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1 Introduction

There has been an increase in interest over the past 50 years to recover variables often

referred to as "stars" in the macroeconomics literature. These "stars" are supposed to char-

acterize long-run outcomes or steady-state values of some variables of policy relevance.

There are many such "stars". Zaman (2022) lists them as arising in blocks describing out-

put, unemployment, productivity, price inflation, wage inflation and interest rates. Be-

cause these "stars" are latent variables, they need to be recovered from observable data.

Almost always this has meant the use of Unobserved Component (UC) models in conjunc-

tion with the Kalman filter. Estimating these models can pose problems due to identifica-

tion issues, and sometimes there are errors in the estimation of such models. Buncic (2021)

shows this for the structural model of Holston, Laubach and Williams (HLW) (2017) of the

neutral real rate of interest.1 Despite the empirical importance of estimation problems in

UC models, for the purpose of this paper we will assume that they are absent, and that an

acceptable set of parameter values is available for the model of interest that will deliver

estimates of the "stars".

The focus of this paper is upon recovery of the latent variables from the data. More

precisely, the paper examines whether we can recover "stars" from models that contain

more shocks than observables, ie., in the terminology of Pagan and Robinson (2022), when

there are ‘excess shocks’. As shown in Pagan and Robinson (2022), Chahrour and Jurado

(2022) and Canova and Ferroni (2021), one cannot recover all the shocks when excess

shocks are present. Excess shocks typically arise when latent variables are estimated using

UC models. As an example, in Zaman (2022), there are 10 observable variables and 18

shocks. In this situation, not all 18 shocks can be recovered. Whilst it is the case that

not all the shocks can be recovered, perhaps those that are important to the estimation of

1This is sometimes also called the natural real rate.
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the "stars" can be. This situation should put the onus on those who present estimates of

the "stars" from UC models to show that one can recover key shocks of relevance. In our

experience this is rarely the case.

The remainder of the paper is structured as follows. Section 2 discusses general prob-

lems of recovering latent variables when excess shocks are present. Whether particular

shocks can be recovered is easily checked by examining quantities that are computed from

the Kalman filtering and smoothing equations.

Section 3 then looks at applications. Firstly, recovery of potential output with the

widely used Hodrick-Prescott filter is examined. Secondly, recovery of the neutral real

rate based on models proposed by Laubach and Williams (2003) and Schmitt-Grohe and

Uribe (2022) is analyzed. Thirdly, recovery of potential output, the NAIRU and the neu-

tral real rate is examined with th UC model given in McCririck and Rees (2017), which

is essentially a part of the model used for forecasting and policy at the Reserve Bank of

Australia (see Ballantyne et al. (2020) for more details on the model known as ‘MARTIN’).

Section 4 then looks at the question of whether the treatment of the short term nominal

interest rate as being exogenous in existing attempts to recover the neutral real rate can

be improved upon by making the short rate endogenous. This is done by formulating

a monetary policy rule. Pagan and Wickens (2022) suggested that, without such a rule,

the output gap may be an I(1) process. Zaman (2022) notes that the estimates of the

parameters in his UC model are improved when such a policy rule is included. However,

this does not mean that recovery will be any better, as a policy adds another shock to the

model, leading to the number of excess shocks remaining unchanged.

Section 5 turns to studies that do not use UC models to capture "stars". Instead, these

models define the long-run measures of quantities such as output, unemployment, and

other variables as either those derived from a Beveridge Nelson decomposition or the
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long-horizon forecast from a model with time varying parameters. The first was used in

Morley et al. (2022), and the second by Lubik and Matthes (2015). There are issues with

both approaches which we will discuss in that section.

2 Recovering Latent Variables from Models

To begin, we ask: what is the key issue when excess shocks are present in a model? We

will discuss this in the context of models that can be written in State Space Form (SSF) as:

ζ t = Ast + Bεt (1)

st = Cst�1 + Dεt. (2)

There may be identification issues in estimating A, B, C and D when there are more shocks

than observables. To avoid this, we assume that all the parameters are known, i.e., we will

simply use the numerical values provided in the papers of the models. There are two sets

of equations (1) and (2) describing the relationship between variables, realizations and

shocks. These equations involve the assumed shocks εt.2 Given A, B, C, D, characteristics

such as variances and covariances of the observed variables ζ t can be determined. Equa-

tion (1) works from right to left. Assumptions are made about the shocks (on the RHS) and

these then describe the random variables on the LHS. There are auxiliary assumptions in-

volved in the model about the assumed shocks εt, for instance, that they are uncorrelated,

while those in equation (1) tell the investigator about the assumed model properties.

