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Abstract

This paper develops and tests a novel algorithm that solves heterogeneous agent

models with aggregate uncertainty. The algorithm is based on the ergodic theorem:

if a simulated path of the aggregate shock is long enough, all the possible aggregate

allocations are realized, which allows to fully recover rationally expected future out-

comes at each point on the path. This method solves the nonlinear dynamic stochastic

general equilibrium globally with a high degree of accuracy. Furthermore, the market-

clearing prices and the expected aggregate states are directly computed at each point

on the path without relying on a parametric law of motion. Using the algorithm, I

analyze a heterogeneous-firm business cycle model where firms are subject to an exter-

nal financing cost and hoard cash as a buffer stock. In the model, due to the missing

general equilibrium effect on cash, the aggregate fluctuations in cash and consumption

feature significant nonlinearity and state dependence. Based on the model, I discuss

the business cycle implications of the corporate cash holdings.

∗This paper is based on my Ph.D. dissertation at the University of Pennsylvania. I am extremely grateful to
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1 Introduction

In this paper, I introduce an algorithm that solves a heterogeneous agent model with aggregate

uncertainty that is free from the law of motion specification. I name the algorithm as repeated

transition method.

Under the rational expectation, heterogeneous agents are aware of the true law of motion

in the aggregate states and make a correct prediction on the future aggregate state. In

contrast, there is no specific form of the law of motion known to a researcher. And it is

computationally costly to track the evolution of a distribution that is an infinite-dimensional

object. To overcome this problem, Krusell and Smith (1998) suggested a log-linear prediction

rule of the finite number of moments of the individual state distribution as an approximation

to the true law of motion. Afterward, numerous research papers in the literature have found

this prediction rule gives a surprisingly accurate approximation to the true law of motion in

the broad class of heterogeneous agent models with aggregate uncertainty.

Still, there are macroeconomic environments where the log-linear rule does not apply. A

dynamics of aggregate allocations subject to occasionally binding constraints are an example

of such cases (Fernandez-Villaverde et al., 2020). Also, history dependence in the investment

dynamics, as in Lee (2022), makes it difficult to approximate the true law of motion using

the log-linear specification. According to Krusell and Smith (1997) and Krusell and Smith

(1998), these problems can be handled by tracking more moments of the state distribution.

However, the functional form of the prediction rule and selection of the moments still remain

as an open-ended problem.

The repeated transition method overcomes these problems by recursive approximation to

the evolution of true state distributions on a single simulated path of aggregate shocks (in-

sample simulation). The method does not depend on the parametric form of the prediction

rule because the market-clearing prices and the expected allocations are directly computed

at each point on the path. Once the approximation is completed, I estimate the best-fitting

non-parametric/parametric law of motion from the in-sample simulation. Using this law of
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motion, I extrapolate the stochastic dynamics of allocations over the out-of-sample simulated

paths of the aggregate shocks. Lastly, I check the validity of the law of motion by comparing

the model’s solution over the out-of-sample simulated paths of the aggregate shocks based

on the estimated law of motion and the extrapolated aggregate allocations.

The key step in the repeated transition method is to build a correct time-specific expected

future value function in each period by combining value functions in the simulation history

that share the same aggregate states. For example, if an economy is located at time t, for each

possible aggregate shock realization s ∈ S in t+ 1, I find a period τs in the simulation history

where the aggregate states are the closest to the aggregate state of period t + 1, including

the aggregate shock s. Then, I combine the value functions from these periods {τs}s∈S to

construct the expected value function at t+1. Theoretically, if the simulation path is infinitely

long, there exists the period τs where the aggregate allocations are perfectly identical to period

t+1 with an aggregate shock realization s with probability one. Therefore, the true expected

value function can be constructed from this approach. However, in practice, due to the finite

length of the simulation path, often there is no exact period τs in the simulation history

that shares the same aggregate allocations including a shock realization s as in period t+ 1.

Therefore, I approximate the expected value function by interpolating value functions from

periods that closely mimics period t+ 1 for each aggregate shock realization.

The repeated transition method builds upon the method utilizing perfect-foresight impulse

response suggested by Boppart et al. (2018). In the paper, aggregate allocations’ impulse

responses are obtained from the transition dynamics induced from MIT shocks to the steady-

state distribution. Then, the law of motion of aggregate allocations is locally approximated

around the steady-state. Therefore, the method assumes certainty equivalence between the

expected deterministic path and the expected path when the uncertainty is present. In

contrast, the repeated transition method does not assume certainty equivalence and globally

solves the model. And it directly computes aggregate allocations and market-clearing prices

in each period on the simulation path without specifying the law of motion.
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Therefore, the repeated transition algorithm is distinguished from the solution methods

based on perturbation and linearization (Reiter, 2009; Boppart et al., 2018; Winberry, 2018;

Childers, 2018; Auclert et al., 2019). As this method utilizes a single path of simulated

aggregate shock that is long enough to fully represents the stochastic process, its approach

is closely related to Kahou et al. (2021). Kahou et al. (2021) utilizes the fact that a whole

economy’s dynamics can be characterized by solving a finite number of agents’ problesm on

a single Monte Carlo draw of individual shocks under the permutation-invariance condition.

And the law of motion is nonlinearly computed using the deep-learning algorithm. Instead

of the law of motion being characterized as an equilibrium object, the repeated transition

algorithm computes the path of equilibrium allocations at each point on the simulated path.

Then the law of motion can be backed out from the time series of the realized allocations.

This method relies only on relatively simple computational techniques but computes highly

accurate solutions. Also, the algorithm is widely applicable as the algorithm does not rely

on the particular characteristics of the problem presented in this paper.

