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Abstract

We consider the problem of assigning indivisible objects to the agents prioritized
within their affiliated institutions. An example is the assignment of student exhange
programs to students who are prioritized only in their own departments. Since students
of different departments are incomparable, the problem is formalized as a priority-
based indivisible goods allocation problem with incomplete priority. We show that
each weak core allocation is attained by priority rule with a priority-completion, and
vice versa. Moreover, we advocate a class of completions satisfying two fairness notions:

interpersonal and interinstitutional fairness.
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1 Introduction

Suppose that the administration office of a university faces a problem of assigning

indivisible objects, e.g., scholarship, student exchange programs, to the students who
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Econ. | Priority | Law | Priority Econ. Priority | Law | Priority Econ. | Priority | Law | Priority
€1 1 ll 3 €1 2 ll 1 €1 5 ll 1
lo 4 lo 3 ly 2
€9 2 lg 5% €9 5% l3 4 €9 6 l3 3
ly 6 ly 6 ly 4
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Table 1: Example of completions

are prioritized only in their own departments. For example, assume that students
e1, eo belonging to the department of economics and [y, ls, I3, 4 of department of law
are searching for an opportunity to study abroad. Assume also that each department
gives higher-priority for students with the smaller index, i.e., e; = esand l; > ... > 4.
This situation looks similar to the so-called “school choice” problem, but exhibits the

following two features:

Feature 1. Priority is incomplete because students of different departments

are incomparable.

Feature 2. Priority is common, i.e., each exchange program gives the priority
to students in the same manner. This is because the administration

office refers to the priority order submitted by departments.

As long as the administration office is able to bear the cost to have an additional
interview or examination, the incomparablility of students could be resolved by cre-
ating new data. However, the cost to extract such additional data could be enormous
as the number of applicants becomes large. In this paper, we persue the market
design without such cost. The second feature is typically observed in the problems
that the administration office assigns indivisible objects to students, e.g., dorm room
assignment (Abdulkadiroglu and Sénmez, 1999).

We formalize the problem with above features as a priority-based indivisible goods
allocation problem with incomplete priority (Balbuzanov and Kotowski, 2019). Show-
ing the relationship among several core concepts (Theorem 1 and Proposition 1), we
prove that the weak core is characterized by the range of priority rule, also known
as serial-dictatorship rule, with completions of priority (Theorem 2), where a com-
pletion is a complete priority order consistent with the given incomplete priority. As

is shown in Table 1, the class of completions contains wide range of possibility in



terms of fairness. For example, the completions shown in (i) and (iii) are completely
favorable to one of the departments, while the middle completion (ii) shows a bal-
anced distribution of the opportunity. Among the various completions, we advocate
a method to pick a plausible class based on two fairness notions: interpersonal and

interinstitutional fairness (Theorem 3).

1.1 Related literature

In the one-to-one matching problems, a model with social endowments is called a
house allocation problem (Hylland and Zeckhauser, 1979). The model with a private
ownership is called a housing market (Shapley and Scarf, 1974), and that with mixed
ownership is termed a house allocation problem with existing tenants (Abdulkadiroglu
and Sonmez, 1999). Balbuzanov and Kotowski (2019) generalize these models to an
indivisible goods allocation problem with incomplete priority structure. To attain an
efficient allocation, the Gale’s top-trading cycles algorithm (Shapley and Scarf, 1974),
or its variat, is applied to these problems. For a special class of these problems with
homogeneous priority, priority rule is utilized to attain efficiency (Svensson, 1999).
School choice is a house allocation problem with multiple copies of objects (Ab-
dulkadiroglu and Sénmez, 2003). The vast literature on school choice contains a
research under priority with ties (Erdil and Ergin, 2008; Ehlers and Erdil, 2010),
which looks similar, but different to the incomplete priority case. A difference is the
following: ties are exogenously given in the former case, while be not in the latter
case. This makes the set of completions far richer than that of tie-breakers. For
example, in Table 1, since ey is not comparable with students of law department,
es could be prioritized to /3 in some completion (Table 1(i)). However, in another
completion (Table 1(iii)), I; could be prioritized to e;, who is explicitly prioritized
to ez in the given priority order. This never happens under a complete priority with
ties. Thus, an appropriate research direction to find a plausible completion may start
with how to form ties under the given incomplete priority (Hatakeyama and Kurino,
2022). Apportionment is a related topic in this line (Balinski and Young, 2001). As
is discussed in detail in Section 4, our approach takes another direction. We trans-
form the problem of finding a completion into the allocation problem of quantified
opportunity (point) to establish a system under which agents with higher points get

higher priority. The transformation enables us to define two fairness concepts, in-



terpersonal and interinstitutional fairness, which in turn are helpful to establish an
intuitive system to allocate objects.
The contribusions of the current paper could be summarized as follows: Under

the assumption of common priority (Feature 2), we show the following.

e Extending the Balbuzanov and Kotowski’s priority-based formalization of prop-
erty right to the many-to-one setting, we show the relationship among several

core concepts in terms of set-theoretic inclusion (Theorem 1 and Proposition
1).

e The weak core is characterized by the range of priority rule with priority-

completions (Theorem 2).

e We formalize the concept of interpersonal and interinstitutional fair point allo-
cations to pick a class of conpletions. Moreover, we advocate a concrete method,
the (generalized) midpoint rule, to implement it. We provide a characteriza-
tion of the generalized midpoint rule based mainly on the two fairness notions

(Theorem 3).

The rest of the paper organized as follows. Section 2 formalizes the priority-based
indivisible goods allocation problem with an incomplete priority structure. In section
3, generalizing the property right formalized in Balbuzanov and Kotowski (2019), we
define the several core concepts. Then, we provide two characterization results of
weak core (Theorem 1 and 2). In section 4, we first consider the refinement of weak
core in terms of fairness notions in the ex-post sense. Then, we turn to the design
of completion selection rule through point allocations. We propose a rule called the
midpoint rule, and provide a characterization of a class of rules including it. Proofs

are relegated to Appendix B.

2 Model

We introduce an indivisible goods allocation problem with incomplete priority. It is

the one in Balbuzanov and Kotowski (2019) with multiple copies of objects.! Let

!Balbuzanov and Kotowski (2019) deals with two matching problems: a simple economy with
the initial endowment structure, and a relational economy with the priority structure. The model
we borrow is the latter.



N = {1,2,...,n} be the set of agents. Let O = {o1,09,...,0,} be the set of real
objects. Each real object 0o € O has g, € N copies. Let ¢ := (¢,)oco0 € N™ be the
quota vector. We assume that the existence of null object oy € O, which represents no
consumption. For each o € O, a binary relation >, on NV is given, which represents the
priority to consume o. We assume that >, is reflexive, transitive and anti-symmetric,
but not necessarily complete.? Letting =:= (=,),c0, we call = the priority structure.
Each agent i € N has a preference represented by a complete, transitive and anti-
symmetric binary relation R; on O U{op}. Let R be the set of preference relations.
Let RY be the set of preference profiles.

A problem is a 5-tuple (N,0 U {op}, =, q, R), where R € RY. Throughout this
paper, we fix N,O U {og}, = and ¢q. Thus, each problem is simply denoted by a
preference profile R. An allocation is a function from a : N — O U {0} such that
for each 0 € O, |a='(0)| < ¢,- Let A be the set of allocations.

