[mθ0(X)ΠT⊥(g)(X)].

Therefore, the power of the J test depends only on ΠT⊥(g). The J test is locally unbiased for

testing µ ∈ P against µ ∈ M \P.

The result of this section gives another interpretation to the result of Hall (2005), who

considered a local deviation of the form Σ−1/2
En[mθ0(X)] = δ/

√
n for some δ ∈ R

l, where En

is the expectation with respect to the local deviation. The vector Σ−1/2
En[mθ0(X)] can be

decomposed as

P (θ0)Σ
−1/2

En[mθ0(X)] + (I − P (θ0))Σ
−1/2

En[mθ0(X)]. (4.3)

Since P (θ0) is the projection matrix, the two terms are orthogonal to each other. Hall (2005)

defines that the identifying restrictions are satisfied if the first term of (4.3) is 0 and the

overidentifying restrictions are satisfied if the second term is 0. He showed that the GMM

estimator is asymptotically biased only if the identifying restrictions are locally violated, which

is the case where the projection of δ onto the space spanned by Σ−1/2
E[mθ0(X)] is nonzero. In

contrast, the J test has nontrivial local power only if the overidentifying restrictions are locally

violated. If the expectaion is taken with respect to P1/
√
n,g, then En[mθ0(X)] is nearly equal

to E[mθ0(X)g(X)]/
√
n. Thus, it follows from (4.2) that the first term of (4.3) can be nonzero

only if Var[ΠT (g)(X)] 6= 0 while the second term can be nonzero only if Var[ΠT⊥(g)(X)] 6= 0.

Therefore, the decomposition of the score function produces the same asymptotic result with

Hall (2005).

5 Durbin-Wu-Hausman test

This section further investigates the Durbin-Wu-Hausman test for exogeneity. The test statis-

tic is given by

Tn = (β̂ols − β̃2sls)
′V̂ −(β̂ols − β̃2sls)

where β̂ols and β̃2lsls denote the OLS and 2SLS estimators, respectively. Also, V̂ − denote the

generalized inverse of a consistent estimators for the asymptotic variance of β̂ols− β̃2sls. Then,

12



by the result of Section 3.2, the implied null and alternative hypotheses are

H0 : µ ∈ P vs. H1 : µ ∈ M \P

where

P =
{

Q ∈ M : EQ[Y −X ′β|X1, Z] = 0 and EQ[(Y −X ′β)2|X1, Z] = σ2 for some β and σ2
}

M =
{

Q ∈ M : EQ[Z(Y −X ′β)] = 0 and EQ[(Y −X ′β)2|Z] = σ2 for some β and σ2
}

.

The parameter of interest θ0 = (β′
0, σ

2
0)

′ satisfies

E[Y −X ′β0|X1, Z] = 0 and E[(Y −X ′β0)
2|X1, Z] = σ2

0 .

We specify the tangent set of P and M at P . The tangent set of M can be obtained

by using the result of Section 4 with mθ(X) = Z(Y − X ′β). Let e = Y − X ′β0. Then,

Σ = E[ZZ ′e2] = σ0E[ZZ
′] by the homoskedasticity. Hence we haveM(P ) = {lin ℓ̇Mθ0,η0

+Ṁη},
where ℓ̇Mθ0,η0

(x1, y, z) = E[XZ ′]E[ZZ ′]−1ze/σ2
0 and

Ṁη =
{

l̇M ∈ L2
0(P ) : E[Zel̇

M (X1, Y, Z)] = 0
}

.

To obtain the tangent set of P, we introduce a new formulation of the model similar to the

one used in Section 4. The details are given in the Appendix. We can show that T (P ) =

{lin ℓ̇Pθ0,η0
+ Ṗη}, where ℓ̇Pθ0,η0

(x1, y, z) = xe/σ2
0 and

Ṗη =
{

l̇P ∈ L2
0(P ) : E[h(X1, Z)el̇

P (X1, Z, Y )] = 0 for any function h of (X1, Z)
}

.