The repeated transition algorithm outperforms the algorithm of Krusell and Smith (1997)

in models with non-trivial market-clearing conditions and nonlinear aggregate dynamics in

terms of accuracy and computation time. However, for the models with log-linear aggregate

dynamics without a non-trivial market-clearing condition, such as the model of Krusell and

Smith (1998), the repeated transition method does not work as fast as Krusell and Smith

(1998) algorithm.

Using the repeated transition method, I study a business cycle implication of corporate

cash holdings in a heterogeneous-firm business cycle model. In the model, firms face a convex

external financing cost, so they have a precautionary motivation to hoard cash. Cash is

assumed to be an internal asset of a firm. Thus, it is not traded across firms and discounted

at a different rate than the interest rate in the equity market. The rate is exogenously given

as a parameter in the model. Due to these features of cash, the dynamics of aggregate cash

holdings in the model become highly nonlinear; there is no general equilibrium force to flatten
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the dynamics of aggregate cash holdings. On top of this nonlinearity, the market-clearing

condition in the model is not trivial, as in Khan and Thomas (2008). Despite these difficulties

in computation, the repeated transition method solves the model efficiently and accurately.

In the model, lagged aggregate cash holding significantly lowers the consumption volatil-

ity. This model prediction is empirically supported by consumption heteroskedasticity on

lagged cash holding, and this empirical pattern is observed only after the early 1980s.1 The

fact that the corporate cash holding has dramatically increased after the early 1980s partly

explains why conditional heteroskedasticity is observed only after the early 1980s. Then I

show that the smoothing effect of cash holding on consumption occurs only when the negative

aggregate productivity shock hits the economy. This validates the model’s main mechanism

where cash holding gives insurance to households’ dividend income against the negative pro-

ductivity shock.

Roadmap Section 2 explains the repeated transition method based on the model in Krusell

and Smith (1998). Section 3 compares the computation results of the repeated transition

method with other methods existing in the literature. Section 4 introduces a heterogeneous-

firm business cycle model where firms save cash. Section 5 discusses the business cycle impli-

cation of corporate cash holdings predicted by the model compared to the observations from

the data. Section 6 concludes. Other detailed figures and tables are included in appendices.

2 Repeated transition method

2.1 A model for algorithm introduction: Krusell and Smith (1998)

I explain the repeated transition method based on the heterogeneous agent model with ag-

gregate uncertainty in Krusell and Smith (1998). In this section, I briefly introduce the basic

environment of the model.

1The result is robust over other choices of the cutoff year around 1980.
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A measure one of ex-ante homogenous households consumes and saves. At the begin-

ning of a period, a household is given wealth at and an idiosyncratic labor supply shock zt.

Households are aware of the distribution of households Φt, the aggregate productivity shock

At, and how the aggregate states evolve in the future G(At,Φt). The idiosyncratic shock

and the aggregate shock follow the stochastic Markov processes elaborated in Krusell and

Smith (1998). Households are subject to a borrowing constraint at+1 ≥ 0, as in the standard

incomplete market model. I close the model by introducing a representative firm producing

output from a constant returns-to-scale production function. The recursive formulation of

the model is as follows:

(Household) v(a, s;S,Φ) = max
c,a′

log(c) + βE(v(a′, s′;S ′,Φ′))

s.t. c+ a′ = w(S,Φ)z(s) + (1 + r(S,Φ))a

a′ ≥ 0, Φ′ = G(Φ, S)

(Production sector) max
K,L

A(S)KαL1−α − w(S,Φ)L− (r(S,Φ) + δ)K

(Market clearing) K̂(S,Φ) =

∫
adΦ(a, z;S,Φ)

L̂(S,Φ) =

∫
zdΦ(a, z;S,Φ)

(Shock processes) P(s′, S ′|s, S) = πsS,s′S′ , s, s′ ∈ {u, e}, S, S ′ ∈ {B,G}

π :=



πuB,uB πuB,eB πuB,uG πuB,eG

πeB,uB πeB,eB πeB,uG πeB,eG

πuG,uB πuG,eB πuG,uG πuG,eG

πeG,uB πeG,eB πeG,uG πeG,eG


=



0.525 0.350 0.03125 0.09375

0.035 0.84 0.0025 0.1225

0.09375 0.03125 0.292 0.583

0.0099 0.1151 0.0245 0.8505


where s = u means unemployed idiosyncratic state, z = 0.25. s = e means employed

idiosyncratic state, z = 1. S = B indicates a bad aggregate state, A = 0.99. S = G indicates

a good aggregate state, A = 1.01.
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2.2 Algorithm

I simulate a single path of aggregate TFP shocks, A = {At}Tt=0, from the aggregate transition

matrix πA. The aggregate transition matrix is as follows:

πA =

πB,B πB,B

πG,B πG,B

 =

0.875 0.125

0.125 0.875


For the brevity of notation, I define a price vector pt := (wt, rt). The repeated transition

method is based on the following statements:

1. If the true time-specific prices, {pt}Tt=0 are known, the true dynamic path of value

function {vt}T−BurnInt=0 can be approximated by solving the problem from backward

starting from t = T with an initial guess v0T .2

2. If the true time-specific value functions, {vt}Tt=0 are known, optimal inter-temporal pol-

icy functions, {at+1}T−1t=0 can be obtained. Then, the true dynamic path of distribution

{Φt}Tt=BurnIn can be obtained by evolving the initial guess Φ0
0 forward using the optimal

inter-temporal policy functions, {at+1}T−1t=0 .

3. If true dynamic paths of the value functions and the distributions, {vt,Φt}Tt=0 are known,

the time-specific prices, {pt}Tt=0 can be obtained from the market-clearing conditions.

By these three statements, I can approximate the true allocations, (pt, vt,Φt)
T−BurnIn
t=BurnIn from

the following simulation chain:

1. Given nth guess on the price vector, {p(n)t }Tt=0, compute {v̂∗t }Tt=0.

2. Given the value functions {v̂∗t }Tt=0, obtain the inter-temporal policy functions, and com-

pute {Φ̂∗t}Tt=0.