In this paper, we concentrate on the class of problems satisfying the following

condition.

Assumption 1 (Common priority). The priority structure > is common if
Vo,0' € O, === .

Hereafter, if there is no confusion, the symbol = mnot only represents a profile of

priority relations, but also the individual priority relation =, all objects share.

Balbuzanov and Kotowski (2019) deals with another class of problems with acyclic
priority structure. The priority structure > is acyclic if for each o € O, and each
{i,j,h} C N, ifi >, jand i #, h, then h =, j for all o’ € O\{o}. As is shown in
the following example, when |N| > 3 and |O| > 2, acyclicity and Assumption 1 are
independent, i.e., one of the two conditions does not imply the other condition. Thus,

the results in Balbuzanov and Kotowski (2019) and that of ours are independent.

Example 1 (Common priority structure may not be acyclic.). Suppose that |[N| > 3
and |O| > 2. Let i,5,h € N. Suppose that for each 0 € O, i =, j and h is not

2A binary relation on X, denoted as >, is reflexive if for each z € X, > 2. A binary relation
> on X is complete if for each {z,y} C X, > y or y > x. A binary relation > on X is transitive
if for each {z,y,2} C X, x > y and y > z imply & > z. A binary relation > on X is anti-symmetric
if for each {z,y} C X, z > y and y > = imply = = y.



comparable with 7 and j under »=,. Then, for any o’ € O, not h =, j. Thus, the

common priority structure above is not acyclic. o

3 Result I: Core under the common priority

In this section, we investigate three types of the core under the common priority
structure. Roughly speaking, an allocation belongs to the core if it is impossible for
any coalition C' C N to be better off by reallocating the objects “owned” by C'. Thus,
to define a concept of the core, we need to establish a notion of the ownership.

The concept of the property right we adopt in this paper is based on a primitive
data of the priority structure. A fomulation is proposed in Balbuzanov and Kotowski
(2019): given an allocation a € A, a coalition C' owns (more precisely, has the condi-
tional right to exclusively use) objects assigned to the agents who are subordinate to
at least one member in C'.2 To establish this in the setup with multiple copies of real
objects, we need to extend the concept of an object and an allocation. The set of
extended objects is defined as O := {op | 1 <k <m and 1 < /¢ < g, }. The set of
extended allocations is defined as A := {a: N — OU{oy} | Vo € O, |a"*(0)] < 1}.

Given an allocation a € A, the corresponding extended allocation a € A is defined
as follows: 1) if a(i) € O(say o), let a(i) = oy, where £ = |{j € N | j < i and a(j) =
or}| + 1, and ii) if a(i) = oy, let a(i) = 0p. Conversely, given an extended allocation
a € A, the corresponding allocation a € A is defined as follows: i) if a(i) € O(say
ore), let a(i) = ok, and ii) if a(i) = oo, let a(i) = oy.

Now, we extend a concept of ownership in Balbuzanov and Kotowski (2019) to
the many-to-one setting. Given an allocation a € A, the conditional endowment
system is the function w, : 2% — 29 such that for each C' € 2V, w, assigns the set

of extended objects “owned” by C'. Formally,
wa(C) :={or € O|Fi € Csit. izg a '(op)} U (O\a(N)).*

In words, the first part indicates the set of extended objects assigned to agents subor-
dinate to at least one member of C', and the second part indicates the set of extended

objects disposed at a.

3Here, we use the word “conditional” because the ownership depends on the given allocation a.
4Balbuzanov and Kotowski (2019) call w, the weak conditional endowment system.



Given an allocation a € A and a coalition C' C N, we say that a|c is achievable
on X C O if the number of agents in C' who receive o, € O at a does not exceeds
the number of 0,’s copies in X. Formally, for each k € {1,2,...,m}, |{i € C'| a(i) =
o} < {z e X [30€{1,2,...,q0,} s.t. © = ope}|. To introduce three types of the

core, we first define the concept of blocking in three ways.

Definition 1 (Weak block). An allocation a € A is weakly blocked by a coalition
C € 2M\{0} through an allocation b € A at R € RY if

(i) Vi e C,b(i) R; a(i),
(ii) 3i € C s.t. b(i) P; a(i), and
(iii) b|¢ is achievable on w,(C).

Definition 2 (Strong block). An allocation a € A is strongly blocked by a coalition
C € 2M\{0} through an allocation b € A at R € RY if

(i) Vi e C,b(i) P, a(i), and
(ii) b|c is achievable on w,(C).

Definition 3 (Exclusion block). An allocation a € A is exclusion blocked by a
coalition C' € 2V\{(0} through an allocation b € A at R € RY if

(i) Vi e C,b(i) P; a(i), and
(i) Vi € N,[a(i) P; b; = a(i) € wa(C)].

An allocation a € A belongs to the strong core (Resp. weak core, exclusion
core) at R € RY if no coalition C € 2N¥\{0)} weakly (Resp. strongly, exclusion)
blocks a through any allocation at R. Let SC(R), WC(R) and EC(R) be the strong
core, weak core and exclusion core at R, respectively.® Our first result summarizes

the relationship among three core concepts.

Theorem 1. For each R € RY,SC(R) C EC(R) = WC(R).

®Balbuzanov and Kotowski (2019) call £C the direct exclusion core in the context of simple
economy. In addition to £C, they introduce another exclusion core concept based on an extension
of the conditional endowment system. However, under Assumption 1, two exclusion core concepts
coincide. See Appendix A for a detailed description.



Allocation Blocking coalition Allocation Blocking coalition Allocation Blocking coalition
01090304 {1,3} 01030904 {1,4} 01040903 {2,3}
01020403 {3} 01030409 {3} 01040309 {3}
02010304 {1} 03010204 {1} 04010203 {1}
02010403 {1} 03010402 {1} 04010302 {1}

Table 2: Strong core may be empty.

Note : The sequence 0;050,0; indicates the allocation a € A such that a; = 0;,a2 = 05,a3 = 0}
and a4 = o. We omit allocations in which some agents receive the null object because they are
weakly blocked by a single agent. The table exhausts the allocations in which {1,2} consumes
{01,032}, {01,053} or {o1,04}. Since {1,2} and {3,4} are symmetric, the table exhausts all
allocations.

Next, we consider the existence of the core. The following example shows that

the existence of a strong core allocation is not guaranteed.

Example 2 (Strong core may be empty). Suppose that N = {1,2,3,4}, O =
{01,09,03,04} and ¢ = (1,1,1,1). Suppose also that the priority structure is given
as follows: 1 = 2 and 3 > 4. Let R € RY be such that for each i € N, 0; R; 02 R;
03 R; o4 R; 0p. In Table 2, each allocation in the left column is weakly blocked by
the corresponding coalition in the right column. Thus, SC(R) = 0. o

In contrast to the strong core, the weak core (= exclusion core) is always non-
empty. Moreover, they are reached by adjusting a quite simple algorithm: The
priority rule. To define the priority rule, we first introduce a notation. A binary
relation > on N is a completion of > if i) > is complete, transitive and anti-
symmetric, and ii) for each {i,7} C N, if i = j, then i &> j. Let I'(>) be the set of
completions of ».

