
Asymmetric Failure of Bayesian Updating and the

Echo Chamber Effect: An Experimental Study

Chun-Hou Cheng, Patrick DeJarnette, and Joseph Tao-yi Wang

February 15, 2022

Abstract

We conducted a laboratory experiment to investigate individual ability

to process contradicting information that could be potentially irrelevant, in

which each subject independently draws a ball from one of two digital urns

and receives information reported by another subject who may or may not

have drawn from the same urn. We find that 71% of subjects who receive new

information misattribute the source of the information compared to Bayesian

updating. Conflicting information is overly assumed as irrelevant, and con-

firming information is overly assumed as relevant. This asymmetry is robust

even when allowing for subjects to perceive others as reporting randomly.

Attributing conflicting information as irrelevant may form the foundation of

stable echo chambers or equilibria where additional information has no effect

on beliefs.

JEL codes: C44, D91, C91

Keywords: Bayes’ rule; polarization; belief-updating; asymmetric process-
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ing; biased interpretation
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1 Introduction

Information processing plays an important role in many life decisions, but the same

information may not always be interpreted the same way. For example, a stronger

belief in science has been correlated with willingness to wearing a mask during the

COVID-19 pandemic, while those who identify with masculinity norms are less will-

ing to do so (Stosic et al., 2021; Palmer and Peterson, 2020). Regarding climate

change, individuals have different beliefs despite scientific consensus, and these dif-

ferences persist for long periods of time (Kahan et al., 2011, 2012; Fryer Jr et al.,

2019). Some even believe the earth is flat despite abundant evidence, leading to

the formation of apparent echo chambers (Brazil, 2020). On an individual level,

receiving a bad grade may lead some to pursue non-STEM degrees, while others

may see it as a challenge to persist (Koszegi et al., forthcoming; Harris et al., 2020).

In general, a failure to update beliefs in the face of conflicting information may also

lead some to have overconfidence in personal ability, leading individuals to pursue

self-employment (Camerer and Lovallo, 1999; Koellinger et al., 2007) or make poor

financial decisions (Barber and Odean, 2001; Malmendier and Tate, 2008).

One possibility for these divergent interpretations is that personal experience

and prior beliefs may play a role when processing new information. For example, if

new information conflicts with prior beliefs, people may suspect that it is driven by

political or commercial interests and ignore it. In contrast, when new information

confirms prior beliefs, it may be much harder to account for the possibility that the

information is untrustworthy. As Bayes’ Rules implies we should still update our

posteriors regardless, incorrect beliefs persists for much longer if people ignore infor-
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mation because it may be irrelevant. This could lead to the formation of persistent

echo chambers.

In this paper, we examine a laboratory experiment investigating people’s ability

to process new information, and study the difference in belief updating when infor-

mation aligns with or is against the prior belief. Specifically, we consider a two step

procedure, in which subjects first independently draw information from one of two

urns, and use this information to update beliefs about the state of that urn. Then,

each subject learns the stated belief of another randomly chosen subject. However,

the second subject’s urn may or may not be the same as the first subject, allowing

for the possibility for the information to be irrelevant.

In the face of conflicting information, a subject should correctly infer that the

other subject is more likely to have drawn from a different urn. However, this does

not mean that the other subject could not have drawn from the same urn, just that

it is less likely. In our neutral context of drawing balls from urns, we document that

individuals asymmetrically update beliefs for conflicting and confirming information.

When faced with conflicting information, subjects appear to overly attribute the

source as coming from the other (and hence, irrelevant) urn. Conversely, in the face

of confirming information, subjects are comparatively more likely to attribute it to

their own urn.

Empirically, there is a large literature showing individuals do not perfectly

Bayesian update their beliefs (Tversky and Kahneman, 1973; Grether, 1980; Holt

and Smith, 2009), but more recently the literature has experimentally explored

whether individuals asymmetrically update their beliefs.1 One strand of this litera-

1It is well worth noting that psychology had noted a similar process as a subset of “confirmation
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ture has focused on the asymmetric updating of personal attributes such as beauty

or intelligence, as these estimates tend to be biased on average and may impact im-

portant decisions such as career choice. The results have been mixed, with Eil and

Rao (2011), Ertac (2011), Grossman and Owens (2012), Möbius et al. (2014), and

Coutts (2019) finding evidence that information about personal attributes leads to

asymmetric updating, whereas Gotthard-Real (2017), Buser et al. (2018), Schward-

mann and Van der Weele (2019), and Barron (2021) finding no asymmetric updating

about personal attributes.

Asymmetric updating of personal attributes is an important question but many

policy relevant issues are not inherently egocentric, such as climate change or the

COVID-19 pandemic. In these settings, information does not pertain to only the

receiver. However, experimentally manipulating such belief updating may be dif-

ficult, as the subject may have strong priors from a large amount of information

(or disinformation).2 The large dimensionality of these risks also make it difficult

to assess the correct measure for the belief. Lastly, it may be difficult to control

subjects’ prior beliefs and perceptions of information source objectivity. Thus, we

seek to explore the asymmetric updating of beliefs in a more context-neutral setting,

to give a better picture of how the initial belief evolution occurs. This also allows

for a mixture of objective and social information to be processed as well.

Yet this paper is not the first to explore asymmetric updating in a neutral con-

text. The most closely related is Coutts (2019), which tested for asymmetric updat-

ing across ego relevant, financial, and context-neutral settings and found consistent

bias” outside of a Bayesian framework, c.f. Lord et al. (1979).
2ADD FOOTNOTE ON Lord 1979 (?)
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asymmetric updating across all three domains. However, in their design, all the in-

formation was non-social, being provided by a computer rather than another human.

In addition, the binary information was either confirming the belief or conflicting

it—there was no situation in which the information could be uninformative or irrel-

evant.

In comparison, this paper provides evidence that socially-processed information

also results in asymmetric updating. [XXX DOUBLE CHECK XXX] This is not ex

ante clear, as social information could be primarily ignored if one believed others

were incapable of processing information. In addition, due to the two urn structure

of the design, we can distinguish between whether subjects (i) process the new

information but misattribute its source or (ii) completely disregard the conflicting

inofrmation. In general, we find [XXX INSERT HERE XXX]

In a concurrent study, Oprea and Yuksel also explores social evolution of beliefs

in a laboratory context. The paper’s primary focus is on the evolution of ”moti-

vated” beliefs – beliefs that subjects may have nonpecuniary incentives to believe

as true. In the paper’s primary experiments, subjects take an intelligence quiz,

and then paired with a partner on the same side of the median score. Each sub-

ject reports their beliefs in real time, first individually, and then (in the primary

treatment group) with full information of their partner’s real time belief. Overall,

they find that the ”optimistic” partner does not move downward in response to the

”pessimistic” partner’s belief resulting in stable overconfidence. Furthermore, their

paper demonstrates that public noisy signals are ineffective at reducing this bias.

In comparison, our research is more context neutral, as subjects primary moti-

6



vation to be assigned the ”maximum” rule urn is pecuniary in nature. Our paper

also focuses more on 1-way social communication, such as receiving a news report on

climate change written by a journalist or a notice about mask effectiveness written

by a government official.3 One benefit of this focus is that we can isolate social belief

evolution of individual beliefs rather than social signalling concerns as demonstrated

in Burks et al. (2013).4

(Burks et al., 2013)

Fryer Jr et al. (2019) introduce a model to depict why polarization in people’s

beliefs would occur in many settings where information is open to interpretation.

An important theoretical prediction from this paper is that polarization increases

when people interpret an ambiguous signal as a certain signal for a particular state

based on their current beliefs. Their online Amazon Mechanical Turk experiments

show that when subjects observe a sequence of information, they indeed form biased

interpretation of evidence in the face of ambiguous ones and results in polarization

in issues like climate change and death penalty.

In contrast, we provide three main contributions. First, the polarizing beliefs in

Fryer Jr et al. (2019) stem from ambiguous information that is incorrectly inferred to

be informative. In our paper, we explore how individuals incorporate information

that is contradictory to their current beliefs, rather than how they misinterpret

non-informative signals. Thus, even in purely informative spaces, we show improper

Bayesian updating. Secondly, in our experiment, we explore a politically neutral

3Of course, many important beliefs are more likely to involve 2-way social interaction, such as
a committee collating information to make a joint decision or an echo chamber on social media.