The other equations in (2) involve the data, and these can be used to define the estimated

shocks, which will be either filtered or smoothed. We will largely work with smoothed shocks

and denote these by ETεt. Smoothed shocks at time t are defined as the expectation of the

2All εt have zero means and unit variances.
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shock εt using all the T observations in the sample. Filtered shocks are denoted by Etεt

and are estimated using data up to time period t. Designating the data as ζD
t the system

becomes:

ζD
t = AETst + BETεt (3)

ETst = CETst�1 + DETεt. (4)

Here equation (3) works from the left to the right. Given a set of data (and A, B, C, D),

one obtains smoothed shocks from the Kalman smoother. The key question that we ask

is under what conditions we can recover εt from the data using ETεt? It is important to

highlight here that this is not an estimation issue, as we have assumed all parameters to

be known. It is a recovery issue, and it asks whether we can separate the estimated shocks.

To look at this question, it is useful to think about this in the simplest possible sce-

nario, where we have one observable and two shocks. Then we obtain the following two

equations corresponding to (1) and (3):

ζ t = ε1t +ε2t (5)

ζD
t = ETε1t + ETε2t (6)

=

�
1 1

�
| {z }

G

264 ETε1t

ETε2t

375
| {z }

ETεt

= GETεt. (7)

From this, it is apparent that ETεt cannot be recovered uniquely from ζD
t , because G is not

a square matrix and hence singular. One could use a generalized inverse to solve for ETεt.
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This would find an estimated shock ε̃t = ETεt that is closest to εt using a quadratic norm.

For the case in (7) above, the generalized inverse of G (denoted by G+), is given by:

G+ = G0(GG0)�1

=

264 1

1

375
0B@� 1 1

�264 1

1

375
1CA
�1

=

264 .5

.5

375 ,

so that solving (7) for ETεt yields

G+ζD
t = G+GETεt264 .5

.5

375ζD
t =

264 ETε1t

ETε2t

375 , (8)

which implies that ETε1t = .5ζD
t = ETε2t. That is, the smoothed shocks ETε1t and ETε2t

are identical, and thus cannot be separately identified from the data.

Now suppose that we think of a realization of the random variable ζ t that equals the

data. This would be associated with some realization of the shocks ε1t and ε2t, say we call

these ε�1t and ε�2t, and so that:

ε�1t +ε�2t = GETεt,

meaning that ε̃1t = .5ζD
t = .5(ε�1t + ε�2t). Clearly, ε̃1t does not equal ε�1t, and so we cannot

recover the realized shock ε1t.

To get some idea of the difference between the shock estimated from the data and the

assumed shock, consider looking at the index φ = Var(ε̃1t�ε1t) = Var( 1
2(ε1t+ε2t)) = .5.
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If φ = 0, we can recover ε1t. However, for other values, more analysis is needed. Consider

the case φ = Var(ε̃t �εt). This yields:

φ = Var(ε̃t)� 2Cov(ε̃t,εt) + Var(εt).

Since the last term is unity, we get:

φ = Var(ε̃t)� 2ρ�σ(ε̃t) + 1,

where ρ is the correlation between ε̃t and εt, and σ(ε̃t) =
p

Var(ε̃t) the standard deviation

of ε̃t. Consequently,

1�φ = 2ρ�σ(ε̃t)� Var(ε̃t)

= σ(ε̃t)(2ρ�σ(ε̃t)).

When φ = 0, we have σ(ε̃t) = 1 as ε̃t = εt, and so ρ = 0, meaning that it is possible to

recover the shock εt. The situation is more complex when φ is different from zero. For

instance, when φ = 1, then ρ = σ(ε̃t)
2 , and so the correlation between ε̃t and εt depends on

σ(ε̃t), the standard deviation of ε̃t.

3 Some Applications aimed at recovering Stars

We start here by looking at recovering potential output using a UC model that delivers

the Hodrick Prescott (1997) filter solution, and then move on to the models of Laubach

and Williams (2003) and Schmitt-Grohe and Uribe (2022) to recover the neutral real rate.

Finally, we look at a model with Australian data used by McCririck and Rees (2017) to
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recover the NAIRU, the neutral real rate and potential output. In all cases we find issues

in recovering the "stars".

3.1 Recovering Potential Output from the HP Filter

One "star" is potential output. It is used primarily to measure the output gap. In the

typical setting, potential output is driven by permanent shocks, while the output gap is

assumed to be stationary, and is thus exposed to transitory shocks only. There are various

different specifications of these two components.

