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Abstract

This paper analyzes strategic interactions between cheap talk and lie detection and studies the

optimal equilibrium for costly lie detection and its effectiveness. An informed sender wants to

persuade an uninformed receiver to take high actions, but the receiver wants to match the action

with the true state. The sender makes a claim about the state, and the receiver decides whether to

incur a cost to inspect the truthfulness of the claim. We show that the receiver-optimal equilibrium

partitions the state space into three intervals. Types in the top interval make precise and truthful

claims about the state, which are mimicked by types in the bottom interval and randomly inspected.

Types in the middle interval make a vague claim that is never inspected. We show that lie detection

is more beneficial to the receiver than state verification because it provides incentives for moderate

and high types to be truthful.
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1 Introduction

This paper introduces a theory of lying in cheap-talk communication where the receiver has access to

a costly lie-detecting technology. To this end, we enrich the cheap-talk model, developed by Crawford

and Sobel (1982)(hereafter, the CS model). In the CS model, a sender who knows the state θ ∈ [0, 1]

that a receiver would like to know can send a cheap-talk message to the receiver. After receiving the

message, the receiver chooses an action. Unlike in the CS model, we consider a scenario in which (i)

the sender’s preference is state independent, (ii) the sender can send a message with a literal meaning

about the state (e.g., “the realized state is θ”), and (iii) the receiver can verify whether the sender’s

message is a lie by conducting a costly inspection.1 Throughout this paper, we refer a “claim” to as

the literal meaning carried by the sender’s message.

In this paper, we investigate whether and under what conditions is lie-detecting technology helpful

in improving the welfare of the uninformed receiver. We first show that there exists an equilibrium

where lying and lie detection occur if and only if inspection cost is sufficiently low and prior expectation

of the state is not too high. Further, we characterize the receiver’s optimal equilibrium and investigate

the effectiveness of the strategic lie detection in improving the quality of communication.

The intuition behind the first result is simple. The threshold for prior expectation increases as

inspection cost decreases and converges to the upper bound of the state space as inspection cost goes

to zero. Intuitively, this result comes from the conflict between the sender’s incentive to lie and the

receiver’s incentive to inspect. Liars aim to convince the receiver that they are better than the average

(prior expectation) when they get away with the lie. If the prior expectation is too high, this can

happen only when a small number of liars mimic a large number of truth-tellers, but then the message

is not worth inspecting because the sender is too likely to be truthful. This result echoes a common

perception that lie detection is effective when the sender is suspicious, in the sense that there is a

substantial difference between the receiver’s prior belief and the belief preferred by the sender. For

example, the police usually conduct an interrogation only if they believe that the suspect is likely to

have committed a crime. When the sender is likely to be “innocent,” there is no cost-effective way to

1Sobel (2020) establishes a general framework of lying with various applications. Our model adopts the same defi-

nition of lying as in Sobel.
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separate lies from truths.

Assuming the state is uniformly distributed, we show that the optimal equilibrium is characterized

by three intervals, which partition the state space. The sender makes truthful claims when the true

state is in the high interval (truthful types), and he lies and mimics one of the high claims when the

true state is in the low interval (lying types). These high claims are randomly inspected. In the fear of

being caught lying and perceived as low types, the sender in the intermediate interval (moderate types)

is deterred from mimicking the high claims. These moderate types pool at a vague yet truthful claim

which is not inspected by the receiver. It is optimal for the receiver to give the sender an option of

being vague because precise claims require inspections to sustain, while moderate types are not distant

enough from each other to justify the cost of inspection. Technically speaking, it is always optimal to

pool an interval of types to a single message and leave it uninspected because the conditional variance

of a small enough interval is lower than the inspection cost.

The key to the equilibrium construction is the mutual dependence between the sender’s message

strategy and the receiver’s lie detection. In the equilibrium, the message strategies of the lying types

add noise to the truthful types’ messages. Therefore, the receiver who receives a message “the realized

state is θ” cannot tell whether this message originates from the truthful type. Hence, the receiver has

an incentive to inspect for removing the noise added by the lying types. The stochastic lie detection

by the receiver makes the sender of lying types and moderate types indifferent between the outcome

associated with the uninspected message and the lotterys over the outcomes induced by sending a lying

message. From the truthful types’ viewpoint, mimicking other truth-telling types induces the receiver’s

misunderstanding, which can eventually result in an unfavorable decision. This implies that the lying

costs that deter truth-telling types from conveying misinformation are endogenously determined in the

equilibrium.

The important implication in this paper is that lie-detecting technology improves the receiver’s

welfare only if lying occurs in equilibrium. If the sender never lies, the receiver has no incentive to

inspect the sender’s claim; if there is no inspection, babbling is the only equilibrium as the sender and

receiver share no common interest. The receiver’s benefit from lie detection can be decomposed into

two components. First, lie detection generates a direct information value by distinguishing liars from

truth-tellers which generally provides information about the true state. Second, the sender might stay

honest in the fear of being caught lying. Therefore, the possibility of lie detection creates a threat

that deters potential liars and facilitates information transmission. This is called the indirect deterrent
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effect. Our results show that under the optimal lie-detecting equilibrium, the direct information value

of inspection is completely offset by the cost of inspection. Improvement of the receiver’s ex-ante payoff

is driven by the deterrent effect: the receiver is able to elicit information from the sender due to the

credible threats of lie detection. This is perhaps surprising as one might expect an optimal equilibrium

should allow the receiver to acquire as much information from lie detection as possible. It turns

out that an excessive amount of information acquired from inspection indicates that the equilibrium

induces the sender to lie too often, and costly inspection takes place more frequently than the optimal

equilibrium. This suggests that lie-detecting technology better serves as a means of deterrence than a

means of information acquisition.

Our framework reflects the fundamental signal structure of lie-detecting technology broadly used in

our daily lives, e.g., fact-checking. The motivating example illustrating the signal structure is as follows:

Consider a situation in which a politician said “the Intergovernmental Panel on Climate Change (IPCC)

has reported that limiting global warming to 1.5◦C implies reaching net zero CO2 emissions globally

around 2050 and concurrent deep reductions in emissions of non-CO2 forcers, particularly methane.”

In such a case, we can check a series of reports issued by IPCC and verify whether the politician is

telling the truth.2 However, reading through reports is costly. In addition, without fact-checking, the

politician’s statement is just a cheap-talk message, although it has literal meaning.

Under more general distributions, it is possible that inspected vague messages exist in the optimal

equilibrium without the restriction on randomizing inspection. A vague message could pool moderate

types and high types into the same group with a sufficiently high posterior such that inspecting the

message is credible. It enables the separation of the moderate types from the lower types which

would have been non-credible if the moderate types had sent precise messages. An insight from this

observation is that when the market is flooded with low-quality products, having a quality standard

that covers a wider range of high-quality types might be beneficial to the consumers, because it provides

sufficient incentive for the consumers to verify the standard and separate a wider range of high-quality

products from the low-quality products.

We study the effect of inspection technology on the receiver’s welfare by comparing lie-detecting

technology with state-verifying technology. There are substantial differences between lie detection and

state verification. Under state-verifying technology, an inspection reveals the true state of the world.

2This statement is true. See, IPCC SR15 2018. (https://www.ipcc.ch/sr15/). As you will see in the link, checking

the fact is a costly effort.
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There will be no uncertainty upon inspection. Under lie-detecting technology, an inspection returns

a binary signal on the truthfulness of the sender’s claim. Information learned from an inspection is

endogenously determined by the claim made by the sender. Practically, state verification is a hard

skill which requires the receiver to be able to acquire knowledge about the true state, which might

not be feasible in some situations. In the example of IPCC we discussed above, the effort of going

through a series of reports reveals whether the politician’s statement is true. State verification, i.e.,

verifying whether the content of statements is coherent with the state of the world, is another story.

Also, there might not be any objective evidence in the crime scene that provides further information

about whether a suspect has committed the crime. In this regard, lie detection can be a soft skill. A

competent detective might be able to spot a lie told by the suspect using various interrogation tactics.

Studies in psychology and cognitive science have shown possibilities of detecting lies using methods

such as asking questions that raise cognitive load (Vrij et al. (2011)), measuring brain activities (Christ

et al. (2008)) and reading micro-expressions (Porter and Ten Brinke (2006)), with nearly 70 percent

accuracy (Hartwig and Bond (2014)) and 85 percent accuracy for trained interviewers (Hartwig et al.

(2006)).

Even if state verification is feasible, lie-detecting technology can yield a higher benefit to the

receiver. Assuming the same unit cost for the two technologies, we show that the receiver’s welfare is

higher under the optimal lie-detecting equilibrium compared with optimal state-verifying equilibrium.

This is because revealing the true state upon inspection removes any strategic uncertainty that can

serve as a threat of punishment to potential deviators. Since state verification leads to an accurate

assessment of the true state, there is no credible punishment for the liar; thus the sender always

has the incentive to exaggerate the state to “try his luck.” As a result, the deterrence effect is

eliminated under state-verifying technology, and there will not be any informative communication.

This result sheds light on the optimal approaches of fact-checking as a tool to combat misinformation

in politics. The internet has enabled the public to verify politicians’ claims more easily using fact-

checking websites such as FactCheck.org and PolitiFact. A question regarding the socially desirable

mission of these organizations is whether they should focus on presenting verdicts on politicians’

statements (lie detection) or educating the public about policy-related issues (state verification). The

latter is more informative as verdicts on politicians’ statements can be derived from knowledge in

policy-related issues. An argument for the former is that simple verdicts cost less time to read and

are easier to comprehend, compared with the complex policy-related issues. Another argument for
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the former is that targeting politicians’ statements hold them accountable and deter them from lying.

Some studies find evidence that fact-checking reduces lying behaviors of politicians (e.g., Nyhan and

Reifler (2015); Lim (2018)). This paper provides a theoretical ground for the deterrence argument

and shows that the public can be better off under lie detection in spite of the ignorance of details in

policy-related issues.

Related Literature: The present paper is mostly related to the literature of strategic communica-

tion with lie detection. Balbuzanov (2019) and Dziuda and Salas (2018) analyze a cheap-talk model

akin to the setup in Crawford and Sobel (1982), with the addition that the sender’s lie will be detected

with an exogenous probability.3 The information structures of the signal the receiver observes are

identical between these two. Balbuzanov (2019) shows that given an intermediate probability of lie

detection and a sufficiently small bias, fully revealing equilibria exist. Dziuda and Salas (2018) show

that certain refinement criteria lead to a unique equilibrium where the moderate and high types stay

honest and the low types lie to imitate the high types.

Our findings in the optimal equilibrium echo findings from Dziuda and Salas (2018) that moderate

types do not exaggerate their types to avoid being mistaken as the low-type liars. The key difference

between the present paper and previous literature is that we model lie detection as a decision of the

receiver, where the probability of lie detection can be chosen conditional on the sender’s claim. This

allows an analysis of tensions between the sender’s incentive of lying and the receiver’s incentive of

inspection. Dziuda and Salas (2018) also has a different signal structure of lie detection compared to the

present model. In their model, if the sender tells the truth the receiver observes the message the sender

chose, and this message appears consistent to the receiver. If the sender who observes the state θ sends

a lying message with a literal meaning of “the state is θl”, this message appears inconsistent to the

receiver with probability p > 0, and appears consistent to the receiver with probability 1 − p. Under

this signal structure, the receiver learns that the messages are lies for certain through inconsistent

messages, while consistent messages might still indicate pooling between truth-tellers and liars. Dziuda

and Salas (2018) showed the existence of equilibria that have the following structures. In equilibrium,

the moderate and the high types tell the truth, while the low types lie claiming to be the high types.

Specifically, there are two cutoffs t and l in the state space (0 < t < l < 1) such that if the state is

3Ederer and Min (2022) consider a model of Bayesian persuasion in which the receiver detects the sender’s lies with

positive probability. Similar to Balbuzanov (2019) and Dziuda and Salas (2018), the signal structure of lie-detecting

technology is exogenously given.
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above t, the sender tells the truth in a consistent way; otherwise, the sender randomly sends lying

messages in a consistent way and claims that the state is above l. Hence, in equilibrium, the receiver

detects the state if it is in (t, l). Similar to our model, a fear of implicit lying cost is an important

key to dissuade the moderate and the high types from sending lying messages. Under the prescribed

sender’s message strategy, from the receiver’s viewpoint, messages appeared in an inconsistent way are

the evidence of the state is below t. On the other hand, even if messages correspond to the high types

appeared in a consistent way, the receiver is still confused between the corresponding truth teller and

some liars. Then, she chooses an action as if the state arises on the boundary l. Since they assumed

that the sender wants the receiver to choose an action that is as high as possible, this implies that

lying messages may induce an unfavorable action with a positive probability. Therefore, the sender of

type θ > t tells the truth to remove the possibility that the receiver observes an inconsistent message.

Jehiel (2021) analyzes an interesting multi-round cheap-talk environment where lie can be spotted

from the inconsistent messages of a forgetful liar who cannot remember the content of the lie he has

told. We can interpret the observation of inconsistencies by the receiver as a lie detection technology.