3. Given {v̂∗t , Φ̂∗t}Tt=0, compute {p̂∗t}Tt=0 from the market-clearing conditions.

2To make an agent correctly expect a one-period-ahead value function for each future shock realization, I
use an interpolation method which will be explained later.
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4. Evaluate the following criterion.

sup
BurnIn≤t≤T−BurnIn

||p(n)t − p̂∗t ||∞ < tol

If the criterion is not satisfied, update the guess {p(n+1)
t }Tt=0.

The detailed algorithm is explained below with the pseudo code. The convergence of the

algorithm hinges on the stability of the equilibrium transition path. If the stability is not

guaranteed, then the repeated transition method does not work. One important thing to

note is the algorithm uses only a single simulated path of the aggregate shocks as if they are

given parameters. I call this path to be fitted as in-sample path.

Once the algorithm converges, the approximated law of motion is parametrically or non-

parametrically estimated from the simulated path (in-sample). Then, using the estimated law

of motion, the stochastic equilibrium allocations for the out-of-sample paths are obtained.

The pseudo code for the repeated transition method is as follows:

1. Discretize the aggregate TFP shock process by S states.3

2. Simulate a path of aggregate TFP shocks, A = {At}Tt=0. This path is going to be

repeatedly used in the following steps without any change. This is the in-sample path.

3. Guess on the paths of the prices, the value functions, and the state distributions,

{p̂(n)t , v̂
(n)
t , Φ̂

(n)
t }Tt=0.

4. Solve the model backward in the following sub-steps:

(a) Make a partition T̃ (s) of simulation paths grouped by the realized aggregate TFP

level: T̃ (s) = {τ |Aτ = As} ⊆ {0, 1, 2, ..., T} for s ∈ {1, 2, 3, ...S}.

(b) For each s ∈ {1, 2, 3, ...S} find {ωj,s|
∑
ωj,s = 1, j ∈ T̃ (s)} such that Φ̂

(n)
t+1 =∑

j∈T̃ (s)
ωj,sΦ̂

(n)
j . That is, find a set of weights that interpolates Φ

(n)
t+1 using {Φ̂(n)

j |j ∈

3This discretization step is unnecessary. However, for practical illustration, I describe the pseudo code
based on the discretization.
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T̃ (s)}. The uniqueness of the weight set {ωj,s} is not guaranteed. However, for the

given model, I track only the first moment K̂t+1 in the spirit of Krusell and Smith

(1998). Therefore, I can find the unique {ωj1,s, ωj2,s} such that K̂t+1 = K̂j1ωj1,s +

K̂j2ωj2,s, and ωj1,s + ωj2,s = 1 with {K̂j1, K̂j2} being the nearest combination to

K̂t+1. I set ωm,s = 0 for m /∈ {j1, j2}.

(c) Approximate the true future value function Evt+1(·, ·) := Ev(·, ·;At+1,Φt+1) as

follows:

Evt+1(·, ·) ∼= E

 ∑
j∈T̃ (s)

v̂
(n)
j (·, ·)ωj,s

 = E
[
v̂
(n)
j1 (·, ·)ωj1,s + v̂

(n)
j2 (·, ·)ωj2,s

]

In this step, the value function is linearly interpolated. As the value function is the

most smooth object in the equilibrium allocations, this step incurs only a small

approximation error if the elements of {Kj|j ∈ T̃ (s)} are closely located to each

other.

(d) Solve the problem for given t. Then I obtain the solution {v̂∗t , â∗t+1}

(e) If t > 0, update t′ = t−1 and go back to step 4a. If the algorithm arrives at t = 0,

the time specific inter-temporal policy functions {â∗t+1}Tt=0 are obtained. Also, the

sequence of implied value functions {v̂∗t }Tt=0 are obtained.

5. Using {â∗t+1}Tt=0, simulate the distribution for t = 1, 2, 3, ...T starting from Φ̂
(n)
0 . From

the simulation, I can get an implied sequence of state distributions {Φ̂∗t}Tt=0, where the

initial distribution satisfies Φ̂∗0 = Φ̂
(n)
0 .4

6. Using {Φ̂∗t}Tt=0, all the aggregate allocations over the whole path such as {K̂∗t }Tt=0 can

be obtained. Using the market-clearing condition, compute {p̂∗t}Tt=0.
5

4In this step, I use the non-stochastic simulation method (Young, 2010).
5This step directly computes market-clearing prices even for a model with non-trivial market-clearing

conditions. In Section 3, I use this algorithm to solve Khan and Thomas (2008) where the marginal value
of consumption needs to be computed in the external loop of the model due to the non-trivial market-
clearing condition. I found this technique significantly saves computation time. Further discussion on the
computational gain is in Section 3.
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7. From the obtained prices, check the distance between the implied sequence of {p̂∗t}Tt=0

and the guess on the prices over the whole path {p̂(n)t }Tt=0 using the following metric:

sup
BurnIn≤t≤T−BurnIn

||p̂(n)t − p̂∗t ||∞ < tol

Note that the distance is measured from simulations except for the burn-in periods. If

the distance is smaller than the tolerance level, the algorithm is converged. Otherwise,

make the following updates on the guess:6

p̂
(n+1)
t = p̂

(n)
t ψ1 + p̂∗t (1− ψ1)

v̂
(n+1)
t = v̂

(n)
t ψ2 + v̂∗t (1− ψ2)

Φ̂
(n+1)
t = Φ̂

(n)
t ψ3 + Φ̂∗t (1− ψ3)

for ∀t ∈ {0, 1, 2, 3, ..., T}.

With the updated guess {p̂(n+1)
t , v̂

(n+1)
t , Φ̂

(n+1)
t }Tt=0, go to step 4.