A popular one, due to Hodrick and Prescott (HP) (1997), was motivated on the basis

of a UC model. As Pagan and Robinson (2022) observe, this involved excess shocks. In

the appendix to Pagan and Robinson (2022) it is shown that the output gap computed

from a one-sided HP filter which uses only current and past data leads to the filtered

permanent shocks Etε
perm
t and the filtered output gap Etε

gap
t being perfectly correlated.

That is, Etε
perm
t is a multiple of Etε

gap
t . If one uses a two-sided filter, as the original HP

filter, then the smoothed permanent ETε
perm
t and the smoothed output gap shocks ETε

gap
t

are dynamically correlated via the identity:

(1� 2L+ L2)ETε
perm
t = (1=λ)ETε

gap
t�2, (9)

where λ is the smoothing parameter (commonly set to 1600 for monthly macroeconomic

data) in the HP filter.

In a broader setting, the same type of dynamic correlation comes up with many mul-

tivariate filters that are derived from UC models. One example is the filter constructed

from MAPMOD by Alichi et al. (2017).
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3.2 Recovering the Neutral Real Rate - Laubach and Williams (2003)

Laubach and Williams (LW) (2003) proposed the following "baseline" model to recover the

neutral real rate of interest (r�t ). Numerous variants of the LW model exist in the literature,

and are widely used at central banks. The baseline version of the model consists of the

following equations:

ỹt = α1 ỹt�1 +α2 ỹt�2 +
ar

2

2X
i=1

(rt�i � r�t�i) +σ1ε1t (10)

π t = B(L)π t�1 + bI(π
I
t � π t) + bo(π

o
t�1 � π t�1) + by ỹt�1 +σ2ε2t (11)

�zt = σ3ε3t (12)

�y�t = gt�1 +σ4ε4t (13)

�gt = σ5ε5t (14)

r�t = cgt + zt (15)

ỹt = yt � y�t (16)

where ỹt is the output gap, y�t is potential GDP, rt is a real interest rate, r�t is the neutral

real rate, and π t, π I
t and πo

t are various measures of inflation. There are evolving processes

for the trend growth of GDP gt, and “other determinants” zt which affect r�t . In LW, there

are five shocks
�
σ jε jt

	5
j=1 with standard deviations

�
σ j
	5

j=1, where the
�
ε jt
	5

j=1 have unit

variances.

In order to assess recoverability in this model, we follow the framework set out in

Pagan and Robinson (2022) and Chahrour and Jurado (2022), and write the LW model in

SSF which expresses all observables in ζ t on the LHS of (1) and collects all shocks as well
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as remaining latent states in the state vector st. That is, we use (16) to re-write (10) as:

yt = y�t +α1(yt�1 � y�t�1) +α2(yt�2 � y�t�2)�
ar

2

2X
i=1

(rt�i � r�t�i) +σ1ε1t.

Then the first measurement equation of the SSF is:

ζ1t = y�t �α1y�t�1 �α2y�t�2 +
ar

2

2X
i=1

r�t�i +σ1ε1t, (17)

where ζ1t = yt �α1yt�1 �α2yt�2 +
ar
2
P2

i=1 rt�i contains the relevant observable vari-

ables. Similarly, the second measurement equation is:

ζ2t = byy�t�1 +σ2ε2t, (18)

where ζ2t = π t � B(L)π t�1 � bI(π
I
t � π t)� bo(πo

t�1 � π t�1) �byyt�1 consists of the ob-

servable variables.

The relevant state dynamics are driven by the equations:

�y�t = gt�1 +σ4ε4t (19)

�gt = σ5ε5t (20)

�r�t = cσ5ε5t +σ3ε3t. (21)
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The full SSM corresponding to the relations in (17) to (21) is given by:

