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1 Introduction

People often cooperate even when cooperation does not yield any material gain. It is
known from theoretical biology that evolution favors cooperative behavior. For example,
the theory of kin selection explain evolution of cooperation among relatives (Hamilton,
1964a,b). The theories of direct and indirect reciprocity explain evolution of cooperation
in settings where people can engage in long-term interactions (Trivers, 1971) or build a
reputation (Alexander, 1987; Nowak and Sigmund, 1998a,b). However, there are patterns
of cooperation that cannot be explained by those theories. For example, people may co-
operate with genetically unrelated people, with people they will not meet again, and in
settings where reputations are not built. Fehr and Gächter (2002) report that the altruis-
tic punishment can explain such pattern of cooperation, and people actually engaged in
the altruistic punishment in their experiments. It, however, raised a new question: why
people engage in such altruistic and costly punishment?

An answer to the question is offered by theory of group selection — individuals clus-
ter into groups within which social interaction takes place. Herold (2012) shows that
cooperative preference can evolve even with the weakest form of group selection, which
assumes no assortative matching and no repeated interaction within groups. He con-
siders a continuum of players who, in each time period, form small groups and play a
two-player extensive-form game within their groups. In the game, Player 1 (players as-
signed the position of Player 1) either cooperates or defects. Player 2 observes Player
1’s action. He either rewards or does not reward Player 1 if Player 1 cooperates, and he
either punishes or does not punish if Player 1 defects. The strategy (’does not reward’,
’does not punish’) is the dominant strategy for Player 2 though he prefers Player 1 to co-
operate. At the end of each period, groups are dissolved and new groups are formed in
the next period. Herold (2012) employs the indirect evolutionary approach pioneered by
Güth and Yaari (1992) and Güth (1995) — individual behavior is driven by preferences,
while evolutionary success of preferences is driven by objective fitness payoffs. Players
with the ’self-intersted’ preference choose the dominant strategy, while those with some
reciprocal preference choose to reward cooperative behavior (the ’rewarder’ preference)
or to punish non-cooperative behavior (the ’punisher’ preference). Herold (2012) shows
that the state where all players adopt the punisher preference is uniquely evolutionary
stable under certain conditions.

This study extends the analysis of Herold (2012) by examining the long-run equilib-
ria. Herold (2012) employs the deterministic process of preference evolution, where the
predictions are generally dependent on initial states and are viewed as short-run (or mid-
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run) outcomes. We employ the stochastic evolutionary game theory, pioneered by Foster
and Young (1990), Kandori et al. (1993), and Young (1993). In contrast to Herold (2012),
we assume a finite population and persistent stochastic perturbation on the evolutionary
process. The process with the perturbation takes into consideration the infrequent but
possible transitions among equilibria, and it can refine the prediction of the deterministic
process by assessing the robustness of equilibria. The most robust ones against the pertur-
bation are called long-run equilibria or stochastically stable states. Some of our results are
consistent to Herold (2012). Under similar conditions to Herold (2012), the all-punisher
state, where all players adopt the punisher preference, is the unique long-run equilib-
rium (Remark 5.3). Besides, we characterize a more precise and weaker condition under
which the same result holds (Proposition 3.8). Roughly speaking, if escaping from the all-
punisher state is more unlikely than escaping from the all-self-interested state, then the
all-punisher state is the unique long-run equilibrium. Other reciprocal preferences, e.g.
’rewarder’, do not constitute a long-run equilibrium. However, they may play the role of
a catalyst for the evolution of cooperation by making it more likely that the process moves
into the all-punisher state. We further consider settings with more than one punishment
option. Ironically, such a richer set of punishment options may not always be in favor of
the all-punisher state (Proposition 4.2).

We model preference evolution using stochastic imitative dynamics (see Binmore and
Samuelson 1997; Binmore et al. 1995; Sandholm 2012 for example). In each time period,
one player is chosen for reproduction with a probability proportional to her fitness. With
a probability close to one, her preference is inherited to the offspring. With a small prob-
ability, the offspring mutates, that is, she randomly adopts some preference. After repro-
duction, one randomly chosen player dies and is replaced by the offspring. We examine
the stationary distribution in the double limit — the small mutation rate and the large
population size — in order to characterize the long-run equilibria. The double limit ap-
proach, in general, faces difficulties when applying to settings with more than two alter-
natives (see Sawa (2021b) and Staudigl et al. (2021) for some recent developments). We
overcome the difficulties by employing stochastic imitative dynamics and the technique
of Imhof et al. (2005) and Fudenberg and Imhof (2006, 2008).

Related literature
We offer a brief literature review. It is found that in public goods experiments people
often engage in punishment (see Fehr and Gächter 2000). If those who free ride are pun-
ished, cooperation will emerge. This finding raised a question known as the second-order
free rider problem — who will bear the cost of punishing free riders. Fehr and Gächter
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(2002) offer an answer to the question. Their experimental result shows that people en-
gage in altruistic punishment — people have a tendency to punish free riders even if it
yields no material benefits for them. That is, we seemingly have innate preferences that
resolve the second-order public goods problem. Andreoni et al. (2003) reported a sim-
ilar observation. They conducted experiments of settings that are similar to the game
of Herold (2012). Half of the subjects were assigned to be proposers, and the other half
to be responders. Subjects were randomly and anonymously paired to play the game
with the condition that no two subjects were paired more than once in order to avoid any
repeated interaction effects. Andreoni et al. (2003) reported that subjects often engaged
in (altruistic) punishments and/or rewards whenever those options were available. See
also Section 3 of Chaudhuri (2011) for a survey on experimental studies of public goods
experiments with punishments.

The literature finds several key factors impacting emergence of preference that induces
cooperative behavior, e.g. altruistic punishment. Some of the most notable factors are
group selection (with random matching), assortative matching, direct reciprocity, and
indirect reciprocity. Our paper falls into the literature on group selection. There are many
studies that consider preference evolution in the literature on evolutionary game theory.
We name only a few of the works and refer readers to Alger and Weibull (2019) and
Section 3 of Newton (2018) for more comprehensive surveys.

An evolutionary process is said to have a group selection mechanism when individ-
uals are randomly divided into groups, social interaction takes place within the groups,
and preferences/strategies evolve according to payoffs from the social interaction.1 The
evolution of a strategy depends not only on its within-group advantage but also on its
between-group advantage. Studies on group selection that are closely related to ours are,
for example, Schaffer (1988), Huck and Oechssler (1999), Sethi and Somanathan (2001),
and Gintis (2000). Schaffer (1988) proposes a static evolutionary stability concept for
games with a finite population and a given group size. Instead of such a static con-
cept, we consider the dynamic stability of equilibria using stochastic dynamics. Huck
and Oechssler (1999) consider evolution of preferences for punishing unfair offers in the
ultimatum game. They consider a finite population of players who are partitioned into
subgroups and examine the long-run equilibrium, or the stochastically stable state. Play-
ers engage in long-term interaction with other players within their subgroups, but pay-
offs are compared across the entire population to determine the evolutionary success of
preferences. The differences between ours and Huck and Oechssler (1999) are that we

1To distinguish from the assortative matching mechanism, we define group selection as a mechanism
that forms groups completely randomly.
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consider an extensive game where the responder can both punish and reward the pro-
poser, and we consider the limit of the large population size, with which we show that
the set of equilibria can be further refined. Sethi and Somanathan (2001) consider de-
terministic evolutionary dynamics of preference evolution where players randomly form
groups and play an aggregative game, which is similar to a public goods game, within
groups. They characterize conditions under which the state all players adopt the self-
interested preference is unstable and conditions under which the state all players adopt
the reciprocal preference is stable. Our difference is that we consider global stability of
monomorphic states in the sense that the long-run equilibrium does not depend on the
initial state, whereas Sethi and Somanathan (2001) consider local stability of monomor-
phic states. Gintis (2000) considers an evolutionary model where players randomly form
groups, which may randomly dissolve, and play a repeated public goods game. They
show a condition under which the reciprocal preference evolves. Their model is quali-
tatively different because players’ preferences evolve according to the average payoff of
members of their group in Gintis (2000), whereas players’ preferences evolve according
to the average payoff of each preference in ours.