(ψ1, ψ2, ψ3) are the control parameters of convergence speed in the algorithm. If ψi is high,

then the algorithm conservatively updates the guess, leading to slow convergence speed. If

the equilibrium dynamics are almost linear due to strong general equilibrium effect as in

Krusell and Smith (1998), I found setting ψi around 0.8 guarantees convergence without

much sacrifice in the convergence speed. However, if a model is highly nonlinear, as in the

baseline model in Section 4, the convergence speed needs to be controlled to be much slower

than the one in the linear models. This is because the nonlinearity can lead to a sudden jump

in the realized allocations during the iteration if a new guess is too dramatically changed from

6In highly nonlinear aggregate dynamics, I have found that the log-convex combination updating rule
marginally dominates the standard convex combination updating rule in terms of convergence speed. The
log-convex combination rule is as follows:

log(p̂
(n+1)
t ) = log(p̂

(n)
t )ψ1 + log(p̂∗t )(1− ψ1)
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the last guess. Potentially, heterogeneous updating rule ψi 6= ψj (i 6= j) might be helpful.

However, without a particular reason to do so, I assume homogenous weights throughout

whole computations in this paper.

Note that in step 4c, I assume the value function’s local linearity in aggregate states is

given. If the local linearity of value function is significantly violated at an aggregate state,

the approximation breaks down, so another approximation is needed.7 However, this is not

a common concern in the broad class of problems because the value function is generally

smooth and locally linear along the aggregate states, while the policy functions might not be

the case.

After the equilibrium allocations are computed over the in-sample path A, I estimate the

implied law of motion from the in-sample allocations. The law of motion can potentially

take any nonlinear form. Then, using the fitted law of motion, equilibrium allocations are

computed over out-of-sample paths of simulated aggregate shocks.

3 Computation accuracy

This section compares the equilibrium allocations obtained from the repeated transition

method and the method in Krusell and Smith (1998). In the computation, parameters are

set as in the benchmark model in Krusell and Smith (1998) without idiosyncratic shocks in

the patience parameter β. For both of the algorithms, I stopped when the largest absolute

difference between the simulated average capital stock and the expected average capital stock

is less than 10−6.

In the converged solution, the mean squared difference in the solutions between the re-

peated transition method and Krusell and Smith (1998) algorithm is around 2 ∗ 10−4. It

takes around 30 minutes for the repeated transition method to converge under the conver-

gence speed parameter ψ1 = ψ2 = ψ3 = 0.8, while it takes around 20 mins for Krusell and

7If there is a kink point in the value function along the individual states, the algorithm can be modified
to include backward steps in the endogenous grid method.
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Smith (1998) algorithm.8 The convergence speed might change depending on the updating

weight.

Figure 1 plots the expected path (Predicted) and the simulated path (Realized) of aggre-

gate capital Kt obtained from the repeated transition method and the simulated path from

Krusell and Smith (1998). 9 As can be seen from all three lines hardly distinguished from

each other, the repeated transition method computes almost identical equilibrium allocations

as Krusell and Smith (1998) algorithm at a slower speed. This is because the model in Krusell

and Smith (1998) features linear dynamics of aggregate capital. Thus, their algorithm with

the log-linear law of motion can compute the solution both fast and accurately.

150 200 250 300 350 400 450 500

34.5

35

35.5

36
Predicted
Realized
Krusell and Smith (1998)

Figure 1: Computed dynamics in aggregate wealth (Krusell and Smith, 1998)

However, the repeated transition method outperforms Krusell and Smith (1997) algorithm

when the market-clearing condition is non-trivial, as in the model of Khan and Thomas

(2008).10 This is because the non-trivial market-clearing condition requires an extra loop to

8This computation is done in 2015 MacBook Pro laptop with a 2.2 GHz quad-core processor
9This figure is motivated from the fundamental accuracy plot suggested in Den Haan (2010).

10Krusell and Smith (1997) algorithm is a variant of the algorithm in Krusell and Smith (1998), which
is applicable to models with non-trivial market-clearing conditions. Khan and Thomas (2008) uses this
algorithm.
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find an exact market-clearing condition in each iteration.

I solve Khan and Thomas (2008) using both the repeated transition method and the

Krusell and Smith (1998) algorithm with an external loop for non-trivial market-clearing

condition. I stopped the iteration when the following criterion is satisfied:

max{sup
t
{||p(n)t − p

(n+1)
t ||}, sup

t
{||K(n)

t −K
(n+1)
t ||}} < 10−6

Figure 2 plots the dynamics of price pt and aggregate capital stock Kt computed from

the repeated transition method and Krusell and Smith (1998) algorithm. For the allocations

computed from the repeated transition method, both the predicted value and the realized

values are reported. As shown from the figure, all three lines display almost identical dynamics

of the price and the aggregate allocations. The mean squared difference in the solutions

between the repeated transition method and Khan and Thomas (2008) is less than 10−5.

In the computation of repeated transition method, I use ψ1 = ψ2 = ψ3 = 0.9 for speed

of convergence. The reason for using this conservative updating rule is because the model in

Khan and Thomas (2008) features a strong general equilibrium effect; dramatic updates in

the price might lead to divergence. The repeated transition method took around 20 minutes

to converge on average, while Krusell and Smith (1998) algorithm converged in around 30

minutes on average. The convergence speed might change depending on the updating weight.