"
ζ1t

ζ2t

#
| {z }

ζ t

=

"
1 �α1 �α2 0 ar

2
ar
2 0 � � � 0

0 by 0 0 0 0 0 � � � 0

#
| {z }

A2�12

26666666666666666666666664

y�t
y�t�1

y�t�2

r�t
r�t�1

r�t�2

gt

ε1t

ε2t

ε3t

ε4t

ε5t

37777777777777777777777775
| {z }

st

+

"
σ1 0 0 0 0
0 σ2 0 0 0

#
| {z }

B

26666664
ε1t

ε2t

ε3t

ε4t

ε5t

37777775
| {z }

εt

(22)26666666666666666666666664

y�t
y�t�1

y�t�2

r�t
r�t�1

r�t�2

gt

ε1t

ε2t

ε3t

ε4t

ε5t

37777777777777777777777775
| {z }

st

=

26666666666666666666666664

1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

37777777777777777777777775
| {z }

C

26666666666666666666666664

y�t�1

y�t�2

y�t�3

r�t�1

r�t�2

r�t�3

gt�1

ε1t�1

ε2t�1

ε3t�1

ε4t�1

ε5t�1

37777777777777777777777775
| {z }

st�1

+

26666666666666666666666664

0 0 0 σ4 0
0 0 0 0 0
0 0 0 0 0
0 0 σ3 0 cσ5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 σ5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37777777777777777777777775
| {z }

D

26666664
ε1t

ε2t

ε3t

ε4t

ε5t

37777775
| {z }

εt

(23)

All numerical values of the relevant parameters are taken from LW and are reproduced
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below for convenience.3

σ1 = .387, σ2 = .731, σ3 = .323, σ4 = .605, σ5 = .102

c = 1.068, α1 = 1.51, α2 = �.57, by = .043, c = 1.068, αr = �.098

The SSF corresponding to LW’s structural model has two observables and five shocks.

This means that it will not be possible to recover more than two unique shocks from this

model.

From the SSF defined in (22) and (23), we can determine which shocks are likely to be

recoverable, and which ones are not. Following the recoverability criterion of Chahrour

and Jurado (2022) as used by Pagan and Robinson (2022), all that needs to be computed is

the mean squared error (MSE) of the Kalman filtered or smoothed estimates of the states

st, ie., either the Etst or ETst. These two MSEs are commonly denoted by Ptjt and PtjT. We

will label those using the steady-state Kalman gain matrix in their computation as P�tjt and

P�tjT, respectively (see section 3.2 in Pagan and Robinson (2022) for more details). Now, a

shock will be recoverable from the model if the diagonal element of P�tjT corresponding to

the five shocks of interest (the last five entries in state vector st in (23)) has a zero entry

and will be unrecoverable when these equal unity.

For LW’s model, we find for the smoothed shocks contained in the last five entries of

ETst the following values for diag(P�tjT):

diag(P�tjT) =
�

.71 .02 .98 .36 .94

�
. (24)

It is clear from (24) that the “other determinants” zt shock (ε3t) and the trend growth gt

shock (ε5t) cannot be recovered. Note from (21) that these two shocks define the neutral

3LW give the sum of α1 +α2. The values here come from Table 3 of Buncic (2022).
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rate shock. Moreover, the smoothed versions of these shocks are dynamically correlated.

Defining η jt = σ jε jt, we have with the trend output y�t shock (η4t):

�ETη5t = �ETη3t � .028ETη4t.

An updated version of the LW model is given in the recent paper by Holston et al.

(2017), which uses a somewhat different formulation of the Phillips curve equation (11),

and also estimates the model over a longer sample period. The results HLW present re-

garding the estimate of the neutral rate r�t are, nonetheless, much the same as in the orig-

inal LW paper. Taking the parameter estimates of HLW’s model from Table 3 in Buncic

(2022) we find that:

diag(P�tjT) =
�

.72 .02 .99 .30 .97

�
,

indicating that the lack of recoverability of the neutral rate in this model is unchanged.

The following identity holds further using the smoothed quantities

ET�
2r�t = �.034ETη1t � .00023ETη2t + .00247ETη4t

+ .0159ETη1t�1 � .00538ETη4t�1.

That is, whatever ET�
2r�t is measuring, can be equally explained by the smoothed de-

mand, technology and Phillips curve shocks fηitgi=1,2,4, respectively. Of course, it is also

true that

ET�
2r�t = ETη5t + ETη3t.

The presence of excess shocks therefore creates interpretation difficulties.
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3.3 Recovering the Neutral Real Rate - Schmitt-Grohe and Uribe (2022)

Schmitt-Grohe and Uribe (SGU) (2022) give the following definitions relating to gaps:4

ỹt = yt � xt � δxr
t

π̃ t = π t � xm
t

ı̃t = it � (1+α)xm
t � xr

t ,

where xt, xm
t and xr

t are permanent output, monetary and real interest rate components.

The neutral real rate is then set to

r�t = xr
t +αxm

t .

The observation equations are

�yt = �ỹt + �xt + δ�xr
t +σ yε

y
t (25)

�π t = �π̃ t + �xm
t +σπεπ

t (26)

�it = �ı̃t + (1+α)�xm
t + �xr

t +σ iε
i
t, (27)

where the three shocksε
y
t ,επ

t andεi
t here are measurement errors. These will be permanent

shocks.