4Specifically, in 2-way communication, a pessimistic belief about group’s intelligence status may
be perceived as an insult. However, in many contexts in the real world, this preference to cater to
extreme views may be an important determinant for the creation of echo chambers, such as dinner
with the in-laws.
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context with objective outcomes, as opposed to the politically charged context with

subjective outcomes (as the scale of interpretation in Fryer Jr et al. (2019) may

be itself differently interpreted based on prior beliefs). Lastly, we provide evidence

that contradictory information is not misinterpreted as consistent with beliefs, but

is instead tends to be misattributed as irrelevant. Collectively, these results can

potentially explain why, despite the general scientific consensus on climate change,

individuals may form beliefs that cause them to ignore this information. In other

words, given the relative paucity of ambiguous information in climate change, it

may be that individuals instead infer that unambiguous contradictory information

is instead from an untrustworthy or irrelevant source.

Failure of Bayesian updating is documented in several papers, including Tversky

and Kahneman (1973) and Grether (1980). They find that subjects ignore base-rate

information contrary to Bayes rule, resulting in representativeness heuristic. Holt

and Smith (2009) show that subjects tend to over/underweight low/high prior prob-

abilities. Compare to cognitive incompetence to perform Bayes rule, recent studies

focus on asymmetrically processing information. Eil and Rao (2011) investigate

how subjects update differently between neutral and ego-relevant information like

beauty and intelligence. They find that subjects respond less when the information

is bad (suggesting one’s beauty or intelligence is inferior) and this effect only occurs

in non-neutral settings. However, Coutts (2019) do not find the “good news-bad

news effect” in their experiments. How people process ego relevant information is

still debating.

Besides, our paper is an extension of rich literature of confirmation bias, which
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was documented in economics (Babcock et al., 1995) and psychology (Lord et al.,

1979). Confirmation bias describes people’s tendency to interpret the information in

a fashion that is biased toward confirming one’s prior belief. Glaeser and Sunstein

(2013) introduces a model to show how balanced information leads to polarization.

They suggest that the same information have diametrically opposite effect for those

who have confirming and conflicting priors. Our experiment provides experimental

evidence and illustrates a possible mechanism of this phenomenon.
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2 Experimental Design

There are ten rounds in the experiment, each round consists of two phases. In

each round, the subject is independently randomly assigned one of two digital urns,

urn A or urn B, which have been themselves randomized (described in more detail

in subsections below). In the first phase, the subject receives a piece of informa-

tion about their assigned urn, and no information about the unassigned urn. With

this information in hand, the subject is incentivized to truthfully report their be-

liefs about the rule (distribution) that their assigned urn follows, and also the rule

(distribution) that the unassigned urn follows.5 In the second phase, each subject

observes another subject’s elicited beliefs about the other subject’s assigned urn.

This second subject’s urn could be the same or differ from the original subject’s

urn, but this information is not revealed to the subject. With this additional piece

of subject-derived information, the subject is again incentivized to report their true

beliefs about both urns. After these two phases with no feedback, the subjects be-

gin the next round and repeat the procedure. After ten rounds, a short survey is

conducted and a round is selected for payment.6

2.1 Design Details

In the first phase, subjects are independently assigned to either urn A or urn B with

equal chance. Both urns contain one hundred digital balls, labeled from 1 to 100.

5Note, since the subject hasn’t received any information about the unassigned urn, there should
be no updating in the priors of the unassigned urn. This is one of several placebo tests we used
to ensure subjects understand the instructions and have some basic understanding of statistics.
Indeed, the vast majority of subjects report close to the prior belief of the unassigned urn at this
point, as shown in the results section.

6Alternative experimental designs that were considered, but not implemented are listed in
Appendix C.
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In each round, urn A and urn B are independently randomized to follow one of two

“rules” with equal chance. Subjects are not told the which rules the urn follows,

but those assigned to the same urn experience the same rule.

While both urns have the same uniform distribution of balls, the rules of the

urn influence the information that the subject actually observes. In particular, for

each subject the computer draws (with replacement) two balls randomly from the

assigned urn. However, the subject will only be informed about one of these two

balls, depending on which rule their assigned urn follows.

If the urn is following the Maximum Rule, the computer will reveal the larger

ball (the one with the higher value label). If the urn is following the Minimum Rule,

the computer will reveal the smaller ball (the lower value label). As a reminder,

urn A and urn B are independently randomized to either follow the Maximum Rule

or the Minimum Rule with equal chance. After observing one ball, subjects are

incentivized to predict the probability that the Maximum Rule is applied to urn A.

Similarly, they also are incentivized to predict the probability that Maximum Rule

is applied to urn B.7

In the second phase, for each subject, the computer randomly chooses another

subject, and reveals the first phase prediction of the other-subject-assigned urn.

However, even though the subject observe this prediction, they do not know if this

other subject was assigned to urn A or urn B.8 After seeing the information from

another subject, subjects again predict the probability that the Maximum Rule is

7Because the rules are mutually exclusive, eliciting a single probability for each urn is suffi-
cient. However, because the urns’ rules were independently randomized, subjects must report a
probability for each urn.

8As subjects are independently randomized between Urn A and Urn B, the prior belief before
seeing the prediction is that the second subject has a 50% probablity to have been assigned to
either urn. Subjects are informed of this statistical independence.
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applied to each urn.

2.2 Belief Elicitation

Following Holt and Smith (2016), we use a two-stage menu of lottery choices as the

belief elicitation mechanism in the experiment. Essentially, it is the Becker-DeGroot-

Marschak (BDM) pricing procedure but separated into two stages to make it easier

for subjects to understand. Holt and Smith (2016) compared three mechanisms of

belief elicitation and found beliefs elicited from this two-stage procedure to be more

accurate and with lower average belief error in terms of Bayesian prediction.9

In the first stage, subjects choose from a list of 11 lottery choices, with each

row being a choice between a “random lottery” and an “event lottery”. The “event

lottery” is the same for all 11 rows and rewards a prize if and only if the urn in

question follows the “Maximum Rule”. The random lotteries vary by row and have

winning probabilities ascending from 0%, 10%, ..., to 100%.

The prize for winning an “event lottery” is identical to the prize for winning

a “random lottery”, allowing subjects to focus on the probabilities involved. In

particular, subjects compare the probability of each random lottery with their belief

that the event would occur. If they have a subjective belief that there is a 55% chance

the urn follows the maximum rule, then the subject would presumably10 prefer the

9Minimizing belief error through a more
10One might be concerned about the potential for ambiguity aversion to distort these probabil-

ities. Though with proper understanding of Bayesian updating, it’s worth noting that the event
lottery is not truly ambiguous in this experiment, though the difficulty in calculations may make
it appear so. Aside from the aforementioned research Holt and Smith (2016), we also find no
such evidence of this – for example phase 1 probabilities are mostly centered around the Bayesian
posterior. One can also use the ’direction’ that ambiguity aversion would provide, that is, to give
additional preference to the objective probabilities. Thus the switching point would tend to be
shifted closer to 0% for all situations. There is no evidence that this is the case.
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event lottery over a random lottery with a 20% chance of winning. Likewise, the

subject would prefer the random lottery with a 80% chance of winning over the event

lottery. This same logic applies for a 50% chance of winning and a 60% chance of

winning, respectively.

Based on the “switching point”, subjects decide a second digit of probability

in the second stage. Thus, the subject might record a switching point between

50% and 60%, then report the second digit of 5, implying a subjective belief of

55% for the event (urn following maximum rule). This is conceptually identical to

having 101 rows of lottery pairs (0%, 1%, 2%, etc) but saves screen space, decision

fatigue, and allows for more rounds in a given time period. Because of this two-stage

elicitation methodology however, there can only be allowed one “switching point”.

This removes the potential for non-monotonic behavior, though this loss is arguably

a good thing and may explain why the two-stage elicitation seemed to do better at

eliciting Bayesian posteriors in Holt and Smith (2016).