Similar to our equilibrium construction, the fear of being inconsistent causes the sender to be more

careful in his pronouncements. Jehiel (2021) shows that as the state space becomes finer, lies will be

detected for sure and, thus, all equilibria in pure strategies approximate the fully revealing equilibrium.

Hence, there is no inconsistency in equilibrium. In contrast, we show that if the communication is

one shot and the sender’s lie is detected through the receiver’s strategic lie detection, lying and lie

detection must occur on the equilibrium path to improve the receiver’s welfare.

Levkun (2021) study a sender-receiver game with a strategic fact-checker. In contrast to our model,

the state and decision are binary, and a strategic third party (fact-checker) checks whether the sender’s

message is true. Further, the fact-checker can commit to the fact-checking policy in advance. It is

shown that if the cost of lie detection is small, the optimal lie-detecting policy for the fact-checker is

full lie detection; otherwise, no lie detection is optimal. In contrast, we show that with multiple states

and no commitment on the inspection policy, partial lie detection is always optimal when the cost of

lie detection is not too high.

While other researchers have studied similar cheap-talk models with a partially informed receiver,

such as Ball and Gao (2019), Chen (2009), Chen (2012), Ishida and Shimizu (2016), Ishida and

Shimizu (2019), Moreno de Barreda (2013), Miyahara and Sadakane (2020), Lai (2014), and Rantakari

(2016), the present study differs in its information structure. Similar to Balbuzanov (2019) and Dziuda
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and Salas (2018), these prior studies assume that the receiver obtains additional signals except for

the sender’s message. However, these signal are either exogenous or they do not provide certifiable

information that detects the sender’s lie.

Ishida and Shimizu (2019) study a cheap-talk model in which the receiver is partially informed about

the state. They assume that the receiver has limited knowledge of the signal structure. Specifically,

the receiver faces higher-order uncertainty, and the signal that she observes is noisy. In this setting,

the sender’s message can help the receiver remove the noise of the private signal to some extent (i.e.,

confirmation effect). In contrast, in the present study, the sender’s message strategy induce a noise,

and lie detection helps the receiver remove the noise added by the lying types.

The present study is also closely related to the literature on strategic communication games with

lying costs (e.g., Kartik et al. (2007); Kartik (2009); Nguyen and Tan (2019); Guo and Shmaya (2020)).4

The key difference is that the sender’s lying cost function is exogenously given in the literature. One

interpretation of this assumption is that the sender faces the psychological costs of lying.5 In contrast,

in our model, the costs that the sender bears from lying are endogenously determined in equilibrium.

The lying costs come from the receiver’s response depending on the misunderstanding, rather than the

sender’s psychological costs.6 Consequently, while lying behaviors arise in equilibrium in both these

models and ours, the natures and interpretations of lies are quite different. In our model, lies serve as

disguises to confuse the receiver. Liars try to mimic the types they claim to be, and the receiver cannot

tell them apart without inspection. In their models, lies serve as inflated languages. The sender tells

a lie to avoid being mistaken as a worse type, and a strategic receiver does not confuse a liar with the

type he claims to be.

A signaling equilibrium with similar structures exists in literature. Feltovich et al. (2002) study

4An alternative interpretation of the models in Kartik et al. (2007), alongside other related works (e.g. Ottaviani

and Squintani (2006); Chen (2011)) is that a proportion of receivers naively believes sender’s message. The coexis-

tence of strategic and naive receivers imposes an endogenous cost for the sender to overly exaggerate the state since

the naive receivers will take it at face value, which is not preferred by a sender whose bias is not too large. In the equi-

libria of their models, lies are chosen by the sender to balance the induced beliefs of two groups of receivers who inter-

pret messages differently. In our model, lies are chosen to mimic the corresponding truthful senders and confuse the

receiver.
5Examples of experimental evidence include Gneezy (2005), Lundquist et al. (2009), Fischbacher and Föllmi-Heusi

(2013), López-Pérez and Spiegelman (2013), Abeler et al. (2014), Nyhan and Reifler (2015), Abeler et al. (2019).
6Austen-Smith and Banks (2000) and Kartik (2007) analyze a model of cheap talk and costly signaling. The sig-

naling instrument takes the form of “burning money,” and its cost does not vary with the sender’s type. The authors’

focus is on how the additional option of “burning money” can enlarge the set of CS equilibria.
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a sender-receiver game, assuming that the sender can send a costly signal and the receiver observes

additional noisy exogenous information on the state. They have shown that there is an equilibrium

in which medium types signal to separate themselves from low types, but high types choose to not

signal, that is, low types and high types pool together. The high types can save costs by not signaling

(counter signaling) and relying on the additional information to stochastically separate them from low

types. Moreover, the counter signaling itself is a signal that separates high types from medium types.

This equilibrium shares a similar structure with ours. However, the incentives behind the equilibrium

are different to ours because the sender cannot send a costly signal and the receiver has to make a

costly effort in our model.

The remainder of this paper is organized as follows. Section 2 presents the model. Section 3 derives

necessary and sufficient conditions for the existence of welfare-improving lie-detecting equilibrium.

Section 4 characterizes the optimal lie-detecting equilibrium. Section 5 compares lie detection with

state verification. Section 6 discusses the optimality of inspected vague messages under more general

distributions. Section 7 concludes. The proofs are relegated to the Appendices.

2 The Model

There are two players, a receiver and a sender. The receiver has to make a decision, but only the

sender has the relevant information. The sender privately observes the state of the world, θ, which is

distributed over a normalized state space Θ ≡ [0, 1] with a twice continuously differentiable c.d.f. F ,

with the associated density function f such that f(θ) > 0 for all θ ∈ [0, 1] (full support). θ is also

referred to as the sender’s type. For example, θ might represent the quality of the advertised product

or the severity of crimes committed by a suspect.

Message: We adopt the same definition of message and lying in Sobel (2020). The sender sends a

message m ∈ M to the receiver, where M is associated with the Borel σ−algebra of the state space

Θ: for every Borel Θ0 ⊆ Θ, there exists a message mΘ0 that implies θ ∈ Θ0.
7 A message sent by the

sender is interpreted as a statement regarding his type. To simplify the notation, as long as there is

no risk of confusion, we denote mΘ0 by m = Θ0. To provide a few examples, a message m = [0.3, 0.4]

7M is defined as a compact metrizable space. The Borel σ−algebra on Θ, denoted by B(Θ), has a cardinality of

continuum. Therefore, for example, we can take R as M. When we provide the formal discussions on the measurability

of the sender’s message strategy, the probability distribution of messages, and the conditional distribution on the state

space given messages, we adopt (M,B(M)) as the measurable space.
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is interpreted as the following statement: “my type lies somewhere in between 0.3 and 0.4”; a message

m = {0.5}∪{0.7} is interpreted as “my type is either 0.5 or 0.7”; a message m = Θ can be interpreted

as to remain silent because it essentially means “Anything is possible.”

Costly inspection: The receiver, after observing m, chooses whether or not to inspect the message

with a cost c > 0. An inspection reveals the truthfulness of the statement. Formally, if an inspection

takes place, the receiver will receive a binary signal such that for every Borel m ⊆ Θ,

s(m, θ) =


t if θ ∈ m

l otherwise.

(1)

If the receiver chooses not to inspect, she receives an uninformative signal s(m, θ) = u. The signal

t indicates the sender’s message is inspected and confirmed to be truthful; l indicates the sender’s

message is inspected and confirmed to be a lie; u indicates the sender’s message is uninspected.

Action: After observing both the message m and the inspection signal s, the receiver chooses a

payoff relevant action x ∈ [0, 1].

Preference: The receiver has a quadratic loss function ur(x, θ) = −(x − θ)2 − cI, where I = 1 if

an inspection took place, I = 0 otherwise. The sender has a von Neumann-Morgenstern utility us(x)

which is strictly increasing in x. In other words, there is no common interest between the receiver

and sender. The receiver wants to take an action that matches the true state, while the sender always

prefers an action that is as high as possible, independent of the true state.

Strategy profile: A strategy profile (q, P,X) consists of of three measurable maps; a message strategy

q : Θ → M, where q(θ) is the message sent by type θ 8; an inspection rule P : M → [0, 1], where P (m)

is the probability for the receiver to inspect message m; and an action rule X : M× {t, l, u} → [0, 1],

where X(m, s) is the action taken following message m and inspection signal s ∈ {t, l, u}.

Given a message strategy q, let Mq = q(Θ) be the set of all on-path messages.9 For any on-path

8For expositional clarity, we confine attention to pure message strategies in this paper, i.e. each type of the sender

θ sends a message q(θ) with probability 1. In Appendix C, we show that the results in this paper can be generalized to

allow mixed message strategy.
9Throughout this paper, we follow the convention and refer to g(X) as {y : ∃x ∈ X such that y ∈ g(x)} for any

function or correspondence g and set X within the domain of g.
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message m ∈ Mq, let

Θt
q(m) = {θ ∈ Θ : q(θ) = m and θ ∈ m} (2)

Θl
q(m) = {θ ∈ Θ : q(θ) = m and θ ̸∈ m} (3)

Θu
q (m) = Θt

q(m) ∪Θl
q(m) (4)

be the sets of truthful senders, lying senders, and senders of m, respectively. The receiver cannot

commit to an inspection rule and/or an action rule. They have to be sequentially rational based on

a Bayesian updated belief. Given q and M ⊆ Mq, let Θs
q(M) =

⋃
m∈M Θs

q(m). Then, we uniquely

obtain the regular conditional expectation E[θ|θ ∈ Θs
q(M)] for s ∈ {t, l, u}, where µ(Θ′)E[θ|θ ∈ Θ′] =∫

Θ′ θdF (θ); E[θ|θ ∈ Θ′] denotes the conditional expected type given a set of type Θ′ ⊆ Θ, and µ(Θ′) =∫
Θ′ dF (θ) denotes the probability of Θ′.10 Let wq(m) = E[1Θl

q(m)|Θu
q (m)] be the conditional probability

of the sender being a liar given that he sends m.11 If µ(Θu
q (m)) > 0, wq(m) = µ(Θl

q(m))/µ(Θu
q (m)).

Let V ar(Θ′) = E[(θ−E[θ|Θ′])2|Θ′] = E[θ2|Θ′]−{E[θ|Θ′}2 be the conditional variance given Θ′. Then,

V ar(Θ′) =
∫
Θ′ (θ−E[Θ′])2dF (θ)

µ(Θ′) if µ(Θ′) > 0.

Given a message strategy q, we define the message distribution Hq(m) such that for any subset of

equilibrium messages M ⊆ Mq,
12

∫
M

dHq(m) =

∫
Θu

q (M)
dF (θ).

Sequentially rational action: Since the receiver’s utility is quadratic, her optimal action is equal to

the conditional expectation of the sender’s type given the posterior belief; therefore an action strategy

10Let (Θ,B(Θ), µ) be the probability space on which F is defined. Let F be the σ-algebra generated by Θs
q(·) for

s ∈ {t, l, u} and M ∈ B(M). A conditional expectation of θ given F , denoted E[θ|F ], is any F-measurable function

which satisfies
∫
Θ̃
E[θ|F ]dµ =

∫
Θ̃
θdµ for Θ̃ ∈ F . For s ∈ {t, l, u} and any Borel subset of on-path messages M ⊆ Mq

such that µ(Θs
q(M)) > 0, we obtain µ(Θs

q(M))E[θ|θ ∈ Θs
q(M)] =

∫
Θs

q(M)
θdµ(θ). Then, E[θ|θ ∈ Θs

q(m)] is almost surely

unique.
11Given the probability space (Θ,B(Θ), µ) on which F is defined, the sender’s measurable message strategy q is a

(M,B(M))-valued random variable. Then, the regular conditional probability, Pr(θ ∈ Θ̃|q = m) = E[1Θ̃|θ ∈ Θu
q (m)]

for Θ̃ ∈ B(Θ), is defined as a function ν : M × B(Θ) → [0, 1] such that (i) for almost every m ∈ M, ν(m, ·) is

a probability measure on (Θ,B(Θ)); (ii) for all Θ̃ ∈ B(Θ), ν(·, Θ̃) is B(M)-measurable, and (iii) for all Θ̃ ∈ B(Θ)

and M ∈ B(M), µ(Θ̃ ∩ q−1(M)) =
∫
M

ν(m, Θ̃)µ(q−1(dm)). Therefore, a more precise condition for wq(m) is that

wq(m) = ν(m,Θl
q(m)) = E[1Θl

q(m)|Θu
q (m)].

12The message distribution Hq is uniquely introduced by the probability measure Hq on (M,B(M)) such that

Hq(M) = µ(q−1(M)) for every M ∈ B(M).
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X is sequentially rational given q if for any m ∈ Mq and s ∈ {t, l, u},

X(m, s) = E[Θs
q(m)], (5)

where E[Θs
q(m)] denotes E[θ|θ ∈ Θs

q(m)].

After observing the on-path message m and inspection signal s, the receiver chooses an action to

match the conditional expected type of senders who send m and lead to inspection signal s given the

message rule q. Instead of blindly taking a message at its face value, a Bayesian, sequentially rational

receiver updates her belief given the set of equilibrium senders who would pass/fail an inspection, and

reacts optimally. When there is no inspection, the receiver remains aware of the possibility of lying

and chooses an action that matches the weighted average type of the equilibrium truth-tellers and

liars.

