Expenditure Consolidation and Sovereign Debt Restructurings: Front- or Back-loaded

Tamon Asonuma Hyungseok Joo

IMF and University of Surrey

Keio University Seminar July 12, 2022,

Disclaimer

 The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management

Motivation

- Theory Existing literature
 - Fiscal austerity literature in AMs
 - Front-loaded consolidation & no restructuring
 - Sovereign debt literature
 - Back-loaded consolidation & default/restructuring
- Data Three strategies
 - Front-loaded consolidation & no restructuring
 - Front-loaded consolidation & preemptive restructuring
 - Back-loaded consolidation & post-default restructuring
- Question How can we fill a gap between theory and data?

What We Do in This Paper

- Empirical, theoretical, and quantitative paper
- Empirics
 - Data on strategies of expenditure consolidation and restructurings
 - New stylized facts
- Theory
 - Sovereign debt model with preemptive and post-default restructurings and public capital
 - (i) front-loaded & preemptive, (ii) front-loaded & no restructuring
 - Choice between front- and back-loaded expenditure consolidation
- Quantitative analysis
 - Replication of the five stylized facts

Data: Debt Restructurings and Debt Distress

- Debt Restructurings Asonuma and Trebesch (2016)
 - 197 sovereign debt restructurings in 1975-2020
 - Post-default restructurings: 116 episodes
 - Preemptive restructurings: 81 episodes
- Non-restructuring Debt Distress New
 - 25 episodes in 1975–2020
 - High likelihood of restructurings
 - (i) EMBIG bond spreads
 - (ii) Estimated restructuring probability (probit regression)
 - No overlap with restructuring
 - Debt distress being cured (an interval of at least 2 years)

Data: Expenditure Consolidation

- Public expenditure composition data Asonuma and Joo (2021)
 - Consumption, transfers, investment and capital in 1975-2020
- Expenditure consolidation:
 - Alesina and Perotti (1997)- cyclically adjusted expenditure/GDP
 - Alternative classification expenditure /lagged GDP
 - Criteria:
 - 1) The indicator falls more than 1.5 percent
 - 2) It falls at least 1.25 percent a year in two consecutive years
- Front- and back-loaded expenditure consolidation
 - Front-loaded prior to start of restructuring (year t-2, or t-1)
 - Back-loaded after start of restructuring (year t, t+1,...)

Data: Strategies of Consolidation and Restructurings

- 8 strategies of expenditure consolidation and debt restructuring
 - Post-default + back-loaded consolidation
 - Post-default + front-loaded consolidation
 - Post-default + no consolidation
 - Preemptive + back-loaded consolidation
 - Preemptive + front-loaded consolidation
 - Preemptive + no consolidation
 - Debt distress/no restructuring + front-loaded consolidation
 - Debt distress/no restructuring + no consolidation
- 3 dominant strategies

 Stylized Fact 1: Three strategies of expenditure consolidation and debt restructuring are dominant

- **Stylized Fact 2**: Public investment declines sharply ex ante in preemptive cases, while ex post in post-default cases
- Stylized Fact 3: Debt settlement takes place before recoveries in public investment in preemptive cases, while after in post-default cases

(c) Non-restructuring Debt Distress

• **Stylized Fact 4**: Recoveries in public investment are shorter in preemptive cases than in post-default cases

• **Stylized Fact 5**: Public consumption and transfers decline temporarily ex post and recover quickly in both cases

(c) Non-restructuring Debt Distress

Main Questions

- Why front-loaded consolidation is associated with a preemptive restructuring, while back-loaded consolidation is associated with a post-default restructuring?
- Why is not more expenditure consolidation front-loaded, if it accompanies with quick debt resolution (i.e., preemptive)?

Literature Review

- Fiscal austerity (consolidation)
 - Alesina et al. (2019), Vegh et al. (2019), Guajardo et al. (2014)
 - Ours: Outcomes of two types of expenditure consolidation
- Sovereign debt/default and fiscal policy
 - Cuadra et al. (2010), Arellano and Bai (2017), Hatchondo et al. (forthcoming), Bianchi et al. (2020)
 - Ours: Front-loaded expenditure consolidation (i.e., prior to debt crises)
- Different types of sovereign defaults/debt restructurings
 - Arellano et al. (2019), Hatchondo et al. (2014), Asonuma and Trebesch (2016)
 - Ours: Joint choice on expenditure consolidation and restructuring