After all 10 rounds are finished, one belief elicitation from a single round is

selected for payment. After the decision is done, the computer randomly draws one

number from 0 to 100. If the number is smaller than the two-stage implied switching

point, they receive the event lottery – that is, they are paid a prize only if the urn

in that elicitation was indeed following the maximum rule. If the number is equal or

larger than the two-stage implied switching rule, then they receive a random lottery

where the probability of winning the prize is equal to the original drawn.

To be clear, this method is incentive compatible. Suppose one under-reports

her beliefs from her real belief, 80%, to misreported belief, 60%. The results is the
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same when the drawn number is less than 60 and greater than 80. However, it is

disadvantage for her if the number falls into the interval between 60 and 80. Since

the event lottery will be chosen if she truthfully report the belief, and in that case

the probability of getting the prize is 80%. Conversely, in the case of misreporting,

the random lottery will be chosen and its probability of getting the prize is between

60% and 80%. Therefore, truthfully reporting the belief is in the best interests for

all subjects.

2.3 Experimental Procedures

All sessions were conducted at Taiwan Social Sciences Experimental Laboratory

(TASSEL), National Taiwan University (NTU). Six sessions were run during October

2019 and November 2019, for a total of 123 subjects. We recruited NTU student

subjects using the TASSEL website powered by ORSEE (Greiner, 2015). Each

session lasted approximately 100 minutes, and average earnings were 512 NT dollars

(approx. $17).11 The experiment was programmed with z-Tree (Fischbacher, 2007)

and conducted in Chinese. The experimental interfaces are shown in Figure 1a for

the first stage and Figure 1b for the second stage of elicitation processes.

2.4 Bayesian Probability Predictions

For notation simplicity, we let urn A be the assigned urn and urn B be the irrelevant

urn. We use θmax and θmin to denote the Maximum Rule and Minimum Rule of the

assigned urn; the other urn also has two states, Maximum Rule and Minimum Rule,

11This amount is substantial, double what students would have earned working at Taipei’s
minimum wage over a 100 minute period.
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Figure 1: Two-stage Menu of Lottery Choices: (a) 1st Stage, and (b) 2nd stage.
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indicated by ωmax and ωmin. The information s1 denotes the observed ball in the first

phase, s2 is elicited probability of the assigned urn from another subject observed

in the second phase.

2.4.1 The Structure of Two States

To calculate the Bayesian probability, we consider the structure of two possible states

in advance. Consider the probability Pr(s1|θmax) of seeing s1 under Maximum Rule

in the assigned urn. For two randomly drawn balls S1
1 and S2

1 , there are two mutually

exclusive events: Either the first drawn ball S1
1 is the observed ball and therefore the

second drawn ball is smaller than the observed ball, or exactly the opposite, that is,

the second drawn ball S2
1 is the observed ball and the first drawn ball is equal to or

smaller than the observed ball. Therefore, the probability Pr(s1|θmax) is:

Pr(s1|θmax) = Pr
({
S1
1 = s1 ∩ S2

1 < s1
}
∨
{
S1
1 ≤ s1 ∩ S2

1 = s1
})

= Pr(S1
1 = s1) Pr(S2

1 < s1) + Pr(S1
1 ≤ s1) Pr(S2

1 = s1)

=
1

100
· s1 − 1

100
+

s1
100
· 1

100
=

2s1 − 1

10000
(1)

Similarly, the other probability is Pr(s1|θmin) = (201 − 2s1)/10000. Therefore, the

probability distribution of observing the ball S1 is linear under both the Maximum

Rule (increasing linearly from 0.01% when observing 1 to 1.99% when observing 100)

and Minimum Rule (decreasing linearly from 1.99% when observing 1 to 0.01% when

observing 100).
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2.4.2 Phase 1

In the first phase, the processed information is the observed ball, which is only

useful to infer the state of urn A. With the observed ball, the Bayesian probability

prediction for urn A is as follows.

Pr(θmax|s1) =
Pr(s1|θmax) Pr(θmax)

Pr(s1)
=

(2s1 − 1)/10000

1/100
· 1

2
=

s1
100
− 1

200
(2)

The Bayesian posterior for urn A shows that subjects should predict a probability

slightly below their observed signal (ball) s1 (in percentage terms). For example,

observing a signal s1 = 100 would imply that there is a 99.5% probability that the

assigned urn is following the maximum rule.12 However, in the experiment, fractional

percentages were not allowed in the elicitation, requiring subjects to round to the

nearest whole percentage term (i.e. 55% instead of 54.5%).13 Thus reporting s1 (in

percentage terms) would be a correct Bayesian posterior given the constraints.14

The intuition of this prediction is as follows. If the subject receive a signal of 75,

then one of three states occurred:

• the unobserved ball was strictly less than 75 (and thus the urn must follows

the Maximum Rule)

• the unobserved ball was strictly greater than 75 (and thus the urn must follows

12This falls short of 100% because the urn draws two balls with replacement, so it’s possible
though unlikely for a minimum urn to draw the 100 ball twice and report the ’smaller’ of the two
balls, that is 100.

13This restriction was chosen for implementation feasibility and ease of explaining the instruc-
tions to subjects. Please see the section on Design Details for more details.

14Likewise, reporting s1-1 is equally correct given the constraints, though less common in the
data. For example, suppose the observed ball s1 is 30, the Bayesian probability is Pr(θmax|s1 =
30) = 30

100 −
1

200 = 29.5%. Thus reporting either s1 = 30 or s1 − 1 = 29 in percentage terms would
be correct.
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the Minimum Rule)

• the unobserved ball was exactly 75 (drawn twice due to replacement)

As the balls are uniformly distributed and the rules are ex ante equally likely, the

first state has a 74% chance while the second has a 25% chance. The third possibility

conditionally occurs 1% of the time, but is uninformative about the urn’s rule, thus

it adds 0.5% to both the probability of the Maximum Rule and the Minimum Rule.

The phase 1 Bayesian posterior for unassigned urn B is straightforward since

there is not yet any information about that urn. As a result, Pr(ωmax|s1) should be

0.5.

2.4.3 Phase 2

In the second phase, we assume subjects see another ball s2, which is either from

assigned urn A or unassigned urn B with ex ante equal probability. Because the

actual source is unknown, subjects are asked inferences of both urns.

However, in the experiment they actually observe a signal from another human

being. If the other subject is a correct Bayesian updater and the subject believes

that the other subject is a correct Bayesian updater, this is theoretically equivalent.

To some extent, we see that the average subject is close to a Bayesian updater in

phase 1. However, the belief is less clear.
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Their Bayesian probabilities in the second phase are:

Pr(θmax|s1, s2) =
Pr(s1 ∩ s2|θmax) · Pr(θmax)

Pr(s1 ∩ s2)

=
Pr(s2|s1, θmax) · Pr(s1|θmax) · Pr(θmax)

Pr(s2|s1, θmax) · Pr(s1|θmax) · Pr(θmax) + Pr(s2|s1, θmin) · Pr(s1|θmin) · Pr(θmin)

(3)

Pr(ωmax|s1, s2) =
Pr(s1 ∩ s2|ωmax) · Pr(ωmax)

Pr(s1 ∩ s2)

=
Pr(s2|s1, ωmax) · Pr(s1|ωmax) · Pr(ωmax)

Pr(s2|s1, ωmax) · Pr(s1|ωmax) · Pr(ωmax) + Pr(s2|s1, ωmin) · Pr(s1|ωmin) · Pr(ωmin)

(4)

where Pr(s2|s1, θmax)

= Pr(s2|s1, θmax, ωmax) · Pr(ωmax|s1, θmax) + Pr(s2|s1, θmax, ωmin) · Pr(ωmin|s1, θmax)

= Pr(s2|s1, θmax, ωmax) ·
1

2
+ Pr(s2|s1, θmax, ωmin, s2 from A) · pA ·

1

2

+ Pr(s2|s1, θmax, ωmin, s2 from B) · pI ·
1

2
(5)

Thus, we have

Pr(s2|s1, θmax) =
2s2 − 1

10000
· 1

2
+

2s2 − 1

10000
· 1

2
· 1

2
+

201− 2s2
10000

· 1

2
· 1

2

=
3

4
·
(

2s2 − 1

10000

)
+

1

4
·
(

201− 2s2
10000

)
Pr(s2|s1, θmin) =

1

4
·
(

2s2 − 1

10000

)
+

3

4
·
(

201− 2s2
10000

)
(6)

Equation 5 indicates the weightings that s2 is under Maximum Rule or Minimum

Rule. Since it is given the state of A is Maximum Rule, θmax, only the state of B

remains uncertain. By the settings of experimental design, there is equal chance that
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s2 is either from urn A or urn B. It is the only possibility that s2 is drawn under

Minimum Rule when s2 is from urn B and urn B is applied to Minimum Rule.