Information value of inspection: Given a message strategy q and a sequentially rational action

strategy X, the receiver’s expected continuation payoff under the quadratic utility function if she

inspects an on-path message m ∈ Mq is:

−wq(m)V ar(Θl
q(m))− (1− wq(m))V ar(Θt

q(m)).

Recall that wq(m) is the conditional probability of the sender of m being a liar. Upon inspection, the

receivers expected loss from action imprecision for a message m is the weighted average conditional

variance of equilibrium truth-tellers and liars of m.

The receiver’s expected continuation payoff if she does not inspect m is:

−V ar(Θu
q (m)),

which is the variance of the sender’s type conditional on him sendingm. Since Θu
q (m) = Θt

q(m)∪Θl
q(m),

the law of total variance implies that

V ar(Θu
q (m)) =wq(m)V ar(Θl

q(m)) + (1− wq(m))V ar(Θt
q(m)) + wq(m)(1− wq(m))(E[Θl

q(m)]2 + E[Θt
q(m)]2)

− 2wq(m)(1− wq(m))E[Θl
q(m)]E[Θt

q(m)]

=wq(m)V ar(Θl
q(m)) + (1− wq(m))V ar(Θt

q(m)) + wq(m)(1− wq(m))(E[Θl
q(m)]− E[Θt

q(m)])2.

Therefore, the information value of inspecting m is the reduction in conditional variance from the

binary signal:

Vq(m) =V ar(Θu
q (m))− wq(m)V ar(Θl

q(m))− (1− wq(m))V ar(Θt
q(m))

=wq(m)(1− wq(m))(E[Θl
q(m)]− E[Θt

q(m)])2. (6)

11



An inspection allows the receiver to make a better inference on the sender’s type and chooses more

precise action accordingly. If there is a large difference between the expected type of truth-tellers

and liars who send m, the value of differentiating these two groups is large. Besides, an inspection is

more informative when the liar to truth-teller ratio is less extreme. If the sender of m is very likely

to be on one side, not much information is revealed from an inspection. An inspection strategy P is

sequentially rational given q if for any m ∈ Mq,

P (m) ∈


{0} if c > Vq(m)

[0, 1] if c = Vq(m)

{1} if c < Vq(m).

(7)

In other words, the receiver will inspect only if the information value of inspection is no less than the

cost of inspection.

Sender’s optimality: Given inspection strategy P and action strategy X, type θ sender’s expected

utility from sending a message m is:

EUX,P (m|θ) =


P (m)us(X(m, t)) + (1− P (m))us(X(m,u)) if θ ∈ m

P (m)us(X(m, l)) + (1− P (m))us(X(m,u)) if θ ̸∈ m.

(8)

A message strategy q is optimal given P and X if for any θ ∈ Θ and m′ ∈ Mq,
13

EUX,P (q(θ)|θ) ≥ EUX,P (m
′|θ). (9)

3 Equilibrium analysis

This section defines a Perfect Bayesian equilibrium and establishes the necessary and sufficient condi-

tions for the existence of an equilibrium where inspections take place with positive probability.

Definition 1 A strategy profile σ = (q, P,X) is a Perfect Bayesian equilibrium if P and X are se-

quentially rational given q, and q is optimal given P and X.

Given an equilibrium σ, the receiver’s ex-ante expected payoff is:

13Incentive constraints over off-path messages are omitted because sequential rationality put no restriction on the

inspections and actions following those messages. Therefore, we can without loss of generality let X(m′, s) = 0 for any

off-path message m′, and sender will have no incentive to deviate to those messages.
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EUr(σ) = −
∫
Mq

(1− P (m))(X(m,u)− θ)2

+ P (m)[wq(m)(X(m, l)− θ)2 + (1− wq(m))(X(m, t)− θ)2 + c]dHq(m). (10)

Define

Gσ(x) =

∫
Mq

(1− P (m))1(X(m,u) ≤ x)

+ P (m)[wq(m)1(X(m, l) ≤ x) + (1− wq(m))1(X(m, t) ≤ x)]dHq(m) (11)

be the distribution of induced actions under σ, and

pσ =

∫
Mq

P (m)dHq(m), (12)

be the ex-ante probability that the sender is inspected under σ. Sequential rationality of the action

rule X implies that

EUr(σ) =

∫
Mq

(1− P (m))(X(m,u)2 − E[θ2|Θu
q (m)])

+ P (m)[wq(m)(X(m, l)2 − E[θ2|Θl
q(m)]) + (1− wq(m))(X(m, t)2 − E[θ2|Θt

q(m)])− c]dHq(m)

=

∫
Mq

(1− P (m))X(m,u)2 + P (m)[wq(m)X(m, l)2 + (1− wq(m))X(m, t)2]

− cP (m)− E[θ2|Θu
q (m)]dHq(m)

=

∫ 1

0
x2dGσ(x)− cpσ − E[θ2], (13)

where E[θ2] ≡
∫
Θ θ2dF (θ). The sender’s ex-ante expected payoff is:

EUs(σ) =

∫ 1

0
us(x)dGσ(x). (14)

We refer to the pair (Gσ, pσ) as the induced outcome distribution of the equilibrium σ. We say two

equilibria σ and σ′ are distribution equivalent if they have the same induced outcome distribution.

Since (Gσ, pσ) uniquely determine payoffs in an equilibrium, two distribution equivalent equilibria

induce the same expected payoffs for the receiver and every type of the sender.

Since the receiver cannot commit to a sub-optimal action rule, the expected value of induced

actions must equal the expected value of the state. In fact, the distribution of induced actions G is a

mean-preserving contraction of the prior distribution F . A more dispersed G implies a more precise

match between the induced actions and the states, and thus a higher expected payoff for the receiver.
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Proposition 1 For any equilibrium σ = (q, P,X) there exists a distribution equivalent equilibrium

σ̂ = (q̂, P̂ , X̂) such that for any m ∈ Mq̂:

(i) X̂(m, t) ≥ X̂(m, l), and

(ii) m = Θt
q̂(m).

Condition (i) of Proposition 1 provides a natural interpretation of an equilibrium: liars attempt to

pool with truth-tellers in the hope of inducing higher actions. A liar who send m induces X̂(m,u) when

the message is uninspected, which is higher than X̂(m, l) only if condition (i) is satisfied.14 Condition

(ii) comes from the fact that condensing the statement of a message to include only equilibrium truth-

tellers is the most effective equilibrium construction in order to minimize the sender’s incentive of

deviation. To illustrate this idea, suppose a messagem is sent by type 0.3 (the equilibrium liar) and type

0.8 (the equilibrium truth-teller). Now consider two equilibria where other things being equal, except

m = {0.7, 0.8} is the first equilibrium (so that condition (ii) does not hold) and m = {0.8} in the second

equilibrium (so that condition (ii) does not hold). If type 0.7 deviated from his equilibrium message to

m, he would have passed an inspection and induce 0.8 in the first equilibrium but failed an inspection

and induce 0.3 in the second equilibrium. Therefore, if he has no incentive to deviate to m in the first

equilibrium, he will have no incentive to deviate to m in the second equilibrium. Proposition 1 is useful

in analyzing the set of implementable outcome because an outcome distribution is implementable if

and only if it can be induced by an equilibrium that satisfies the above properties.15 Unless otherwise

stated, any equilibrium discussed henceforth satisfies conditions (i) and (ii) of Proposition 1.

Fix an equilibrium σ = (q, P,X) and let M0
q = {m ∈ Mq : P (m) = 0} be the set of on-path

uninspected messages. The sender’s optimality requires that all messages in M0
q must induce the

same action. Otherwise, senders who induce a lower uninspected action will deviate to a higher one.

Therefore, we can without loss assume that there is at most one such message, m0
q , and all senders

14In a model where sender can make a truthful claim and trick the lie detector to identify him as a liar (e.g., by

acting nervous or intentionally failing a test), then condition (i) must hold in any equilibrium for any inspected mes-

sage m, for otherwise equilibrium truth-tellers who act normally and get X(m, t) will deviate to act nervously and get

X(m, l).
15Note however that oftentimes an implementable outcome distribution can also be induced by other equilibria.

For example, if there exists an on-path message m′ which is never inspected, and Θ′ is the set of senders of m′, an

equilibrium that satisfies condition (ii) requires the statement m′ to be a subset of Θ′. However, it would still be an

equilibrium if senders of m′ simply “ remain silent,” i.e., m′ = Θ. By definition, it means every type becomes a truth-

teller of m′, but it has no effect on the sender’s incentive because being truthful or lying makes no difference to the

outcome when m′ is never inspected.
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of that message are truthful, i.e. m0
q = Θu

q (m) = Θt
q(m) ≡ Θ0

q , where Θ0
q is the set of types who

are never inspected in equilibrium. Sequential rationality of X requires X(m0
q , u) = E[Θ0

q ]. Let

M+
q = {m ∈ Mq : P (m) > 0} be the set of messages that are inspected with positive probability.

M+
q is simply referred to as the set of inspected messages. For θ ∈ Θ, we say θ is truthful if

θ ∈ Θt
q(M+

q ) = {θ : P (q(θ)) > 0 and θ ∈ q(θ)}; θ is lying if θ ∈ Θl
q(M+

q ) = {θ : P (q(θ)) > 0 and θ ̸∈

q(θ)}; θ is uninspected if θ ∈ Θ0
q = {θ : P (q(θ)) = 0} .

It is clear that under lie-detecting technology, a babbling equilibrium (where every type pools into

a single message and the receiver never inspect) always exists. Moreover, the babbling outcome will

be the unique outcome if the receiver never inspects in an equilibrium. An equilibrium outcome can

be different from the babbling outcome only if some messages are inspected in equilibrium.

We say σ is an equilibrium with inspection if pσ > 0, i.e, some on-path messages are inspected

with positive probability.

3.1 An Example of Equilibrium with Inspection

Assume that the sender’s type is uniformly distributed and the inspection cost is c = 25
288 . Consider

the following message strategy profile with two equilibrium messages: mI = [12 , 1] sent by the set of

types [0, 14 ] ∪ [12 , 1], and mU = (14 ,
1
2) sent by the set of types (14 ,

1
2). Therefore, the set Θt ≡ [12 , 1] is

the set of truth-tellers of mI while the set Θl ≡ [0, 14 ] is the set of liars of mI . A sequentially rational

action strategy profile is X(mI , t) = 3
4 , X(mI , l) = 1

8 , X(mI , u) = 13
24 , and X(mU , u) = X(mU , t) =

X(mU , l) = 3
8 . Using equation (6) it is straightforward to verify that the value of inspecting mI is

25
288 and the value of inspecting mU is 0. Therefore, the receiver is indifferent between inspecting mI

or not, and strictly prefers not to inspect mU . Now consider an inspection strategy profile: P (mI) =

us(X(mI ,u))−us(X(mU ,u))
us(X(mI ,u))−us(X(mI ,l))

and P (m) = 0 for any m ̸= mI . Note that P (mI) ∈ (0, 1) as X(mI , u) >

X(mU , u) > X(mI , l). Given P (mI), the sender is indifferent between sending mU (getting X(mU , u)

with certainty) and being a liar at mI (getting X(mI , u) with probability 1−P (mI) or X(mI , l) with

probability P (mI)); therefore, the types in [0, 14 ] and (14 ,
1
2) have no incentive to deviate, while the

types in [12 , 1] receive a strictly higher payoff and, therefore, they have no incentive to deviate either.

Hence, the above strategy profile is an equilibrium with inspection.

Generally speaking, an equilibrium with inspection is supported by two kinds of equilibrium mes-

sages: suspicious messages and an innocent message. The suspicious messages are sent by some

low-type liars and high-type truth-tellers in a proportion that makes the receiver indifferent between
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inspecting the messages or not, while the innocent message is sent by some medium types where the

receiver finds it unworthy to inspect. The receiver stochastically inspected the suspicious messages

in a way that makes the sender indifferent between lying in the suspicious messages and sending the

innocent message.

The following subsection establishes the necessary and sufficient conditions for the existence of an

equilibrium with inspection.

3.2 Existence of Equilibrium with Inspection

Assumption 1 c < 1
4 and E[Θ] ≡

∫ 1
0 θdF (θ) < 1

2 +
√

1
4 − c.

Proposition 2 There exists an equilibrium with inspection if and only if Assumption 1 is satisfied.

Moreover, the receiver gets a higher ex-ante expected payoff in that equilibrium compared with the

babbling outcome.