150 200 250 300 350 400 450 500
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6
Predicted
Realized
Khan and Thomas (2008)

(a) Price pt (= 1/Ct)

150 200 250 300 350 400 450 500
1.1

1.15

1.2

1.25

1.3

1.35

1.4
Predicted
Realized
Khan and Thomas (2008)

(b) Aggregate capital stocks Kt

Figure 2: Computed dynamics in aggregate capital stocks (Khan and Thomas, 2008)
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In the next section, I will compare the algorithm performance between the recursive tran-

sition method and Krusell and Smith (1998) algorithm using a model with nonlinear dynam-

ics. The previous comparisons were made for linear aggregate dynamic models, where Krusell

and Smith (1998) algorithm can make a successful approximation to true aggregate dynam-

ics. However, in nonlinear models, the accurate approximation might be hard to achieve for

Krusell and Smith (1998) algorithm, while the repeated transition method successfully makes

a convergence between predicted allocations and realized allocations.

4 Baseline model

In this section, I introduce a heterogeneous-firm business cycle model to study the role of

corporate cash holdings on aggregate consumption.

There is a continuum of measure one of ex-ante homogenous firms that hoard cash and

produces business outputs. For simplicity of the model, I assume all the firms are homogenous

in terms of their capital stocks normalized at one. And the depreciation rate is assumed to

be zero. At the beginning of each period, a firm i is given with a cash holding cai,t and

an idiosyncratic productivity level zi,t. All firms rationally expect the future and are aware

of the full distribution of each firm-level allocation and the law of motion of the aggregate

states.

The business output is produced by the following Cobb-Douglas production function:

f(ni,t, zi,t;At) = zi,tn
γ
i,tAt

where ni,t is a labor demand; γ < 1 is a span of control parameter; a capital stock ki,t is nor-

malized as just unity; zi,t and At are idiosyncratic and aggregate productivities, respectively.

Each firm needs to pay a fixed operation cost ξ > 0 in each period.

The idiosyncratic and aggregate productivity shock processes, {zi,t}, {At} are specified as
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follows:

zi,t+1 = ρzzi,t + εi,t+1, εi,t+1 ∼i.i.d N(0, σz)

At+1 = ρAAt + ε̃t+1, ε̃t+1 ∼i.i.d N(0, σA)

For computation, both of the shock processes are discretized by the Tauchen method.11

A firm earns operating profit and decides how much to distribute as a dividend di,t to

equity holders (a representative household). The remaining part in the operating profit after

dividend payout is used to adjust cash holding, cat+1/(1+ rca)− cat. The future cash holding

is discounted at an internal discount rate rca > 0 as cash is not traded in the market across

the firms. rca is an exogenous parameter and assumed to be lower than market interest rate

rt. Cash holding level is assumed to be non-negative cat ≥ 0. Thus, the model imposes a

standard incomplete market assumption as in Aiyagari (1994).

If a dividend is determined to be negative, then a firm is issuing equity, which incurs

extra pecuniary cost C(di,t) (Jermann and Quadrini, 2012; Riddick and Whited, 2009). This

equity issuance cost is specified as follows:

C(di,t) :=
µ

2
I{di,t < 0}d2i,t

Thus, the net dividend is di,t − µ
2
I{di,t < 0}d2i,t. It is worth noting that this net dividend

function belongs to C1 class as it smoothly changes the slope at di,t = 0 without a kink.

If there is no equity financing cost, holding cash is not the desired option for an equity

holders because it is more expensive than receiving the dividend
(

1
1+rca

> 1
1+rt

)
. However,

due to the presence of equity financing cost, a firm has a precautionary motivation to hoard

cash. They save cash for the case when their business is in trouble (low zt or low At), and by

doing so, they reduce equity financing costs in their difficult times. In the corporate finance

11I use three grid points where each neighboring points are apart by one standard deviation around the
mean for both processes.
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literature, there has been a rich set of empirical evidence for corporates’ dividend smoothing

behavior (Leary and Michaely, 2011; Bliss et al., 2015). Especially, Leary and Michaely

(2011) empirically showed that cash-rich firms smoothen their dividend significantly more

than the others.

The recursive formulation of a firm’s problem is as follows:

(Firm) J(ca, z;A,Φ) = max
ca′,d

d− C(d) +
1

1 + r(A,Φ)
E(J(ca′, z′;A′,Φ′))

s.t. d+
ca′

1 + rca
= π(z;A,Φ) + ca

ca′ ≥ 0, Φ′ = G(Φ, A)

(Operating profit) π(z;A,Φ) := max
n

zAnγ − w(A,Φ)n− ξ

(Equity issuance cost) C(d) :=
µ

2
I(d < 0)d2

where J is the value function of a firm; ca and z are cash holding and idiosyncratic produc-

tivity as an individual state variable; A is the aggregate productivity; Φ is the distribution

of the individual state variables; w and r are wage and interest rate which are functions of

aggregate state variables (A,Φ).

I close the model by introducing a stand-in household that holds equity as wealth and

saves on equity. The household consumes and supplies labor and rationally expects the future

aggregate states. The income sources of the household are labor income and dividend from

equity holding.

The recursive formulation of the representative household’s problem is as follows:

V (a; Φ, A) = max
c,a′,lH

log(c)− ηlH + βEA′
V (a′; Φ′, A′)

s.t. c+
a′

1 + r(Φ, A)
= w(Φ, A)lH + a

G(a,Φ) = Φ′, GA(A) = A′
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where V is the value function of the household; a is wealth; c is consumption; a′ is a future

saving level; lH is labor supply; w is wage, and r is the real interest rate. The household is

holding the equity of firms as their wealth.