Therefore, s2 is drawn under Maximum Rule with 75% chance and Minimum Rule

with 25% chance. With similar reason, we can also derive the probability in equation

6. The combination of probabilities (pA, pI) is the weights of the information source,

indicating that the probability that new information is from the assigned urn or

irrelevant urn. It is (0.5, 0.5) since the randomly drawn subject has equal chance to

be assigned to urn A or B.15

The following equations show the results of Pr(s2|s1, ωmax) and Pr(s2|s1, ωmin).

Pr(s2|s1, ωmax)

= Pr(s2|s1, ωmax, θmax) · Pr(θmax|s1, ωmax) + Pr(s2|s1, ωmax, θmin) · Pr(θmin|s1, ωmax)

= Pr(s2|s1, ωmax, θmax) ·
2s1 − 1

200
+ Pr(s2|s1, ωmax, θmin, s2 from A) · pA ·

201− 2s1
200

+ Pr(s2|s1, ωmax, θmin, s2 from B) · pI ·
201− 2s1

200

s =
2s2 − 1

10000
· 2s1 − 1

200
+

201− 2s2
10000

· 1

2
· 201− 2s1

200
+

2s2 − 1

10000
· 1

2
· 201− 2s1

200

=
2s1 − 1

200
·
(

2s2 − 1

10000

)
+

201− 2s1
200

·
(

1

100

)
(7)

Pr(s2|s1, ωmin)

=
2s1 − 1

200
·
(

1

100

)
+

201− 2s1
200

·
(

201− 2s2
10000

)
(8)

Equation 7 also shows the weightings that s2 is under Maximum Rule or Minimum

15In the experiment, subjects were assigned randomly to urns independently and were informed
about this. However, it may be possible for subjects to incorrectly infer that exactly half the
subjects were assigned to each urn, and thus the average subject would infer ex ante s2 is more
likely to comes from the unassigned urn. Yet the sample size for each session was large, about 20
subjects, so this would result in a small modification (55% urn B and 45% urn A). Importantly,
this incorrect ex ante inference would not differ by confirming and conflicting information, but to
be thorough we allow for and estimate non-equal priors as discussed in the Results section.
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Rule but given the state of urn B, ωmax, instead of the state of urn A, θmax. We can

divide the equation into two parts, the state of urn A is either Maximum Rule or

Minimum Rule. First of all, when the state of urn A is Maximum Rule, with the

probability derived in equation 3, it is for sure that s2 is drawn under Maximum

Rule. Secondly, when the state of urn A is Minimum Rule, there is equal chance to

draw s2 under Maximum Rule or Minimum Rule. Thus, the probability of observing

s2 given states of u two urns ωmax and θmin is the same as the probability of observing

s2, 1%. Equation 8 is derived by the same thoughts.

Hence, the Bayesian probability prediction for urn A (the assigned urn) is:

Pr(θmax|s1, s2)

=
[3(2s2 − 1) + (201− 2s2)] (2s1 − 1)

[3(2s2 − 1) + (201− 2s2)] (2s1 − 1) + [(2s2 − 1) + 3(201− 2s2)] (201− 2s1)

(9)

By substituting equation 7 and 8 into 4, the Bayesian probability prediction for urn

B (the irrelevant urn) is as follows.

Pr(ωmax|s1, s2)

=
(2s2 − 1)(2s1 − 1) + 100 · (201− 2s1)

(2s2 − 1)(2s1 − 1) + 100 · (201− 2s1) + 100 · (2s1 − 1) + (201− 2s2)(201− 2s1)

(10)

Alternatively, we can derive probabilities, Pr(s2|s1, θmax) and Pr(s2|s1, ωmax) by

the source of other’s information. It is beneficial for analyzing how subjects consider

other’s information. Equation 11 and 12 show above concept. Exploiting the first
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ball and consequent beliefs, subjects form probabilities that second ball comes from

urn A and B. Depends on two balls, subjects may distort pA and pI , both of which

are 0.5 and pA is equal to (1− pI) in theory.

Pr(s2|s1, θmax) = Pr(s2|s1, θmax, s2 from A) · pA + Pr(s2|s1, θmax, s2 not from A) · (1− pA)

=
2s2 − 1

10000
· pA +

1

100
· (1− pA) (11)

Pr(s2|s1, ωmax) = Pr(s2|s1, ωmax, s2 from I) · pI + Pr(s2|s1, ωmax, s2 not from I) · (1− pI)

=
2s2 − 1

10000
· pI +

1

100
· (1− pI) (12)

In equation 5 and 7, it is assumed that subjects update posteriors of two urns

together. In other words, they rationally assign probabilities pA and pI so that

the sum of pA and pI is always equal to 1. Thus, if the information is considered

very unlikely being drawn from urn A, subject should put higher weight on urn B.

Unfortunately, subjects may not be able to allocate probabilities pA and pI properly.

For example, even if they believe the information has 10% chance coming from their

assigned urn, they might only assign 60% to the irrelevant urn. One possible and

intuitive updating process is that they separately update two urns. Specifically,

when they deem the information not from one urn, they do not attribute it to

the other urn. In fact, it is useless to subjects when updating the belief. In this

situation, it seems that the information is drawn from an urn in which each ball is

drawn with equal probability. In other words, when subjects regard the information

is from the ”useless urn”, it provide no further clue for updating. To derive the

theoretical prediction, the differences are caused by Pr(s2|s1, θmax), Pr(s2|s1, θmin),
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Pr(s2|s1, ωmax), and Pr(s2|s1, ωmin). Therefore, the theoretical results are as follows.e

Pr(θmax|s1, s2)

=
[(2s2 − 1)pA + 100(1− pA)](2s1 − 1)

[(2s2 − 1)pA + 100(1− pA)](2s1 − 1) + [(201− 2s2)pA + 100(1− pA)](201− 2s1)

(13)

Pr(ωmax|s1, s2)

=
[(2s2 − 1)pI + 100(1− pI)](2s1 − 1)

[(2s2 − 1)pI + 100(1− pI)](2s1 − 1) + [(201− 2s2)pI + 100(1− pI)](201− 2s1)

(14)
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3 Results

3.1 Adherence to Bayesian Updating

3.1.1 Compliance After Initial Draw

Figure 2A presents elicited probabilities of the assigned urn after drawing a ball in

the first phase. Each data point represents the reported belief and the initial drawn

number of a subject in a particular round. In addition, the kernel density estimation

shows that highest density regions are pretty close to the correct Bayesian posteriors.

In fact, with nearly 90 percent of the data aligned with the theory if we allow for

an errors margin of plus and minus 10 percentage points (±10%).16 The elicited

probabilities of the irrelevant urn, in which they do not have any information, are

shown on Figure 2B, in which over 80% of the elicited probabilities are between 0.4

and 0.6 (50% ± 10%). Besides, the kernel density estimation extremely adheres to

the correct Bayesian posteriors. Table 1 shows that a majority of choices conform

with the theoretical predictions as we reduce the margin of error allowed. Even

under the strictest case allowing for only 1 percentage point error (±1%), 60% and

55% of the choices are considered Bayesian in the assigned and the irrelevant urn,

respectively.