The assortative matching can also explain evolution of cooperative behavior. A match-
ing mechanism is assortative if people of similar preferences/actions are likely matched
with one another. It is known that cooperation arises in evolutionary processes with such
matching mechanism. See Bergstrom (1995, 2003) for example. For the indirect evolu-
tionary approach with assortative matching mechanisms, see Section 4.2 of Alger and
Weibull (2019). With the presence of (unobserved) players’ preference types, the extent
to which cooperative behavior emerges depends on the assortative matching mechanism.
See, for example, Alger and Weibull (2013, 2016) for assortative matching according to
types; Bilancini et al. (2018) for assortative matching according to actions; Newton (2017)
for type-specific assortative matching; and Wu (2020) for assortative matching accord-
ing to observable labels that are correlated with unobserved preferences. Some studies
find that partner choice works similarly to assortative matching; see Fujiwara-Greve and
Okuno-Fujiwara (2009), and Izquierdo et al. (2010), for example. See Bergstrom (2002) for
a related literature on the evolution of social behavior with assortative/nonassortative
group formation mechanisms.

The theories of direct reciprocity can explain evolution of cooperation in long-term in-
teractions. See Mailath and Samuelson (2006) for a comprehensive review. See Guttman
(2003) for the indirect evolutionary approach with finitely repeated games. The theories
of indirect reciprocity can explain evolution of cooperation in larger groups where people
can build a reputation. See Ellison (1994); Fudenberg and Levine (1989); Kandori (1992);
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Takahashi (2010) for example. We consider settings that are not a focus of these theo-
ries; players are randomly matched (to form small groups), only engage in short-term
interactions, and do not build a reputation.

We also note that we only assume imperfect observation of others’ preferences. The
literature on evolutionary game theory finds that natural selection leads to altruistic or
reciprocal preferences when players can perfectly observe each other’s preferences. See
Robson (1990), Güth and Yaari (1992), Possajennikov (2000), Heifetz et al. (2007a,b) for
example. We relax the assumption of perfect observation and instead assume that players
only observe the distribution of preferences in their groups. Under imperfect observation,
cooperative behavior (or efficient equilibria) may not emerge. See Dekel et al. (2007),
and Herold and Kuzmics (2009) for the effect of the the degree to which preferences are
observed. The haystack model where players form subgroups can be a key factor for
cooperation to emerge under imperfect observation. It is also known that altruistic or
reciprocal preferences can emerge under imperfect observation when players can build a
reputation. See Berger (2011); Berger and Grüne (2016); Ohtsuki and Iwasa (2004, 2006)
for example. We do not assume that players can form a reputation in order to focus on
the effect of the haystack model. Some studies consider models that the degree to which
preferences are observed is endogenous. See Heller and Mohlin (2019) for this line of
research.

The paper is organized as follows. Section 2 describes the model. The long-run out-
comes of the haystack model are characterized in Section 3. We extend the model by
expanding the punishment choice and analyze the long-run outcomes in Section 4. Sec-
tion 5 offers a discussion on the design of the reward/punishment scheme in order to
sustain cooperation. Section 6 concludes.

2 Model

2.1 Games and dynamics

There is a finite population of players, denoted by N = {1, . . . , N}. In each discrete
time period, the players randomly form groups of constant size, called haystacks, and then
they play an extensive form game G within their groups. Game G is a two-player two-
stage extensive from game. Player 1 (the proposer role) chooses either to cooperate (C)
or to defect (D). Player 2 (the responder role) observes Player 1’s action, and chooses to
reward (R), to punish (P), or to abstain from doing either (A). The available actions to
Player 2 depend on settings, which will be introduced shortly. Let O denote the set of
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Figure 1: Settings

terminal nodes of game G. We call o ∈ O an outcome. The payoff function F : O → R2

maps each outcome to fitness that players obtain.
Figure 1a shows the game considered in Herold (2012, Setting 3). We call it the basic

setting. The fitness payoffs are such that c1, c2, d1, d2, cr, cp > 0, d1 − p < c1 < d1 < c1 + r,
and d2 < c2 − cr < c2. The Player 1’s action that is optimal for Player 2 is C. However,
the optimal action for Player 1 is D unless Player 2 rewards cooperation or punishes
defection. Both actions are costly for Player 2, and it is optimal for Player 2 to abstain
after observing Player 1’s action — a social dilemma.

We extend the basic setting to a richer set of punishment options: PS, PM, and PL.
We call this setting the SML setting. It is illustrated in Figure 1b. We assume that the
parameters are such that c1 > d1 − pS, pS ≤ pM ≤ pL, cS ≤ cM ≤ cL. The first two condi-
tions imply that all three punishments are severe enough to induce cooperative behavior.
Punishment PS is the softest punishment with the smallest cost of enforcement, PM is a
moderate punishment, and PL is the most severe punishment with the largest cost. Note
that in both settings, the dominant action of Player 2 is to play A in every decision node.
We analyze the basic setting in Section 3, and the SML setting in Section 4.

In each discrete time period, players randomly form groups of constant size. Let 2h ∈
{2, 4, 6, . . .} denote the size of a group. The number of groups formed in each period is N

2h .
We assume that N

2h is an integer. For each group, h of players are (randomly) assigned the
position of Player 1, and the other h of players are assigned that of Player 2. Every player
in a position plays game G with each of players in the opposite position. We assume
that players can not observe other players’ preferences but they know the distribution of
preferences of players in the opposite position. At the end of each period, preferences
are updated according to a birth-death process. One player is randomly drawn. She is
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Table 1: Definition and notation for simplified preferences in the basic setting

Preference Notation Definition
Homo economicus E θ(C) = A, θ(D) = A
Rewarder R θ(C) = R, θ(D) = A
Punisher P θ(C) = A, θ(D) = P
Moral M θ(C) = R, θ(D) = P

given an opportunity to update her preference. The update follows an imitative protocol
described in the next section.

We assume that payoffs are generic such that Player 1 has a unique best response
in any haystack. For example, in the basic setting, kc1 + (h − k)(c1 + r) 6= md1 + (h −
m)(d1 − p) for all k, m ∈ {0, . . . , h}.

2.2 Preference dynamics

We adopt the indirect evolutionary approach (see Güth and Yaari 1992 and Güth and
Kliemt 1998). Preferences determine players’ actions in game G, which in turn determine
their fitness. Players’ preferences evolve according to an evolutionary process.

Every player has two preferences: one for the position of each role. Following Herold
(2012), we assume that preferences in the position of Player 1 do not vary among play-
ers; if a player is assigned the position of Player 1, they simply choose the action that
maximizes their expected fitness. While, preferences in the position of Player 2 determine
which action players will choose (regardless of the expected fitness) when they are as-
signed the position of Player 2. We focus on the evolution of preferences in the position
of Player 2 since they are the player who has reciprocal actions. For the analysis, it is
enough to consider the following simplified preferences for Player 2.

Definition 2.1. A simplified preference of Player 2 is a mapping from each Player 1’s action to an
action of Player 2.

Let Θ denote the set of simplified preferences.Definitions and notations for simplified
preferences in the basic setting are shown in Table 1. For example, preference θ is the homo
economicus preference, denoted by E, if θ(C) = A and θ(D) = A. We sometimes call this
preference the self-interested preference.

Preferences evolve according to a discrete-time, finite-state imitation dynamic with
mutations. The states in the state space X represent the fraction of players adopting each
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preference:

X =
{
(x1, x2, . . . , x|Θ|) | xi ∈ {0, 1

N , . . . , 1}, x1 + . . . + x|Θ| = 1
}

.

The dynamic can be described by a Markov chain. The parameter ε > 0 denotes the
mutation rate. Let P0(x, x′) denote the transition probability from x to x′ in the Markov
chain without mutations. This Markov chain is called the unperturbed dynamic. We impose
the following assumption on the unperturbed dynamic.

Assumption 2.2. (i) P0(x, x′) = 0 for all x, x′ ∈ X such that xi = 0 and x′i > 0.
(ii) P0(x, x′) > 0 for all x, x′ ∈ X such that 0 < xi < 1, x′i = xi +

1
N , x′j = xj − 1

N for some
i, j ∈ Θ and xh = x′h for all h /∈ {i, j}.

The first statement is the property that extinct preferences are never reintroduced. The
second one is the property that any preference has a chance to be imitated if it is adopted
by some player.

Let Pε(x, x′) denote the transition probability from x to x′ in the Markov chain with
the mutation rate ε. We call the Markov chain the ε-perturbed dynamic. Let xi denote the
state all players adopt preference i, called the all-i state. Let xi/j denote the state where
all players adopt preference i except one player, who adopts j. We impose the following
assumption on the ε-perturbed dynamic.