Define φt =

�
yt π t ı̃t

�0
and ξ t =

�
�xm

t zm
t �xt zt �xr

t

�0
. Then the dynamics

for the gaps φt are captured by the following VAR equation:

φt = Bφt�1 + Cξ t.

4We thank Tim Robinson for drawing our attention to this paper.

15



These are augmented by univariate processes for the elements of ξ t:

�xm
t = ρ1�xm

t�1 +σ1ε1t

zm
t = ρ2zm

t�1 +σ2ε2t

�xt = ρ3�xt�1 +σ3ε3t

zt = ρ4zt�1 +σ4ε4t

�xr
t = ρ5�xr

t�1 +σ5ε5t. (28)

SGU estimate the system parameters by Bayesian methods. Some of the entries of C are

fixed at values needed for identification of the parameters. The posterior means of the

parameters are provided below.5

B =

266664
.2627 .0187 �.5031

.3129 .3292 �.1170

.2268 �.0977 .5048

377775 , C =

266664
�.0956 0 �.2603 1 �.0051

�.4892 0 .5632 .8727 .3651

1.3964 1.0 �.0309 .2579 �.2184

377775

ρ1 = .2426, ρ2 = 3298, ρ3 = .2619, ρ4 = .4254, ρ5 = .3110

σ1 = .4824, σ2 = .6250, σ3 = 1.3624, σ4 = 1.0913, σ5 = .4723

δ = 8.3292, σ y =
p

1.2304, σπ =
p

.4862, σ i =
p

.3208.

It is should be clear that, to recover r�t , one needs to be able to recover ε5t. There are

eight shocks and three observed variables, which means that we can only recover three

shocks. There are 16 states in total consisting of �xm
t , zm

t , �xt, zt, �xr
t , ỹt, π̃ t, ı̃t plus the

eight shocks
n
fεy

t ,επ
t ,εi

t,
�
ε jt
	5

j=1g
o

.

5We thank Martin Uribe for providing these. We put α = 0 as we didn’t get a mean posterior for that
and the median in the paper seems very close to zero.
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With the posterior means given above, we can check which shocks can be recovered

by following again the set up in Pagan and Robinson (2022) by looking at the last eight

entries of the diagonal of the P�tjT matrix as was done earlier.6

diag(P�tjT) =
�

.81 .56 .59 .56 .16 .91 .74 .67

�
. (29)

From (29), it seems that the real rate shock ε5t can be recovered, as the value is close to

zero. What happens if δ = 0? Then we find a diag(P�tjT) for ε5t of .64, which indicates that

the shock cannot be recovered. This points to a fundamental role of δ in the recovery of

shocks in this model, and we need to more closely examine its impact. Now

ỹt = b11 ỹt�1 + b12π̃ t�1 + b13 ı̃t�1 + c11�xm
t

+ c13�xt + c14zt + c15�xr
t ,

so that

�ỹt = (b11 � 1)ỹt�1 + b12π̃ t�1 + b13 ı̃t�1 + c11�xm
t

+ c13�xt + c14zt + c15�xr
t ,

which means that the observable output growth is

�yt = (b11 � 1)ỹt�1 + b12π̃ t�1 + b13 ı̃t�1 + c11�xm
t

+ c13�xt + c14zt + (c15 + δ)�xr
t +σ yε

y
t

= ηt + (c15 + δ)�xr
t .

6In SGU’s paper, they report the posterior median of δ to be 8.6 (see page 13), so there is little difference
between that value, and the posterior mean value which we use.
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Now suppose that ρ5 = 0 in equation (28). Then ηt is uncorrelated with �xr
t . Moreover,

δ does not affect the variance of this variable. Hence the variance of �yt would vary

directly with δ, once we set all the other parameters to some values (modes, medians, or

means). This gives rise to two interesting observations. First, c15 is very small. If it was

zero, then the model variance of �yt will depend on δ2. This explains why SGU found that

there was some evidence of negative values for δ. Indeed, setting δ = 8.3292 produces

standard deviations of �yt, �pt and �it of 4.67, 1.63 and 1.32. Putting δ = �8.3292 we

get 4.65, 1.63 and 1.32.