The recursive competitive equilibrium is defined based on the following market-clearing

conditions:

(Labor market) lH(A,Φ) =

∫
n(ca, z;A,Φ)dΦ

(Equity market) a(A,Φ) =

∫
J(ca, z;A,Φ)dΦ

The model does not assume a centralized market for cash holding. Therefore, rca is not

endogenously determined at the market. This is a realistic assumption as a firm’s cash holding

is not tradable across firms. I interpret this setup as the cash holding return is determined by

each firm’s idiosyncratic financing status independently from the centralized capital market

condition. rca is the average level of the idiosyncratic financing cost.12

5 Quantitative analysis

In this section, I quantitatively analyze the recursive competitive equilibrium allocations

computed from the repeated transition method. For easier computation, I first normalize

the firm’s value function by contemporaneous consumption ct following Khan and Thomas

(2008). I define the consumption good price pt := 1/ct, so the normalized value function is

J̃t = ptJt. From the intra-temporal and inter-temporal optimality conditions of households,

I have wt = η/pt and rt = pt+1/pt. Thus, pt is the only price to characterize the equilibrium.

The following analysis will focus on the dynamics of pt and the aggregate cash holdings (the

first moment of the distribution of cash holding).

12Fot simplicity, the model is abstract from the heterogeneity in the financing cost.
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5.1 Calibration

The model’s key parameters are the external financing cost parameter µ and the operating

cost parameter ξ. The external financing cost is identified from the aggregate-level corporate

cash holding-to-consumption ratio. In the moment calculation, the aggregate cash holding is

obtained from the Flow of Funds.13 Consumption is from the National Income and Product

Accounts (NIPA).14 In the model, as µ increases, the corporate cash holding-to-consumption

ratio increases due to increasing precautionary motivation. The key identifying moment of

the operating cost parameter is the dispersion of the cash holdings among corporates. For

this, I use the time-series average of the cross-sectional standard deviation of cash holding

normalized by the cross-sectional average of the cash holding.15 As operating cost increases,

the dispersion of cash increases in the model. Additionally, labor disutility cost η is calibrated

to have a representative household spend a third of its hours on the labor supply. The

calibrated results are summarized in Table 1. The other fixed parameters are summarized in

Appendix A.1.

Parameters Target Moments Data Model Level

µ Corporate cash holding/Consumption 17.7 17.9 0.33
ξ Avg. of sd(Cashi,t)/mean(Cashi,t) 1.5 1.5 0.42
η Labor supply hours 0.33 0.37 12.3

Table 1: Calibration target and parameters

5.2 Nonlinear business cycle

Using the repeated transition method, I compute the recursive competitive equilibrium al-

locations over the simulated path of aggregate shocks. In the algorithm, the interpolation

of the value function (step 4b) is based on the first moment of the cash distributions (the

aggregate cash holding level) following Krusell and Smith (1998) (hereafter, KS algorithm).

13The detailed definition of aggregate cash holding is available in Appendix A.2.
14In this ratio, the consumption includes both durable and non-durable consumptions.
15To rule out extreme outliers, I winsorize the cash holdings distribution at the top 90th percentile.
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The aggregate cash holding level follows highly nonlinear dynamics in the computed outcome

because the general equilibrium effect does not strongly affect each firm’s cash holding de-

mand. The price of cash holding is rca which is exogenously determined in the model because

the cash holding is not allowed to be traded across the firms. In the setup where the cash is

traded across the firms, the opportunity cost of cash holding (rt − rcat ) shrinks close to zero.

So, the aggregate cash holding is predicted to be higher on average in the alternative setup.

I check this point using the computed result from the prototype KS algorithm instead of the

repeated transition method.16
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Figure 3: Aggregate fluctuations in the economy

Figure 3 plots a part of the simulated path of consumption good price and aggregate

corporate saving obtained from both the repeated transition method and the prototype. The

solid line plots expected allocations in the repeated transition method, and dash-dotted line

plots simulated allocations in the repeated transition method. The dashed line represents the

16The prototype refers to the method of tracking the first moment of the state distribution, and the
predicting prices based on the first moment as in Khan and Thomas (2008).
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dynamics of the allocations in the prototype KS algorithm. As can be seen from the aggregate

corporate saving in the right-hand side figure, the average corporate saving is higher in the KS

algorithm than the repeated transition method. This is because the prototype KS algorithm

assumes log-linearity in the law of motion of aggregate corporate saving and assumes that

internal cash holding is linearly affected by the real interest rate.

To determine which prediction is the correct approximation to the true dynamics, I first

evaluate the goodness of fitness R2 and mean-squared error between expected dynamics and

simulated dynamics on the newly simulated shock path (out-of-sample path). KS algorithm

immediately gives the parametric form of the law of motion after the algorithm converges.

In contrast, the repeated transition method gives the sequence of allocations which requires

an extra step to fit the sequences into a parametric/non-parametric law of motion.

The repeated transition method gives R2 of 0.9999 and mean squared error of 10−6 for

both consumption good price and aggregate cash holding dynamics. On the other hand, the

KS algorithm gives the following law of motion and goodness of fitness:17

log(CAt+1) = −0.8238 + 0.9755 ∗ log(CAt), if At = A1, and R2 = 0.9788, MSE = 1.0464

log(CAt+1) = −2.0397 + 0.2963 ∗ log(CAt), if At = A2, and R2 = 0.5532, MSE = 0.6598

log(CAt+1) = −0.1787 + 0.8332 ∗ log(CAt), if At = A3, and R2 = 0.9854, MSE = 0.0098

log(pt) = 2.5741− 0.0008 ∗ log(CAt), if At = A1, and R2 = 0.5470, MSE = 0.0000

log(pt) = 2.5508− 0.0009 ∗ log(CAt), if At = A2, and R2 = 0.3410, MSE = 0.0000

log(pt) = 2.5221− 0.0042 ∗ log(CAt), if At = A3, and R2 = 0.8974, MSE = 0.0000

The log-linear rule of the prototype KS algorithm relies on the prices’ smoothing effect

on the dynamics of aggregate allocations. For example, when there is a surge of cash holding

demand, the price of cash holding goes up to mitigate the surge, and vice versa for the case of

decreasing cash holding demand. In numerous applications in the literature, this flattening

17The aggregate productivity shock is discretized by three grid points.
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force from the general equilibrium has been proved to be powerful enough to guarantee the

log-linear specification as the true law of motion of aggregate variable. One example is Khan

and Thomas (2008) where the micro-level lumpiness is smoothed out by real interest rate

dynamics. However, in the baseline model of this paper, the general equilibrium effect is

missing for the cash holding demand. Thus, the log-linear prediction rule fails to capture the

true law of motion in the recursive competitive equilibrium.