Assumption 2.3. limε→0
Pε(xi,xi/j)
exp(−ε−1)

= µij > 0 for all i, j ∈ Θ, i 6= j.

The same assumption is imposed in Fudenberg and Imhof (2006). Without loss of
generality, we assume that µij ≤ 1 for all i, j ∈ Θ with i 6= j. This mutation model implies
that the probability that a mutant invades a homogeneous state is O(exp(−ε−1)).

The next example illustrates a potential difference on fitness payoffs between the
haystack model and the model without haystacks. In the model without haystacks where
players interact with every player in the opposite position, self-interested players al-
ways earn (weakly) higher fitness payoffs than players with other preferences do. In
the haystack model, players with a reciprocal preference may earn higher fitness payoffs.

Example 1 (haystack and fitness payoffs). Consider the basic setting with c1 = 0, c2 = 5,
d1 = 1, d2 = 0, r = 2, cr = 1, p = 2, and cp = 1. These parameter values are the same
as in the example of Herold (2012). Suppose that there are 12 players, and that groups
are formed as in the left illustration of Figure 2. In Figure 2, preference θ in the position
of Player 1 denotes the fitness-maximizing preference. PreferenceR denote the rewarder
preference, i.e., they play R and A against Player 1’s C and D, respectively. Preference E
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Figure 2: The haystack model and the standard model

denotes the self-interested preference, i.e., they always play A. In the left illustration of
Figure 2, both players in the position of Player 2 adopt R in the first haystack, and those
in the second and third haystacks adopt E. The players in the position of Player 1 in the
first haystack will choose C since their cooperation will be always rewarded by Player 2.
While, those players in the second and third haystacks will choose D since their action
is neither rewarded nor punished. Players with the rewarder preference earn the fitness
payoffs of 4 (on average), while the players with the self-interested preference earn the
fitness payoffs of 0.

The right illustration of Figure 2 shows the model without haystacks. The fitness
payoffs in the model without subgroups are different from ones in the haystack model. If
a player in the position of Player 1 were to choose C, that action would be rewarded only
two out of six interactions. Since 6d1 > 6c1 + 2r, players in the position of Player 1 will
choose D. Then, all players in the position of Player 2 earn the fitness payoffs of 0.

2.3 The most stochastically stable state

All homogeneous states are absorbing in the unperturbed dynamic. Our main focus
is to characterize the states that are the most likely in the ε-perturbed dynamic as the
mutation rate goes to zero. Let πε(·) denote the stationary distribution of the ε-perturbed
dynamic; πε(x) is the mass of x in the stationary distribution. Let π0(x) = limε→0 πε(x)
for all x ∈ X . As discussed shortly, every homogeneous state has positive mass in π0(·).
However, some state becomes more likely than the other states when the population size
is large. In the view of this observation, we define the most likely states as follows.

Definition 2.4. A state x is the most stochastically stable (MSS) if limN→∞ π0(x) > 0.

In the remainder of this section, we consider the limiting stationary distribution π0

for the ε-perturbed dynamic satisfying Assumption 2.3. The analysis follows Fudenberg
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and Imhof (2006). Recall that xi denotes the state all players adopt preference i and xi/j

denotes the state all players adopt preference i except one player, who adopts j. Let ρij

denote the probability that the unperturbed dynamic starting from xi/j will be absorbed
in xj. Define a |Θ| × |Θ|matrix Λ by

Λij = µijρij ∀j 6= i, Λii = 1−∑
j 6=i

µijρij.

We have the following lemma for the matrix Λ.

Lemma 2.5. There is a unique vector λ ∈ R
|Θ|
+ such that λΛ = λ, λ1 + . . . + λ|Θ| = 1, and

λ1 > 0, . . . , λ|Θ| > 0.

We omit the formal proof. Roughly speaking, Λ can be interpreted as a stochastic
matrix, i.e. ∑j∈Θ Λij = 1 for all i ∈ Θ. This stochastic matrix is irreducible and aperiodic,
and thus it has a unique eigenvector associated with eigenvalue 1.

The next theorem characterizes the limiting stationary distribution. The proof is omit-
ted since it is implied by Fudenberg and Imhof (2006, Theorem 1).

Theorem 2.6. π0(xi) = λi for all i ∈ Θ.

Here is a brief intuition. The matrix Λ can be interpreted as a stochastic matrix. When
mutations are rare, the behavior of the preference dynamic can be approximately de-
scribed by a Markov chain on the homogeneous states, {xi}i∈Θ, with the transition matrix
Λ. For Λ, λ is the stationary distribution (Lemma 2.5). The limiting stationary distribu-
tion of the ε-perturbed dynamic coincides with λ as shown in Theorem 2.6. Note that the
vector λ depends on the population size N. In the sections to come, we examine λ in the
limit of the large population size to characterize the MSS states.

3 Analysis for the basic setting

3.1 Imitative dynamics

Theorem 2.6 allows us to restrict attention to transitions along the edges of the state
space — transitions between the homogeneous states via one mutation. We define the
restricted state space X̂ as follows:

X̂ = {x ∈ X : xi + xj = 1 for some i, j ∈ Θ}.
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X̂ is the set of states where at most two sorts of preferences are adopted by players. Let
X̂∞ = {x ∈ [0, 1]|Θ| : ∑θ∈Θ xθ = 1, xi + xj = 1 for some i, j ∈ Θ}, that is, an extension of
X̂ to continuous space.

Our analysis is focused on the preference evolution under imitative dynamics. Let
σN

ij : X̂ → [0, 1] be a function that maps each population state in X̂ to the probability that
a player adopting preference i ∈ Θ switches to preference j (without perturbation). That
is, P0(x, x′) = σN

ij (x) for all x ∈ X̂ with xi, xj > 0, x′i = xi − 1
N , x′j = xj +

1
N . It takes the

form:

σN
ij (x) =


Nxj
N−1rij(x) ∀x ∈ X̂ such that xi + xj = 1,

0 otherwise,

where rij : X̂∞ → [rmin, 1] is Lipschitz continuous and bounded away from zero
(rmin > 0). Using known results on birth-death processes (see Fudenberg and Imhof
2006, Example 2), the probabilities ρij are computed as follows:

ρij =
1

1 +
N−1

∑
k=1

k

∏
m=1

xj(m)σN
ji (x(m))

xi(m)σN
ij (x(m))

, (1)

where x(m) ∈ X̂ is such that xi(m) = 1 − m
N and xj(m) = m

N . In the equation, note
that xi(m)σN

ij (x(m)) is the probability that an i-player is (randomly) selected to switch
preference and she switches to preference j.

Recall that F i(x) denotes the expected fitness payoffs of players with preference i
when the state is x. We impose the following assumption throughout the paper. In words,
a preference with higher expected payoffs has a higher imitation rate.

Assumption 3.1. For all x ∈ X̂∞ with xi, xj > 0, rij(x) > rji(x) if F j(x) > F i(x), and
rij(x) = rji(x) if F j(x) = F i(x).

The expected (or average) fitness payoffs of preference i for x ∈ X̂ with xi, xj > 0 for
some i, j ∈ Θ are computed as

F i(x) = h
k

∑
k=k
Fi,j(k, h− k) Pr(i = k, j = h− k|x, i),

where k = max{1, h − Nxj}, k = min{h, Nxi}. Fi,j(k, h − k) is the fitness payoffs that
a player with preference i in the position of Player 2 receives when a haystack has k of
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i-players and h − k of j-players in the position of Player 2. Let Pr(i = k, j = h − k|x, i)
denote the probability that a haystack consists of k of i-players and h − k of j-players
given that the state is x and one player in the haystack is an i-player. This is given by

Pr(i = k, j = h− k|x, i) =

(Nxi−1)!
(k−1)!(Nxi−k)!

Nxj!
(h−k)!(Nxj−(h−k))!

(N−1)!
(h−1)!(N−h)!

For a homogeneous state x with xi = 1, the expected fitness payoffs are given by F i(x) =
hFi,j(h, 0) for any j 6= i. In the limit of the large population size N, the expected payoffs
are computed as follows:

F∞
i (x) = h

h

∑
k=0
Fi,j(k, h− k) Pr∞(i = k, j = h− k|x, i),

where Pr∞(i = k, j = h− k|x, i) =
(h− 1)!