Theoretical Findings

- Preemptive restructurings take place when probability of future default is high
 - Creditors accept debt relief because it increases expected repayment
 - move to the "good side (upward sloping) of the debt Laffer curve"
- Preemptive restructurings
 - are predictable, so public investment starts falling earlier on (front-loaded) resulting in larger effective costs of default.
 - associate with smaller TFP losses, so public investment does not fall afterward (quick recovery)
- Defaults/post-default restructurings take place when there is a large, unexpected negative TFP shock
 - Why unexpected? because otherwise there would have been a preemptive restructuring before the shock
- Defaults/Post-default restructurings
 - are unpredictable, so public investment does not start falling earlier on
 - associate with larger TFP losses, so public investment falls sharply (back-loaded)

Model: General Features

- Sovereign debt in a dynamic small open economy model:
 - Endogenous ex ante choice of preemptive option and passing it
 - Endogenous ex post choice of default and repayment
 - Endogenous choice of settlement and delays conditional on preemptive option and default
 - Endogenous choice of public expenditure (i.e., consolidation)—public consumption, investment, transfers and debt repayments
 - Endogenous production with labor and public capital

Model: General Features

- A risk averse sovereign debtor, a household, a private firm and risk-neural foreign creditors
- A stochastic TFP shock at
- Distortionary consumption tax and no lump-sum tax
- Credit record h_t : indicating status of market access
- Incomplete capital market: one-period zero-coupon bonds
- One-side commitment
- Two types of debt renegotiations:
 - Preemptive multi-round before TFP realization
 - Post-default multi-round after TFP realization

Model: Timing

Model: Household's Problem

Household maximization problem

$$\max_{c_t,l_t} E_0 \sum_{t=0}^{\infty} \beta^t U(c_t, l_t, g_t)$$

s.t.
$$(1+\tau)c_t = w_t I_t + \pi_t^F + T_t$$
 (1)

where $U(c_t, l_t, g_t) = (1 - \omega)u(c_t, l_t) + \omega v(g_t)$

Optimality condition of household

$$\frac{u_l(c_t, l_t)}{u_c(c_t, l_t)} = \frac{w_t}{1 + \tau}$$
 (2)

Model: Firm's Problem

Production function

$$y_t = a_t (I_t)^{\alpha_l} (k_t^g)^{\alpha_k} (\bar{k^p})^{1 - \alpha_l - \alpha_k}$$
(3)

Private firm's profit maximization problem:

$$\max_{l_t} \pi_t^F = a_t(l_t)^{\alpha_l} (k_t^g)^{\alpha_k} (\bar{k^p})^{1-\alpha_l-\alpha_k} - w_t l_t$$
 (4)

- \bar{k}^p is numeraire (Mendoza and Yue 2012)
- Optimality condition of the private firm

$$w_t = \alpha_I a_t (I_t)^{\alpha_I - 1} (k_t^g)^{\alpha_k} (\bar{k^p})^{1 - \alpha_I - \alpha_k}$$
(5)

Model: Sovereign's Problem - Ex Ante

Ex ante value of sovereign

$$V^{\textit{EXANTE}}(b_t, k_t^{\textit{g}}, 0, a_{t-1}) = \max[V^{\textit{PRE}}(b_t, k_t^{\textit{g}}, 0, a_{t-1}), V^{\textit{NON_PRE}}(b_t, k_t^{\textit{g}}, 0, a_{t-1})] \quad (6)$$

Ex ante value of taking a preemptive restructuring

$$V^{PRE}(b_t, k_t^g, 0, a_{t-1}) = \max_{g_t, k_{t+1}^g, T_t} \int_A [(1 - \omega)u(c_t, l_t) + \omega v(g_t) + \beta \Psi(b_t, k_{t+1}^g, 1, a_t)] d\mu(a_t | a_{t-1})$$
(7)

s.t.
$$g_t + k_{t+1}^g + T_t = \tau c_t + (1 - \delta^k) k_t^g - \frac{\Omega}{2} (\frac{k_{t+1}^g - k_t^g}{k_t^g})^2 k_t^g$$
 (8)

$$T_t \ge 0 \tag{9}$$

$$\frac{u_{l}(c_{t}, l_{t})}{u_{c}(c_{t}, l_{t})} = \frac{\alpha_{l} \hat{a}_{t}(l_{t})^{\alpha_{l} - 1} (k_{t}^{g})^{\alpha_{k}} (\bar{k}^{p})^{1 - \alpha_{l} - \alpha_{k}}}{1 + \tau}$$
(10)

$$(1+\tau)c_t = \hat{\mathbf{y}}_t + T_t \tag{11}$$

Model: Sovereign's Problem - Ex Ante

Ex ante value of passing a preemptive option

$$V^{NON_PRE}(b_t, k_t^g, 0, a_{t-1}) = \int_A V(b_t, k_t^g, 0, a_t) d\mu(a_t | a_{t-1})$$
 (12)