Given a completion > € T'(>), the priority rule with respect to >, ©= is a
function from RY to A defined as follows: Let i; > 45 > ... > i,. Let R € RY. In
step 1, agent iy picks the most favorite object from O U {og}. If it is a real object,
update the quota vector by subtracting 1 from the quota of the object. Letting gp'izl (R)
be the picked object, go to the next step. In step 2, agent 75 picks the most favorite
object from the remaining real objects under the updated quota and the null object.
If it is a real object, update the quota vector by subtracting 1 from the latest quota
of the object. Letting ¢y (R) be the picked object, go to the next step. Repeating
this process n times, we get p=(R) := (goi(R))n € A

k=1
The range of the priority rule with a completion is denoted as ®(R), i.e., for

8



each R € RY, ®(R) := {¢=(R)|> € I'(=)}. Based on this, we give a complete

characterization of the weak core as follows:

Theorem 2. For each R € RN, WC(R) = ®(R).

4 Result II: Priority-completion on the basis of in-

terpersonal and interinstitutional fairness

In this section, we work on the refinement of the weak core in terms of fairness.
Fairness is the norm as important as efficiency to evaluate an allocation or a rule in
wide range of allocation problems.® In the sequal, we go back to the original problem
that the administration office of a university assigns indivisible objects to students
prioritized only in their own department. To capture the problem, we adopt the
following assumption in addition to Assumption 1. Note that the symbol > in the

statement represents the priority relation all objects have in common.
Assumption 2. Let Z be a partition of N such that for each I € T,

o VI €T, the priority > is complete on I, and

e VI I'eZwithl #1',Viel N el i#t.
We call each I € T an institution. To avoid the trivial case, we assume that |Z| > 2.

Establishing two fairness notions of interpersonal and interinstitutional fairness,

we work on the refinement of the weak core.

4.1 Refinement of the core on the basis of ex-post fairness

notions

In this subsection, we define interpersonal and interinstitutional fairness notion in
the ex-post sense. The following is a standard notion of fairness in the matching
literature. An allocation a € A is interpersonally-fair at R € RY if no agent has
justified envy, i.e., there exists no pair of agents (¢,j) € N x N such that i) a; P;
a;, and ii) 7 > j. Note that this property is achieved by the priority rule under

6As is shown in Lemma 3 in Appendix B, each weak core allocation is Pareto efficient.



any completion. In other words, every weak core allocation is interpersonally-fair
(Theorem 2). Thus, this fairness notion alone is not helpful to refine the weak core.

To define an interinstitutional fairness notion, we need a tool to evaluate an
allocation from the institution perspective. The following notation pl(a, R) denotes
the ratio of agents in I who receive the k-th best object at a. Formally, the rank
distribution of a € A for I € Z at R € R is pi(a, R) € RT™" defined as follows: for
eachk € {1,2,... ,m+1}, pl(a, R) := [{i€lai is the k-th flaITorite object at Ri-}| - Ay allocation
a € A is interinstitutionally-fair in the ex-post sense at R € RY if there exists no pair
of institutions (I,I') € T x T such that p’(a, R) stochastically dominates p' (a, R),
ie., for all k € {1,2,...,m + 1}, S5 pt(a,R) > b, pk(a, R), and for some
ke {1,2,...,m+ 1}, the inequality is strict.

Although the interinstitutional fairness notion above seems reasonable, it is too

strong to practice as shown in the following example.

Example 3 (A problem in which no weak core allocation is interinstitutionally-fair
in the ex-post sense). Suppose that |[N| > 2, |O| > 2 and ¢ = (1,1,...,1). Assume,
without loss of generality, that for I,I’ € Z with [ #1I', 1 = m&x[ and 2 = max I,
Let R € RY be such that i) oy R; 0 R; 09 R; ... fori € {1,2_}, and ii) oy R; ... for
i > 3. Then, for any completion > € I'(>), the corresponding priority rule allocation
©=(R) assigns the best object for all members of one of I and I’. However, the other
institution contains one member who receives the second-best object. Thus, p=(R)
is not interinstitutionally-fair in the ex-post sense at R. Since > is arbitrary, all
allocations in ®(R) (= WC(R)) are not interinstitutionally-fair in the ex-post sense
at R. o

In this paper, we do not persue the line of selecting fair allocations, i.e., fairness
in the ex-post sense. Instead, we turn to the problem of selecting fair priority-
completions to establish an allocation system that attains interpersonal and interin-

stitutional fairness in the ex-ante sense.

4.2 Point allocation approach to the priority-completion

To clarify the difficulty in the selection of a fair completion, let us consider the
following example. Suppose that there are two institutions I = {iy,is} and I’ =

{d,...,4,} such that i; > iy and ¢} > i > 4 > ). Table 3 shows three examples

10



I | Priority | I’ | Priority I | Priority | I’ | Priority I | Priority | I’ | Priority
11 1 iy 2 i 2 i} 1 11 3 i} 1
i 3 i 3 i 2
19 6 iy 4 19 5 i 4 19 4 i 5
i 5 i 6 i 6
B> > >3

Table 3: Example of completions

of completion that may be regarded as “interinstitutionally-fair” in the following
two sense: (1) the balance of the size of tiers, and (2) the distribution of favorable
treatment between tiers.

The completions in Table 3 have the following features: The completion > is
favorable to I in the upper tier, while it is to I’ in the lower tier. In the completion
>3, the favorable treatment in the upper and lower tiers is reversed compared with
>;. The completion >, is favorable to neither I or I’ in both tiers. Thus, using
one of these completion, we may attain an interinstitutionally fair state in terms
of (1) and (2). The difficulty arises when we generalize the criteria (1) and (2) to
the cases with many institutions pertaining various numbers of members (Imagine
T = {15, 15, I7, I11, I13, 17, L1} with |I;| = k). Let us call the senario of choosing a
completion by generalizing (1) and (2) the direct selection (DS).

In this study, we persue another senario, which we call the indirect selection
(IS), to choose a completion. We generate a completion through an alloocation
of quantified opprotunity: a point allocation. A point allocation is a function
a: N — [0,1] such that

Vi,j € N,i > j= a(i) > a(j).

Let A be the set of point allocations. The IS is a procedure to pick a point allocation

a € AP to choose a completion > € I'(=) such that
Vi,j € N,a(i) > a(j) =i j.7

Then, by using the selected completion >, we utilize the priority rule ¢= to determine

"Ties are broken arbitrarily.

11



an object allocation.® We consider that the IS has the following two advantages
compared with the DS.

e First, the IS is simpler. While the DS accompanies with the difficulties per-
taining to discrete resource allocation problems, e.g., the generalization of (1)

and (2), it is easier to define fairness notions under the IS.

e Second, the IS is more flexible. As is shown in the discussion below, the system
equipped with the quantified opportunity makes it easier for institutions to
express their preferences on completions. For example, if institution I’ in Table
3 would like to be more supportive to the students in the uppaer tier, it may
prefers >3 to the others. This policy could be captured by a point allocation

with extra points for ¢} and .

Based on the idea of the point allocation, it is possible to formalize an interin-
stitutional fairness notion in a natural way. The following axiom requires that the
assignment of the quantified opprtunity to institutions should be proportional to the

number of members each institution has.