(k− 1)!(h− k)!
(xi)

k−1(xj)
h−k.

Note that Pr∞(·) is the probability mass function of a binomial distribution. The number
of players in a haystack follows the binomial distribution with parameters h− 1 (as the
sample size) and xi (as the success rate) in the large population limit.

Example 2 (Frequency-dependent Moran process). Recall thatF i(x) denotes the expected
payoff of preference i ∈ Θ when the population state is x. Assume that fitness payoffs of
all outcomes are positive. An imitative dynamic is called a frequency-dependent Moran
process if the imitation rate function rij(·) is given by

rij(x) = F j(x).

This process is used in many studies in the evolutionary game literature, e.g. Nowak et al.
(2004), Fudenberg et al. (2006), and Hashimoto and Aihara (2009).

3.2 Characterization of the MSS states

Define

φij(yj) = ln
rji(x)
rij(x)

∀yj ∈ [0, 1],

where x ∈ X̂∞ is such that xj = yj and xi = 1− yj. Since rij(·) for all i, j ∈ Θ is Lipschitz
continuous and bounded away from zero, φij(·) is Lipschitz continuous and bounded for
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all i, j ∈ Θ. For what follows, let X̂∞
ij = {y ∈ X̂∞ : yi + yj = 1, yi, yj > 0} for all i, j ∈ Θ

with i 6= j.
In order to characterize the MSS states, it suffices to analyze the stationary distribution

of the Markov chain with the state space Θ and the transition matrix Λ, where the transi-
tion probability from the all-i state to the all-j state is µijρij for i, j ∈ Θ (Theorem 2.6). For
i, j ∈ Θ with i 6= j, let

βij = max
t∈[0,1]

∫ t

0
φij(z)dz. (2)

Corollary 3.2 below shows that βij can be a measure of the unlikeliness of the transition
from the all-i state to the all-j state. We call βij the cost of the transition. Corollary 3.2 is
immediate from Lemma A.1, which is presented and proved in the Appendix.

Corollary 3.2.

lim
N→∞

1
N

ln µijρij = −βij ∀i, j ∈ Θ, i 6= j.

The transition probability between two homogeneous states is roughly approximated
as M exp(−Nβij) for some constant M > 0. With this result, we can compare the like-
liness of different transitions, that is, limN→∞(µijρij)/(µhlρhl) = 0 if βij > βhl for all
i, j, h, l ∈ Θ.

The next lemmas characterize properties of the payoff structure of the basic setting.
Those will be found useful in assessing the likeliness of the transition between two ho-
mogeneous states.

Lemma 3.3. For i, j ∈ {E,P} with i 6= j, there exists x∗ij such that F∞
j (x)−F∞

i (x) > 0 for all

x ∈ X̂∞
ij with xj > x∗ij , and F∞

j (x)−F∞
i (x) < 0 for all x ∈ X̂∞

ij with xj < x∗ij . Furthermore,
x∗EP = 0 and x∗PE = 1 if p > h(d1 − c1). Otherwise, x∗EP , x∗PE ∈ (0, 1).

Lemma 3.4. For i, j ∈ {E,R} with i 6= j, there exists x∗ij ∈ [0, 1] such that F∞
j (x)−F∞

i (x) <

0 for all x ∈ X̂∞
ij with xj > x∗ij , and F∞

j (x)−F∞
i (x) > 0 for all x ∈ X̂∞

ij with xj < x∗ij .

Lemma 3.5. For i ∈ {R,M}, F∞
P (x)−F∞

i (x) > 0 for all x ∈ X̂∞
iP .

Lemma 3.6. Let i = E and j =M. If r + p < h(d1 − c1), there exists some x∗ij ∈ (0, 1] such

that F∞
j (x)−F∞

i (x) < 0 for all x ∈ X̂∞
ij with xj < x∗ij .

If r + p > h(d1 − c1), there exists x∗ij ∈ (0, 1) such that F∞
j (x)−F∞

i (x) < 0 for all x ∈ X̂∞
ij

with xj > x∗ij , and F∞
j (x)−F∞

i (x) > 0 for all x ∈ X̂∞
ij with xj < x∗ij .
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Lemmas 3.3–3.6 give characterizations of βij. Lemma 3.3 implies that for i, j ∈ {E,P}
with i 6= j, βij, β ji > 0 if p < h(d1− c1). That is, both transitions — the all-E state to/from
the all-P state — are unlikely. To see this, note that if p < h(d1− c1), then Player 1 chooses
D in a haystack where only one player in the Player 2 position adopts preference P and
the others adopt preference E. When the proportion of preference P is small, it is likely
for players with preference P to find themselves in such a haystack and punish Player 1
by sacrificing their own payoff. This implies that preference P can not invade to the all-E
state, or βEP > 0. For βPE, it is always hard for preference E to invade to the all-P state.
Thus, βPE > 0. If p > h(d1 − c1), then Player 1 chooses C in any haystack with at least
one player who punishes. Players with preference P can always induce cooperation, and
thus their average payoff is higher than that of preference E, i.e., βEP = 0.

For i, j ∈ {E,R} with i 6= j, Lemma 3.4 implies that at least either βER = 0 or βRE = 0
holds, i.e., either transition is likely. To see this, suppose that hc1 + r > hd1, that is,
Player 1 chooses C if there is at least one rewarder. If a player mutates to R in the all-E
state, then the average payoff of the player is c2− cr, while that of preference-E players is
approximately d2. Since c2 − cr > d2, players with preference R increase until they reach
the state, say state(∗), where the payoffs of the two preferences are the same. In a similar
logic, preference E can invade to the all-R state. If a player mutates to E in the all-R state,
the player earns a higher payoff than players with preference R do, and players with
preference E increases until they reach state(∗). If the all-R state is reached from state(∗)
more likely than the all-E state, βER = 0. Otherwise, βRE = 0.

For i ∈ {R,M}, βiP = 0. Lemma 3.5 implies that φiP (t) is strictly negative for all
t ∈ [0, 1]. Then, the integral attains its maximum at t = 0. This also implies that βP i > 0
for i ∈ {R,M}.

For i, j ∈ {E,M}, Lemma 3.6 implies that βEM > 0 if r + p < h(d1 − c1). Otherwise,
either βEM = 0 or βME = 0 holds. The intuition of the latter is similar to that of Lemma
3.4.

To characterize the MSS states, we view Θ as a set of nodes and make a couple of
definitions. A directed edge is an ordered pair (θ, θ̂) ∈ Θ× Θ with θ 6= θ̂. A path from
θ to θ̂ is a sequence of directed edges connecting θ to θ̂ (with no repeated nodes), for
example, {(θ, θ1), (θ1, θ2), . . . , (θt, θ̂)} with θi 6= θj for i 6= j. A tree with root θ ∈ Θ is a
set of directed edges with three properties: (i) no outgoing edge from θ, (ii) exactly one
outgoing edge for every θ̂ 6= θ, and (iii) a unique path from each θ̂ 6= θ to θ. Let τθ be an
arbitrary θ-tree. Define the cost of τθ as

C(τθ) = ∑
(i,j)∈τθ

βij.
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It is the sum of the ”unlikeliness” of the edges in τθ. Let Υθ denote the set of θ-trees for
each θ ∈ Θ. Using C(τθ), define

Cθ = min
τθ∈Υθ

C(τθ), C∗ = min
θ∈Θ

Cθ,

Θ∗ = {θ ∈ Θ : Cθ = C∗}.

We call Cθ the cost of state θ. Θ∗ is the set of states that minimize the cost among all states.
The next result refines the set of long-run equilibria characterized by Theorem 2.6. Every
MSS state must be in Θ∗.

Theorem 3.7. limN→∞ ∑θ∈Θ∗ π0(θ) = 1.

The next proposition is induced by Theorem 3.7. It characterizes a sufficient condition
for the all-P state to be the unique long-run equilibrium; it is the unique MSS state if
escaping from the all-P state to any other state is harder than that from the all-E state.

Proposition 3.8. If min{βPE, βPR, βPM} > min{βEP , βER, βEM}, then the all-P state is the
unique MSS state.