Preemptive restructuring choice

$$PRE(b_t, k_t^g, 0) = \{a_{t-1} \in A : V^{PRE}(b_t, k_t^g, 0, a_{t-1}) \ge V^{NON_PRE}(b_t, k_t^g, 0, a_{t-1})\}$$
(13)

Model: Sovereign's Problem - Ex Post

Ex post value of sovereign

$$V(b_t, k_t^g, 0, a_t) = \max[V^R(b_t, k_t^g, 0, a_t), V^D(b_t, k_t^g, 0, a_t)]$$
(14)

Ex post value of repayment

$$V^{R}(b_{t}, k_{t}^{g}, 0, a_{t}) = \max_{g_{t}, b_{t+1}, k_{t+1}^{g}, T_{t}} (1 - \omega) u(c_{t}, l_{t}) + \omega v(g_{t})$$

$$+ \beta \int_{A} V(b_{t+1}, k_{t+1}^{g}, 0, a_{t+1}) d\mu(a_{t+1}|a_{t})$$
(15)

s.t. (9) and
$$g_t + k_{t+1}^g + T_t + q(b_{t+1}, k_{t+1}^g, 0, a_t)b_{t+1} = \tau c_t + (1 - \delta^k)k_t^g - \frac{\Omega}{2}(\frac{k_{t+1}^g - k_t^g}{k_t^g})^2k_t^g + b_t$$
 (8a)

$$\frac{u_l(c_t, l_t)}{u_c(c_t, l_t)} = \frac{\alpha_l a_t(l_t)^{\alpha_l - 1} (k_t^g)^{\alpha_k} (\bar{k^p})^{1 - \alpha_l - \alpha_k}}{1 + \tau}$$
(10a)

$$(1+\tau)c_t = y_t + T_t \tag{11a}$$

Model: Sovereign's Problem - Ex Post

Ex post value of defaulting (post-default restructuring)

$$V^{D}(b_{t}, k_{t}^{g}, 0, a_{t}) = \max_{g_{t}, k_{t+1}^{g}, T_{t}} (1 - \omega) u(c_{t}, l_{t}) + \omega v(g_{t})$$

$$+\beta \int_{A} V((1 + r^{*})b_{t}, k_{t+1}^{g}, 2, a_{t+1}) d\mu(a_{t+1}|a_{t})$$
(16)

$$\frac{u_l(c_t, l_t)}{u_c(c_t, l_t)} = \frac{\alpha_l \tilde{\mathbf{a}}_t(l_t)^{\alpha_l - 1} (k_t^g)^{\alpha_k} (\bar{k}^p)^{1 - \alpha_l - \alpha_k}}{1 + \tau}$$
(14a)

$$(1+\tau)c_t = \tilde{\mathbf{y}}_t + T_t \tag{15a}$$

Default/post-default restructuring choice

$$D(b_t, k_t^g, 0) = \{ a_t \in A : V^R(b_t, k_t^g, 0, a_t) < V^D(b_t, k_t^g, 0, a_t) \}$$
 (17)

Model: Renegotiation Problem

- Preemptive vs. post-default renegotiations
 - Symmetric in bargaining game and power
 - Timing: Prior to vs. after TFP realization
 - Sovereign's outside options: Non-preemptive option vs. permanent autarky
 - Creditors' outside options: Ex ante expected return vs. zero recovery rates
- Strategies of the proposer i and the other party j (for i, j = B, L) depending on state, current offer and types of debt renegotiations:
 - Post-default renegotiations

$$heta_i = \{1 \quad (propose)\} \quad \& \quad heta_j = \{1 \quad (accept)\}$$
 $heta_i = \{0 \quad (pass)\} \quad \& \quad heta_j = \{0 \quad (reject)\}$

Preemptive renegotiations

$$\begin{array}{lll} \theta_i = \{1 & (\textit{propose})\} & \& & \theta_j = \{1 & (\textit{accept})\} \\ \theta_i = \{0 & (\textit{pass})\} & \& & \theta_j = \{0 & (\textit{reject})\} \\ \theta_i = \{-1 & (\textit{quit})\} & \& & \theta_j = \{-1 & (\textit{quit})\} \end{array}$$