The squares in Figure ?? represent the mean elicited probabilities averaged across

all subjects with the same initial draw. They closely adhere to the Bayesian pos-

teriors, especially for the assigned urn. Notice that there is a cluster of elicited

16Alternatively, one could construct the upper and lower bounds relative to the initial draw. For
example, allowing for a 10 percent error results in 50%± 5% for the ball 50, but 10%± 1% for the
ball 10. This criteria is harsh to those who draw a very small or large ball since they have stronger
information. However, under it 76% of the data are still considered to be aligned with theory.
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probabilities along the 45-degree line in Figure ??b, implying that some subjects

also use the initial draw to update the irrelevant urn. We find that those choices

come from one-time behavior of different subjects and not concentrated in particu-

lar rounds, indicating that they are not caused by particular subjects or rounds.17

Although these choices consists of only 3% of the data, they inflate the correla-

tion between the elicited probabilities of the assigned and irrelevant urn.18 Without

these choices, the correlation is 0.003 (p > 0.1), indicating that the vast majority

of probabilities are elicited with the knowledge that states of the two urns are inde-

pendent.19 In conclusion, most of the choices are consistent with Bayesian updating

derived in section 2.4.2.

Figure 2: Elicited Beliefs in the First Phase of the (a) Assigned (b) Irrelevant Urn

17See Appendix A for further details.
18A total of 37 choices lie exactly on the 45-degree line excluding initial draws between 40 and

60 where we cannot easily tell if they updated beliefs of the irrelevant urn or not.
19Similarly, the second phase correlation between the two urns is 0.006 (p > 0.1). Computing

with all data, the first and second phase correlations are 0.067 and 0.029, respectively.
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Table 1: Percentage of Theory-consistent Choices Under Different Error Margins

Error Margin Assigned Urn Irrelevant Urn

±10 percentage points 89% 81%
±5 percentage points 81% 74%
±3 percentage points 75% 60%
±1 percentage points 66% 55%

3.1.2 Failure After Observing New Information

There exists one intuitive difference between the two possible states of the urn: When

the true state is the Maximum Rule, the subject is more likely to observe a ball larger

than 50, while under the Minimum Rule, the subject is more likely to observe a ball

equal to or smaller than 50. This leads to a straightforward heuristic for subjects

to determine whether new information in the second phase is more likely to come

from an urn under the Maximum Rule or Minimum Rule. As a result, we classify

the second-phase information coming from another subject, as either confirming or

conflicting information. In particular, the new information is confirming if first and

second phase information are both within 1–50 or both within 51–100, while it is

conflicting when one is within 1–50 and the other one is within 51-100.20

Compared to the first phase, belief-updating in the second phase is much worse.21

Figure 3 summarizes the distribution of Bayesian posteriors and the average devia-

tion from them on different intervals. When the new information is confirming, we

find that subjects deviate less in the assigned urn, but deviate more in the irrelevant

urn. This suggests that it is easier to correctly process new information regarding

20Some information may be too close to 50 to be “confirming” or “conflicting” enough, such
as initial draws or new information between 40 and 60. Excluding these cases, we expect to find
stronger effects.

21See Figure 10 of Appendix B for the raw data plotted like Figure ??.
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the assigned urn that aligns with what subjects already have. In contrast, updating

behavior for the irrelevant urn is far from the Bayesian prediction as the overall

deviations are larger than the assigned urn (Figure 3b).

Figure 3: Elicited Beliefs Distribution in the Second Phase of (a) the Assigned, and
(b) Irrelevant Urn

Furthermore, the R-squared predicting elicited probabilities using Bayesian pos-

teriors shows that subjects perform updating well in the assigned urn when the

information is confirming (R2 = 0.82), but perform worse when it is conflicting

(R2 = 0.51). In contrast, for the irrelevant urn, subjects perform worse when the

new information is confirming (R2 = 0.33), but perform better when it is conflicting

(R2 = 0.52). The differences in R2 are statistically significant for both urns (vari-

ance ratio test, p < 0.001). The results in Appendix B show that the slopes between

confirming and conflicting information are not significantly different in Figure 10a

(p = 0.175) and Figure 10b (p = 0.434).22

22We test the coefficient β3 from the model: Beliefsβ0 + β1Bayesian + β2Confirming +
β3Interaction + ε, where the dummy variable Confirming indicates the new information is con-
firming (=1) or not (=0), Interaction is the interaction term of Bayesian and Confirming.
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3.2 The Echo Chamber

In principle, subjects should update their beliefs of both urns regardless of the

information received in the second phase because there is always a chance the new

information could be from either urn. However, the irrelevant urn has the natural

advantage that one should only update it according to the new information regarding

the ball of the second phase, since the first ball only carries information about the

assigned urn. Therefore, we can easily infer how subjects attribute new information

to each urn in the second phase from their updating behavior.

Figure 4 plots elicited probabilities against second-phase information.23 The

red dots are elicited beliefs around 0.5, adhering to the Bayesian prediction of the

first phase, indicating “fully dissociate” subjects who do not update irrelevant urn

beliefs at all (and should completely attribute the new information to the assigned

urn). On the other hand, the blue crosses along the 45-degree line indicate “fully

attribute” types who completely ignore the fact that there is some probability that

the new information is from their assigned urn.24 These two types are strongly

biased since they put extreme weight on the new information when updating the

irrelevant urn. However, they account for 76.7% of the choices when we allow 5

percentage points of error. The intermediate types with more reasonable weights

are shown as green triangles in Figure 4, but consist only 18.7% of the choices.

This includes those who follow Bayesian updating. Lastly, the remaining 4.6% of

choices in black are difficult to rationalize, and might reflect confusion or some other

23We drop the choices if their first phase beliefs of the irrelevant urn are out of the range,
[0.45, 0.55]. The remaining choices plotted in the Figure 4 contain 74% of the data.

24The purple dot-cross symbols are overlapping area of the two types, in which we cannot
distinguish their types.
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information processing method. We summarize the updating behavior in the Table

2.

Figure 4: Types of Behavior (Irrelevant Urn)

Table 2: Types of Behavior (Irrelevant Urn)

Types of Choices Definition Percentage

Either Either fully dissociate or fully attribute type. 16.3 %
Fully Dissociate Other subject’s information comes from the assigned urn. 25.4 %
Fully Attribute Other subject’s information comes from the irrelevant urn. 35 %
Intermediate Put reasonable weights on other subject’s information 18.7 %
Others Choices cannot be classified into above four types. 4.6 %

In Figure 5, we separate second-phase information into confirming and conflict-

ing information as defined in section 3.1.2. To compare the difference in behavior

between receiving confirming and conflicting information, we use a dummy indi-

cating confirming information to predict the occurrence of two distinct types of

behavior, completely attribute the information to the assigned urn (Fully Disso-
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ciate) and the irrelevant urn (Fully Attribute). Table 6 report fixed-effect panel

regression results clustered at the subject level, predicting whether the inferred

prior belief fully attributes the new information to the irrelevant urn using whether

information is confirming or not. For confirming information, 33.7% of the choices

completely attribute the new information to the assigned urn, while 31.1% of the

choices completely attribute the new information to the irrelevant urn. However,

when subjects receive conflicting information, only 16.5% of the choices attribute

new information to the assigned urn, significantly lower than that under confirming

information. Moreover, 39% of the choices completely attribute new information to

the irrelevant urn, significantly higher than that under confirming information. This

results demonstrates a confirmation bias where subjects overweight (underweight)

the possibility that new information came from the assigned urn when it confirms

(refutes) their prior.

Figure 5: Elicited Beliefs of the Irrelevant Urn: (a) Confirming, and (b) Conflicting
Information.

Among those who completely attribute the new information to the irrelevant urn
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Table 3: Attribution of the Information

(1) (2)
Fully Attribute to Assigned Urn Irrelevant Urn

Confirming Information 0.165∗∗∗ -0.079∗∗∗

(0.022) (0.025)

Constant 0.172∗∗∗ 0.390∗∗∗

(0.017) (0.019)

N 914 914

Note: Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Attribution of the Information (Extreme Signal)

(1) (2)
Fully Attribute to Assigned Urn Irrelevant Urn

Confirming Information 0.264∗∗∗ -0.292∗∗∗

(0.038) (0.040)

Constant 0.135∗∗∗ 0.552∗∗∗

(0.027) (0.029)

N 634 634

Note: Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(Fully Attribute), their updated beliefs of the assigned urn should remain unchanged

because they believe the information is coming solely from the irrelevant urn. Indeed,

the posteriors of the assigned urn show that 75% do not update the assigned urn

beliefs much.25 The remaining 25% also changes their beliefs regarding the assigned

urn, overreacting the new information.