We illustrate the intuition of Proposition 3.8 and omit the formal proof. Lemma 3.5
implies that the cost of escaping from the all-R or all-M state to the all-P state is zero:
βRP = βMP = 0. This implies that CP = min{βEP , βER, βEM}. While, CE must be
at least weakly greater than the cost of escaping from the all-P state. This is because
any E-tree must include an edge (P , ·), i.e. an edge emanating from P . Then, CE ≥
min{βPE, βPR, βPM} > 0. Thus, the inequality in Proposition 3.8 implies CP < CE, or
the unique stochastic stability of the all-P state.

We remark that the all-R and all-M states cannot be MSS. As discussed above, βRP =

βMP = 0. Lemmas 3.3 and 3.5 imply that βPE, βPR, βPM > 0. Then, the cost of the all-P
state is strictly lower than that of the all-R or all-M state. To see this, observe that for any
R-tree (orM-tree), we can construct a strictly more cost efficient P-tree by removing an
edge emanating from P and adding an edge fromR (orM) to P . Thus, the all-P state is
the only candidate for MSS states that sustain cooperation. If the all-P state is not MSS,
then the all-E state must be the unique MSS state.

Example 3 (MSS states and haystack sizes). Consider the basic setting with c1 = 3, c2 = 8,
d1 = 4, d2 = 3, r = 2, cr = 1, p = 2, and cp = 1. The parameter values are the same
as in Herold (2012), except that we add 3 to c1, c2, d1, d2. The addition does not change
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Table 2: The unlikeliness measure βij for transitions between homogeneous states

(a) h = 20

βij
j

E R P M
E – 0.032 0.124 0.127

i R 0 – 0 0
P 0.019 0.133 – 0.133
M 0 0 0 –

(b) h = 16

βij
j

E R P M
E – 0.022 0.111 0.112

i R 0 – 0 0
P 0.027 0.133 – 0.133
M 0 0 0 –

the equilibrium of the game but ensures positive fitness payoffs. Assume the frequency-
dependent Moran process with rij(x) = F j(x) for all i, j ∈ Θ. Then, the function φij(·) is
written as follows:

φij(x) = ln
F∞

i (x)
F∞

j (x)
∀x ∈ X̂∞.

Table 2 shows the unlikeliness measure βij in Eq.(2) for transitions between homoge-
neous states. The haystack size is 20, or h = 20, in Table 2(a), and it is 16 in Table 2(b).
The table shows the dependence of the MSS states on the haystack size. A player with
a reciprocal preference, R, P , or M, more likely finds themselves in a haystack where
Player 1 chooses C than a player with preference E does. This is because they can be the
pivotal player who induces cooperation. When a reciprocal player is the pivotal player,
they earn higher fitness payoffs than if they were self-interested. However, this effect be-
comes insignificant as the haystack size becomes large. The non-cooperative convention,
or the all-E state, tends to be the MSS state when the haystack size is large.

For h = 20, min{βPE, βPR, βPM} = 0.019 < 0.032 = min{βEP , βER, βEM}. (The
minimum values are in bold in Table 2.) The hypothesis of Proposition 3.8 is not satisfied,
and the all-E state is the unique MSS state for this case. For h = 16, the hypothesis
holds, or min{βPE, βPR, βPM} = 0.027 > 0.022 = min{βEP , βER, βEM}. Proposition 3.8
implies that the all-P state is the unique MSS state. A numerical computation confirms
that the all-P state is the unique MSS state for h ≤ 17, while the all-E state is the unique
MSS for h ≥ 18.

Note that in Example 3, preferenceR plays the role of a catalyst in the spread of pref-
erence P . As suggested by Lemma 3.4, the average payoff of preference R is strictly
higher than that of preference E when the fraction of preference E is sufficiently large,
that is, preference R can easily invade to the all-E state. This sometimes makes βER
smaller as in Table 2, and stimulates the evolution of reciprocal preference P via the de-
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Table 3: Definition and notation for simplified preferences in the SML setting

Preference Notation Definition
Homo economicus E θ(C) = A, θ(D) = A
Rewarder R θ(C) = R, θ(D) = A
Moral M θ(C) = R, θ(D) = PS
Punisher S PS θ(C) = A, θ(D) = PS
Punisher M PM θ(C) = A, θ(D) = PM
Punisher L PL θ(C) = A, θ(D) = PL

tour: all-E → all-R → all-P . One can confirm that if preference R is not available, then
min{βPE, βPM} < min{βEP , βEM} and the all-E state is the MSS state even for h = 16.

4 Analysis for the SML setting

4.1 Characterization under uniform-order mutations

We consider the SML setting, illustrated in Figure 1b. The difference from the basic
setting is that the SML setting has a richer set of punishment alternatives. We examine
the influence of expanding the choice of punishments on the long-run equilibrium. The
result will show that expanding the punishment choice may paradoxically lead to non-
cooperative long-run equilibrium. Recall that Θ denotes the set of simplified preferences.
The set of simplified preferences for the SML setting is shown in Table 3.

We refer the set of the all-PS, all-PM, and all-PL states as the all-P set. This is a set of
states where Player 1 always chooses C to avoid punishment. We assume uniform-order
mutations as in Section 3. The MSS states in this setting are also characterized by Theorem
3.7. The next lemma offers the key observation in this setting.

Lemma 4.1. βij = 0 for all i ∈ {R,M,PS,PM,PL} and j ∈ {PS,PM,PL} with i 6= j.

Proof of Lemma 4.1. Lemma 3.5 and its proof imply that βij = 0 for all i ∈ {R,M} and
j ∈ {PS,PM,PL}. To show that βij = 0 for i, j ∈ {PS,PM,PL}, it suffices to prove
that F∞

i (x) − F∞
j (x) = 0 for all x ∈ {y ∈ X̂∞ : yi + yj = 1, yi, yj > 0} for all i, j ∈

{PS,PM,PL} with i 6= j. Then, Assumption 3.1 implies that φij(t) = 0 for all t ∈ [0, 1].
Fix x ∈ {y ∈ X̂∞ : yi + yj = 1, yi, yj > 0} for i, j ∈ {PS,PM,PL}. Observe that

players in Player 1’s position will be punished at least by pS in every match if they choose
D. Since c1 > d1 − pk for all k ∈ {S, M, L}, players in Player 1’s position choose C. Thus
F∞

i (x) = F∞
j (x) for all i, j ∈ {PS,PM,PL}.
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Lemma 4.1 shows that the cost of transitions among states in the all-P set is zero.
During the transition between states in the all-P set, all players in Player 2’s position re-
ceive the same payoff c2 regardless of their preference since players in Player 1’s position
choose C to avoid punishment. Then, for example, from any state where players have
either preference PS or PM, the process can go either way: the all-PS or all-PM state. An
important implication is that if some state in the all-P set is MSS, then all states in the
all-P set are MSS as well.2

We say that a set of states is the unique MSS set if all states in the set are MSS and any
state outside the set is not MSS. The next proposition characterizes a sufficient condition
for the all-P set to be the unique MSS set. The cooperative states will be long-run equi-
libria if the cost of escaping from the all-P set to any other state is greater than that of
escaping from the all-E state.

Proposition 4.2.
If mini∈{S,M,L}min{βPiE, βPiR, βPiM} > min{βEPS , βEPM , βEPL , βER, βEM}, then the all-P
set is the unique MSS set.

We sketch the proof of Proposition 4.2 and omit the formal one. Lemma 4.1 implies
that the cost of any state in the all-P set equals the escaping cost from the all-E state, i.e.,
CPi = min{βEPS , βEPM , βEPL , βER, βEM}. This is because for any state in the all-P set, the
transition cost is positive only from the all-E state to it, and the transition cost is zero from
all the other states. Thus, the right-hand side in the inequality in Proposition 4.2 is the
cost of states in the all-P set. It is easy to see that the left-hand side in the inequality is
the escaping cost from states in the all-P set. The cost of the all-E state is weakly greater
than that cost. Thus, if the inequality holds, the cost of states in the all-P set is minimum
among the all-θ states for θ ∈ Θ.

Proposition 4.2 shows the mixed effect of expanding the punishment choice. On
the one hand, more punishment alternatives weakly decrease the escaping cost from
the all-E state, or the right-hand side of the inequality, and thus strengthen the stabil-
ity of the cooperative equilibrium. For example, introducing PM to Θ = {E,R,PS,M},
i.e. adding the moderate punishment, reduces the escaping cost from the all-E state if
βEPM < min{βER, βEPS , βEM}. This effect generally helps the all-P set be the unique
MSS. On the other hand, more punishment alternatives may reduce the escaping cost
from the all-P set. For example, consider that βPME < min{βPSE, βPSR, βPSM}. Then,
adding PM makes easier to escape from the all-P set. That is, the process can move away

2Lemma 4.1 shows that one mutation is enough to upset a state in the all-P set and move the process
toward another. Then, use Lemma 4 of Nöldeke and Samuelson (1993) to obtain this implication.