Secondly, the fraction of the variance of �yt explained by the fifth shock will rise as

δ rises. Thus, when δ = 8.3292 we find that 80% of the variation in GDP growth is

due to neutral real rate shocks. This appears to be rather high, since these are shocks

that, as Schmitt-Grohe and Uribe (2022, p. 4) write: “could stem from, for example, secular

variations in demographic variables, exogenous changes in subjective discount rates, or in other

factors determining the domestic or external willingness to save”. To reduce this influence,

we need to reduce the magnitude of δ. Now if δ = 2, then the real neutral interest rate

shocks explain 18% of growth. Nonetheless, with that value, the diag(P�tjT) entry for the

fifth shock is .7, indicating that it cannot be recovered. Clearly, there are issue here about

whether we have strong opinions about the likelihood of these shocks driving so much of

growth, while technology shocks determine so little, which is what a value of δ = 8.3292

implies.

Why does one get such a high value of δ from estimation? Fundamentally, δ is a free

parameter that enables the model to better match the data on output growth. To see this,

note that the standard deviation of GDP growth is 4.89 in the empirical data. Setting δ =

8.3292 in the model, leads to a model based value of the standard deviation of GDP of 4.67,

and this evidently matches the data rather well. Setting δ = 2 instead, gives a standard
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deviation of GDP growth of 2.37, a poor match. Thus, as δ rises, a larger proportion of

output growth is accounted for by the real neutral rate shock, making recovery of shocks

easier.

3.4 Recovering the Neutral Real Rate and the NAIRU - McCririck and

Rees (2017)

McCririck and Rees (MR) (2017) attempt to determine a number of macroeconomic "stars";

namely, growth in potential GDP, the NAIRU, and the neutral real interest rate denoted by

�y�t , u�t and r�t , respectively. Their model is effectively an extension of LW that augments

the model with an equation for Okun’s law. The model takes the following format:7

ỹt = α1 ỹt�1 +α2 ỹt�2 �
ar

2

2X
i=1

(rt�i � r�t�i) +σ1ε1t (30)

π t = (1�β1)π
e
t +

β1
3

3X
i=1

π t�i +β2(ut�1 � u�t�1) +σ2ε2t (31)

�zt = σ3εt, (32)

�y�t = gt +σ4ε4t (33)

�gt = σ5ε5t (34)

�u�t = σ6ε6t (35)

ut = u�t +β(.4ỹt + .3ỹt�1 + .2ỹt�2 + .1ỹt�3) +σ7ε7t (36)

r�t = 4gt + zt (37)

7Note that in MR, gt rather than gt�1 is in the potential GDP growth equation, and the sign of the interest
rate variables in the IS equation has changed. Also, for ease of comparability, we use the shock numbering�
σ jε jt

	7
j=1 as in LW, rather than the labelling used in MR.
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where ỹt = yt � y�t is an output gap, y�t is potential GDP, rt is the real interest rate, r�t the

neutral real rate, ut is the unemployment rate and u�t the NAIRU, π t is inflation and π e
t is

measured expected inflation.

Following the format of the analysis we used for LW in section 3.2, we get the first

observation equation

ζ1t = y�t �α1y�t�1 �α2y�t�2 +
ar

2

2X
i=1

r�t�i +σ1ε1t, (38)

where ζ1t = yt �α1yt�1 �α2yt�2 +
ar
2
P2

i=1 rt�i is observable. The second observation

equation is:

ζ2t = �β2u�t�1 +σ2ε2t,

where ζ2t = π t� β1
3
P3

i=1 π t�i �β2ut�1 � (1�β1)π
e
t is observable. There is now a third

observation equation which is:

ζ3t = u�t �β(.4y�t + .3y�t�1 + .2y�t�2 + .1y�t�3) +σ7ε7t,

with ζ3t = ut �β(.4yt + .3yt�1 + .2yt�2 + .1yt�3).

The state dynamics are given by:

�y�t = gt�1 +σ5ε5t +σ4ε4t (39)

gt = gt�1 +σ5ε5t (40)

�r�t = 4σ5ε5t +σ3ε3t (41)

�u�t = σ6ε6t (42)

This gives a state vector consisting of y�t , r�t , y�t�1, r�t�1, y�t�2, u�t , gt and the seven shocks
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�
ε jt
	7

j=1. In MR’s model, there are three observables and seven shocks, so that again the

full set of seven shocks cannot be recovered. At best, one can recover three shocks. We

may, nonetheless, be able to recover three linear combinations of the shocks.