In contrast, among those who completely attribute the new information to the

assigned urn (Fully Dissociate), beliefs of the assigned urn should be updated as if

they have two balls from that urn, resulting in a Bayesian updating process similar to

equation (3) in section 2.3.2.26 Unexpectedly, 54% of these choices stick to their first-

25This number is calculated by allowing 5% error. In fact, 63% have the exact same first and
second posterior beliefs.

26The Bayesian prediction of having two balls from the same urn is: Pr(θmax|s1, s2) =
Pr(s2|θmax) · Pr(θmax|s1)/ [Pr(s2|θmax) · Pr(θmax|s1) + Pr(s2|θmin) · Pr(θmin|s1))].
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Table 5: Attribution of the Information (interaction term)

(1) (2)
Fully Attribute to Assigned Urn Irrelevant Urn

Conflict Information -0.112∗ -0.008
(0.057) (0.040)

Conflict*Distance -0.001 0.006∗∗∗

(0.001) (0.001)

Constant 0.327∗∗∗ 0.167∗∗∗

(0.017) (0.024)

N 914 914

Note: Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: Attribution of the Information (reinforce version)

(1) (2)
Fully Attribute to Assigned Urn Irrelevant Urn

Conflict Information -0.056 -0.138∗∗∗

(0.039) (0.042)

Conflict*Distance -0.004∗∗∗ 0.007∗∗∗

(0.007) (0.001)

Constant 0.389∗∗∗ 0.283∗∗∗

(0.025) (0.027)

N 914 914

Note: Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

phase posteriors of the assigned urn. This implies at least 25.4%× 54% = 13.7% of

all choices completely ignore the new information and update neither urn.27 Figure

6 plots the remaining choices after excluding those which completely ignore the

new information. Figure 6a compares the elicited probabilities of fully dissociate

types and the Bayesian posterior assuming that both balls came from the same urn.

Even though subjects fully dissociate the information from the irrelevant urn, the

updating behavior systematically under-weights the new information from the other

2713.7% is the lower bound since 25.4% excludes choices when second phase information are
close to 50 that could be either Fully Dissociate or Fully Attribute.
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subject, resulting in a slope of 0.67 that is significantly lower than 1 (p < 0.001).

In fact, the elicited probabilities are closer to the Bayesian probability prediction

derived in section 2.3.2 (Figure 6b), although the slope (0.78) is still lower than 1

(p < 0.001).

Figure 6: Fully Dissociate: (a) Two Balls from Assigned Urn. (b) Correct Bayesian.
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3.3 Inferred Prior Beliefs of Other’s Information

In this section, we estimate the source beliefs (pA, pI), probabilities subjects consider

the information comes from, which reflects how subjects attribute the information

to the assigned and irrelevant urn. In our experiment, it is explicitly stated that

the combination of source beliefs is (0.5, 0.5). We use the four posteriors elicited

(first/second phase in the assigned/irrelevant urn) to estimate subjects’ (pA, pI) by

conducting a maximum likelihood estimation.28 We follow a structural estimation

method similar to that in Costa-Gomes and Crawford (2006) but impose a logit

error structure instead of spike-logit because it is hard for subjects to exactly hit

the Bayesian updating prediction given the complicated Bayesian calculation.

We allow for 21 possible types, ranging from pA = 0, 0.05..., to 1.29 We assume

that each subject’s updating behavior is fixed across the 10 rounds. Formally, let

k = 0, 5, ..., 100 (which stands for the source belief pA from 0%, 5%, ..., to 100%)

index our types, R = 20 denote the total number of elicited probabilities (since each

round consists of two updating decisions),30 and xir denote subject i’s posteriors in

choice r. Given subject’s type and information received, let ti,kr denote the predicted

posterior for a type-k subject i in round r. In order to interpret the pattern of

28To properly investigate individual “updating” types, we use subjects’ first posteriors to cal-
culate the target second posteriors, otherwise it could be problematic for those who deviate from
the Bayesian posteriors in the first phase. For example, subject who report 60% as posteriors of
the irrelevant urn and 38% as posteriors of the assigned urn in both phases is actually behaving
as an “ignoring” type in the second phase. However, if we use the correct Bayesian posteriors in
the first phase as benchmarks to calculate the second phase posteriors, we will mistakenly believe
this subject is perfectly Bayesian.

29It is unnecessary to divide the types further since different pA would map into the same
combination of balls. For example, suppose one subject has the balls 30 and 70 in the first and
second phase, respectively. The Bayesian posteriors are 0.38 for the assigned urn and 0.61 for the
irrelevant urn if pA = 0.5. If pA = 0.51, the corresponding posteriors hardly change, so we cannot
distinguish the subject’s type.

30We assume that all posteriors are updated independently.
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deviations from one’s updating, we specify a logit error structure in which, in every

particular round, a subject updates to the exact predicted posterior of one’s type

with highest probability, and the probability decreases as we move away from the

predicted posterior. In particular, a type-k subject’s assigned urn posterior in round

r satisfies the logit density function dkr(xir, t
i,k
r , λ) with precision parameter λ:

dkr(xir, t
i,k
r , λ) ≡ exp [λE(xir|ti,kr )]∑

zir
exp [λE(zir|t

i,k
r )]

. (15)

where the expected payoff E(x|ti,kr ) = x · ti,kr + (1− x) · (x+ 1)/2, the actual payoff

subjects earn in the experiment. Therefore, the density of a type-k subject with

updates xi ≡ (xi1, ..., x
i
R) is

dk(xi, ti,k, λ) ≡
∏
r

dkr(xir, t
i,k
r , λ). (16)

Let pk denote a subject’s prior probability of being type-k, with
∑K

k=1 p
k = 1 and

p ≡ (p1, ..., pK). By multiplying the right hand-side of (15) by pk, summing over k

and taking logarithms, the log-likelihood function for subject i becomes

ln L(p, ε, s|xi) = ln

[
K∑
k=1

pkdk(xi, ti,k, λ)

]
. (17)

Given the estimate of λ, it is clear from (17) that the maximum likelihood estimate

of p sets pk = 1 for the generically unique k that yields the highest dk(xi, ti,k, λ).

The maximum likelihood estimate of λ is the logistic scale parameter describing the

spreading of subject’s updating.
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Figure 7a shows that on average subjects assign different weights when facing

conflicting and confirming information. The weight is pA = 32% (median = 20%)

when estimated using only rounds in which the information is conflicting, but it

increases to pA = 44% (median = 45%) when using rounds in which information in

confirming. The difference of subject beliefs between confirming and conflicting is

significant (44% � 32%: t-test p < 0.001; Wilcoxon signed-rank test p = 0.003),

suggesting the occurrence of an echo chamber effect.

Figure 7: Models of Information Sources: (a) Two Urns (b) Three Urns.

The above model restricts the sum of pA and pI to necessarily equal to one,

which implies the information must originate from either the assigned or irrelevant

urn. This assumption adheres to our experimental design. However, people may

underweight others’ information. Also, notice that subjects do not always update

correctly compared to Figure ??a. Therefore, subjects may believe that the infor-

mation received does not coincide with a ball drawn from one of the two urns. As

a result, they might decide to discount or even ignore this information completely
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when updating their beliefs in the second phase.

We can modify our model to accommodate the possibility of under-weighting

information. Subjects may view the information as useless for making any inference,

and thus ignore and attribute it to a “useless urn” added to our model to deal

with such situations. If the information comes from the useless urn, each ball is

drawn with equal probability. In other words, this information is completely random

and not helpful to update any posteriors at all. The theoretical predictions of

Pr(s2|s1, θmax) derived in equation (5) becomes31

Pr(s2|s1, θmax)

= Pr(s2|s1, θmax, ωmax) · Pr(ωmax|s1, θmax) + Pr(s2|s1, θmax, ωmin) · Pr(ωmin|s1, θmax)

=
1

2

[
Pr(s2|s1, θmax, ωmax,Assigned s2) · pA + Pr(s2|s1, θmax, ωmax, Irrelevant s2) · pI

+ Pr(s2|s1, θmax, ωmax,Useless s2) · pU + Pr(s2|s1, θmax, ωmin,Assigned s2) · pA

+ Pr(s2|s1, θmax, ωmin, Irrelevant s2) · pI + Pr(s2|s1, θmax, ωmin,Useless s2) · pU
]
.