Definition 4. A point allocation « € A" is interinstitutionally-fair (IIF) if

VILI' €T, |—}| S afi) = |Tl| S ali).
iel el

Next, we establish notions of interpersonal fairness. To this end, we introduce a
notation to express the relative position of an agent in the affiliated institution. For
each I € T and each i € I, let v/ be the reverse rank of agent i in the institution 7,
i.e., rl:=|I—|{j € I|j = i}|. Note that if i is the k-th highest priority agent in I, r/
is [I| — (k—1). In the case with no subordination among institutions, each agent may
regard a point allocation as fair if the points she gets is similar to that of the agents
with similar position in other institutions. For example, supposing that agent i is
the 4-th priority agent in an institution with 40 members, she may accept the point

assignment similar to that of the 10-th priority agent in a 100 members institution,

8The idea of point allocation itself is not new to generate a priority. For example, a point
allocation is used to generate a priority order of patients waiting for a deceased donor assignment.
Another example is for an allocation of nursery school seats. The novelty of this study lies on the
fact that it applies the point allocation system to the market with a partition of agents.

12



but may not accept the assignment lower to the 10-th priority agent in a 20 members

institution. This is because the allocation ignores that agent ¢’s relative position (top

10 %) is better than that of the 10-th agent in 20 members. The following axiom

reflects this criterion straightforwardly: A point allocation o € AP is strongly

interpersonally-fair (SIPF) if there exists no pair of institutions (/,I') € Z x T
1 k-

such that for some (i,7) € I x I, (1) a(i') > a(i) and (2) T{H > ”ll—,ll.g Although

this axiom, which actually singles out a completion except for ties, is seemingly

suitable for a reasonable allocation, it could be too restrictive in other aspects. For
example, SIPF point allocations always assign the highest points to the top agent in
the institution with the greatest members. However, since there is usually little in
evaluation to make differences among the top member of each institution, it might be
desirable to design a more flexible point allocation rule. The following axiom respects

the relative position of agents to some extent, overcoming the inflexibility of SIPF.

Definition 5. A point allocation o € A" is weakly interpersonally-fair (WIPF)
if there exists no pair of institutions (I, ") € Z x Z such that for some (i,7") € I x I,

(3) at least one of inequalities (1) and (2) is strict.

For an interpretation of the inequality (2) of WIPF, we need to examine the concept
of relative position more closely. Let us take a look at the following example. Letting
i be a member of an institution / with |I| = 100, suppose that i is given the 10-th
highest priority in I. Then, the “relative position” of ¢ might be characterized by the
two information: “i is a top 10 % agent” and “7 is not a top 9 % agent.” Note that
ri—1 »]

ST IT} clearly represent the information.!® Thus,

the interval could be understood as the set of potentially possible evaluation of agent

the endpoints of the interval [

i’s relative positions. Based on this understanding, the inequality (2) indicates that
agent ¢ is an agent whose worst-evaluated relative position is not lower than the agent

1”’s best-evaluated relative position.

’ _ 1’
9The condition (2) is equivalent with <& |+Il/) =

|| )
10This is the r!-th interval from the left when we divide [0, 1] into |I| equal parts.

(I+1)—r]
1

13



4.3 Midpoint rule

To select an ITF and WIPF point allocation, it is noteworthy that the following is a
sufficient condition for a point allocation a € A to be WIPF.

I 1 o1
VIeZ,Viel, ai)e {TZ i } M

1

Specifically, the midpoint of the interval for each agent brings an IIF and WIPF
allocation. To see this, let o™ € AP be the point allocation defined as follows: for
each I € 7 and each i € I, let

2rl —1 1 rf—1 1 7!
oM (i) = ik — - b o)
2|1] 212 |

Then, for cach I € Z, 3°,.; aM (i) = I Thus, o™ satisfies ITF in addition to WIPF.

2
A natural question that arises next is: are there other point allocations that satisfy

ITF and WIPF? The answer is yes. Furthermore, there are infinitely many IIF and
WIPF point allocations. For example, fixing an institution I € Z with even members,

let € be such that ﬁ > e > 0. Let 8,3~ € A" be defined as follows:

1
2

Br@) =qaM@)—e ifielandrf <l B (@) =JaM@)+e ifielandr! <!,

]

aM(i)+e ifielandr! > oM(i)—e ifielandr! >,

aM(4) 0.W. oM (7) 0.W.

Obviously, 8+ and [~ satisfy the sufficient condition for WIPF above. Moreover,
S BT =2 B7(0) = 2, 0M) = % Thus, 7 and §~ are IIF and WIPF.
Thus, there are infinitely many IIF and WIPF point allocations including 5% (Resp.
[B~), which is favorable to the upper-half (Resp. lower-half) members in I.

Now we would like to reconsider the axiomatic approach to refine the point al-
locations. We have simply proposed two desirable properties to single out some of
point allocations. However, we should be careful for the further selection, especially
regarding the selection that might be appropriate to depend on the local information
or the policy of institutions, e.g., the selection from % and S~. In the sequel, we
propose a system in which the clearing house selects a set of point allocations (can-

didates for the final selection). Among the suggested point allocations, the system

U ater, it is shown that this is not a necessary condition.
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selects one reflecting on the evaluation policy submitted by institutions. Formally,

The midpoint rule (abbreviated as MR).

Step 1. Each institution I € Z submits a weight vector w! € [—1,1]! with

>icrw! =0 to the clearing house. Set w := (w') ez

Step 2. The clearing house picks the point allocation a® € AP defined as
follows: for each I € 7 and each i € I,

I
W

211

(i) == a™ (i) +

Step 3. The clearing house picks a completion > € I'(>) consistent with o®.12

In the MR, the set of suggested point allocations by the clearing house is {a" €
AP | w e [-1,1]N and VI € Z,>",.,w; = 0}. Note that " (i) belongs to the

I I I
. Ti_l 7‘_1 . w_l Wi
interval [—| T 1] since the second term T of a"(i) represents a small gap from

the midpoint of the interval. The weight vector w represents the profile of evaluation
policy of institutions. We characterize a class of point allocations, including the range

of the MR, with the following axioms. A set of point allocations S C AP satisfies

Interinstitutional fairness (IIF): Va € S, « is IIF.

Weak interpersonal fairness (WIPF): Va € S« is WIPF.

Independence (IND): Vo, € S,VI € 7,3y € S s.t.y|; = a|r and y|ng = Bln-
Continuity (CON): VI € Z,Vi,j € I with v/ = r] 4+ 1,sup,cq a(j) = infaeg a(i).
Existence of the standard evaluation (ESE): VI € Z,3a € S,Vi € I,a(i) =

supgegs B(i)+infge s B(4)
5 )

Closedness (CLO): (i). Vi € N,Ja € S s.t. a(i) = sup,eg@(i). In particular,
for each I € 7T with ¢ = max, I, there exists @ € S such that @(i) = 1. (ii).
Vie N,3a € S s.t. a(i) = inf,es a(i). In particular, for each I € Z with ¢ = min; I,
there exists a € S such that a(i) = 0.