On top of the nonlinearity, there is another feature in the model that makes the prototype

KS algorithm cannot simply address: there is a non-trivial market-clearing condition with

respect to consumption good price pt. Krusell and Smith (1997) suggested an algorithm to

solve this problem by considering an external loop in the algorithm that solves market-clearing

price pt in each iteration. This algorithm is known to successfully solve the log-linear models

with non-trivial market-clearing conditions such as Khan and Thomas (2008). However, due

to the extra loop in each iteration, the algorithm entails high computation cost. In the

repeated transition method, the price and allocations are explicitly computed at each point

on the simulated path in every iteration. Therefore, the method does not require an extra

loop for computing market-clearing price, so it saves great amount computation time. In the

baseline model, computation time is reduced by factor of 2.18

5.3 Discussion: Model prediction and empirical evidence

In this section, I analyze the role of corporate cash holdings on the aggregate fluctuations

using the baseline model and support the model prediction from the empirical evidence.

To investigate the role of the corporate cash holding on consumption dynamics, I analyze

how the consumption volatility changes over the average lagged cash holding level. First,

I residualize the aggregate consumption time-series by the recent four lagged consumptions

18The KS algorithm takes around one hour to compute a converged solution when the simulation length is
T = 500 and the cross-sectional grid of cash holding is 50 points. However, in the repeated transition method,
it takes only around 30 minutes to make a convergence. For the fair comparison, the initial guess of the KS
algorithm is from the log-linear relationship implied in the initial guess of the repeated transition method.
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after taking a log.

log(Ct) = ρ1log(Ct−1) + ρ2log(Ct−2) + ρ3log(Ct−3) + ρ4log(Ct−4) + εt, εt ∼ N(0, σ)

Then, I run the regression of the logged absolute-valued residuals on the average lagged cash

holdings for the periods with ∆log(Ct) > 0 (positive consumption growth) and ∆log(Ct) < 0

separately (negative consumption growth).19

log(σ̂t) = ρlog(Casht−1) + ηt, ηt ∼ N(0, ση)

s.t. Casht−1 =
1

4

4∑
i=1

Casht−i

Table 2 reports the regression results. The residual standard deviation is negatively

correlated with the average lagged cash holding in the periods with the negative consumption

growth. Conversely, the residual standard deviation is positively correlated with the average

lagged cash holding in the periods with the positive consumption growth. The volatility

of consumption decreases by 1.1% when the lagged aggregate cash holding increases by 1%

for the periods with the negative consumption growth. This relationship is visualized by a

scatter plot in Figure 4.

Dependent variable:

log(σ̂t) (%)
Neg. Pos.

(1) (2)

log(Casht−1)(%) −1.075∗∗∗ 1.694∗∗∗

(0.286) (0.337)

Constant Yes
Observations 197 204
R2 0.068 0.111

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Heteroskedasticity of consumption conditional on average lagged cash holding in the
model

19The residualized consumptions are normalized by the unconditional standard deviation of the residuals.
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Figure 4: Scatter plot of logged residual standard deviation and average lagged cash holding
conditional on ∆log(Ct) < 0

Therefore, the aggregate cash holding gives a consumption buffer against a negative ag-

gregate shock by smoothing the dividend stream in the simulated data. I support this model

prediction from the macro-level data. The data is the quarterly frequency and covers from

1951 to 2018. Consumption and the total dividend of the corporate sector are from BEA

National Income and Product Accounts (NIPA); the aggregate cash holding and the total

asset holding are obtained from the Flow of Funds. I normalize the aggregate cash holding

and dividend by the total asset holding. The aggregate consumption is detrended by HP-filter

with a smoothing parameter at 1600.

Table 3 reports the regression results of conditional heteroskedasticity, using the empir-

ical counterparts of the model variables. First, the consumption is residualized using the

autoregressive process up to the fourth order.20 The residualized consumption is regressed on

average lagged normalized cash and dividend separately for pre-1980 periods and post-1980

periods. The reason for separating the two periods is because the corporate cash holding

has increased dramatically after 1980, which made pre-1980 and post-1980 periods starkly

20As in the model counterpart, the residualized consumptions are normalized by unconditional standard
deviation of the residuals.
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different in terms of the size of corporate cash holdings.21

Dependent variable:

σ̂t (%)
Pre 1980 Pre 1980 Post 1980 Post 1980

(1) (2) (3) (4)

Casht−1 (%) 0.558 −0.947∗∗

(0.448) (0.412)
Dividendst−1 (%) 0.828 −0.967∗∗∗

(0.607) (0.351)

Constant Yes Yes Yes yes
Observations 107 107 156 156
R2 0.015 0.017 0.033 0.047

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Sensitivity of consumption to aggregate TFP shock contingent on corporate cash
holdings

As can be seen from Table 3, the residualized consumption display heteroskedasticity

conditional on aggregate cash holding during the post-1980 periods. The greater the lagged

aggregate cash holding is, the weaker responsiveness consumption displays to an exogenous

aggregate shock. The same interpretation can be made to the aggregate dividend as well.

These empirical results are consistent with the model prediction.

However, the model diverges from the data when it comes to the pre-1980 periods. The

possible explanation for this result is that before 1980, corporate cash holding was not large

enough to play an important role in dividend smoothing. Therefore, an increase in cash

holding did not help consumption smoothing in the pre-1980 periods.