(18)

Figure 7b shows that subjects are still significantly prone to attributing infor-

mation to the irrelevant urn when it is conflicting (59% � 45%: t-test: p = 0.001;

Wilcoxon signed-rank test: p = 0.002). However, this effect disappears for the as-

signed urn—subject beliefs of the information source are not significantly different

between conflicting and confirming information (25% ∼ 21%: t-test and Wilcoxon

signed-rank test: p > 0.1). Instead, the effect is entirely on the useless urn, showing

31Equation 18 demonstrates how to break down the probability Pr(s2|s1, θmax) to three urns.
We can also apply the same method to the remaining three required probabilities, Pr(s2|s1, θmin),
Pr(s2|s1, ωmax), and Pr(s2|s1, ωmin).
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Figure 8: Information Sources Distributions: (a) Two Urns (b) Three Urns.

that subjects tend to ignore the information when it is confirming (33% � 16%:

t-test: p < 0.001; Wilcoxon signed-rank test: p < 0.001). The distributions of sub-

jects in the two models are shown in Figure 8, and individual beliefs of the source

are listed in Table 9.

To illustrate the differential processing of confirming and conflicting information,

we consider three representative types: Subjects who attribute the information com-

pletely to the assigned urn (pA = 1), completely to the irrelevant urn (pA = 0), and

those close to Bayesian (pA = 0.5). Applying the same maximum likelihood estima-

tion with these 3 types (pA = 0, 0.5, 1) instead of 21 types (pA = 0, 0.05, · · · , 1), we

estimate individual types and classify subjects accordingly. The results shown in Ta-

ble 7 indicate that 24.4% more subjects attribute the information completely to the

assigned urn when it is confirming. In contrast, 10.6% more subjects attribute the

information completely to the irrelevant urn when it is conflicting. Table 7 uncov-

ers this alternation at the individual level. Subjects along the diagonal (49.6%) are

consistent under both information. Importantly, the upper triangle subjects (37.4%,

underlined) put more weight on the assigned urn when moving to confirming infor-
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mation (from conflicting information). In other words, these subjects exhibit an

“echo chamber effect,” since they are more likely to believe that confirming infor-

mation comes from their assigned urn and vise versa.

Table 7: Individual Type Transition: Conflicting vs. Confirming (%)

Confirming pA
Conflicting pA 0 0.5 1 Total

0 21.1 21.1 12.2 54.4
0.5 6.5 25.2 4.1 35.8
1 1.6 4.9 3.3 9.8

Total 29.3 51.2 19.5 100.0

It is apparent that subjects are not necessary consistent between belief-updating

of the assigned urn and the irrelevant urn. This may be caused by the inability

to properly assign probabilities between the two urns. In particular, subjects could

update the two urns independently, instead of comprehensively evaluate the infor-

mation and simultaneously update their beliefs about the assigned and irrelevant

urn. Hence, they utilize the information and assess the probability for it to come

from each urn separately. If they deem the information irrelevant, it is attributed

to a useless urn, in which each ball (1 to 100) is drawn with equal chance, instead

of the other urn. Therefore, subjects assign underlying beliefs (pA, pU) and (pI , pU)

when assessing the assigned and irrelevant urn, respectively.

We compare underlying beliefs pA and pI when receiving confirming and conflict-

ing information. Specifically, we predict underlying beliefs with a constant and the

dummy for Confirming information to predict pA in each round, and cluster stan-

dard errors at the subject level to control for repeated observations. We exclude

choices which could only be rationalized with impossible beliefs that are not in the

interval [0, 1], which happens more often for the irrelevant urn. This leaves us with
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846 observations for the assigned urn, in contrast to 775 observations for the irrele-

vant urn. Table 8 column (1) and (2) show that the directions of coefficients confirm

the asymmetric updating. When the information is aligned with their priors, sub-

jects put insignificantly more weight (2.4%) on the assigned urn, but significantly

less (-18.7%, p < 0.001) weight on the irrelevant urn. However, notice that some

information are more confirming or conflicting than others. For instance, when in-

formation is 51, one can hardly infers anything. Similarly, the information may not

really be confirming or conflicting for subjects where the initial draws are close to

50. Thus, we regard information as strongly confirming or conflicting when neither

the initial draw nor the new information are between 40 and 60. The results shown

in column (3) and (4) indicated that the effects are even larger at 5.6% (p < 0.05)

and -27.3% (p < 0.001) for the assigned and irrelevant urn, respectively.

Table 8: Independent Source Beliefs

Source Beliefs:
(1)

Assigned Urn
(2)

Irrelevant Urn
(3)

Assigned Urn
(4)

Irrelevant Urn

Confirming Information
0.024

(0.020)
-0.187***
(0.031)

0.056*
(0.025)

-0.273***
(0.037)

Constant
0.155***
(0.019)

0.533***
(0.028)

0.142***
(0.022)

0.611***
(0.033)

Stronger Confirming/Conflicting 7 7 3 3

N 846 775 555 518
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Table 9: Individual Source Beliefs

Two Urns Three Urns Two Urns Three Urns
Conflicting Confirming Conflicting Confirming Conflicting Confirming Conflicting Confirming