Now, we investigate the asymptotic properties of the two estimators. By the LeCam’s third

lemma, we have

√
n(β̂ols − β0)

g
 N

(

E[XX ′]−1
E[Xeg(X1, Y, Z)], σ

2
0E[XX ′]−1

)

√
n(β̃2lsl − β0)

g
 N

(

E[XZ ′]E[ZZ ′]−1
E[Zeg(X1, Y, Z)], σ

2
0

(

E[XZ ′]E[ZZ ′]−1E[ZX ′]
)−1
)

.

If g ∈ T̄ (P ), then g satisfies g = h′ℓ̇Pθ0,η0
+ l̇P for some vector h ∈ R

dim(β) and l̇P ∈ Ṗη. Thus,

we obtain

E[XX ′]−1
E[Xeg(X1, Y, Z)] = E[XX ′]−1

E[XX ′e2]h/σ2
0 = h.

Similarly, we have E[XZ ′]E[ZZ ′]−1
E[Zeg(X1, Y, Z)] = h. That is, the OLS and 2SLS estima-

tors have the same asymptotic bias. This result implies that the test does not have nontrivial

local power if g ∈ T̄ (P ).

If g ∈ T̄ (P )⊥ ∩ M̄(P ), then g must be orthogonal to ℓ̇Pθ0,η0
. Thus, the OLS estimator is

asymptotically unbiased. Moreover, g can be written as g = h′ℓ̇Mθ0,η0
+ l̇M for some h ∈ R

dim(β)

and l̇M ∈ Ṁη. Thus, the 2SLS estimator is asymptotically biased with bias h. Because two

estimators have different asymptotic mean, the test have nontrivial local power. Thus, the

test is locally unbiased for testing µ ∈ P against µ ∈ M \ P. Note that the test may reject

the null hypothesis even when the OLS estimator is asymptotically unbiased and the 2SLS

estimator is asymptotically biased.
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In general, g can be decomposed as g = ΠT (g) + ΠT⊥∩M (g) + ΠM⊥(g). Because ΠM⊥ (g)

is orthogonal to ℓ̇Pθ0,η0
and ℓ̇Mθ0,η0

, it does not have any impact on the asymptotic bias of β̂ols

and β̃2sls. This also implies that the power of the test does not depend on ΠM⊥(g). The

asymptotic bias of β̂ols depends only on ΠT (g) whereas the asymptotic bias of β̃2sls depends

on ΠT (g) and ΠT⊥∩M (g). There is no clear order of magnitude between the bias of β̂ols and

β̃2sls. Since ΠT (g) induces the same amount of bias in β̂ols and β̃2sls, the power of the test

depends only on ΠT⊥∩M (g).

Finally, we consider how the OLS estimator can be asymptotically unbiased when g ∈
T̄ (P )⊥. Because the null model is misspecified in this case, there is no θ = (β′, σ2)′ that satisfies

Eµ[Y −X ′β|X1, Z] = 0 and Eµ[(Y −X ′β)2|X1, Z] = σ2. However, the case Eµ[X(Y −X ′β0)] =

0 is not excluded, so that the OLS can be asymptotically unbiased. In this case, X1 is actually

exogenous under µ even though the null hypothesis is not true.

6 Conclusion

This paper studies the local asymptotic properties specification tests and asymptotically effi-

cient estimators. Although many studies have examined the properties of specification tests

and estimators separately, there have been few studies that examine the connection between

specification tests and estimators. We show that the directions of local deviation that can

be detected by locally unbiased specification test are orthogonal to those that cause asymp-

totic bias in asymptotically efficient estimators. This means that locally unbiased specification

tests cannot detect bias in asymptotically efficient estimators. Although often used to check

the validity of estimators, it is a misuse to use specification tests to examine the validity of

estimators.

A Appendix

This appendix derives the tangent set when the model is specified by conditional moment

restrictions. The derivation is similar to the case of the unconditional moment restriction

model.

Let P be a joint probability distribution of (X,W ) whose support is X × W , and let

M be the set of all distributions on X × W . We write P = PW |XPX , where PW |X is the

conditional distribution of W given X and PX is the marginal distribution of X . Suppose

that the parameter of interest θ0 ∈ Θ ⊂ R
p is a unique vector that satisfies

0 = E[mθ0(W )|X ] =

∫

mθ0dPW |X a.s. PX ,

where m : W ×Θ → R
l is a known vector function.