ITF and WIPF are the main axioms in this section. Other auxiliary axioms are

interpretted as follows: IND requires that the point allocation within an institution be

12A completion > is consistent with o if for any i,j € N, a* (i) > a*(j) implies i I> j. Ties in
o are broken arbitrarily.
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not affected by the allocation in other institutions. CON requires that the supremum
of the potentially possible assignment for an lower-priority agent should not exceed
that the infimum of that for an higher-priority agent, i.e., sup,cg a(j) < inf,es (7).
Moreover, it requires that there be no gap between them. ESE embodies a kind
of convexity of the potentially possible evaluations so that the convex combination
of the supremum and the infimum is available as an evaluation. CLO is a technical
condition that requires that there exist the greatest and the smallest of the potentially
possible evaluations. These six axioms almost characterize the range of the midpoint
rule. To be precise, we need a definition. The following procedure is a variant of
the MR that provides a set of point allocations characterized as the maximum set

satisfying the six axioms above.

The generalized midpoint rule (abbreviated as GMR).
Let f :[0,1] — [0, 1] be such that

(GMR-1) f is a continuous strictly increasing function with f(0) = 0 and f(1) =1,
rl .y

O 1 5 (7)1 [Ber ()

(GMR-3) vIeTvie If (1) =/ (%) <4

For each I € 7 and each ¢ € I, let Tif ;:f(%) _f(?"f_%)'

Step 1. Each institution I € Z submits a weight vector w! € [—1,1]! with

Dier wilTif = 0 to the clearing house. Set w := (w!)ez.

Step 2. The clearing house picks the point allocation a® € AP defined as
follows: for each I € 7 and each i € I,

N M\] | wlT
=g |1 () +1 ()] + 15

Step 3. The clearing house picks a completion > € I'(>=) consistent with a*.

The class of GMRs consists of a variant of the MR parametrized by transforma-
tions f satisfying (GMR-1), (GMR-2) and (GMR-3). Under a GMR with a trans-
formation f, the interval that represents the potentially possible relative positions
of an agent ¢ € [ is distorted into [f (r#l) f (iﬂ Obviously, the GMR with

K
] 1]
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the identity mapping is the MR. (GMR-2) requires that the interinstitutional pro-
portion of the sum of the midpoints (of new potentially possible relative position
intervals) should be preserved under the transformation f. (GMR-3) requires that
each distorted interval should not exceed the half of the whole interval [0, 1]. The
main theorem of this section states that a set of point allocations S has a widest
variety of options among the sets satisfying the six axioms if and only if S is the
range of a GMR.

Theorem 3. Let S C A”. The set of point allocations S is a mazimal element of
S = {5 C A" | &' satisfies IIF, WIPF, IND, CON, ESE and CLO} with respect to
D if and only if there exists f : [0,1] — [0,1] satisfying (GMR-1), (GMR-2) and
(GMR-3) such that S = A¥.

Unless there is an unambiguous advantage to adopt a particular distortion f,
we advocate the simplest rule in the class of GMRs, the MR, for the selection of a

completion.

5 Conclusion

This paper studies the problem of assigning indivisible objects to the agents priori-
tized within their affiliated institutions. To this end, we formalized the problem as a
priority-based indivisible goods allocation problem with incomplete priority. Extend-
ing the concept of conditional property right (Balbuzanov and Kotowski, 2019) to
a many-to-one setting, we investigate the relationship among several core concepts.
Different from the case with an acyclic priority structure, under the assumption of
common priority, the weak core coincides with the exclusion core (Theorem 1), and
characterized by the range of the priority rule with a priority-completion (Theorem
2).

To implement the priority rule, we approached the problem of selecting a priority-
completion in the framework of the quantified opportunity (point) allocation. We
advocate a rule called the midpoint rule, which is reflexive enough for institutions to
express their policy for the point allocation. In the main theorem (Theorem 3), we
give a characterization of the ranges of generalized midpoint rules based mainly on

the two fairness notions: interpersonal and interinstitutional fairness.
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Appendix A: Indirect exclusion core under the com-
mon priority

In addition to the conditional endowment system in Section 3, Balbuzanov and Ko-
towski (2019) introduce an extension of the concept. Given an allocation a € A, the
extended conditional endowment system ), : 2V — 29 is defined as follows:
for each C C N,

Qo (C) = w, (U20Ch)

p=0
where Cy = C and C, = C,_1 U (@' ow,)(Cp_1).

The exclusion core in the main text based on the conditional endowment system
w, is called the direct exclusion core in Balbuzanov and Kotowski (2019).'3 On
the other hand, the exclusion core defined by replacing w, with €2, is called the
indirect exclusion core.!* Under the assumption of common priority, these two

core concepts coincide as shown in the following proposition.

Proposition 1. Under Assumption 1, for each a € A and each C € 2V, w,(C) =
Q.(C).

Proof. First, we show the following two claims.

Claim 1. w,(C) = wa(CY)

Proof of Claim 1: By definition, C' C C}. Since w, is monotonic, w,(C) C w,(CY).
In the sequel, we show w,(C) 2 w,(C}) by contradiction. Suppose to the contrary
that there exists opy € w,(C1) such that o € wa(C). Since o € O\a(N),
a(i) = oge for some i € N. Let j € C} be =, -maximal in C} such that j =, 1.

Case 1. j € C: Since j € Cy and j € C, j € (a ' ow,) (C). Thus, there ex-
ists a real object oy such that a(j) = ope. Since opp € w,(C)\ (O\a(N)),
there exists j° € C' such that j' =, , j. By Assumption 1, =, ==, ,. Thus,

J' >0, j. Since j' € C' C (4, this contradicts the choice of j.

13Precisely speaking, they use the terminology only for the setting with initial endowment, i.e.,
simple economy. Here, we borrow it for the case with priority structure.

14Being along with the terminology in Balbuzanov and Kotowski (2019) closer, we should call it
the strong exclusion core or the indirect exclusion core based on w, because they define
several indirect exclusion core concepts by replacing w, with other basic property right formulations.
Here, we choose the simpler terminology.
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Case 2. j € C: Since j =, i, oge € wa({7}). Since {j} C C, the monotonic-

ity of w, implies oxy € w,(C), a contradiction.

Since all cases result in a contradiction, we conclude that w,(C) 2 w,(Cy). This

completes the proof of Claim 1.

Claim 2. Vp e N, = Cpqq

Proof of Claim 2: The induction argument with Claim 1 brings the conclusion.

This completes the proof of Claim 2.

Now, we go back to the proof of w,(C) = Q,(C).

C() U Cl) ( Claim 2)
01) ( Co g Cl)
) (. Claim 1)

]

By Proposition 1, the direct and the indirect exclusion core coincides under As-
sumption 1. This is the reason why we introduced only the direct exclusion core in

the main text, simply calling it the exclusion core.

Appendix B: Proofs

Lemma 1. Suppose that an allocation a € A is exclusion blocked by a coalition C €
2N\ {0} through an allocation b € A at R € RY. Then, for C' :={i € N | b; B; a;},

Vi e N7 [CL,‘ -Pz bz = d(l) € wa(C")] .

Proof. Note that w, is monotonic. Thus, since C' C ", a(i) € w,(C) C w,(C’). O

Before we prove Lemma 2, we introduce a notion of efficiency. The definition
is standard. An allocation a € A is Pareto efficient at R € RY if there exists no
allocation b € A such that i) b; R; a; for all i € N, and ii) b; P; a; for some i € N.
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Lemma 2. Suppose that a € A is Pareto efficient at R € RY. Then,
Vbe A Vi€ N, [b; Pra; = 3j € N s.t. a(j) = b(i)] .
Proof. Suppose to the contrary that for some b € A and i € N, b; P; a; and
Aj € N s.t. a(j) = b(i).