19



Table 4: βij for haystack size h = 16 in settings A and B. The entries in the first four rows
and columns are common among the two settings, while the entries for PM and PL are
only for setting B.

βij
j

E R PS M PM PL
E – 0.014 0.072 0.047 0.058 0.035
R 0 – 0 0 0 0

i PS 0.015 0.061 – 0.061 0 0
M 0 0 0 – 0 0
PM 0.012 0.061 0 0.061 – 0
PL 0.01 0.061 0 0.061 0 –

from the all-P set by a detour through the all-PM state into the all-E state. This may
destabilize the cooperative equilibrium. We explore it more in the next section.

4.2 Cooperation stability of introducing more punishments

We further discuss the influence of expanding the punishment choice on the stability
of cooperative equilibria. The main point is that even strictly more efficient punishment
alternatives may not always help sustain the cooperative equilibrium and may sometimes
destabilize it. This seemingly counter-intuitive phenomenon arises due to the second-
order free rider problem. Free riders may take advantage of more efficient punishments.
To make the point clearly, we consider an extreme case: cS = cM = cL and pS < pM < pL.
Intuitively, punishments M and L are strictly better than punishment S. They can enforce
a more severe punishment than punishment S at exactly the same cost. However, even
introducing such perfectly more efficient punishments may potentially destabilize the
cooperative MSS state.

Example 4. Consider the following two settings, A and B. Setting A is the basic setting
with c1 = 12, c2 = 17, d1 = 13, d2 = 12, r = 2, cr = 1, pS = 1.01, and cpS = 1.
Setting B is the SML setting where punishments M and L with pM = 1.2, pL = 1.7, and
cpM = cpL = 1 are added to setting A. Note that cS = cM = cL and pS < pM < pL.
Assume the frequency-dependent Moran process with rij(x) = F j(x) for all i, j ∈ Θ.

Table 4 shows βij for each pair of preferences for the haystack size being 16 in set-
tings A and B. Observe that min{βPSE, βPSR, βPSM} = 0.015 and min{βEPS , βER, βEM} =
0.014. Proposition 3.8 implies that the all-PS state is the unique MSS state in setting
A. However, in setting B, the all-P set is not MSS. Proposition 4.2 does not apply since
min{βPME, βPLE} < min{βEPS , βEPM , βEPL , βER, βEM}. In fact, the all-E state is the unique

20



MSS state in setting B.
Why such cost efficient punishments may weaken the stability of cooperation? The

rationale behind this result is that severe punishments benefit a type of free riders who
don’t punish, as known as the second-order free riders. This allows preference E to invade
the all-P set more easily in setting B than it does in setting A. To see this, consider an
invasion by preference E to the all-Pi state for i ∈ {S, M, L}. When there is a small fraction
of preference E, the most likely haystack is that (i) all players have preference Pi, and the
second most likely one is that (ii) all but one players have preference Pi and one player
has E. For the invasion to the all-PS state, Player 1 chooses D in case (ii). Since the
punishment is very mild, action D is the best response when there is at least one player
who does not punish. This implies that players with preference E cannot free-ride players
with preference PS and earn c2. Then, the average payoff of players with preference E is
d2 = 12, while the average payoff of players with PS is close to c2 = 17 when the fraction
of preference-E players is small. This makes harder the invasion by preference E.

On the other hand, for the invasion to the all-Pi state for i ∈ {M, L}, Player 1 chooses
C in case (ii) to avoid punishment. If players with preference E is in such a haystack,
they can free-ride players with preference PM or PL and earn c2. The average payoff of
players with preference E is close to c2 = 17, i.e. they can evolve relatively easily, when the
fraction of preference-E players is small. Thus, more cost-efficient punishments ironically
make easier the invasion by preference E.

5 Discussion: design of a reward-punishment scheme

Propositions 3.8 and 4.2 suggest that the MSS states may depend on the effectiveness
of rewards and punishments. A well-designed reward-punishment scheme may help us
sustain cooperative conventions where all players (in the Player 1’s position) choose to
cooperate. We discuss such a scheme that improves the robustness of the all-P state. To
simplify the analysis, we focus on the basic setting and consider the best choice of r, p, cr,
and cp.

Assume that feasible schemes for rewards and punishments are defined by the cost
functions cr : [r, r] → R+ and cp : [p, p] → R+. The function cr(t) maps each reward t
to the cost associated with giving t to Player 1. That is, if Player 1 plays C and Player 2
rewards it with t, they receive c1 + t and c2 − cr(t), respectively. The function cp(t) maps
each punishment t to the cost associated with deducting t from Player 1’s payoffs. We
assume that cr(·) and cp(·) are weakly increasing. The lower bounds r and p are such
that c1 + r > d1 and c1 > d1 − p. Those bounds guarantee that players in the position of
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Player 1 will cooperate if all players in the Player 2’s position are rewarders or punishers.
The upper bounds r, p are such that c2 − cr(r) > d2 and p < ∞. Define

R∗ =
{

r ∈ [r, r] :
∫ 1

0
φER(z)dz ≤ 0

}
, P∗ =

{
p ∈ [p, p] :

∫ 1

0
φPE(z)dz > 0

}
,

β∗ER = min
r∈[r,r]

∫ 1

0
φER(z)dz, β∗PE = max

p∈[p,p]
max
t∈[0,1]

∫ t

0
φPE(z)dz,

β∗EM = min
r∈[r,r]p∈[p,p]

min
t∈[0,1]

∫ t

0
φEM(z)dz.

Note that φER(·) does not depend on the punishment level p, and φPE(·) does not depend
on the reward level r. Thus, R∗ is defined independently from the punishment p, and
P∗ is so from the reward r.

In part of the next result, we assume the following property. In words, the payoff-
ratios of preferences are preserved in the ratios of imitation rates of preferences. The
frequency-dependent Moran process in Example 2 satisfies this property.

Definition 5.1 (Payoff-ratio monotonicity). An imitative dynamic satisfies the Payoff-Ratio
Monotonicity (PRM) if its imitative rate function satisfies that

F j(x)

F i(x)
>
Fm(x̂)
F l(x̂)

⇔
rij(x)
rji(x)

>
rlm(x̂)
rml(x̂)

∀i, j, l, m ∈ Θ, x, x̂ ∈ X̂∞.

The next proposition shows conditions under which we can or cannot sustain cooper-
ation.

Proposition 5.2. For all (r, p) ∈ {R∗ × [p, p]}, the all-P state is the unique MSS state in any
imitative dynamics.

For all p ∈ P∗, the all-P state is the unique MSS state in any imitative dynamics satisfying
PRM.

If R∗ = P∗ = ∅, β∗PE < min{β∗ER, β∗EM}, and
∫ 1

0 φPE(z)dz < 0 for all p ∈ [p, p], then
the all-E state is the unique MSS state for all r ∈ [r, r], and all p ∈ [p, p].

The first claim says that if R∗ 6= ∅, then we can sustain cooperation under a reward-
punishment scheme with some r ∈ R∗ and any p ∈ [p, p]. The punishment level p does
not matter for this case. To see this, observe that βER = 0 for all r ∈ R∗. Players could
likely move away from the all-E state toward the all-R state, from which players could
likely move to the all-P state.

For P∗ 6= ∅, the PRM property guarantees that the all-P state is the unique MSS
state. For any punishment level p ∈ P∗, βPE > βEP always holds. It is not certain if
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min{βPR, βPM} > min{βER, βEM} holds, which is part of the hypothesis of Proposition
3.8. The PRM property ensures that the inequality holds.

The last claim of the proposition shows a condition under which players end up in the
non-cooperative convention in the long run for any choice of (r, p).