Values of the parameters from MR are as follows:

σ1 = .38, σ2 = .79, σ3 = .22, σ4 = .54, σ5 = .05, σ6 = .15, σ7 = .07

α1 = 1.53, α2 = �.54, αr = .05, β2 = �.32, β1 = .39, β = .62

Using these we find that the diagonal elements of P�tjT are given by:

diag(P�tjT) =
�

.54 .02 .99 .24 .96 .49 .76

�
. (43)

So, while there are issues in recovering the NAIRU shock ε6t, the biggest concern is recov-

ering the neutral rate, since the diag(P�tjT) values corresponding to the two shocks that

define r�t (ε3t and ε5t) are very close to unity, indicating a lack of recoverability.

There exist again corresponding dynamic correlations between the smoothed shocks

in this model, as is visible from the following identities:

ETη2t = 86.7ET�η6t + 398ET�η7t (44)

ET�η3t = �.136ETη5t + .3ETη5t�1. (45)

From the relation in (44) it is evident that the two shocks that determine the neutral rate

are related via an identity, as are the shocks in the Phillips curve, NAIRU and Okun’s law

equation.
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4 Endogenous Interest Rates: Can this change the outcome?

In the above applications, the interest rate is assumed to be exogenous, ie., there is no

equation to explain it’s evolution. As Pagan and Wickens (2020) observed, this means

that the LW model has some undesirable features. By definition, r�t is an I(1) process, but

since there is no equation for rt in LW, there is no mechanism in place to ensure that r�t

and rt cointegrate. If they do not cointegrate, then both ỹt and inflation will be I(1). Of

course the model implies that y�t is I(2), so that yt will be I(2) as well. Evidently, with a

monetary rule we may be able to stabilize inflation. To look at this possibility, we add a

monetary rule into the LW model. It takes the form of a standard Taylor rule with (interest

rate dynamics):

it � i�t = α(it�1 � i�t�1) + (1�α)(.5ỹt + 1.5π t) +ε6t.

Letting i�t = r�t + π t (with i�t being the nominal neutral rate), this yields an equation

for rt of the form:

rt = αrt�1 + r�t � (1�α)r�t�1 + (1�α)(.5ỹt + 1.5π t) +ε6t.

Setting α = .7, we find that �yt and π t are I(0). It is then instructive to perform a variance

decomposition on the model variables with the model shocks.8 One finds that, for �yt,

77% of the variance is accounted for by the ε1t shock, 18% by ε4t, and only 3% by ε5t. It

is also the case that neither �yt nor π t are driven by ε3t, as 94.6% comes from ε2t. So this

explains why we found earlier that one could not recover these shocks.

8As Pagan and Robinson (2022) show, this is not a variance decomposition of the data in terms of the
smoothed shocks, since the latter are dynamically related to each other when there are excess shocks. We
have seen the dynamic relations between these shocks already for the LW model.
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The above experiment can also be performed on the MR model. Because it was in-

corporated into the MARTIN model, it is instructive to use the nominal interest rate rule

provided therein. The overall format of the model remains the same, with the only excep-

tion being that we now have an additional equation to define rt endogenously through:

it = .7it�1 + .3(r�t + π t � π̄ � 2(ut � u�t ))� �2ut + 1.19ε8t,

so that

rt = .7rt�1 � .7�π t + .3r�t + .3π̄ � .6(ut � u�t )� �2ut + 1.19ε8t.

This system then leads to a fourth observable equation:

ζ4t = .3r�t + .6u�t + 1.19ε8t,

where observable ζ4t = rt � .7rt�1 + .7�π t�1 � .3π̄ + .6ut + �2ut implies that ζ4t is coin-

tegrated with r�t and u�t . Now there is also an extra shock ε8t.

With these definitions the model can be put into SSF, with ζ t consisting of the four

observables, �2yt, �ut,
n

π t � (1�β1)π
e
t �

β1
3
P3

i=1 π t�i

o
and �rt. Because there are only

four observables and eight shocks, we will still not be able to recover all shocks. Taking

the parameter values from MR we get:

diag(P�tjT) =
�

.54 .02 .98 .24 .95 .48 .76 .04

�
. (46)

Comparing the relevant entries of diag(P�tjT) in (46) to the earlier one in (43), we can see

that adding an interest rate rule to the model does not alter the lack of recoverability of the

shocks found for the basic MR model. The relevant entries in diag(P�tjT) corresponding to

ε3t and ε5t do not change materially, and are still very close to unity.
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5 Alternative Approaches to Recover r�

Morley et al. (2022) assume that the real interest rate is I(1). For that reason, they employ

a VAR in changes in GDP, the real interest rate and inflation. They use the Beveridge

Nelson (BN) formula to compute the long-run equilibrium when there is a measurement

error in the data. To simplify the analysis, and to illustrate the lack of recoverability in

their model, suppose that there is just one variable, the real interest rate rt, and that the

univariate system corresponding to the VAR they utilize consists of:

rt = r�t +ε1t

�r�t = ε2t.