Then, b(i) € (O\a(N)) U{oo}. Let ¢ € A be such that c(i) = b(i) and c|y\ 4} =

a|n\giy- Then, a is not Pareto efficient at R, a contradiction. O
Lemma 3. Let R € RY and a € WC(R). Then, a is Pareto efficient at R.

Proof. Suppose to the contrary that for some b € A, i) b; R; a; for all i € N, and ii)
b; P; a; for some i € N. Let C:={i € N | b; P; a;}. Since a € WC(R), b; # oy for
all i € C. Moreover, by the definition of C, b(i) = a(i) for i ¢ C. Thus, b|c could be

constructed by reallocating
e the real objects disposed at a and
e the real objects assigned to members of C.

Note that (O\a(N)) Ua(C) C w,(C). Thus, b|c is achevable on w,(C). This contra-
dicts a € WC(R). O

Proof of Theorem 1. Let R € RY. Obviously, SC(R) € WC(R). Thus, we only
prove EC(R) = WC(R).

(EC(R) 2 WC(R)) Suppose to the contrary that there exists a € WC(R) such that a
coalition C' € 2\ {()} exclusion blocks through an allocation b € A at R. By Lemma
1, we may assume, without loss of generality, that (i) ¢ € C'if and only if b(i) P; a(i),
and (ii) a(é) P; b(i) implies a(i) € w,(C'). We show that bl is achievable on w,(C).
To this end, we first show that w,(C) contains at least one copy of b(i) for each
i € C. The following inductive argument brings a chain of agents {i1,...,4,} that
finally hits an owner of a copy of b(i) in w,(C) (under a or b). Note that, by Lemma
2 and 3, there exists i, € N such that a(i;) = b(i). For each p > 1, the search for a

chain stops if one of the following three conditions holds.
Stopping Rule (SR) 1. i, € C.
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SR 2. i, ¢ C and a(i,) P;, b(ip).
SR 3. i, & C, a(i,) = b(i,) and b(i,) € a(N).

If one of SR 1, 2, 3 holds, then {i,...,4,} is the desired chain with the length p. If
none of three rules holds, i.e., i, ¢ C, a(i,) = b(i,) and b(i,) € a(N), go to the next
step. Note that, in the latter case, since b(i,) € a(N), there exists i,,; € N such
that a(i,+1) = b(ip). The following two are important features of the chain (at step

p in the construction).

Vg € {L,....p— 1},aliy) = b(i,)] and [Vq € {L,....p— 1},alip1) = B(i,)]

Note that for any p > 2, i), € {i1,...,i,—1}.*> Since N is finite, one of the stopping
rules holds for some i, with p < n. Then, under SR 1, the copy of b(i) is a(i,) €
wWa({ip}) C we(C). Under SR 2, it is a(i,) € w,(C) (.7 (i7)). Under SR 3, it is
b(ip) € wa(C) (- (O\a(N)) C wa(C)).

Next, we show that for any i,j € C(i # j), the copies of b(7), b(j) € w,(C) found
by the above argument are different. Let {i,...,7,} and {ji,...,j} be the chains
of agents to find copies of b(7) and b(j), respectively. We claim that {iy,...,7,} N
{51, dp} = 0.1 Thus, i, # j,. Note that the following three cases exhaust all
possibile combinations of i, and j,. In any case, the copies of b(i) and b(j) found by

the corresponding chains are different.

Case 1. Both i, and j, satisfy one of SR 1 or 2: For this case, the copies of b(i)
and b(j) are a(i,) and a(j, ), respectively. If they are identical, then i, = j,/, a

contradiction.

Case 2. Both i, and j,» satisfy SR 3: For this case, the copies of b(:) and b(j) are

b(i,) and b(j,), respectively. If they are identical, then i, = j,, a contradiction.

Case 3. 1, satisfies one of SR 1 or 2 while j,, satisfies SR 3: For this case, the

15 Proof. Suppose to the contrary that i, € {i1,i2,...,i,-1}. Assume, without loss of generality,
that p is the smallest among such indices. Let p’ € {1,...,p — 1} be i, = i,. Then, b(iy_1) =
a(iy) = a(i,) = b(ip—1), where ig = i. Thus,i,—; = i,_1, a contradiction to the choice of p.

16 Proof. Suppose to the contrary that for ¢ € {1,...,p} and ¢’ € {1,...,p'}, iy = jy. Assume,
without loss of generality, that ¢ is the smallest first coordinate among the pairs of such indices.
Then, b(ig—1) = a(iy) = a(jy) = b(jy—1), where ig = i and jo = j. Thus, igz_1 = jy_1, a
contradiction to the choice of q.
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copies of b(i) and b(j) are a(i,) and b(j, ), respectively. If they are identical,
then a(i,) = b(j,). This implies b(j,/) € a(N), a contradiction to SR 3.

Summing up, b|¢ is achievable on w,(C), a contradiction to a € WC(R).

(EC(R) € WC(R)) Suppose to the contrary that there exists a € EC(R) such that
a is strongly blocked by a coalition C' € 2¥\{(} through an allocation b € A at R,
ie., (i) b(i) P; a(i) for all i € C, and (ii) b|¢ is achievable on w,(C). Note that ,
by (ii), there exists an injective function 7' : C' — w,(C) such that for each i € C,
T(i) € {ok1,- .., Okq, }, where k satisfies b(i) = o. Let ¥’ € A be such that

b(i) ifieC,
V(i) = < o if i ¢ C and a(i) € T(C),

a; 0. W.

Note that for any i € N, a(i) P; b'(i) only if i ¢ C and a(i) € T(C). Thus,
a(i) € w,(C). Summing up, the coalition C' exclusion blocks a through ¢’ at R, a

contradiction. ]

Theorem 4 in Balbuzanov and Kotowski (2019) shows that any indirect exclu-
sion core allocation could be reached by the generalized top-trading cycles (GTTC)
algorithm which coincides with the priority rule undet the assumption of common
priority.'” By Proposition 1 in Appendix A and Theorem 1, WC(R) coincides with
the indirect exclusion core in the current setting. Thus, to prove WC(R) C ®(R), the
argument for the proof of Theorem 4 in Balbuzanov and Kotowski (2019) works apart
from the fact that the current setting accompanies multiple copies of the objects. We

provide a proof for completeness.

Proof of Theorem 2. Let R € RY.

(WC(R) 2 ®(R)) Suppose to the contrary that there exists > € T'(>) such that
a:=p=(R) € WC(R). Let C' € 2V\{0} be a coalition that strongly blocks a through
an allocation b € A at R, i.e., (i) b(i) P; a(i) for all ¢ € C, and (ii) b|¢ is achievable
on w,(C). Let iy € C be the highest-priority agent in C' with respect to . First, we

show the following Claim.

17See Appendix A for the definition of the indirect exclusion core.
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Proof of Claim: Suppose to the contrary that for some i € N with a(i) = b(ip),
ip > 4. This implies that at least one unit of b(ig)(= a(i)) remains at the step
of priority rule with > in which ¢ (R)(= a(io)) is determined. Thus, ¢y (R) #

a(ip), a contradiction. This completes the proof of Claim.