Remark 5.3. There are conditions on lower- or upper- bounds that guarantee thatR∗ 6= ∅
or P∗ 6= ∅. If r < h

h−1(d1 − c1), then [r, h
h−1(d1 − c1)) ⊂ R∗. This observation corre-

sponds to Herold (2012, Remark 1). If r < h
h−1(d1 − c1), then players in the Player 1’s

position will cooperate only if all players in the Player 2’s position are rewarders. Since
the existence of any of self-interested players always destroy cooperation, self-interested
players cannot free-ride, and thus cannot outperform rewarders.

As for P∗, if p > h(d1 − c1), then (h(d1 − c1), p] ⊂ P∗. It corresponds to Herold
(2012, Remark 2). If p > h(d1 − c1), a single punisher in a group can induce cooperation.
Thus, punishers always outperform self-interested players, who fail to induce coopera-
tion when the other players in their group are also self-interested.

Proof of Proposition 5.2. For the first claim, observe that Lemma 3.4 implies that βER =

max{0,
∫ 1

0 φER(z)dz}. Then, βER = 0 for all r ∈ R∗. Proposition 3.8 together with the
fact that min{βPE, βPR, βPM} > 0 implies the first claim.

For P∗, Lemma 3.3 implies that βPE =
∫ x∗PE

0 φPE(z)dz and βEP =
∫ x∗EP

0 φEP (z)dz =∫ 1
x∗PE
−φPE(z)dz. This implies that βPE − βEP =

∫ 1
0 φPE(z)dz, which further implies that

βPE > βEP for all p ∈ P∗. We can also show that for any imitative dynamic with PRM,
βPR = βPM > βER. Fix y ∈ X̂∞ such that yP + yR = 1. Let ŷ be such that ŷP = yP and
ŷM = yR. Since Player 1 chooses C in both y and ŷ, it is easy to see that FR(y) = FM(ŷ)
and FP (y) = FP (ŷ). The PRM property guarantees that rRP (y)

rPR(y)
= rMP (ŷ)

rPM(ŷ) , which further

implies that βPR = βPM. For βPR > βER, fix ξ ∈ X̂∞ such that ξP + ξR = 1. Let ξ̂ be
such that ξ̂R = ξR and ξ̂E = ξP . Observe that

FP (ξ)
FR(ξ)

=
c2

c2 − cr
>

p(ξ̂)c2 + (1− p(ξ̂))d2

p̂(ξ̂)(c2 − cr) + (1− p̂(ξ̂))d2
≥ FE(ξ̂)

FR(ξ̂)
, (3)

where p(ξ̂) denotes the probability that Player 1 chooses C in state ξ̂ conditional on that
one player in Player 2’s position has preference E, and p̂(ξ̂) denotes that probability con-
ditional on that one player in Player 2’s position has preferenceR. Note that p(ξ̂) ≤ p̂(ξ̂).
Inequality (3) together with the PRM property implies that βPR > βER. With βPE > βEP
and βPR = βPM > βER, Proposition 3.8 implies the second claim.

If R∗ = P∗ = ∅, then βER > 0 and βPE ≤ βEP for all (r, p) ∈ [r, r] × [p, p]. If
β∗PE < min{β∗ER, β∗EM}, then βPE < min{βER, βEM} for all (r, p) ∈ [r, r]× [p, p]. Observe
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also that βPE < βEP if
∫ 1

0 φPE(z)dz < 0. Then, the claim is implied by Theorem 3.7.

6 Concluding remarks

We have considered an extension of the haystack model. The two main contributions
are that (i) we characterize a sufficient condition under which adopting reciprocal pref-
erences is the long-run equilibrium, and that (ii) we figure out the effect of expanding
the punishment choice. For the latter contribution, it is intriguing that more cost-efficient
punishments may weaken the robustness of the cooperative equilibrium.

A next step in future research is to replace the extensive form game G with the Nash
demand game or the contract game. It is known that behavioral biases significantly af-
fect the long-run behavior in the Nash demand game (see Khan 2021, 2022; Sawa 2021a),
and in the contract game (see Hwang et al. 2018; Naidu et al. 2010). Behavioral biases are
fixed in the models of those works. Matching evolution of preferences with the works
mentioned above may lead to a new insight — a characterization of preferences and be-
havior that simultaneously emerge in the long run in the bargaining setting.

Another step we are considering taking is to employ the best response dynamics in
the haystack model. A difficulty with it is that the technique of Fudenberg and Imhof
(2006) is not available for the best response dynamics. One may inevitably employ some
technique developed for the best response dynamics, e.g. Arigapudi (2020a,b); Sandholm
(2010a); Sandholm and Staudigl (2016, 2018); Sawa (2012, 2021b).

Appendix A

A.1 Proofs for Section 3

Let Pr(k|x, i) = Pr∞(i = k, j = h− k|x, i) throughout the Appendix. Pr(k|x, i) is the
probability that an i-player is in a haystack with k of i-players (including herself) and
h− k of j-players in Player 2’s position given that the state is x. Recall that X̂∞

ij = {y ∈
X̂∞ : yi + yj = 1, yi, yj > 0} for all i, j ∈ Θ with i 6= j.

Proof of Lemma 3.3. We prove the claim for the case that i = E and j = P . The proof for
the other case, i = P and j = E, is similar. Let x ∈ X̂∞

EP . Let k∗ denote the minimum
integer such that players in Player 1’s position will cooperate if there are k∗ of P-players
and h− k∗ of E-players (in Player 2’s position) in the haystack.
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Observe that

F∞
P (x)−F∞

E (x) = Pr(k∗|x,P)(c2 − d2) +
k∗−1

∑
k=1

Pr(k|x,P)((d2 − cp)− d2)

= cp Pr(k∗|x,P)
{

c2 − d2

cp
−

k∗−1

∑
k=1

Pr(k|x,P)
Pr(k∗|x,P)

}
.

Note that cp Pr(k∗|x,P) is strictly positive for all x ∈ X̂∞
EP . The sum in the last term is

strictly decreasing in xP . To see this, observe that

Pr(k|x,P)
Pr(k∗|x,P) =

(h−1)!
(k−1)!(h−k)!

(h−1)!
(k∗−1)!(h−k∗)!

(xP )k−1(xE)
h−k

(xP )k∗−1(xE)h−k∗

=
(k∗ − 1)!(h− k∗)!
(k− 1)!(h− k)!

(
1− xP

xP

)k∗−k
.

Furthermore, limxP→0
Pr(k|x,P)

Pr(k∗|x,P) = ∞ and limxP→1
Pr(k|x,P)

Pr(k∗|x,P) = 0 for all k < k∗. Since

0 < (c2 − d2)/cp < ∞, F∞
P (x)−F∞

E (x) is negative for sufficiently small xP and positive
for sufficiently large xP . Then the claim follows.

If p > h(d1− c1), then k∗ = 1. This implies that ∑k∗−1
k=1 = 0. Thus, F∞

P (x)−F∞
E (x) > 0

for all x with xP > 0.

Proof of Lemma 3.4. We prove the claim for the case that i = E and j = R. The proof for
the other case is similar. Let x ∈ X̂∞

ER. Let k∗∗ denote the minimum integer such that
players in Player 1’s position will cooperate when there are k∗∗ ofR-players and h− k∗∗

of E-players (in Player 2’s position) in the haystack. Observe that

F∞
R(x)−F∞

E (x) = Pr(k∗∗|x,R)((c2 − cr)− d2) +
h

∑
k=k∗∗+1

Pr(k|x,R)((c2 − cr)− c2)

= cr Pr(k∗∗|x,R)
{

c2 − d2

cr
− 1−

h

∑
k=k∗∗+1

Pr(k|x,R)
Pr(k∗∗|x,R)

}
.

Note that cr Pr(k∗∗|x,R) is strictly positive for all x ∈ X̂∞
ER. The sum in the last term is

strictly increasing in xR since each summand is written as follows:

Pr(k|x,R)
Pr(k∗∗|x,R) =

(k∗∗ − 1)!(h− k∗∗)!
(k− 1)!(h− k)!

(
xR

1− xR

)k−k∗∗

.
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It is increasing in xR for all k > k∗∗. Furthermore, limxR→0
Pr(k|x,R)

Pr(k∗∗|x,R) = 0 and

limxR→1
Pr(k|x,R)

Pr(k∗∗|x,R) = ∞. Since 1 < (c2 − d2)/cr < ∞, the claim follows.

Proof of Lemma 3.5. We prove the claim for i = R. The other case can be similarly proved.
Observe that for all x ∈ X̂∞

RP , players in Player 1’s position always cooperate regardless
of the distribution of preferences in Player 2’s position. Then, F∞

P (x) − F∞
R(x) = c2 −

(c2 − cr) = cr > 0 for all such x.