Model: Post-default Renegotiation

- Case when the borrower B is the proposer
- If B proposes and the proposal is accepted,

$$V^{PRO}(b_t, k_t^g, 2, a_t) = \max_{g_t, k_{t+1}^g, T_t} (1 - \omega) u(c_t, l_t) + \omega v(g_t)$$

$$+ \beta \int_A V(0, k_{t+1}^g, 0, a_{t+1}) d\mu(a_{t+1}|a_t)$$
 (22)

s.t. (9), (10b), (11b) and

$$g_t + k_{t+1}^g + T_t = \tau c_t + (1 - \delta^k) k_t^g - \frac{\Omega}{2} (\frac{k_{t+1}^g - k_t^g}{k_t^g})^2 k_t^g + \frac{\alpha_t^B}{t} b_t$$
 (8b)

$$V^{*ACT}(b_t, k_t^g, 2, a_t) = -\alpha_t^B b_t$$
(23)

Model: Post-default Renegotiation (cont.)

If B passes,

$$V^{PASS}(b_{t}, k_{t}^{g}, 2, a_{t}) = \max_{g_{t}, k_{t+1}^{g}, T_{t}} (1 - \omega)u(c_{t}, l_{t}) + \omega v(g_{t})$$

$$+ \beta \int_{A} V((1 + r^{*})b_{t}, k_{t+1}^{g}, 2, a_{t+1})d\mu(a_{t+1}|a_{t}) \qquad (24)$$

$$s.t. (8), (9), (10b), and (11b)$$

$$V^{*REJ}(b_{t}, k_{t}^{g}, 2, a_{t}) = \frac{1}{1 + r^{*}} \int_{A} \Gamma^{*}((1 + r^{*})b_{t}, k_{t+1}^{g}, 2, a_{t+1})d\mu(a_{t+1}|a_{t}) \qquad (25)$$

Model: Post-default Renegotiation (cont.)

Equilibrium

$$\alpha_{t}^{B*} = argmaxV^{PRO}(b_{t}, k_{t}^{g}, 2, a_{t})$$
s.t.
$$V^{PRO}(b_{t}, k_{t}^{g}, 2, a_{t}) \geq V^{PASS}(b_{t}, k_{t}^{g}, 2, a_{t})$$

$$V^{*ACT}(b_{t}, k_{t}^{g}, 2, a_{t}) \geq V^{*REJ}(b_{t}, k_{t}^{g}, 2, a_{t})$$
(26)

If both parties reach an agreement,

$$\Gamma^{B}(b_{t}, k_{t}^{g}, 2, a_{t}) = V^{PRO}(b_{t}, k_{t}^{g}, 2, a_{t})$$

$$\Gamma^{B*}(b_{t}, k_{t}^{g}, 2, a_{t}) = V^{*ACT}(b_{t}, k_{t}^{g}, 2, a_{t})$$
(27)

Otherwise,

$$\Gamma^{B}(b_{t}, k_{t}^{g}, 2, a_{t}) = V^{PASS}(b_{t}, k_{t}^{g}, 2, a_{t})$$

$$\Gamma^{B*}(b_{t}, k_{t}^{g}, 2, a_{t}) = V^{*REJ}(b_{t}, k_{t}^{g}, 2, a_{t})$$
(27a)

Settlement set for post-default renegotiation

$$R^{B}(b_{t}, k_{t}^{g}, 2) = \left\{ \begin{array}{c} a_{t} \in A : V^{PRO}(b_{t}, k_{t}^{g}, 2, a_{t}) \geq V^{PASS}(b_{t}, k_{t}^{g}, 2, a_{t}) \\ V^{*ACT}(b_{t}, k_{t}^{g}, 2, a_{t}) \geq V^{*REJ}(b_{t}, k_{t}^{g}, 2, a_{t}) \end{array} \right\}$$
(28)