The credibility of inspections relies on the existence of both liars and truth-tellers. Upon receiving

a message, if the receiver’s expectation on the sender’s type is extreme (either too high or too low), the

information value of an inspection is low because the sender is either very likely to be truth-telling or

very likely to be lying, and thus, any inspection is non-credible. Now consider an uninspected message

m and a randomly inspected message m′. In order to incentivize the liars who send m′ to take the risk

of being caught, the receiver’s expectation on the sender’s type upon receiving m′ must be higher than

the expectation upon receivingm, so that if liars ofm′ get away with the lie, they receive a higher payoff

than those who send m. Since the receiver is Bayesian, her expectation upon receiving m′ must be

higher than the prior expectation. Therefore, if the prior expectation is too optimistic, her expectation

upon receiving m′ will also be too optimistic for the inspection to be credible. It is worth noting that

the condition is not symmetric. Even if prior expectation on the sender’s type is pessimistic, it is

possible to design an equilibrium with pessimistic belief for the uninspected message and moderate

beliefs for the inspected messages so that liars of the inspected messages are incentivized and the

inspections are credible. Therefore, the lie-detecting technology is useful when the prior expectation is

moderate or pessimistic, but not when it is optimistic, i.e., E[Θ] is too high given c. Figure 1 depicts the

region of parameter values in which an equilibrium with a positive probability of inspection exists. The

threshold of prior expectation such that an inspection is credible is decreasing in the cost of inspection,

meaning that when the cost is smaller, an inspection is credible for a larger range of optimistic beliefs.
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Figure 1: Parameter values that allow the existence of an equilibrium with inspection
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When the cost of inspection is small, inspections are credible even if conditional expectations given the

inspected statements are optimistic and the information values of inspection are small. Inspection can

therefore facilitate information transmission. As cost goes to 0, the lie-detecting technology is useful

for almost any prior distribution.

4 Receiver-optimal Equilibrium

This section defines the receiver-optimal equilibrium and establishes its properties.

Definition 2 An equilibrium σ is receiver-optimal if for any equilibrium σ′, EUr(σ) ≥ EUr(σ
′).

Unless otherwise specified, we will simply refer a receiver-optimal equilibrium to as an optimal

equilibrium. An optimal equilibrium induces the highest expected payoff to the receiver among all

equilibria. We focus on analyzing the best equilibrium for the receiver because oftentimes the receiver’s

welfare reflects the public interest, for instance, consumers and voters who have to make decisions

under incomplete information. The optimal equilibrium indicates an upper bound to the welfare of

the public under lie-detecting technology. Besides, the optimal equilibrium minimizes a weighted

average objective of the inference error and the inspection cost. Therefore, it can be interpreted

as the most efficient way of combating disinformation using lie-detecting technology. On the other

hand, the sender’s welfare is sensitive to his risk attitude. It is worth noting that if the sender is risk

neutral, he will get the same ex-ante payoff in any equilibrium, because the mean of the induced action
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distribution must equal the prior expectation of the state. In such a case, the outcome induced by an

optimal equilibrium is also Pareto-efficient.

Now we derive some properties of an optimal equilibrium. We say a property holds almost every-

where for a set of messagesM if it holds for a subset of messagesM ′ ⊆ M such thatHq(M
′) = Hq(M).

Proposition 3 In any optimal equilibrium σ, Vq(m) = c almost everywhere for m ∈ M+
q .

Recall that wq(m) is the conditional probability of the sender being a liar given a message m.

Proposition 4 In any optimal equilibrium σ, wq(m) ≤ 0.5 almost everywhere for m ∈ M+
q .

The value of lie-detecting technology to the receiver is composed of two parts: direct information

value and indirect deterrence effect. Proposition 3 says that direct information value of inspection is

offset by the cost of inspection in any optimal equilibrium, and the net benefit of inspection comes from

its effect on the sender’s incentive: some types of sender refrain from making a higher claim because

of the possible lie detection. As a result, some information is transmitted through the messages in the

sense that expectations of the sender’s type upon receiving different messages are different; therefore,

the receiver is able to make a better inference on the sender’s type even when an inspection does not

take place ex-post. Proposition 4 says that for any inspected message in the optimal equilibrium, liars

are a minority compared with truth-tellers. It is because any inspected message in an equilibrium

requires a moderate liar to truth-teller ratios so that information values are high enough for credible

inspections. Such ratios can be achieved by either a minority or a majority of liars. Compared

with an equilibrium with a majority of liars, an equilibrium with a minority of liars means that the

expected type of the sender of inspected messages are higher. That creates larger differences between

conditional expectations between the inspected messages and the uninspected message, which means

more information is transmitted through messages under an equilibrium with a minority of liars.

Proposition 3 and Proposition 4 together imply that an optimal equilibrium minimizes the proportion

of liars subject to the constraint that V (m) ≥ c, as depicted in Figure 2.

4.1 Optimal equilibrium under uniform distribution: Characterization

In this subsection, we concentrate on the well-known uniform distribution and provide further charac-

terization of the optimal equilibrium.16

16In a previous version of this paper, we show that part of the results provided in this subsection can be extended to

more general distributions. For details, see Proposition 5 and Proposition 6 of Tam(2019).
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Figure 2: The optimal proportion of liars

Vq(m)
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wq(m) < 0.5

Assumption 2 F (θ) = θ.

Now we derive an upper bound of the receiver’s payoff in any equilibrium.

Proposition 5 For any equilibrium σ under Assumption 2 and c ≤ 1
4 , EUr(σ) ≤ −α3

12 − c(1 − α),

where α = 2
√
c.

In any equilibrium, the sender’s type space can be divided into two sets: the uninspected types

(Θ0
q) and the (randomly) inspected types (Θ+

q ). Since there can only be a single action induced by

the set of uninspected types, the best-case scenario for the receiver is that Θ0
q is an interval with some

length α. In such cases, the expected loss is α3

12 . For the inspected types Θ+
q , the best-case scenario

for the receiver is that those types are perfectly revealed upon inspection. In such cases, the expected

cost of inspection is c(1 − α). The total expected loss is minimized when the length of the set of

uninspected types is α = 2
√
c.

In the followings, we construct a strategy profile called decreasing mimicking strategy and

show that under the uniform distribution, it is an equilibrium that achieves the upper bound payoff

in Proposition 5 and, thus, an optimal equilibrium.

For d ∈ [2
√
c, 1], define

w−(d) =
1

2
−
√

1

4
− c

d2
, (15)

which is the smaller root of the equation w(1−w)d2 = c. Recall that the value of inspecting a message

m is wq(m)(1 − wq(m))(E[Θl
q(m)] − E[Θt

q(m)])2. Therefore, provided that d is the distance between
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the conditional expected type of truth-tellers and liars in a message m, w−(d) will be the minimum

proportion of liars such that the information value of inspecting m is no less than c. This minimum

proportion is decreasing in d, meaning that the credibility of inspection can be sustained for a smaller

proportion of liars when the distance between the two conditional expectations is larger. Note that 2
√
c

is the minimum required distance such that an inspection can be made credible, and w−(2
√
c) = 1

2 .

Proposition 3 and Proposition 4 imply for any inspected message m ∈ M+
q in an optimal equilibrium,

wq(m) = w−(X(m, t)−X(m, l)), (16)

Thus, for any inspected message in an optimal equilibrium, the proportion of liars is uniquely deter-

mined by the distance between expected types of truth-tellers and liars. For xl ∈ [0, 1 − 2
√
c] and

xt ∈ [xl + 2
√
c, 1], define

X∗
u(xt, xl) =w−(xt − xl)xl + (1− w−(xt − xl))xt, (17)

which is the expected type of senders of a message m where xt is the expected type of truth-tellers, xl

is the expected type of liars, and the proportion of liars is minimized subject to the receiver’s incentive

constraint of inspection. Since the receiver is sequentially rational, for any m ∈ M+
q in an optimal

equilibrium, we obtain

X(m,u) = X∗
u(X(m, t), X(m, l)). (18)

Therefore, when the inspection does not take place ex-post, the induced action is uniquely determined

by the expected type of truth-tellers and liars.

Now we define the decreasing mimicking strategy. A pair of cutoffs and matching bijection (θd, θd,

and ϕd : [θd, 1] → [0, θd]) is defined as a solution of the following system of differential equation and

boundary conditions:

ϕ̇d(θ) = − w−(θ − ϕd(θ))

1− w−(θ − ϕd(θ))
(19)

ϕd(1) = 0 (20)

ϕd(θd) = θd = θd − 2
√
c, (21)

where ϕd(.) represents a decreasing matching bijection from the truthful interval to the lying interval

which specifies the lying pattern in the decreasing mimicking strategy. That is, ϕ(θ) represents a liar

who mimics θ. The pair of boundaries (θd, θd) is pinned down by the initial condition (20), differential
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equation (19), and the terminal condition that the distance between the two boundaries is 2
√
c. Note

that for c < 1
4 , w

−(1) ∈ (0, 12) is well defined, so is ϕd. We have θd − ϕd(θd) = 2
√
c < 1 = 1 − ϕd(1);

therefore, θd < 1 is well defined and θd = ϕd(θd) > 0 because ϕd is strictly decreasing.

Define the decreasing mimicking strategy σd which is characterized by (θd, θd, ϕd) defined in

conditions (19) - (21) as follows:

(i) Intermediate types - Uninspected vague claim: There is an uninspected messagem0
q = [θd, θd]

sent by θ ∈ [θd, θd] and P (m0
q) = 0.

(ii) High types - Randomly inspected, precise claims: There is a continuum of randomly

inspected messages M+
q = {m = {θ} : θ ∈ (θd, 1]}, each m ∈ M+

q sent by the truthful type θ = m and

P (m) ∈ (0, 1).

(iii) Low types - Mimicking the high types: Each m ∈ M+
q is sent by a liar ϕd(m).

The action strategy X is determined by sequential rationality. For m ∈ M+
q ,

X(m, t) = m

X(m, l) = ϕd(m) (22)

X(m,u) = X∗
u(m,ϕd(m)),

and

X(m0
q , u) = E[θd, θd]. (23)

The inspection strategy P for m ∈ M+
q is determined by the incentive compatibility conditions of the

liars:

P (m) =
us(X(m,u))− us(X(m0

q , u))

us(X(m,u))− us(X(m, l))
. (24)

Figure 3 depicts the structure of the decreasing mimicking strategy. Under σd, each truthful type

θ makes the precise claim “My type is θ,” and each of such claim is mimicked by exactly one type of

liar ϕd(θ), where ϕd(.) is decreasing; therefore, worse liars tell bigger lies. Upon receiving each of these

messages, the receiver is indifferent between inspecting and not inspecting. This is true because for

any m ∈ (θd, 1],

wq(m)

1− wq(m)
= lim

ϵ→0

µ([ϕd(m), ϕd(m− ϵ)])

µ([m− ϵ,m])

=− ϕ̇d(m) =
w−(m− ϕd(m))

1− w−(m− ϕd(m))
,
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Figure 3: The structure of decreasing mimicking equilibrium σd.
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where the first equality holds because of the continuously decreasing message strategy, and the third

equality holds by (19).17 Therefore, wq(m) = w−(m − ϕd(m)) and thus Vq(m) = c. The slope of

the matching bijection ϕd(.) is chosen so that for each m ∈ (θd, 1], the value of inspecting m equals c

given the probability densities of the truth-tellers and liars at the points m and ϕd(m). The inspection

probability is chosen so that liars are indifferent between telling such lies and making the uninspected

claim. Requiring a precise statement for high claims helps in making more precise decisions upon

inspection. Random inspections of those claims are justified because each of them is made by a low

type and a high type. A vague moderate claim pools the moderate types which are not distant enough

to be worth inspecting.

Proposition 6 If Assumption 1 and Assumption 2 are satisfied, the decreasing mimicking strategy σd

is an optimal equilibrium, that is, EUr(σd) = −α3

12 − c(1 − α), where α = 2
√
c. Besides, X(m,u) is

increasing in m for m ∈ (θd, 1].

The optimal equilibrium σd has a three-interval structure such that when the state is above the

cutoff θd, the sender is truthful; when the state is below the cutoff θd, sender lies and claims that the

state is somewhere above θd, such claims are inspected with positive probabilities; when the state is

intermediate, sender makes the claim in which the receiver does not inspect. Such structure induces

17The sender’s strategy for low and high types is a measurable function qd : [0, θd) ∪ (θd, 1] → (θd, 1] such that

q−1
d (m) = {ϕd(m)} ∪ {m}. Since qd is ((θd, 1],B((θd, 1]))-valued random valuable, for any [m,m′] ⊂ (θd, 1) and Θ′ ∈

B([0, θd) ∪ (θd, 1]), we must have

µ(θ ∈ Θ′|q(θ) ∈ [m,m′]) =
µ(θ ∈ Θ′ ∩ q−1

d ([m,m′]))

µ(θ ∈ q−1
d ([m,m′]))

.

Note that ϕd([m,m′]) and [m,m′] belong to B([0, θd) ∪ (θd, 1]); ϕd([m,m′]) ∩ q−1
d ([m,m′]) = ϕd([m,m′]) =

[ϕd(m
′), ϕd(m)]; and [m,m′] ∩ q−1

d ([m,m′]) = [m,m′]. Therefore,

µ(θ ∈ [ϕd(m
′), ϕd(m)]|q(θ) ∈ [m,m′])

µ(θ ∈ [m,m′]|q(θ) ∈ [m,m′])
=

ϕd(m)− ϕd(m
′)

m′ −m
.