By (ii), w,(C) contains at least one unit of b(ig). Let oy € w,(C) be a copy of
b(ip). Note that oy, € a(N).'® By the definition of w,(C),

Ji € O s.t. i =y, a '(0ke).

Let jo := a (oge). Since > is a completion of =, , i > jo. Since g is the >-greatest

in C, ig > i. Thus, ig > jo. However, a(jy) = ox = b(ip), a contradiction to Claim.

(WC(R) C ®(R)) By Theorem 1, EC(R) = WC(R). Thus, we show EC(R) C ®(R).
Let a € EC(R) be arbitrary. Let Gy := {i € N | ¢ is > -maximal}. We first prove

(¥)3i € Gy s.t. a(i) is a copy of i’s most favorite object with respect to R;

by contradiction. Suppose the contrary. We show that there exists a cycle of agents

(41,71, - - - Ipy Jps Gpy1) such that
(i) {i1,...,ip} C Gy,
(i) Vp' € {1,...,p}, a(j) is a copy of i,y’s most favorite object with respect to R,
(i) Vp' € {1,....p},ip1 = Jpr,
(iv) Wi, vip}l =p =i, jp}l, and
(V) dpy1 =11.

The following inductive procedure, by definition, finds such a cycle.

Step 1. Fix i1 € Gy arbitrarily. Let a;, := maxg, O. By the contradiction
hypothesis, a(i;) # a;,. Since a is Pareto efficent at R (- Lemma 3), O\a(N)

does not contain a copy of «;,. Thus, there exists j; € N such that a(j;) = ;.

18 Proof. Suppose to the contrary that ope € O\a(N). Then, at least one unit of o; remains at
the step of priority rule in which <pi20 (R) is determined. Thus, @‘izo (R) # a(ip), a contradiction.
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By the definition of Gy, there exists iy € Gy such that iy = ;. If iy € {i1},
(i1, 71, 12) is the desired cycle. Otherwise, i.e., iy & {i1}, go to Step 2.

Induction hypothesis. Let p > 2. Suppose that a sequence (i1, J1, . .., ip—1, Jp—1,1p)

satisfies the conditions (i) - (iv). Suppose also that i, & {i1,... 7,1}

Step p. Let a;, := maxg, O. By the contradiction hypothesis, a(iy) # o,
Since a is Pareto efficent at R (" Lemma 3), O\a(/N) does not contain a copy
of a;,. Thus, there exists j, € N such that a(j,) = o;,. If 5, € {j1,...,Jp-1},
(s Jprs - - - 5 ps Jpy Ip+1) 18 the desired cycle, where j, = j, and 4,41 := i,y. Other-
wise, i.e., j, & {Jj1,...,Jp—1}, then by the definition of Gy, there exists i, € Gy
such that i,41 = Jp. Ifipe1 € {1, 5}, (G, Jprs -+ ps Jpy Ipt1) 1s the desired

cycle, where i,y = i,,1. Otherwise, i.e., i,41 & {i1,...,%,}, g0 to Step p + 1.

Since N is finite, the procedure stops in a finite steps. This completes the
description of a procedure that finds a cycle (i1, j1, - .., ip, Jp, tp+1) satisfying the

properties (i) - (v).

Now, we go back to the proof of (x). Let C' := {iy,...,i,}. Define b € A as

follows.
o, itieCandi=riy,

b(i) = < o ifi € {ji,...,5p\C,
a(i) o.w.

Obviously, b(i) P; a(i) for all i € C. By definition, for any i € N with a(i) P; b(7),
i € {j1,-..,Jp}\C. By (iii), for such ¢, a(i) € w,(C). However, this contradicts
a € EC(R). This completes the proof of (x).

Finally, we construct > € I'(=) such that a = ¢=(R). By (),
Ji} € Gy s.t. a(i}) is a copy of the #}’s most favorite object with respect to Rj .

Define a subproblem by removing ¢} with one unit of a(#}) if a(#}) is a real object. Re-

move only 7} if a(#}) = 0p. Let G5 be the set of =-maximal agents in the subproblem.
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By (%),
Jiy € Gy s.t. a(iy) is a copy of the iy’s most favorite object with respect to R ."?

Repeating this procedure n times, we obtain a sequence of agents {z . Let > be
i} > i > ... >4, Obviously, > € I'(>=) and a = = (R). O

Lemma 4 and Lemma 5 below are used in the proof of Theorem 3. In the sequel,
as is defined in the statement of Theorem 3, S denotes the set of subsets of A”
satisfying IIF, WIPF, IND, CON, ESE and CLO.

Lemma 4. Let S € S. Then, there exists f : [0,1] — [0,1] satisfying (GMR-1),
(GMR-2) and (GMR-3) such that S C A}

Proof. For each I € T and each i € I, let 7! := sup, g (i) and z! := inf,c5 a(i).
We first prove the following claims.

/

Claim 1. VI,I' e Z,Vie Vi € I, f:‘_l

m

—7J/ —
= T, le.

)

~

|II| and 7!’ > 7. Note that
r{ < |I].*° Thus, we have j € I such that r] =r/+1. By CON, Z] = infaeg a(j).
Thus, by CLO(ii), there exists a € S such that a(j) = /. Moreover, by CLO(i),
there exists 3 € S such that B(i') = #,. Note that I # I'>' By IND, there

exists 7 € S such that v|; = ao|; and y|y; = B|ws. Since v(j) < y(7') and

Proof of Claim 1: Suppose to the contrary that - | 1'

T'.I/l r T‘I-f . . . .

T < % = J‘Tll, ~ is not WIPF, a contradiction. This completes the proof of
Claim 1.

Claim 2. VI,I' € T,¥i € IVi' € I', "% L= 7l <7

Vi < i
|II‘ and :rI > 7!, By Claim
1, 7/ ==!. Note that r/ < |I|.22 Thus, there exists j € I such that r! =7/ 4 1.

By CON, infaesa(j) = 7 (=74). By CLOC(ii), there exists o € S such that
a(j) = T!. Moreover, by CLO(i), there exists 3 € S such that 3(i') = .. Note

19Here, “the most favorite object” means the one remaining in the subproblem.

20 Proof of rI < |I: Ifrl =1I|, 1 = £E < T% by CLO(ii). This contradicts the definition of ZZ, .
2 Proof of I £1': If I =1, .’L‘I/ > 7!, Thus, by the deﬁnltlon of AP, vl > r! a contradiction.
22Proof of I < |I|: Suppose to the contrary that 7/ = |I|. Then, by CLO(i), 1 = =/ = Z.
‘TI—,‘ < 1, there exists j' € I’ such that r [l = I/ + 1. By CLO(i), there exists § € S such that
§(i') = T = 1. For this 8, 6(j') > 6(i') = 1. However, this contradicts the definition of AF.

Proof of Claim 2: Suppose to the contrary that - \I’

Since
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that I # I'.23 By IND, there exists v € S such that v|; = a|; and y|x; = B|n-
T’I I

Thus, v(j) = v(#) and | <= J| . Thus, v is not WIPF, a contradiction.

This completes the proof of Claim 2.