From these we can compute:

�rt = ε2t + �ε1t. (47)

Applying the BN formula defining the permanent component as:

r�t = rt +
1X

j=1

Et�rt+ j

= rt � Etε1t,

so that when using the BN formula one needs to recover the measurement error from the

filtered shocks. Pagan and Robinson (2022), Appendix A.1, show that Etε1t and Etε2t are

perfectly correlated in this model, so that the measurement error cannot be recovered.

Morley et al. (2022) proceed by noting that (47) can be written as:

�rt = ηt +αηt�1
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and then the BN decomposition gives an estimate of

r�t = rt � (1+α)ηt�1.

Now the problem with this analysis is that ηt is a linear combination of all lags of the

permanent shock ε2t and the measurement error ε1t (see McDonald and Darroch (1983)

and Nelson (1975)), making it impossible to recover two filtered shocks from Etηt.

As a final example, consider the study by Lubik and Matthes (LM) (2015) who estimate

a simple TVP-VAR for three variables: the growth rate of real GDP, the PCE inflation rate,

and the same real interest rate as in Laubach and Williams (2003). Their proposal is to

measure the natural real rate of interest as the (conditional) long-horizon forecast of the

observed real rate. In their paper, the chosen time horizon is five years.

To illustrate the issues with their approach here, consider a simpler TVP model for a

single equation only, the real interest rate, consisting of:

rt = ρtrt�1 +σ1ε1t (48)

�ρt = σ2ε2t, (49)

where ε1t and ε2t are mutually and serially uncorrelated. Suppose we define r�t as the

prediction of rt two periods ahead (instead of the five used in LM for simplicity of expo-

sition), that is, r�t = Etrt+2. Then, to compute Etrt+2, we construct the following from the

relations in (48) and (49):

r�t = Et(ρt+2rt+1 +σ1ε1t+2)

= Et[(ρt +σ2ε2t+2 +σ2ε2t+1)rt+1 +σ1ε1t+2]
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= Et[(ρt +σ2ε2t+2 +σ2ε2t+1)(ρt+1rt +σ1ε1t+1)

= Et[(ρt +σ2ε2t+2 +σ2ε2t+1)(ρt +σ2ε2t+1)rt)]

= Et(ρ
2
t +σ2

2)rt. (50)

Now in the above, all random variables observed at time t are taken as known, but

future ones are unknown and are replaced by their unconditional means of zero, ie.,

Et(ε1t+i) = 0, 8i > 0. It then needs to be recognized that, while rt is known, ρt is not,

and the expectation must be conditional on the data. The relation in (50) then leads to a

"star" type of estimate of r�t having the form:

r�t = Et(ρ
2
t )rt +σ2

2rt.

The problem then is that Et(ρ2
t ) is not computed by the Kalman filter and so Lubik and

Matthes (2015) did something different. For this case they would define r�t as rtEt(ρt+2.)

not Et(ρ2
t )rt +σ2

2rt. Now in any TVP VAR we have shocks that would drive the structural

equations and shocks that are for the TVPs. There are excess shocks and so there will be

linear relations between these filtered quantities, making it again hard to know how to

interpret the estimated r�.

6 Conclusion

The principal concern of this paper is the use of UC models to tackle the estimation of

quantities such as the NAIRU, neutral interest rates and long term changes in output. Of-

ten, the attitude seems to be that this technology makes fewer assumptions than the older

ways of dealing with measuring them, and we have shown that this is not necessarily
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true. Free lunches are rarely available in econometrics. There is a cost to using these mod-

els in that latent variables may not be recoverable, even if the assumptions made about

the model and shocks describing them are accurate, and the parameters of the model are

known.

Finding recoverable shocks that are consistent with the data and estimating model

parameters are two very different questions. Of course at the end of the day we must

ask whether shocks need to be recoverable? Because often these are presented in media

and policy briefings, and sometimes used as regressors where the assumption that the

estimated quantities have the same properties as the assumed shocks, it is an important

issue to be aware of. In the examples considered in this paper, it was shown that the

estimated quantities do not recover the assumed shocks from the narrative of the model.

Instead the estimated shocks are linear combinations of the core recoverable shocks in the

model.
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