Proof of Lemma 3.6. Let x ∈ X̂∞
EM. Let k∗ denote the minimum integer such that players

in Player 1’s position will cooperate if there are k∗ ofM-players and h− k∗ of E-players
(in Player 2’s position) in the haystack. Observe that k∗ > 1 if r + p < h(d1 − c1).

Observe that

F∞
M(x)−F∞

E (x) = Pr(k∗|x,M)

{
(c2 − cr − d2)− cp

k∗−1

∑
k=1

Pr(k|x,M)

Pr(k∗|x,M)

−cr

h

∑
k=k∗+1

Pr(k|x,M)

Pr(k∗|x,M)

}
.

Similarly to the proofs of Lemmas 3.3 and 3.4, we can show that limxM→0
Pr(k|x,M)

Pr(k∗|x,M)
= ∞

for k < k∗, and limxM→0
Pr(k|x,M)

Pr(k∗|x,M)
= 0 for k > k∗. Then, if k∗ > 1, F∞

M(x)−F∞
E (x) < 0

for all sufficiently small xM.
If r + p > h(d1 − c1), then k∗ = 1. Note that ∑k∗−1

k=1
Pr(k|x,M)

Pr(k∗|x,M)
= 0 for this case. We can

prove the claim similarly to the proof of Lemma 3.4.

The next lemma is the key lemma for Corollary 3.2 and Theorem 3.7. Corollary 3.2 is
immediate from it.

Lemma A.1. Let t∗ij ∈ [0, 1] be such that βij =
∫ t∗ij

0 φij(z)dz for i, j ∈ Θ with i 6= j.

(i) If t∗ij ∈ (0, 1), then there are constants 0 < m < M < ∞ such that for all N ≥ 2,
m ≤

√
N exp(Nβij)ρij ≤ M.

(ii) If t∗ij ∈ {0, 1}, then there are constants 0 < m < M < ∞ such that for all N ≥ 2,
m ≤ exp(Nβij)ρij ≤ M.

Proof of Lemma A.1. We prove claim (i) of the lemma. It is similar to the proof of Lemma 2
in Fudenberg et al. (2006). Recall Eq.(1). Observe that ρij can be expressed as

1
ρij

= 1 +
N−1

∑
k=1

k

∏
m=1

xj(m)σN
ji (x(m))

xi(m)σN
ij (x(m))

= 1 +
N−1

∑
k=1

k

∏
m=1

m
N

N−m
N−1 rji(x(m))

N−m
N

m
N−1rij(x(m))
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= 1 +
N−1

∑
k=1

exp

(
k

∑
m=1

φij

(m
N

))
,

where recall that φij(x) = ln
rji(x)
rij(x) , and x(m) is such that xj(m) = m

N and xi(m) = N−m
N .

Let ψ(x) =
∫ x

0 φij(z)dz, and K1 = supt∈[0,1] |φ′ij(t)|. The mean value theorem implies that,
for all m = 1, . . . , N − 1,

∫ m/N

(m−1)/N
φij(z)dz =

1
N

φij(t̂) for some t̂ ∈
[

m− 1
N

,
m
N

]
,

⇒
∫ m/N

(m−1)/N
φij(z)dz ≥ 1

N

(
φij

(m
N

)
− K1

N

)
,

⇒ φij

(m
N

)
≤ N

∫ m/N

(m−1)/N
φij(z)dz +

K1

N
. (4)

This yields that for all k = 1, . . . , N − 1,

exp

(
k

∑
m=1

φij

(m
N

))
≤ exp

[
Nψ

(
k
N

)
+ K1

]
. (5)

Let K2 = supt∈[0,1] |φij(t)|. Observe that

exp
[

Nψ

(
k
N

)]
= N

∫ k/N

(k−1)/N
exp

[
Nψ

(
k
N

)]
dξ

≤ N
∫ k/N

(k−1)/N
exp

[
N
(

ψ(ξ) +
1
N

K2

)]
dξ

= NeK2

∫ k/N

(k−1)/N
exp [Nψ(ξ)] dξ. (6)

The inequality comes from ψ′(t) = φij(t) for t ∈ [0, 1] and that exp(·) is an increasing
function. Combining Eq.(4)–(6), we have that

1
ρij
≤ 1 + NeK1+K2

∫ 1

0
exp [Nψ(ξ)] dξ. (7)

Similarly to that, we can show that

1
ρij
≥ 1 + Ne−K1−K2

∫ 1

0
exp [Nψ(ξ)] dξ. (8)
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Combining the two inequalities above, we obtain

1

1 + NeK1+K2
∫ 1

0 exp [Nψ(ξ)] dξ
≤ ρij ≤

1

Ne−K1−K2
∫ 1

0 exp [Nψ(ξ)] dξ
. (9)

Recall that βij = maxt∈[0,1]
∫ t

0 φij(z)dz =
∫ t∗ij

0 φij(z)dz.3 It implies that βij = ψ(t∗ij ).
Observe also that ψ′′(t) = φ′ij(t). Then the Laplace’s method for approximating integrals
yields that4

lim
N→∞

∫ 1
0 exp [Nψ(ξ)] dξ

N−1/2 exp(Nβij)
=

√
− 2π

φ′ij(t
∗
ij )
≡ Tij.

Fix ξ > 0 such that Tij − ξ > 0. Then, for a sufficiently large N̄, there exist some constants
m̃, M̃ ∈ [Tij − ξ, Tij + ξ] such that

m̃N−1/2 exp(Nβij) <
∫ 1

0
exp[Nψ(ξ)]dξ < M̃N−1/2 exp(Nβij) ∀N ≥ N̄.

Using the above inequality, the expression (9) can be rewritten as5

1
1 + M̃eK1+K2

≤ N1/2 exp(Nβij)ρij ≤
1

m̃e−K1−K2
∀N ≥ N̄. (10)

Then, there are constants 0 < mij < Mij < ∞ such that mij ≤ N1/2 exp(Nβij)ρij ≤ Mij for
all N ≥ 2.

The proof of claim (ii) is omitted. It can be proved in a similar way using the Laplace’s
method for approximating integrals at the boundary (see Section 4.3 of De Bruijn 1981
and Lemma 2 of Fudenberg and Imhof 2008).

Proof of Theorem 3.7. Recall that we analyze the stationary distribution of the Markov
chain where the transition probability from the all-i state to the all-j state is µijρij for
i, j ∈ Θ. We follow the discussion in Sandholm (2010b, Section 12.A.1). Recall that Υθ is
the set of θ-trees for θ ∈ Θ. Define a vector v ∈ R

|Θ|
+ as

vθ = ∑
τθ∈Υθ

∏
(i,j)∈τθ

µijρij.

3If argmaxt∈[0,1] ψ(t) is not a singleton, choose t∗ij that maximizes −2π/φ′ij(t
∗
ij ).

4See, for example, Section 4.2 of De Bruijn (1981) for the Laplace’s method.
5For the left inequality to hold, we need N1/2 exp(Nβij) ≥ 1. It is satisfied if N̄ is sufficiently large.
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It is well-known that v is a positive multiple of the stationary distribution of the Markov
chain. Freidlin and Wentzell (1998) show that this result is useful to compute the limiting
stationary distribution. Corollary 3.2 with Lemma A.1 implies that for each τθ ∈ Υθ,

lim
N→∞

1
N

ln

 ∏
(i,j)∈τθ

µijρij

 = −C(τθ).

This further implies that

lim
N→∞

1
N

ln

 ∑
τθ∈Υθ

∏
(i,j)∈τθ

µijρij

 = −Cθ.

Recall that xi is the all-i state and π0(xi) is the probability mass on the all-i state in the
limiting stationary distribution. Freidlin and Wentzell (1998)’s technique implies that
π0(xi)/π0(xj) = vi/vj. As N becomes large, the ratio of the probability mass of one
state to another can be approximated as

π0(xi)

π0(xj)
∝ exp(−N(Ci − Cj)).

Thus, limN→∞ π0(xi)/π0(xj) = 0 if Ci > Cj. The claim follows.
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Güth, W., 1995, “An evolutionary approach to explaining cooperative behavior by recip-
rocal incentives,” International Journal of Game Theory 24, No. 4, 323–344.
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