Hence,
wq(m)

1−wq(m)
= limm′→m

ϕd(m)−ϕd(m
′)

m′−m
= −ϕ̇d(m).
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disperse inferences upon inspection, which benefit the receiver the most. Under the optimal equilib-

rium, low type senders are incentivized to lie in order to justify inspections of the truthful statements

made by high type senders. Such inspections prevent moderate type senders from exaggerating their

types in the fear of getting caught lying and being perceived as low types. A higher message m induces

a higher action X(m,u) when m is uninspected. It means that the sender’s message conveys useful

information to the receiver even when the message is not inspected ex-post. The types who send a

lower message has no incentive to deviate to a higher one because in the case of an inspection, a liar

will be punished by a lower induced action X(m, l) if he sends a higher message m, and the inspection

probability P (m) could be higher for a higher message m.18

Dziuda and Salas (2018) also find an equilibrium with a three-interval structure in their model

with exogenous lie detection. There are two main differences between the information structures of

their equilibrium and the optimal equilibrium found in the present paper. First, the intermediate

types are separating in their equilibrium, whereas the intermediate types pool into a single message

in our equilibrium due to the cost saving consideration specific to the present model with endogenous

and costly inspection. Second, when a lie is detected in their equilibrium, the receiver has the same

posterior belief on the sender’s type regardless of the claim made by the liar. In our equilibrium, the

sender’s type is separating upon any equilibrium inspection. It is achievable under endogenous lie

detection because the probabilities of inspection can be used as a degree of freedom to manipulate the

sender’s payoff. Given the appropriate inspection probabilities, the sender is indifferent between each

equilibrium message even though different lies induce different actions upon inspection.

It is worth mentioning that the decreasing mimicking equilibrium is not the unique optimal equi-

librium under the uniform distribution. For instance, an increasing mimicking equilibrium where the

matching bijection is increasing can also be optimal. We focus on the decreasing mimicking equilibrium

due to its ease of computation. We are able to solve differential equation (19) with a known boundary

condition ϕd(1) = 0, and derive the numerical results presented in Figure 4 and Figure 5. Propositions

5 and 6 imply that any optimal equilibrium has a three-interval structure with a one-to-one mimicking

mapping from the low interval to the high interval, and an uninspected middle interval with a length

equals 2
√
c.

Figure 4 and Figure 5 depict the matching bijection ϕd(.) and the cutoffs (θd, θd) in the decreasing

18Generally speaking, P (m) is not necessarily increasing in m. Its shape also depends on the sender’s utility func-

tion, according to the equilibrium condition (24).
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Figure 4: The matching bijection ϕd in the decreasing mimicking strategy (Please print in color).

mimicking strategy under different levels of inspection costs. The slope of the decreasing matching

bijection ϕd(.) is steeper for a larger inspection cost, since a larger mass of liars is needed to match

with each unit mass of truth-tellers in order to maintain the credibility of inspection. The upper cutoff

θd is increasing in c while the lower cutoff θd is non-monotonic in c. The inspection cost affects the

two cutoffs through two forces. First, the optimal length of the uninspected interval is 2
√
c; therefore,

the larger the c, the shorter the intervals of truth-tellers and liars. Second, the larger the c, the larger

the liar to truth-teller ratio is. For small c, the second effect dominates the first effect; therefore, θd is

increasing in c; For large c, the first effect dominates the second effect, so θd is decreasing in c. It is

worth noting that θd is below 0.1 for any inspection cost. The proportion of lying senders necessary to

sustain an optimal lie-detecting equilibrium is relatively small. As c goes to 0, both θd and θd converge

to 0, the sender is almost always truth-telling. The optimal lie-detecting equilibrium approximates the

full information outcome.

For c < 0.25, the receiver’s expected payoff under the decreasing mimicking strategy is − (2
√
c)3

12 −

c(1−2
√
c), where the first term is the expected loss from the uninspected interval and the second term

is the expected cost of inspecting the upper and lower intervals. The receiver’s payoff is higher for a
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Figure 5: The cutoffs θd and θd in the decreasing mimicking strategy (Please print in color).

lower inspection cost and it converges to 0 as c goes to zero.

4.2 Robustness of the Optimal Equilibrium under Message Dependent Inspection

Costs

In the above analysis we assume that the receiver’s inspection cost is independent of the message

sent by the sender. One might argue that realistically the inspection cost should be higher for vague

messages because they are harder to prove or disprove. For instance, consider the inspection technology

where the receiver can choose some states and verify whether the chosen states are the true state one by

one. The larger the set of states she has to go through, the higher the inspection cost. The decreasing

mimicking equilibrium would still be an optimal equilibrium under such an inspection technology

because every inspected message in that equilibrium is precise and, thus, costs the least to inspect.
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5 Discussion: State verification and lie detection

In this section, we compare state-verifying technology and lie-detecting technology, in particular, the

receiver’s welfare under the two technologies. Instead of revealing a binary signal as in (1), consider

that the true state is revealed upon inspection; therefore, by paying cost c to inspect the message m,

the receiver obtains a precise signal

s(m, θ) = θ. (25)

If the receiver chooses not to inspect, she receives an uninformative signal s(m, θ) = u. Under state-

verifying technology, the sequentially rational action rule for the receiver is

X(m, θ) = θ;X(m,u) = E[Θu
q (m)], (26)

where Θu
q (m) is the set of senders who send m, and value of verifying m is the conditional variance of

the sender’s type:

Vq(m) = V ar(Θu
q (m)), (27)

and the sequentially rational inspection rule for the receiver is

P (m) ∈


{0} if c > Vq(m)

[0, 1] if c = Vq(m)

{1} if c < Vq(m).

(28)

Type θ sender’s expected utility from sending a message m is

EUX,P (m|θ) = P (m)us(θ) + (1− P (m))us(X(m,u)), (29)

and the sender’s optimality implies that for any θ ∈ Θ and on-path message m′ ∈ Mq,

P (q(θ))us(θ) + (1− P (q(θ)))us(X(q(θ), u) ≥ P (m′)us(θ) + (1− P (m′))us(X(m′, u), (30)

where q(θ) is the message sent by θ under the equilibrium. We will show that there are only two kinds

of equilibria under costly state verification.

Uninformative equilibrium: P (m) = 0 and X(m,u) = E[Θ] for any m ∈ Mq, and

State-verifying equilibrium: P (m) = 1 and X(m, θ) = θ for any m ∈ Mq.
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Proposition 7 Under the costly state-verifying technology, if c > V ar(Θ), only uninformative equi-

librium exists; if c < V ar(Θ), only state-verifying equilibrium exists.

The ability to reveal the state precisely upon an inspection completely eliminates any incentive

for the sender to transmit information. Gain from state-verifying technology comes solely from the

direct information value. It is contrary to the lie-detecting technology, which benefits the receiver by

manipulating the sender’s incentive to transmit information. Such manipulation is possible because the

nature of lie detection creates a strategic uncertainty to the receiver: even if she spots a lie, she does not

reveal the true type of the liar and has to decide the action based on equilibrium inference. This could

benefit the receiver in an ex-ante sense because the sender might be deterred from deviation in the

fear of being mistaken as a worse type than what he actually is, and such a deterrence effect facilitates

informative communication. However, if the receiver reveals the true state from an inspection, this

deterrence will not be credible, and there will be no reason for the sender to stay honest. As a result,

revealing more information from the inspection eliminates voluntary information transmission from

the sender. Although a similar effect of the receiver’s more accurate information on the sender’s

information transmission has been found in previous studies, e.g. Chen (2012), Ishida and Shimizu

(2016), Ispano (2016), and Dziuda and Salas (2018) , the present paper provides its welfare implication

on two costly inspection technologies the explain the underlying mechanics of the effect in these specific

environments.

With Proposition 7, the receiver’s ex-ante payoff under the costly state-verifying technology is

EUv
r = −min{V ar(Θ), c}. (31)

The following Proposition shows that learning more from the inspection reduces the receiver’s payoff.

Proposition 8 Let σ∗ be the optimal equilibrium under the lie-detecting technology. Then under any

inspection cost, EUr(σ
∗) ≥ EUv

r . Furthermore, if c < V ar(Θ), then EUr(σ
∗) > EUv

r .

The optimal equilibrium under lie-detecting technology outperforms the state-verifying equilibrium

due to the possibility of discriminative inspection. The receiver is able to inspect the more important

claims while leaving the less important claim uninpsected for cost-saving measure. This result provides

a theoretical foundation for the emphasis on a sender’s integrity, instead of objective information. By

neglecting further information about the truth (other than the information that determines whether

the sender is lying), the receiver is able to impose a credible threat that whoever being caught lying will
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be perceived poorly, regardless of the sender’s true type. Therefore, even though there is no common

interest between sender and receiver, some types of sender refrain from making higher claims in the

fear of being perceived as a worse type than they actually are.

6 Discussion: Inspected vague messages in an optimal equilibrium

One implication of Proposition 6 is that under the uniform distribution, every message that is inspected

with positive probability in the optimal equilibrium is “precise,” which means that inspected messages

are never vague. It suggests that vague messages are not necessary in achieving the best outcome for

the receiver under the lie-detecting environment19. It is true since all inspected messages are precise,

and the uninspected message can also be precise because it is never inspected anyway; thus, the content

of the message does not matter.

One might wonder if sending precise messages is a general property of an optimal lie-detecting

equilibrium under any distribution, and the answer is no. For simple exposition, consider the following

discrete distribution:

Example: A three-type distribution, θ ∈ {0, 0.8, 1}.

Prior distribution: f


0

0.8

1

 =


0.8

0.1

0.1

 ; Inspection cost: c = 0.2025.

Note that under this inspection cost, it is credible for the receiver to inspect a message with

truth-tellers from type 1 and liars from type 0, given an appropriate weight of liars. However, it is

non-credible for the receiver to inspect a message with truth-tellers from type 0.8 and liars from type

0, regardless of the weight. First consider the optimal equilibrium in which the sender can only send

precise messages.

Optimal equilibrium with precise messages: type 1 sends the truthful message m+ = 1, type

0.8 sends another arbitrary message m0, and type 0 randomizes between m+ (with probability 0.0491)

and m0 (with probability 0.9509) that makes the inspection of m+ credible. In this equilibrium, m+

will be inspected with probability determined according to (24) and m0 will be uninspected. Figure 6

depicts the messaging structure of the above equilibrium. The receiver’s payoff is −0.085. While it is

19In Appendix B we show that with the restriction of deterministic inspection, inspected vague messages can be

optimal under uniform distribution
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beneficial to separate type 0.8 from the uninspected message m0, there is no credible way to achieve

that using precise messages. Now suppose the sender is allowed to send vague messages.

Figure 6: Optimal equilibrium under a three-type distribution when messages are restricted to be

precise (Please print in color).

0 10.8

Optimal equilibrium with a vague message: type 1 and type 0.8 pool into a vague message

m+
v = {0.8, 1}, so that both types are truth-tellers of the message m+

v ; type 0 randomizes between

m+
v (with probability 1

4) and another arbitrary message m0 (with probability 3
4). In this equilibrium,

m+
v will be inspected with probability 1 and m0 will be uninspected. Figure 7 depicts the messaging

structure of the above equilibrium. The receiver’s payoff = −0.083 > −0.085.

By pooling type 0.8 and type 1 into a vague message m+
v , the average truth-telling type of m+

v is

0.9, which makes it credible to inspect m+
v when paired with type 0 liars. By allowing vague messages,

it is possible to separate type 0.8 from m0.

In a previous version of this paper, we show that the decreasing mimicking equilibrium with precise

messages is receiver-optimal when the distribution is negatively skewed or symmetrical (see Proposition

6 and Remark 1 of Tam(2019) for details). The above example suggests that when the distribution

is positively skewed, the optimal equilibrium might consist of vague inspected messages. An insight

from this observation is that when the market is flooded with low quality products, having a quality

standard that covers a wider range of high quality types might be beneficial to the consumers, because

it provides sufficient incentive for the consumers to verify the standard and separate a wider range of

Figure 7: Optimal equilibrium under a three-type distribution when vague messages are allowed

(Please print in color).

0 10.8
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high quality products from the low quality products.

7 Conclusion

We establish a framework that allows analyses on the strategic interaction between cheap talk and

lie detection, and characterize the receiver’s optimal equilibrium. The results suggest that optimal lie

detection works as a credible deterrence tool. Low types are induced to lie so that inspections are

justified, which deter higher types from lying. Under certain conditions, such optimal equilibrium can

be achieved by allowing the sender to choose among a vague moderate claim and a continuum of precise

high claims. This provides a direction for efficient allocation of resources in combating misinformation

in various aspects such as politics and product advertising.

Several potential extensions are worth mentioning. As one of the early attempts in the literature

to study endogenous lying and costly lie detection, we restrict attention to the setting of single round

communication and lie detection. In some applications, the sender and the receiver can conduct

multiple rounds of communication and lie detection, before a final decision is made by the receiver.

For instance, the police can ask the suspect multiple questions and conduct lie detection for each claim

made by the suspect. Dziuda and Salas (2018) show that the receiver prefers to commit to a single

round communication when the probability of lie detection is exogenously high, because anticipating

the second chance of communication makes the sender more likely to lie. It might appear that this

effect is strengthened when lie detection is costly as the receiver has to pay the cost of inspection

in each round. A formal analysis is required for such an argument. Another potential extension is

to allow a certain degree of common interest between the sender and the receiver, such as biased

sender as in the CS model. If the cost of lie detection is small, at least one deterministic lie-detecting

equilibrium characterized in an online appendix exists, because it always exists as long as the sender

is upwardly biased. However, it is not clear how having a sender with a smaller bias would change the

receiver’s optimal equilibrium, especially its strategic effect on the stochastic lie detection is elusive.