ID pA pA pA pI pA pI ID pA pA pA pI pA pI
416 0 0 0 0.25 0 1 621 0.25 0.2 0.25 0.75 0.2 0.8
111 0 0 0 1 0 1 620 0.25 0.45 0.05 0.8 0.1 0.4
115 0 0 0 1 0 1 512 0.25 0.5 0.05 0.55 0.05 0.2
508 0 0 0 1 0 1 307 0.25 0.5 0.15 0.6 0.45 0.45
519 0 0 0 1 0 1 417 0.25 0.65 0.25 0.75 0.1 0.25
604 0 0 0 1 0 1 404 0.3 0 0.3 0.6 0 1
616 0 0 0 1 0 1 109 0.3 0.45 0.3 0.7 0 0.25
212 0 0.05 0 1 0.05 0.65 503 0.35 0.35 0 0.8 0 0.25
504 0 0.05 0 1 0.05 0.95 221 0.35 0.5 0.35 0.65 0.25 0.45
511 0 0.05 0 1 0.05 0.95 407 0.35 0.55 0 0 0 0.05
217 0 0.1 0 0.95 0.05 0.85 502 0.35 0.6 0 0.4 0 0.25
301 0 0.1 0 1 0 0.85 613 0.35 0.9 0.4 0.55 0.5 0.05
313 0 0.1 0 1 0.1 0.9 316 0.4 0.4 0.4 0.6 0.4 0.6
607 0 0.2 0 0.95 0 0.55 213 0.4 0.55 0.3 0.6 0.45 0.35
210 0 0.2 0 0.95 0.1 0.8 509 0.45 0.1 0.3 0.55 0 0.65
619 0 0.2 0 1 0.2 0.75 601 0.45 0.4 0.4 0.45 0.3 0.55
218 0 0.2 0 1 0.2 0.8 317 0.45 0.45 0.45 0.55 0.2 0.45
412 0 0.35 0 0.95 0.35 0.65 617 0.45 0.5 0.45 0.55 0.4 0.35
108 0 0.35 0 1 0.05 0.15 610 0.45 0.65 0.45 0.55 0.65 0.35
614 0 0.35 0 1 0.1 0.45 517 0.45 0.75 0.45 0.55 0 0.1
611 0 0.35 0 1 0.2 0.65 117 0.5 0.55 0.5 0.5 0.3 0.25
310 0 0.4 0 0.9 0.35 0.6 214 0.55 0.5 0.5 0.45 0.1 0.2
516 0 0.4 0 1 0.15 0.45 211 0.55 0.7 0.1 0 0.05 0
320 0 0.45 0 0.45 0.1 0.4 622 0.6 0 0 0 0 1
202 0 0.45 0 1 0.3 0.5 311 0.6 0.3 0.6 0.4 0.3 0.7
314 0 0.65 0 0.85 0.35 0.2 312 0.6 0.35 0.6 0.4 0.35 0.65
103 0 0.65 0 0.95 0.6 0.25 521 0.6 0.4 0.6 0.4 0.2 0.55
414 0 0.65 0 1 0.05 0.25 319 0.6 0.45 0.6 0.4 0.45 0.55
102 0 0.7 0 1 0.65 0.2 507 0.6 0.45 0.6 0.4 0.45 0.55
624 0 0.75 0 0.5 0 0 513 0.6 0.45 0.6 0.4 0.45 0.55
306 0 0.8 0 1 0.3 0.1 625 0.6 0.55 0.05 0 0 0.2
501 0 0.85 0 1 0.5 0 603 0.6 0.55 0.35 0 0 0
208 0 1 0 1 0.4 0 118 0.65 0 0.65 0.35 0 1
203 0 1 0 1 0.5 0 114 0.65 0.35 0.55 0.25 0 0.4
216 0 1 0 1 1 0 406 0.65 0.45 0.4 0 0 0.1
205 0.05 0 0.05 0.95 0 0.8 201 0.65 0.45 0.5 0.25 0 0.35
318 0.05 0 0.05 0.95 0 1 411 0.65 0.5 0.55 0.3 0.15 0.35
615 0.05 0.25 0.05 0.95 0.05 0.65 104 0.65 0.65 0.65 0.35 0.4 0.35
321 0.05 0.3 0.05 0.95 0 0.5 403 0.65 1 0 0 0.8 0
116 0.05 0.5 0.05 0 0.3 0.5 520 0.7 0 0.2 0 0 1
606 0.05 0.5 0.05 0.95 0.5 0.5 608 0.7 0 0.7 0.3 0 1
515 0.05 0.55 0 0.95 0.1 0.35 612 0.7 0.4 0.7 0 0.4 0.6
609 0.05 0.65 0 0.95 0.2 0.15 605 0.7 0.45 0.55 0.15 0.05 0.25
206 0.05 0.7 0 0.8 0 0 408 0.7 0.85 0.7 0.25 0 0
209 0.05 0.8 0.05 0.95 0 0 113 0.7 0.95 0.6 0.1 0 0
305 0.05 0.85 0.05 0.95 0.05 0.05 207 0.75 0.65 0.6 0 0.05 0.05
409 0.05 0.9 0 0.95 0.25 0 309 0.75 0.9 0.55 0 0.75 0.05
413 0.05 1 0.05 0.95 1 0 410 0.8 0.05 0.65 0.1 0 0.95
505 0.1 0 0 0 0 0.9 303 0.8 0.25 0.8 0.2 0.25 0.75
402 0.1 0.05 0 0.75 0.05 0.95 215 0.8 0.55 0.75 0.2 0.45 0.3
623 0.1 0.25 0.05 0.8 0.25 0.75 405 0.8 0.75 0.2 0.1 0 0
415 0.1 0.85 0.05 0.85 0.4 0 602 0.85 0 0.85 0.15 0 0.85
304 0.15 0 0.05 0.75 0 0.95 302 0.85 0.3 0.85 0.15 0.3 0.7
219 0.15 0 0.15 0.85 0 0.85 220 0.9 0.2 0.9 0.1 0.2 0.8
105 0.15 0.8 0.15 0.85 0.55 0.15 107 0.95 0.25 0.95 0.05 0.05 0.55
518 0.15 0.95 0.05 0.7 0.65 0 618 1 0.35 0.7 0 0.35 0.6
315 0.15 1 0.15 0.85 0.15 0 106 1 0.5 1 0 0.4 0.5
308 0.2 0.05 0.2 0.8 0.05 0.95 112 1 0.55 1 0 0.35 0.35
110 0.2 0.4 0.2 0.65 0 0.3 401 1 0.8 1 0 0.8 0.2
204 0.2 0.4 0.2 0.8 0.1 0.5 510 1 1 0 0 1 0
101 0.2 0.7 0 0.45 0.25 0.1 506 1 1 1 0 1 0
514 0.2 0.8 0.2 0.8 0.3 0
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4 Conclusion

In this experiment we set out to examine how people process potentially irrelevant

information when they already established certain pre-existing beliefs. To uncover

the mechanism behind confirmation bias, we ask subjects to report beliefs of the

assigned urn, in which they have prior beliefs and a piece of potentially irrelevant

information. Crucially, they also have to report beliefs of the irrelevant urn, by

which we can visually observe the strength of weight they put on the potentially

irrelevant information. We show that subjects tend to view this information as com-

pletely worthless in evaluating the assigned urn when it conflicts their prior beliefs,

but overvalue it when it confirms their prior beliefs. We estimate the tendency of

attributing the information to the irrelevant urn. The results suggest that on av-

erage subjects believe the information is from the irrelevant urn with probabilities

more regardless of the types of information. However, they increase the probabilities

when the information is conflicting by 12%. When we allow subjects consider other’s

information might be inaccurate, the they still believe the information is more likely

from the irrelevant urn when it is conflicting. These results are robust even we

assume subjects independently make decisions on the assigned and irrelevant urn.

Most importantly, we try to explore the mechanism leading to the echo chamber,

especially focusing on the information updating. By explicitly creating an irrelevant

urn, we highlight one possible reason people usually stick to their political stance

or beliefs on controversial issues, even leading to polarization. Though this may not

be the only cause of the echo chamber effect, our results suggest that dismissing the

information when it conflicts with one’s prior is still a prominent cause.
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Appendix

A First Phase Belief

The data points aligned with 45 degree line in the irrelevant urn, implying that

subjects believe the initial draw can infer both urns. Figure 9a shows that a majority

of these choices are made by different subjects and they only perform this behavior

one time. Moreover, Figure 9b shows the occurred round of these choices. They

do not concentrate on particular rounds, suggesting that such unusual behavior is

randomly made throughout the experiment and is unlikely explained by learning

effect.

Figure 9: Beliefs Aligned with 45 Degree Line in the Irrelevant Urn. (a) the Number
of Rounds (b) Occurrence Rounds.

B Second Phase Raw Data

Figure 10 shows the raw data of second phase beliefs. In particular, it is clear to see

the overreaction in the irrelevant urn.
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Figure 10: Elicited Beliefs in the Second Phase of the (a) Assigned (b) Irrelevant
Urn

C Alternative Experimental Designs

We document alternative designs that were eventually dropped. Our first experi-

mental design is inspired by Eil and Rao (2011). Subjects are asked to predict the

real value of an asset with ten possible states. The computer randomly draws with

replacement three balls from twelve, in which ten balls represent the ten possible

states and the additional two balls represent the real value. Thus, the real value is

drawn with probability 0.25 compared to others with 0.083. After observing their

private information of three ball draws, they report their beliefs of each state that

add up to 1.

Subjects then observe new information: The computer divides others into two

halves, one half whose predictions are close to and the other half whose predictions

are far from the subject, and randomly draws another subject from one of them

to reveal his/her prediction. The procedure is repeated three times, so three other

subjects’ predictions will be revealed to the subject. We elicit beliefs in terms of
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probabilities after subjects observe each piece of information using the quadratic

scoring rule. The experimental interface is shown in Figure 11.

Figure 11: Screen Shot of the First Version Experiment.

Our second experimental design is similar to the first one, but with only two

possible states. There are two urns, A and B, in the experiment. Urn A applies the

Maximum Rule and Urn B applies the Minimum Rule, so each urn reports either

maximum or minimum of two draws from the uniform distribution. We provide the

probability table in case subjects cannot figure it out themselves. Subjects observe

a ball from urn A or B with equal chance, and report the probability that the chosen

urn is A. Then, subjects observe others’ information and beliefs are elicited using

the same design as the first version.

Our third experimental design is nearly identical to our final one implemented,

but with three important differences. First of all, it is a one shot game with three

stages of belief-updating, while the final experiment has ten rounds each with one
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stage of belief-updating. In other words, subjects observe their initial draw and

then receive three other piece of information. Second, we use the BDM procedure

as in Coutts (2019) to elicit beliefs, which is illustrated in Figure 12a. Finally, the

probability for drawing each number under the Maximum Rule and Minimum Rule

is shown in tables. The experimental interface is shown in Figure 12b.
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Figure 12: Screen Shot of Third Version Experiment.
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