Figure 5 plots the scatter plot of the residualized consumption’s standard deviation as a

function of lagged aggregate cash holding (panel (a) and (b)), and as a function of lagged

aggregate dividend (panel (c) and (d)) separately for pre-1980 and post-1980 periods. A

significant negative relationship is observed from the post-1980 periods.

I further investigate whether it is a negative aggregate shock or a positive aggregate

shock that drives the conditional heteroskedasticity of consumption. Here I use variation in

21The result is robust over other choices of the cutoff year around 1980.
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(b) Cash ratio (%) after 1980
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(c) Dividend ratio (%) before 1980
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(d) Dividend ratio (%) after 1980

Figure 5: Conditional heteroskedasticity of consumption growth rate (%) before and after
1980

the Solow residual (TFP) as an aggregate shock. The TFP time-series is fitted into AR(1)

process to obtain the innovation in TFP, and I group observations into the positive innovation

period and the negative innovation period based on the sign of TFP innovation in each period.

Then, I run the following regression:

∆Ct
Ct

= β0 + β1TFP Innovationt + β2TFP Innovationt × Casht−1 +Xt + εt

where Xt is a vector of control variables including Casht and Dividendt; TFP innovationt is

normalized by its standard deviation. The coefficient of interest is β2. If cash holding buffers

consumption response, the sign of β2 would be negative.

Table 4 reports the regression coefficients, β1 and β2, with standard errors in the bracket.
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Dependent variable:

∆Ct/Ct (%) before 1980 ∆Ct/Ct (%) after 1980
Neg. Pos. Neg. Pos.

(1) (2) (3) (4)

TFP Innovationt (s.d.%) −0.001 0.010∗ 0.013∗∗∗ 0.005
(0.005) (0.005) (0.003) (0.004)

TFP Innovationt × Casht−1 (%) 0.115 −0.090 −0.186∗∗ −0.086
(0.088) (0.102) (0.079) (0.090)

Control Yes Yes Yes yes
Constant Yes Yes Yes yes
Observations 59 53 79 77
R2 0.264 0.409 0.409 0.186

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Sensitivity of consumption: cash

As can be seen from the third column of the table, the significant consumption smoothing

effect is observed only for negative TFP innovation during post-1980 periods. A similar result

is obtained when the TFP innovation term interacts with the lagged dividend, as reported in

Table 5. Therefore, I conclude that the model prediction of the consumption smoothing effect

of corporate cash holding towards the negative aggregate shock is empirically supported from

the data.

Dependent variable:

∆Ct/Ct (%) before 1980 ∆Ct/Ct (%) after 1980
Neg. Pos. Neg. Pos.

(1) (2) (3) (4)

TFP Innovationt (s.d.%) 0.006 0.009 0.015∗∗∗ −0.001
(0.008) (0.006) (0.003) (0.004)

TFP Innovationt × Dividendst (%) −0.098 −0.268 −0.696∗∗∗ 0.101
(0.636) (0.463) (0.241) (0.282)

Control Yes Yes Yes Yes
Constant Yes Yes Yes Yes
Observations 59 53 79 77
R2 0.241 0.404 0.429 0.177

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Sensitivity of consumption: dividend
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6 Conclusion

This paper develops and introduces a novel algorithm to solve heterogeneous-agent models

with aggregate uncertainty, which I name as repeated transition method. This method itera-

tively updates agents’ expectations on the future path of aggregate states from the transition

dynamics on a single path of simulated shocks. The algorithm runs until the expected path

converges to the simulated path. In each iteration, market-clearing prices and aggregate allo-

cations are explicitly computed at each period on the simulation path. Therefore, the method

does not rely on a parametric form of the law of motion or an external loop for non-trivial

market-clearing conditions.

Then, I introduce a heterogeneous-firm business cycle model where firms face a convex

external financing cost and hoard cash out of precautionary motivation. Using the model,

I study the business cycle implication of corporate cash holding. Cash is assumed to be an

internal asset of a firm; thus, not traded across firms; and discounted at a different rate than

the real interest rate in the equity market. The model features highly nonlinear dynamics

of aggregate cash holdings due to the absence of general equilibrium force on the aggregate

cash holding. I found the repeated transition method solves the problem more efficiently

and more accurately than the existing global methods. The model predicts that the more

outstanding corporate cash holding lowers the consumption volatility. This model prediction

is supported by macro-level evidence of consumption heteroskedasticity conditional on the

lagged aggregate cash holding.
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A Appendix

A.1 Fixed Parameters

The fixed parameters are set at the following levels:

(Span of control) γ = 0.7;

(Corporate saving technology) rca = 0.038;

(Idiosyncratic shock persistence) ρz = 0.90;

(Idiosyncratic shock volatility) σz = 0.053;

(Aggregate shock persistence) ρA = 0.95;

(Aggregate shock volatility) σA = 0.007;

(Household’s discount factor) β = 0.985.

These fixed parameters are chosen at a reasonable level based on the literature.
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A.2 Definition: Aggregate cash holding from the Flow of Funds

The aggregate cash holding is defined as sum of following items in the Flow of Funds:

• (FL103091003) Foreign deposits

• (FL103020000) Checkable deposits and currency

• (FL103030003) Time and savings deposits

• (FL103034000) Money market fund shares

• (LM103064203) Mutual fund shares

• (FL102051003) Security repurchase agreements

• (FL103069100) Commercial paper

• (LM103061103) Treasury securities
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A.3 Cash holding and dividend

Dependent variable:

Dividendst (%)
Neg. Pos.

(1) (2)

Casht−1 (%) 0.095∗∗∗ 0.210∗∗∗

(0.011) (0.028)

TFP Control Yes Yes
Constant Yes Yes
Observations 112 156
R2 0.395 0.278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.1: Correlation between dividend and cash
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