On one hand, sender with smaller bias is willing to reveal more precise information, as suggested by

the standard cheap-talk model. On the other hand, when bias is small, there is no way to induce

the sender to tell big lies. This hinders the formation of credible inspection. Without inspection, the

sender might be tempted to tell small lies, which impede informative communication. The analysis of

these opposing effects may present interesting avenues for future research.
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Appendix A

This Appendix provides proofs of Propositions 1 – 8.

Proof of Proposition 1:

Fix an equilibrium σ = (q, P,X). Let M1 = {m ∈ Mq : X(m, l) > X(m, t)} be the set of on-path

messages such that the induced action of liars is higher than the induced action of truth-tellers. Define

a modified equilibrium σ̂ = (q̂, P̂ , X̂) such that for each m ∈ Mq/M1, the set of senders remains

unchanged but they now send the transformed message T (m) = Θt
q(m). For each m ∈ M1, the set of

senders remains unchanged but they now send the transformed message T (m) = Θl
q(m). For inspection

probabilities, let P̂ (T (m)) = P (m) for each m ∈ Mq.

The set of on-path messages of the modified equilibrium σ̂ is Mq̂ = T (Mq). The sequentially

rational actions for σ̂ are X̂(T (m), s) = X(m, s) for m ∈ Mq/M1 and s = t, l, u; X̂(T (m), t) = X(m, l),

X̂(T (m), l) = X(m, t) and X̂(T (m), u) = X(m,u) for m ∈ M1. It is straightforward that for all

m ∈ Mq X̂(T (m), t) ≥ X̂(T (m), l) and T (m) = Θt
q(T (m)). Therefore, condition (i) and (ii) are

satisfied in the modified equilibrium σ̂. Furthermore, since the induced actions remain unchanged for

every type of sender, so σ̂ and σ are distribution equivalent.

To see that σ̂ is an equilibrium, note that for m ∈ Mq/M1, wq(m) = wq̂(T (m)), and for m ∈ M1,

wq(m) = 1−wq̂(T (m)). Therefore, for any m ∈ Mq, Vq(m) = wq(m)(1−wq(m))(X(m, t)−X(m, l))2 =

wq̂(T (m))(1−wq̂(T (m)))(X̂(T (m), t)−X̂(T (m), l))2 = Vq̂(T (m)), thus the receiver’s optimal inspection

condition (7) remains satisfied in σ̂. To check the sender’s optiamlity condition (9), note that the

equilibrium payoff of each type of sender remains unchanged, i.e. EUX̂,P̂ (q̂(θ)|θ) = EUX,P (q(θ)|θ). By

the definition of the modified set of message, any type θ would be identified as a liar of any on-path

message other than its equilibrium message, i.e. θ ̸∈ m′ for any m′ ∈ T (Mq)/q̂(θ). This combined with

the fact that X̂(T (m), t) ≥ X̂(T (m), l) implies EUX̂,P̂ (T (m
′)|θ) ≤ EUX,P (m

′|θ) for any m′ ∈ Mq.

Therefore, EUX̂,P̂ (q̂(θ)|θ) = EUX,P (q(θ)|θ) ≥ EUX,P (m
′|θ) ≥ EUX̂,P̂ (T (m

′)|θ) for any θ ∈ Θ and

m′ ∈ Mq, where the first inequality holds by the optimality of the original equilibrium σ, thus (9) is

satisfied in the modified equilibrium. Therefore, we conclude that σ̂ is an equilibrium.

Q.E.D.

The following Lemma establishes the necessary and sufficient conditions of an equilibrium, which

are useful in proving the subsequent propositions.

Lemma 1 Let q and X be a pair of message and action strategies that satisfy (i) and (ii) of Proposition
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1, X satisfies the receiver’s sequential rationality (5) given q, and let m0
q be the (potentially non-

existent) uninspected message. Then there exists an inspection strategy P on the set of inspected

messages M+
q such that (q, P,X) is an equilibrium if and only if for any m,m′ ∈ M+

q :

(a) X(m, l) ≤ X(m0
q , u) < X(m′, u) if m0

q exists; X(m, l) < X(m′, u) otherwise;

(b) wq(m)(1−wq(m))(X(m, t)−X(m, l))2


= c if X(m, l) < X(m0

q , u)

≥ c if X(m, l) = X(m0
q , u)

; if m0
q does not exist, replace

X(m0
q , u) with supm′∈M+

q
X(m′, l).

In particular, P (m) =
us(X(m,u))−us(x0

q)

us(X(m,u))−us(X(m,l)) , where x0q = X(m0
q , u) if m

0
q exists;

x0q ∈ [supm′∈M+
q
X(m′, l), infm′′∈M+

q
X(m′′, u)] if m0

q does not exist and Vq(m) = c for all m ∈ M+
q ;

x0q = maxm′∈M+
q
X(m′, l) otherwise.

Proof of Lemma 1:

Given (i) of Proposition 1, we have X(m, t) ≥ X(m, l), and for any m ∈ M+
q , it must be the case

that X(m, t) > X(m, l), for otherwise the value of inspection Vq(m) = wq(m)(1 − wq(m))(X(m, t) −

X(m, l))2 = 0, violating the receiver’s sequential rationality. The sequentially rational action strategy

(5) then implies that X(m, t) > X(m,u) > X(m, l) for any m ∈ M+
q . If m0

q exists, the sender’s

optimality condition implies that P (m)us(X(m, l)) + (1 − P (m))us(X(m,u)) = us(X(m0
q , u)), which

means P (m) =
us(X(m,u))−us(X(m0

q ,u))

us(X(m,u))−us(X(m,l)) . Since the sender’s utility us(.) is strictly increasing, there exists

such P (m) ∈ (0, 1] if and only if X(m, l) ≤ X(m0
q , u) < X(m,u), which holds for all m,m′ ∈ M+

q ;

so, X(m, l) ≤ X(m0
q , u) < X(m′, u). If X(m, l) < X(m0

q , u), it must be P (m) ∈ (0, 1), so sequentially

rational inspection requires Vq(m) = c. If X(m, l) = X(m0
q , u), P (m) = 1; so, sequentially rational

inspection requires Vq(m) ≥ c.

If m0
q does not exist, then the sender’s optimality condition implies that for any m,m′ ∈ M+

q ,

P (m)us(X(m, l))+(1−P (m))us(X(m,u)) = P (m′)us(X(m′, l))+(1−P (m′))us(X(m′, u)) = us(X(m′, u)),

which can be achieved with some positive P (.) if and only if supm′∈M+
q
X(m′, l) < infm′′∈M+

q
X(m′′, u).

Sequentially rational inspection requires Vq(m) = c for any m such that P (m) < 1, which must be

the case when X(m, l) < supm′∈M+
q
X(m′, l). Vq(m) ≥ c and P (m) = 1 is allowed if and only if

X(m, l) = maxm′∈M+
q
X(m′, l). ■

The definition and lemma below are useful for proving Proposition 2. For d ∈ [2
√
c, 1] and w−(.)

as defined in (15), let

h(d) =
w−(d)

1− w−(d)
(32)
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be the required liar to truth-teller ratio to maintain incentive for the receiver to inspect a message. It

can be verified that h(.) is a strictly decreasing and strictly convex function, with limd→2
√
c h

′(d) = −∞

and limd→2
√
c h

′′(d) = +∞.

Recall from definition (17) that X∗
u(xt, xl) is the induced action when a message is uninspected,

where its truth-tellers’ expected type is xt, its liars’ expected type is xl, and its proportion of liars is

minimized subject to the constraint Vq(m) ≥ c. The lemma below shows that X∗
u(xt, xl) is increasing

in xt and decreasing in xl.

Lemma 2 dX∗
u(xt,xl)
dxt

> 0 and dX∗
u(xt,xl)
dxl

< 0.

Proof of Lemma 2:

dX∗
u(xt, xl)

dxt
=1− w−(xt − xl)−

dw−(xt − xl)

dxt
[xt − xl]

=
1

2
+

√
1

4
− c

(xt − xl)2
+ (

1

4
− c

(xt − xl)2
)−0.5 c

(xt − xl)2

>0,

dX∗
u(xt, xl)

dxl
=w−(xt − xl)−

dw−(xt − xl)

dxl
[xt − xl]

=
1

2
−

√
1

4
− c

(xt − xl)2
− (

1

4
− c

(xt − xl)2
)−0.5 c

(xt − xl)2

=(
1

4
− c

(xt − xl)2
)−0.5[

1

2

√
1

4
− c

(xt − xl)2
− (

1

4
− c

(xt − xl)2
)− c

(xt − xl)2
]

=(
1

4
− c

(xt − xl)2
)−0.5[

1

2

√
1

4
− c

(xt − xl)2
− 1

4
]

<0,

where the last inequality holds because
√

1
4 − c

(xt−xl)2
< 1

2 . ■

Proof of Proposition 2:

The reasoning of the proof is as follows: In the most extreme case, an inspected message m can be sent

by the truth-tellers with expected type close to 1 and the liars with expected type close to 0. According

to the value of inspection derived in (6), the minimum proportion of liars subject to Vq(m) = c for such

m would be the smaller solution of w(1−w)(1−0)2 = c, i.e. w∗ = 1
2 −

√
1
4 − c. Therefore, the smallest

possible expectation of the set of types who send inspected messages is w∗×0+(1−w∗)×1 = 1
2+

√
1
4 − c.
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Since Lemma 1 implies that in any equilibrium, the expectation for the inspected messages (which is

X(m,u) for m ∈ M+
q ) must be higher than the expectation for the uninspected message ((which is

X(m0
q , u)), and the expectation of the whole type space E[Θ] is in between the above two expectation,

it must be the case that E[Θ] < 1
2 −

√
1
4 − c. When this condition is satisfied, we can construct an

equilibrium with an inspected message with positive measure sent by a small neighborhood of types

below 1 and a small neighborhood of types above 0 and an uninspected message sent by the rest of

the types. The formal proof is presented below.

“Only if”:

Let σ ≡ (q, P,X) be an equilibrium where pσ > 0, then the set of inspected messages M+
q has

a positive measure; therefore, for almost every m ∈ M+
q , X(m, t) = E[Θt

q(m)] < 1 and X(m, l) =

E[Θl
q(m)] > 0, so Vq(m) = wq(m)(1 − wq(m))(X(m, t) −X(m, l))2 < 1

4 . Since m ∈ M+
q implies that

Vq(m) ≥ c, it must be the case that c ≤ Vq(m) < 1
4 .

By the definition of w−(.) at (15), we have that w−(X(m, t) − X(m, l)) = min{w ∈ [0, 1] :

Vq(m) ≥ c}. Since for any m ∈ M+
q , Vq(m) ≥ c, so wq(m) ≥ w−(X(m, t) − X(m, l)), and thus

X(m,u) = wq(m)X(m, l)+ (1−wq(m))X(m, t) ≤ w−(X(m, t)−X(m, l))X(m, l)+ (1−w−(X(m, t)−

X(m, l)))X(m, t) ≡ X∗
u(X(m, t), X(m, l)). Since X is sequentially rational, X(m, t) = E[Θt

q(m)] ≤ 1

and X(m, l) = E[Θl
q(m)] ≥ 0, with the inequalities hold strictly if m has a positive measure. Therefore,

X(m,u) ≤ X∗
u(X(m, t), X(m, l)) ≤ X∗

u(1, 0) = 1
2 +

√
1
4 − c, where the second inequality holds since

by Lemma 2, X∗
u(X(m, t), X(m, l)) is strictly increasing in X(m, t) and strictly decreasing in X(m, l),

and it holds strictly if m has a positive measure. Recall that (Θ,B(Θ), µ) is the probability space on

which F is defined. Since Θ0
q ∪Θu

q (M+
q ) = Θ, we obtain µ(Θ0

q) = 1− µ(Θu
q (M+

q )) and

(1− µ(Θu
q (M+

q )))E[Θ0
q ] + µ(Θu

q (M+
q ))E[Θu

q (M+
q )] = E[Θ]. (33)

Since X is sequentially rational,

µ(Θu
q (M+

q ))E[Θu
q (M+

q )] =

∫
M+

q

X(m,u)dHq(m)

<X∗
u(1, 0)

∫
M+

q

dHq(m)

=(
1

2
+

√
1

4
− c)µ(Θu

q (M+
q )), (34)

where the inequality holds strictly since µ(Θu
q (M+

q )) > 0. If µ(Θ0
q) = 0, then µ(Θu

q (M+
q )) = 1 and

(33) and (34) imply E[Θ] = E[Θu
q (M+

q )] <
1
2 +

√
1
4 − c. If µ(Θ0

q) > 0, then Lemma 1 implies that for
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any m ∈ M+
q , E[Θ0

q ] = X(m0
q , u) < X(m,u), so by (34) E[Θ0

q ] < E[Θu
q (M+

q )] ≤ 1
2 +

√
1
4 − c, then

(33) implies E[Θ] < 1
2 +

√
1
4 − c.