We write the model as a set of distribution on X × W that is indexed by the finite-

dimensional parameter θ ∈ Θ and the infinite-dimensional nuisance parameter η ∈ M. Let

Pθ =

{

Q = QW |XQX ∈ M :

∫

mθdQW |X = 0 a.s. QX

}

,
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which is a set of distribution that satisfies the conditional moment restrictions for a given

value of θ. For given θ ∈ Θ and η = ηW |XηX ∈ M, we define Pθ,η as the solution to

min
Q∈Pθ

∫ ∫

log
dQ

dη
dQ. (A.1)

The model is then written as P = {Pθ,η : θ ∈ Θ, η ∈ M}.
The objective function of (A.1) can be written as

∫ ∫

log
dQW |X
dηW |X

dQW |XdQX +

∫

log
dQX

dηX
dQX .

The second term is minimized when QX = ηX . The first term is minimized by solving

min
QW |X(·|x)

∫

log
dQW |X(w|x)
dηW |X(w|x) dQW |X(w|x)

subject to
∫

mθ(w)dQW |X(w|x) = 0

for each x ∈ X . By a duality theorem, the solution Q∗
θ,W |X satisfies

dQ∗
θ,W |X

dηW |X
(w|x) =

exp(λθ,ηW |X
(x)′mθ(w))

∫

exp(λθ,ηW |X
(x)′mθ(w))dηW |X (w|x)

where

λθ,ηW |X
(x) = arg min

λ∈Rl

∫

exp(λ′mθ(w))dηW |X (w|x).

See, for instance, Komunjer and Ragusa (2016) for a rigorous argument. Thus, we also have

dPθ,η

dη
(x,w) =

exp(λθ,ηW |X
(x)′mθ(w))

∫

exp(λθ,ηW |X
(x)′mθ(w))dηW |X (w|x) .

Let λθ(x) = λθ,PW |X
(x). Then, λθ0(X) = 0 a.s. PX . Hence we have

∂

∂θ
log dPθ,η0

(x,w)

∣

∣

∣

∣

θ=θ0

=

[

∂λθ(x)

∂θ′

∣

∣

∣

∣

θ=θ0

]′

mθ0(w).

Moreover, by the implicit function theorem, we obtain

∂λθ(x)

∂θ′

∣

∣

∣

∣

θ=θ0

= −E [mθ0(W )mθ0(W )′|X = x]
−1

E[∇mθ0(W )|X = x].

Thus, we have

∂

∂θ
log dPθ,η0

(x,w)

∣

∣

∣

∣

θ=θ0

= −E[∇mθ0(W )|X = x]′E[mθ0(W )mθ0(W )′|X = x]−1mθ(w).

We consider a path of the form

Pt = Pθ0+ht,ηt

for t ∈ [0, ǫ), where h ∈ R
p and ηt is a perturbation of P that satisfies η0 = P . By the law

iterated expectations, Pθ0,ηt
must satisfy
∫ ∫

mθ0(w)h(x)dPθ0 ,ηt
(x,w) = 0

15



for any t and for any function h : X → R. So, we obtain

E

[

mθ0(W )h(X)
∂

∂t
log dPθ0,ηt

∣

∣

∣

∣

t=0

]

= 0.

Thus, under certain conditions, the path satisfies

lim
t→0

∫ ∫

(

dP
1/2
t − dP 1/2

t
− 1

2
(h′ℓ̇θ0,η0

+ l̇)dP 1/2

)2

= 0

where ℓ̇θ0,η0
= ∂

∂θ log dPθ,η0

∣

∣

θ=θ0
and l̇ is an element of the set

Ṗη =
{

l̇ ∈ L2
0(P ) : E[mθ0(W )h(X)l̇(X,W )] = 0 for any function h of X

}

.

The tangent set of P at P is T (P ) = {lin ℓ̇θ0,η0
+ Ṗη}.
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