By Claim 1 and 2, there exists a function f : [0,1] — [0, 1] satisfying (GMR-1)
such that

I
VIer@e[f(m) 7l

In the sequel, we show that f satisfies (GMR-2), (GMR-3) and S C A}

(f satisfies (GMR-2)): By ESE, there exists o}’ € S such that o} (i) = % ﬂ"l for
each I € 7 and each i € I. For each I € Z with I = {iy,...,ix} and i = ... > i1,

Tl +a! + a!
ZaM(z'):—“ = +...+—"K

‘ f 2 2
iel
0+z T 47 Tie 1
_ o, T 24 4L (- CON and CLO)
2 2 2
K-1
1
—I
k=1 ' 2
1
_ N = A
DT (4)
i€l

Thus, combined with IIF, f satisfies (GMR-2).

(f satisfies (GMR-3)): Suppose to the contrary that there exist I € Z and i € I such
that z/ —z! > 1. Note that 7/ —zf = f (%) —f (%) (.- CON and CLO(ii)). By
CLO, there exist o, 8 € S such that a(i) = Z! and (i) = z!. Since S satisfies IIF
and IND, the point assignment to institution I € Z under any point allocation in S is
equal to (A). Thus, T; +Z]el\{l a(j) = I+2jel\{}ﬁ( ) < (zf — l)%—Z]eI\{Z} B(7).
Thus, > cp iy (BU) — a(5)) > 2. Note that for cach j € I\{z} T —zf > () —alj)
because a(j), 3(j) € [z}, 7] Thus Zje[\{i}( T—gh) > 1. Summmg up,

(z] —zf) + Z (zh —zf) > 1+1:1
2 2

Jen\{i}

23Proof of I # I': Suppose to the contrary that I = I’. By CLO(i), there exists § € S such that

1’
§(i") = TL, . Since ‘TI 7 < |II|, rh <l Thus, §(i') < 8(i) (" the definition of AF). This contradicts

= _ =l
T; =Ty .
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However, the left-hand side of the inequality is 1, a contradiction.

(S C AP ): First, we introduce a notation. For each I € Z and each i € I, let
T/ = xI — z!. Let a € S be arbitrary. For each I € Z and each i € I, there exists

€ [—1,1] such that a(:) = QCIT + wiTTf (. a(i) € [z!,7]). Since S satisfies IIF
and IND, the point assignment to institution / € Z under any point allocation in S
is equal to (A), ie., >, ;T — 4 = >, ;a(i). Thus,

- f
EE:ZK — —':: 2{: (}g£%§:££ %-QUiZ%->

iel iel
Tf
=2 oy @)+ wi
iel iel
- (Sat-3)+ T
— "2 " 2
el el
Thus, >, w;T/ = 0. Thus, o € Af. O

Lemma 5. Let f:[0,1] — [0,1] and g : [0,1] — [0,1] be such that
e both f and g satisfy (GMR-1), (GMR-2) and (GMR-3), and
edrez3ielst [(f)#9(5)

Then, A} € AF.

Proof. We show the conclusion in the following two cases separately.

Case 1. f <\I|> <g <%>

Since f and g satisfy (GMR-1), f(1) = 1 = g(1). Thus, r/ < |I|. Thus, there
exists j € I such that 7} = 7/ + 1. Thus, by the definition of GMR, there exists

a € A} such that a(j) = f <‘II|) Since minge 47 5(j) = ¢ (m) ag AL

Case 2. f<m> (m)

By the definition of GMR, there exists a € A} such that a(i) = f <T—> Since
r.I
maxscap B(0) = g (J), o ¢ AL O

Proof of Theorem 3. (<) For each I € Z and each i € I, let T} = f (T—'>,
= f( |I|1> and T/ == 7! — 2!,

27



(AP satisﬁes WIPF): Let o € A} be arbitrary. Suppose that a(i') > a(i) and

|TI:| “lfor [,I'eZ,i€landd €1

1’—1

I/
First, we show that il 1/\ = . Suppose to the contrary that -

,—1 .
II/I . Since f
I/

is strictly increasing (".’ GMR—l), f (T—’) <f ( W ) By the definition of GMR,

[

rl rl—1
ity (D) <1 (M) <t
|17'| 1|
I/ ri—1
a contradiction. Thus, m = m
7"1/
Next, we show that a(i') = «a(i). Since ﬁ = |1| , by the definition of GMR,

a(i) < f (II’> =f (%) < a(i). Thus, a(i') = a(i).
Summing up the previous two paragraphs, « satisfies WIPF. Thus, Af satisfies
WIPF.

(Af satisfies IIF): Let a € AP be arbitrary. Suppose that for w € [—1,1]¥
!
a(i) = = Hl +wlT2 . Let I,I' € T be arbitrary. By (GMR-2), il (YT —13) =
|I_1/| (Zl req! EI/, — 5) Thus,
x! + T Tif
Wi 2

Z —

il

el

HI

l\.')lH

>
e
2

The same calculation brings > ., (i) = >, Ty — L. Thus %Zz’e[ a(i) =

7l [,| > vep a(i’). Thus, a satisfies ITF. Thus, A} satisfies IIF.
(A} satisfies IND): Obvious.

(A} satisfies CLO): We only show CLO(i) since the proof of CLO(ii) is similar. Let
I € 7 and ¢ € I be arbitrary. We construct a point allocation in A}J under which the
point assignment for i is ! (- Tite 4 3 _Ql) By (GMR-3), > icniy (EJI _%1) >

:EI*xI x.—

fz[_izl Thus, Z]e]\{ i} 5+ 2

2*" . Note that the right-hand side of the inequality
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respresents the extra points needed for i’s assignment to be Z/ beyond the midpoin
of [z!,Z!]. On the other hand, the left-hand side of the inequality represents the sum

R}

of the points maximally took away from other agents j € I\{i} beyond the midpoint

of [z}, 7l]. Let w € [-1,1]" be
1 ik =i,
s if ke I\{i
S R LR
0 it ke N\I.
. — Tl 2! w
Since 3 ey wlef = (7] — ) + 2 keniy (_m> (@ —zi) =0, € Af'

Note that (i) = ;. Thus, A} satisfies CLO(i).

(.»4}D satisfies ESE): Since Af satisfies CLO, by the definition of GMR, for each I € 7
. . . r.I

and each i € I, 1nfa€A? a(i) = f( W ) and SUPaea? a(i) = f (Tﬂ) Let w =

faeAJI;_’ a(i )+SupaeA}3 a(i)

(0,...,0) € [-1,1]". Obviously, o € A} satisfies a*(i) = 5 for
alli e 1.
(A? satisfies CON): Let I € Z. Suppose that i, 7 € I are such that r —|—1 Since

Af satisfies CLO, by the definition of GMR, SUPaear a(y) = f 7’) = f (Tu—|1>

infoeap afi).

(A} is D-maximal in S): Suppose to the contrary that there exists T’ € S such that
AF C T. By Lemma 4, there exists g : [0,1] — [0,1] satisfying (GMR-1), (GMR-2)
and (GMR-3) such that T € Al Thus, A} € A" However, this contradicts Lemma
d.

(=) By Lemma 4, there exists f : [0,1] — [0, 1] satisfying (GMR-1), (GMR-2) and
(GMR-3) such that S C A}. Note that A} € S as shown in the sufficiency part of

the proof of Theorem 3. Since S is a D-maximal element in S, S = A}D . m
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