“If”:

Fix a ϵ > 0, define θ and θ such that they satisfy

1− F (θ) =ϵ (35)

F (θ) =h(E[θ, 1]− E[0, θ])ϵ. (36)

Since c < 1
4 , h(E[θ, 1]− E[0, θ]) ∈ (0, 1) is well defined if θ is close enough to 0 and θ is close enough

to 1, therefore θ and θ are well defined for small enough ϵ with limϵ↓0 θ = 0 and limϵ↓0 θ = 1.

Define a message strategy with two on-path messages: the uninspected message m0 = (θ, θ) sent

by the set of type (θ, θ), and the randomly inspected message m+ = [θ, 1] sent by the set of type

[0, θ] ∪ [θ, 1]. The corresponding sequentially rational action strategy profile is X(m0, u) = E[θ, θ],

X(m+, t) = E[θ, 1], X(m+, l) = E[0, θ] and X(m+, u) = w−(E[θ, 1]−E[0, θ])E[0, θ]+(1−w−(E[θ, 1]−

E[0, θ]))E[θ, 1].

As ϵ → 0, θ → 0 and θ → 1, therefore X(m0, u) → E[0, 1], X(m+, l) → 0 and X(m+, u) →

1−w−(1) = 1
2 −

√
1
4 − c, we have X(m+, u) > X(m0, u) > X(m+, l) by assumption 1, thus condition

(a) of Lemma 1 is satisfied for small enough ϵ. Denote d = X(m+, t)−X(m+, l), then

wq(m
+)(1− wq(m

+))(X(m+, t)−X(m+, l))2 =
h(d)

[1 + h(d)]2
d2

=w−(d)[1− w−(d)]d2

=[
1

2
−
√

1

4
− c

d2
][
1

2
+

√
1

4
− c

d2
]d2

=c.

Thus condition (b) of Lemma 1 is satisfied. Therefore the above message and action strategies

profile form an equilibrium with inspection with inspection strategy P (m0) = 0 and P (m+) =

us(X(m+,u))−us(X(m0,u))
us(X(m+,u))−us(X(m+,l))

. Since the receiver is indifferent between inspecting and not inspecting m+,

her equilibrium expected payoff is equivalent to the payoff in which she never inspect m+ ex-post,

therefore according to (13), her equilibrium payoff is β+(ϵ)x+(ϵ)2 + (1 − β+(ϵ))x0(ϵ)2 − E[θ2], where

β+(ϵ) ≡ Pr([0, θ] ∪ [θ, 1]), x+(ϵ) ≡ E[[0, θ] ∪ [θ, 1]] and x0(ϵ) ≡ E[θ, θ]. The receiver’s payoff in

the babbling outcome is E[0, 1]2 − E[θ2]. Since β+(ϵ)x+(ϵ) + (1 − β+(ϵ))x0(ϵ) = E[0, 1], we have

β+(ϵ)x+(ϵ)2+(1−β+(ϵ))x0(ϵ)2−E[0, 1]2 = β+(ϵ)(1−β+(ϵ))(x+(ϵ)−x0(ϵ)2. Note that limϵ↓0x
+(ϵ) =
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1
2 +

√
1
4 − c > E[0, 1] = limϵ↓0x

0(ϵ); therefore

limϵ↓0
1

ϵ
β+(ϵ)(1− β+(ϵ))(x+(ϵ)− x0(ϵ))2 = (1 + h(1))(

1

2
+

√
1

4
− c− E[0, 1])2 > 0,

which implies that there the receiver’s payoff from the above equilibrium is higher than her payoff from

the babbling outcome for any small enough positive ϵ.

Q.E.D.

Proof of Proposition 3:

We prove this proposition by contradiction. The reasoning is as follows: if there exists a positive

measure set of inspected messages such that Vq(m) > c, they must be inspected with probability

1, and the liars of these messages induce the same action as the induced action of the uninspected

message. Then we can construct a modified equilibrium where a subset of liars who send these inspected

messages in the original equilibrium now switch to send the uninspected message. We can do so while

maintaining Vq̂(m) = c and the same induced action for each type in the modified equilibrium, but a

lower ex-ante probability of inspection, thus, a higher ex-ante payoff for the receiver. The formal proof

is presented below.

Suppose contrary to the claim, in an optimal equilibrium there exists a positive measure set in-

spected messages M1 ⊆ M+
q such that Vq(m) ̸= c for all m ∈ M1. Since P (m) > 0, sequential

rationality (7) then requires that Vq(m) > c and P (m) = 1, and (b) of Lemma 1 implies that for all

m ∈ M1, X(m, l) = x̂, where x̂ = X(m0
q , u) if m

0
q exists, x̂ = maxm′ X(m′, l) otherwise. Therefore, we

have E[Θl
q(m)] = E[Θl

q(M1)] = x̂ for all m ∈ M1.

Let Θ̂ = Θl
q(M1) be the set of liars who send m ∈ M1 in the original equilibrium. For m ∈ M1,

let ŵ(m) = w−(X(m, t) − x̂) be the smallest weight on liars such that value of inspection is no less

than c. Since for all m ∈ M1, Vq(m) > c, we have wq(m) > ŵ(m). Now define p̂ =
∫
M1

(1 −

wq(m)) ŵ(m)
1−ŵ(m)dHq(m), which is the total minimum measure of liars required to match with truth-tellers

of m ∈ M1 such that value of inspection is no less than c. We have p̂ < µ(Θ̂) =
∫
M1

wq(m)dHq(m).

Assign an arbitrary strict ranking r : M1 → R to the message set M1. Then for any m ∈ M l, let

z−(m) =
1

µ(Θl
q(M1))

∫
m′∈M1:r(m′)<r(m)

ŵ(m′)

1− ŵ(m′)
(1− wq(m

′))dHq(m
′) (37)

z+(m) =
1

µ(Θl
q(M1))

∫
m′∈M1:r(m′)=r(m)

ŵ(m′)

1− ŵ(m′)
(1− wq(m

′))dHq(m
′) (38)

be the cumulative required fraction of liars.
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For any positive measure set of types Θ̂, define the mean-preserving division Θ̂(z) = Θ̂∩ [θ(z), θ(z)]

such that θ(z) and θ(z) solve

µ(Θ̂(z)) = zµ(Θ̂) (39)

E[Θ̂(z)] = E[Θ̂]. (40)

Define the modified messaging and action strategies q̂, X̂ where other things remain unchanged,

except the set of messages M1 and the uninspected message m0
q . The uninspected message is modified

to m0
q̂ = m0

q ∪ (Θ̂/Θ̂( p̂

µ(Θ̂)
)), where Θ̂/Θ̂( p̂

µ(Θ̂)
) is a mean-preserving division of Θ̂ with mean x̂ and

measure µ(Θ̂) − p̂. For m ∈ M1, the set of truth-tellers remain unchanged, while the set of liars is

modified to Θl
q̂(m) = Θ̂(z+(m))/int(Θ̂(z−(m))), a mean preserving division of Θ̂ where int(X) is the

interior of set X, so that E[Θl
q̂(m)] = x̂ and the set has measure ŵ(m)

1−ŵ(m)

∫
Θt

q(m) dF (θ).

The sequentially rational actions for the modified uninspected messages m0
q̂ is

X̂(m0
q̂ , u) = E[Θ̂(z)] = x̂, (41)

and for m ∈ M1,

X̂(m, t) = X(m, t)

X̂(m, l) = X(m, l) = x̂ (42)

X̂(m,u) = ŵ(m)x̂+ (1− ŵ(m))X(m, t),

where X̂(m,u) > x̂; thus so (q̂, X̂) satisfies (a) of Lemma 1. Furthermore, by the definition of Θl
q̂(m)

for m ∈ Ml, we have

wq̂(m) = ŵ(m) = w−(X̂(m, t)− X̂(m, l)), (43)

and

Vq̂(m) = c. (44)

This implies that (q̂, X̂) satisfies (b) of Lemma 1. Therefore, there exists P̂ such that σ̂ = (q̂, P̂ , X̂) is

an equilibrium.

Under the modified equilibrium σ̂, the sequentially rational actions remain unchanged for every

type, but the ex-ante probability of inspection is reduced by µ(Θ̂) − p̂ > 0. Therefore, EUr(σ̂) >

EUr(σ). This contradicts that σ is an optimal equilibrium.
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Q.E.D.

Proof of Proposition 4:

We prove this proposition by contradiction. The reasoning is as follows: if there exists a positive

measure set M of inspected messages such that wq(m) > 0.5, we can take a message m ∈ M with

positive measure. From Lemma 1 we have X(m, l) ≤ X(m0
q , u) < X(m,u) < X(m, t), where X(m, l),

X(m, t) and X(m,u) are the expected types of liars, truth-tellers and senders of m, and X(m0
q) is the

expected type of the sender of the uninspected message. We then construct a modified equilibrium in

which some truth-tellers and liars of m switch to the uninspected message. The sets of truth-tellers

and liars of m making this switch satisfy two conditions: (i) the weighted average type that make

the switch equals X(m0
q , u), and (ii) after the switch, the proportion of liars relative to truth-tellers

that remain in m becomes wq̂(m) = 1 − wq(m), so that Vq(m) = c still holds but with minority of

liars in m. Since X(m0
q , u) < X(m,u) in the original equilibrium and a set with expected type equals

X(m0
q , u) switched away from m, the new induced actions X̂(m,u) will be higher than X(m,u) in the

modified equilibrium, which means the induced action distribution for the modified equilibrium is a

mean-preserving spread of the original one, and by (13) the receiver obtains a higher payoff in the

modified equilibrium. The formal proof below handles a more general possibility that allows M to be

a set with all zero measure messages that has a positive aggregate measure.

By Proposition 3 Vq(m) = wq(m)(1 − wq(m))(X(m, t) − X(m, l))2 = c for m ∈ M+
q , and since

X(m,u) = wq(m)X(m, l)+(1−wq(m)X(m, t)), we have (X(m, t)−X(m,u))((X(m,u)−X(m, l))) = c.

Suppose contrary to the claim, in an optimal equilibrium wq(m) > 0.5 for some positive measure set of

messages in M+
q , which implies X(m, t)−X(m,u) > (X(m,u)−X(m, l)). Take a positive measure set

of message M+ ∈ M+
q such that X(m, t)−X(m,u) > (X(m,u)−X(m, l)) + δ for some δ > 0. Then

for any ϵ > 0 there exists a positive measure set of message M+
ϵ ⊆ M+ such that for any m,m′ ∈ M+

ϵ

and s = t, l, u, |X(m, s)−X(m′, s)| < ϵ and X(m, t)−X(m,u) + δ < X(m,u)−X(m, l).

Let Θl
ϵ = Θl

q(M
+
ϵ ) and Θt

ϵ = Θt
q(M

+
ϵ ) be the aggregate set of truth-tellers and liars of M+

ϵ , and

µl
ϵ = µ(Θl

q(M
+
ϵ )) and µt

ϵ = µ(Θt
q(M

+
ϵ )) be the measure of the two sets. Let El

ϵ = E[Θl
ϵ], E

t
ϵ = E[Θt

ϵ]

and Eu
ϵ = E[Θl

ϵ ∪Θt
ϵ] be the corresponding expected values of the sets. Note that |Es

ϵ −X(m, s)| < ϵ

for any m ∈ M+
ϵ and s = t, l, u; thus, we have

Et
ϵ − Eu

ϵ > Eu
ϵ − El

ϵ + δ − 2ϵ (45)

|(Et
ϵ − Eu

ϵ )(E
u
ϵ − El

ϵ)− c| < 4ϵ. (46)
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Let Ê be the larger root of (Et
ϵ − Ê)(Ê − El

ϵ)− c = 0. (45) and (46) imply that for small enough

ϵ, Et
ϵ − Ê < Ê − El

ϵ and Ê > Eu
ϵ + δ. Fix any m ∈ M+

q , and let u = P (m)us(X(m, l)) + (1 −

P (m))us(X(m,u)) be the expected payoff of the liars and x̂ = u−1(u) be its certainty equivalence.

Note that Proposition 1 implies any liar can mimic the payoff of any other liar, which means all liars

receive the same payoff in the equilibrium, and x̂ = X(m0
q , u) if an uninspected message m0

q exists.

Lemma 1 implies X(m, l) ≤ x̂ < X(m,u) for any m ∈ M+
ϵ ; thus, we have

El
ϵ ≤ x̂ < Eu

ϵ < Ê − δ < Et
ϵ − δ. (47)

Let zl, zt solve

zlµ
l
ϵE

l
ϵ + ztµ

t
ϵE

t
ϵ =(zlµ

l
ϵ + ztµ

t
ϵ)x̂ (48)

(1− zl)µ
l
ϵE

l
ϵ + (1− zt)µ

t
ϵE

t
ϵ =[(1− zl)µ

l
ϵ + (1− zt)µ

t
ϵ]Ê. (49)

Since µl
ϵE

l
ϵ + µt

ϵE
t
ϵ = (µl

ϵ + µt
ϵ)E

u
ϵ , so (47) means zl ∈ (0, 1) and zt ∈ [0, 1)

Recall the mean-preserving division we defined in (39) and (40). We divide the liar set Θl
ϵ into

Θl
ϵ(zl) and Θl

ϵ/Θ
l
ϵ(zl), and truthful set Θt

ϵ into Θt
ϵ(zt) and Θt

ϵ/Θ
t
ϵ(zt). The mean-preserving divisions

imply E[Θl
ϵ(zl)] = E[Θl

ϵ/Θ
l
ϵ(zl)] = El

ϵ and E[Θt
ϵ(zt)] = E[Θt

ϵ/Θ
t
ϵ(zt)] = Et

ϵ. From (48) and (49) we

have E[Θl
ϵ(zl) ∪Θt

ϵ(zt)] = x̂ and E[Θl
ϵ/Θ

l
ϵ(zl) ∪Θt

ϵ/Θ
t
ϵ(zt)] = Ê.

Now define a modified equilibrium σ̂ = (q̂, P̂ , X̂) where other things remain unchanged, except

the set of messages M+
ϵ is off-path and a message m̂ = Θt

ϵ/Θ
t
ϵ(zt) is added with q̂(θ) = m̂ for θ ∈

Θl
ϵ/Θ

l
ϵ(zl)∪Θt

ϵ/Θ
t
ϵ(zt). The uninspected message m0

q (if exists) is modified to m0
q̂ = m0

q∪Θl
ϵ(zl)∪Θt

ϵ(zt)

with q̂(θ) = m0
q̂ for θ ∈ Θl

ϵ(zl) ∪Θt
ϵ(zt).

The sequentially rational actions for the modified messages m̂ and m0
q̂ are X̂(m̂, t) = Et

ϵ, X̂(m̂, l) =

El
ϵ, X̂(m̂, u) = Ê, and X̂(m0

q̂ , u) = x̂. By (47) we still have X̂(m, l) ≤ X̂(m0
q̂ , u) < X̂(m,u)

for all m ∈ M+
q̂ ; thus, (a) in Lemma 1 is satisfied. For the newly added inspected message m̂,

(X̂(m0
q̂ , t)− X̂(m0

q̂ , u))(X̂(m0
q̂ , u)− X̂(m0

q̂ , l)) = (Et
ϵ − Ê)(Ê − El

ϵ) = c; thus, (b) in Lemma 1 is satis-

fied. Therefore there exists P̂ such that σ̂ is an equilibrium.

To compare the receiver’s exante payoffs, for any equilibrium σ, let

Gu
σ(x) =

∫
Mq

1(X(m,u) ≤ x)dHq(m)

be the distribution of induced uninspected actions under σ. Since Proposition 3 implies Vq(m) = c

for any inspected messages in an optimal equilibrium, the receiver is indifferent between inspecting
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and not inspecting any m ∈ M+
q . Therefore, it is equivalent to express the receiver’s expected payoff

as if m is not inspected ex-post. The above argument combined with the receiver’s payoff function

(13) implies that in any optimal equilibrium, EUr(σ) =
∫ 1
0 x2dGu

σ(x) − E(θ2). Let Gu
σ and Gu

σ̂ be

the distribution of induced uninspected actions of the two equilibria. By sequential rationality the

two distributions have the same mean
∫ 1
0 xdGu

σ̂(x) =
∫ 1
0 xdGu

σ(x) =
∫
Θ θdF (θ) and they differ only by

actions induced by the set Θl
ϵ∪Θt

ϵ. In the original equilibrium σ, a type in Θl
ϵ∪Θt

ϵ sends some m ∈ M+
ϵ

with induced action X(m,u) where |X(m,u)−Eu
ϵ | < ϵ; in the modified mechanism σ̂, a type in Θl

ϵ∪Θt
ϵ

sends either m̂ or m0
q̂ with induced action either X̂(m0

q̂ , u) = x̂ or X̂(m̂, u) = Ê. (47) implies that for

small enough ϵ, X(m0
q̂ , u) < X(m,u) < X̂(m̂, u) for any m ∈ M+

ϵ . Therefore, Gu
σ̂ is a mean-preserving

spread of Gu
σ, which means

∫ 1
0 x2dGu

σ̂(x) >
∫ 1
0 x2dGu

σ(x), then (13) implies EUr(σ̂) > EUr(σ). This

contradicts that σ is an optimal equilibrium.

Q.E.D.

Proof of Proposition 5:

Recall that Θ0
q = {θ : P (q(θ)) = 0)} is the set of uninspected types in the equilibrium σ =

(q, P,X). Since X is sequentially rational, X(q(θ), u) = E[Θ0
q ] for any θ ∈ Θ0

q . Therefore, the

receiver’s equilibrium payoff for the set of uninspected types is

−
∫
Θ0

q

(θ − E[Θ0
q ])

2dθ. (50)

Let α =
∫
Θ0

q
dθ be the probability of uninspected types in equilibrium. Clearly, (50) is maximized

when Θ0
q is an interval with length α. Given the uniform distribution, the payoff is −α3

12 .

Let Θ+
q = {θ : P (q(θ) > 0)} be the set of inspected types in the equilibrium. For any m such

that P (m) > 0, the receiver either strictly prefers inspecting to not inspecting or she is indifferent.

Therefore, for any m such that P (m) > 0, It is equivalent to express the receiver’s expected payoff as

if m is inspected ex-post. As a result, the receiver’s equilibrium payoff for the set of inspected types

can be written as

−
∫
Θ+

q

[(θ −X(q(θ), s(θ)))2 + c]dθ, (51)

where s(θ) = t if θ ∈ q(θ) (truth-teller) and s(θ) = l if θ ̸∈ q(θ) (liar). (51) is maximized when
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X(q(θ), s(θ)) = θ for all θ ∈ Θ+
q , i.e. perfect information upon inspection. In that case, the payoff is

−c(1− α).

The function g(α) = −α3

12 − c(1 − α) is strictly concave with a unique maximum at α = 2
√
c ≤ 1

for any c ≤ 1
4 . Therefore, for any equilibrium (q, P,X), EUr(q, P,X) ≤ g(2

√
c).

Q.E.D.

Proof of Proposition 6:

To show that σd is an equilibrium, for m ∈ M+
q ,

wq(m)

1− wq(m)
= lim

ϵ→0

µ([ϕd(m+ ϵ), ϕd(m− ϵ)])

µ([m− ϵ,m+ ϵ])

=− ϕ̇d(m) =
w−(m− ϕd(m))

1− w−(m− ϕd(m))
, (52)

where the first equality holds because of the continuously decreasing message strategy, and the third

equality holds by (19). Therefore, wq(m) = w−(m − ϕd(m)) and Vq(m) = c, thus condition (b) of

Lemma 1 is satisfied.

X(m0
q , u), X(m, t) and X(m, l) for m ∈ M+

q are clearly sequentially rational given the message

strategy. For m ∈ M+
q ,

X(m,u) = X∗
u(m,ϕd(m)) = w−(m− ϕd(m))ϕd(m) + (1− w−(m− ϕd(m)))m

= wq(m)X(m, l) + (1− wq(m))X(m, t)

is also sequentially rational. For any m ∈ M+
q = (θd, 1],

X(m,u) = X∗
u(m,ϕd(m)) > E[ϕd(m),m] > E[ϕ(θd), θd]

= X(m0
q , u) > θd > ϕd(m) = X(m, l),

where the first inequality holds because X∗
u(m,ϕd(m)) = w−(m − ϕd(m))ϕd(m) + (1 − w−(m −

ϕd(m)))m > ϕd(m)+m
2 as w−(m − ϕd(m)) < 0.5; the second inequality holds because by differen-

tial equation (19), m−θd
ϕ(θd)−ϕ(m)

=
∫m
θd

1−w−(x−ϕd(x))
w−(x−ϕd(x))

dx > 1, so m+ϕd(m)
2 >

θd+θd
2 . Therefore, condition

(a) of Lemma 1 is satisfied, and thus σd is an equilibrium with the inspection strategy specified by

(24).

Since X(m,u) = X∗
u(m,ϕd(m)), and dX∗

u(m,ϕd(m))
dm = ∂X∗

u(m,ϕd(m))
∂m + ∂X∗

u(m,ϕd(m))
∂ϕd(m) ϕ̇d(m) > 0 because

ϕ̇d(m) < 0 and by Lemma 2 ∂X∗
u(m,ϕd(m))

∂m > 0 and ∂X∗
u(m,ϕd(m))
∂ϕd(m) < 0. Therefore, X(m,u) is increasing

in m.
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To show that σd is an optimal equilibrium, the set of uninspected set in σd is Θ0
q = (θd, θd), which

is an interval of length 2
√
c. For all m ∈ [θd, 1], X(m, t) = m and X(m, l) = ϕ(m); therefore, all

inspected types are revealed upon inspection. Therefore, EUr(σd) = −α3

12 − c(1− α), where α = 2
√
c,

which is the upper bound of the receiver’s equilibrium payoff shown in Proposition 5.

Q.E.D.

Proof of Proposition 7:

(i) We claim that for any m,m′ ∈ Mq such that P (m) < 1 and P (m′) < 1, X(m,u) = X(m′, u) and

P (m) = P (m′). Suppose contrary to the claim, X(m′, u) > X(m,u). Then sinceX(m,u) = E[Θu
q (m)],

there exists θ ≥ X(m,u) who sends m in the equilibrium. The optimality condition of type θ implies

[1− P (m)][us(X(m,u))− us(θ)] ≥ [1− P (m′)][us(X(m′, u))− us(θ)], thus P (m) > P (m′). Similarly,

there exists θ ≤ X(m,u) who sends m in the equilibrium. The optimality condition of type θ implies

[1− P (m)][us(X(m,u))− us(θ)] ≥ [1− P (m′)][us(X(m′, u))− us(θ)], thus P (m) < P (m′). The above

two results contradicts each other. Therefore, it must be the case that X(m,u) = X(m′, u). Given

this result, optimality of the sender of m implies 1−P (m) ≥ 1−P (m′) while optimality of the sender

of m′ implies 1− P (m′) ≥ 1− P (m). Therefore, P (m) = P (m′).

(ii) We claim that if there exists m̃ ∈ Mq such that P (m̃) = 1, then P (m) = 1 for almost every

m ∈ Mq. Suppose contrary to the claim, there exists a positive measure subset Θ̂ ⊆ Θ such that

P (q(θ)) < 1 for any θ ∈ Θ̂, then the claim in (i) implies that X(q(θ), u) = E[Θ̂] for any θ ∈ Θ̂.

Since µ(Θ̂) > 0, there exists θ′ ∈ Θ̂ such that θ′ > E[Θ̂] = X(q(θ′), u), but then type θ′ receives

P (q(θ′))us(θ
′) + (1 − P (q(θ′)))us(X(q(θ′), u)) < us(θ

′) in the equilibrium, which is not optimal as he

would receive us(θ
′) if he deviates to m̃, and this proves the claim.

The above two claims imply that P (m) = P̂ for almost every m ∈ Mq, where P̂ is a constant,

and if P̂ < 1, X(m,u) = E[Θ] for almost every m ∈ Mq. By the law of total variance, V ar(Θ) ≥∫
Mq

V ar(Θu
q (m))dHq(m). Therefore, if c > V ar(Θ), then there exists some equilibrium messages

m such that c > V ar(Θ) ≥ V ar(Θu
q (m)) = Vq(m), thus, sequential rationality of P implies P̂ =

P (m) = 0. To show that if c < V ar(Θ) then P̂ = 1, suppose on the contrary c < V ar(Θ) and

P̂ < 1. Since X(m,u) = E[Θ] for almost every equilibrium message m,
∫
Mq

V ar(Θu
q (m))dHq(m) =∫

Θ(θ − E[Θ])2dF (θ) = V ar(Θ). Therefore, there exists some equilibrium messages m such that c <

V ar(Θ) ≤ V ar(Θu
q (m)) = Vq(m), contradicting P̂ < 1. We conclude that if c > V ar(Θ),P (m) = 0

for almost every m ∈ Mq, and the equilibrium is uninformative; if c < V ar(Θ), then c < Vq(m) and
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P (m) = 1 for almost every m ∈ Mq, the equilibrium is state-verifying.

Q.E.D.

Proof of Proposition 8:

Suppose c ≥ V ar(Θ), then EUv
r = V ar(Θ). Consider a strategy profile σ under lie-detecting

technology, where mq(θ) = m0
q = Θ for any θ ∈ Θ and P (m0

q) = 0, X(m0
q , u) = E[Θ]. It is clear

that such strategy profile is an uninformative equilibrium, and EUr(σ) = V ar(Θ) = EUv
r . Therefore,

EUr(σ
∗) ≥ EUr(σ) = EUv

r .

Suppose c < V ar(Θ), then c < V ar(Θ) < (1 − EΘ)(E(Θ) − 0) ≤ 1
4 , where the second inequality

holds by Bhatia–Davis inequality. Since c < (1 − EΘ)(E(Θ) − 0), we have 1
2 −

√
1
4 − c < E(Θ) <

1
2 +

√
1
4 − c, thus Assumption 1 is satisfied, and by proposition 6, σd is an equilibrium with EUr(σd) =

− (2
√
c)3

12 − c(1− 2
√
c) > −c. Therefore, EUr(σ

∗) = EUr(σd) > −c = EUv
r .

Q.E.D.
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