- Case when the borrower B is the proposer
- If B proposes and the proposal is accepted,

$$V^{PRO}(b_t, k_t^g, 1, a_{t-1}) = \max_{g_t, k_{t+1}^g, T_t} \int_{A} [(1 - \omega)u(c_t, l_t) + \omega v(g_t) + \beta \int_{A} V(0, k_{t+1}^g, 0, a_t)] d\mu(a_t | a_{t-1})$$
(33)

$$g_t + k_{t+1}^g + T_t = \tau c_t + (1 - \delta^k) k_t^g - \frac{\Omega}{2} \left(\frac{k_{t+1}^g - k_t^g}{k_t^g} \right)^2 k_t^g + \delta_t^B b_t$$
 (8d)

$$V^{PRO}(b_t, k_t^g, 1, a_{t-1}) \ge V^{NON-PRE}(b_t, k_t^g, 0, a_{t-1})$$
 (34)

$$V^{*ACT}(b_t, k_t^g, 1, a_{t-1}) = -\delta_t^B b_t$$
(35)

s.t.
$$V^{*ACT}(b_t, k_t^g, 1, a_{t-1}) \ge (1 - p^D(b_t, k_t^g, 0, a_{t-1})) + p^D(b_t, k_t^g, 0, a_{t-1})\gamma(b_t, k_t^g, 2, a_{t-1})\gamma(b_t, k_t^g, 2,$$

If B passes,

$$V^{PASS}(b_t, k_t^g, 1, a_{t-1}) = \max_{g_t, k_{t+1}^g, T_t} \int_A [(1 - \omega)u(c_t, l_t) + \omega v(g_t) + \beta \int_A \Psi(b_t, k_{t+1}^g, 1, a_t)] d\mu(a_t|a_{t-1})$$
(37)

s.t. (8) (9) (10) (11) and

$$V^{PASS}(b_t, k_t^g, 1, a_{t-1}) \ge V^{NON-PRE}(b_t, k_t^g, 0, a_{t-1})$$
(34a)

$$V^{*REJ}(b_t, k_t^g, 1, a_{t-1}) = \frac{1}{1 + r^*} \int_A \Psi^*(b_t, k_t^g, 1, a_t) d\mu(a_t | a_{t-1})$$
(38)

s.t.
$$V^{*REJ}(b_t, k_t^g, 1, a_{t-1}) \ge (1 - \rho^D(b_t, k_t^g, 0, a_{t-1})) + \rho^D(b_t, k_t^g, 0, a_{t-1})\gamma(b_t, k_t^g, 2, a_{t-1}))$$
(36a)

If B quits,

$$V^{QUIT}(b_t, k_t^g, 1, a_{t-1}) = V^{NON_PRE}(b_t, k_t^g, 0, a_{t-1})$$
(39)

$$V^{*REJ.QUIT}(b_t, k_t^g, 1, a_{t-1}) = (1 - \rho^D(b_t, k_t^g, 0, a_{t-1})) + \rho^D(b_t, k_t^g, 0, a_{t-1})\gamma(b_t, k_t^g, 2, a_{t-1}))$$
(40)

(ロト 4回 ト 4 重 ト 4 重 ト) 重) りへの

Equilibrium

$$\begin{split} \delta_t^{\textit{B*}} &= \textit{argmax} V^{\textit{PRO}}(b_t, k_t^{\textit{g}}, 1, a_{t-1}) \\ \textit{s.t.} \quad V^{\textit{PRO}}(b_t, k_t^{\textit{g}}, 1, a_{t-1}) &\geq V^{\textit{PASS}}(b_t, k_t^{\textit{g}}, 1, a_{t-1}) \\ V^{*\textit{ACT}}(b_t, k_t^{\textit{g}}, a_{t-1}) &\geq V^{*\textit{REJ}}(b_t, k_t^{\textit{g}}, a_{t-1}) \end{split} \tag{41}$$

If both parties reach an agreement,

$$\Psi^{B}(b_{t}, k_{t}^{g}, 1, a_{t-1}) = V^{PRO}(b_{t}, k_{t}^{g}, 1, a_{t-1})$$

$$\Psi^{B*}(b_{t}, k_{t}^{g}, 1, a_{t-1}) = V^{*ACT}(b_{t}, k_{t}^{g}, 1, a_{t-1})$$
(42)

Otherwise,

$$\Psi^{B}(b_{t}, k_{t}^{g}, 1, a_{t-1}) = V^{PASS}(b_{t}, k_{t}^{g}, 1, a_{t-1})
\Psi^{B*}(b_{t}, k_{t}^{g}, 1, a_{t-1}) = V^{*REJ}(b_{t}, k_{t}^{g}, 1, a_{t-1})$$
(42a)

or

$$\Psi^{B}(b_{t}, k_{t}^{g}, 1, a_{t-1}) = V^{QUIT}(b_{t}, k_{t}^{g}, 1, a_{t-1})
\Psi^{B*}(b_{t}, k_{t}^{g}, 1, a_{t-1}) = V^{*REJ_PRE}(b_{t}, k_{t}^{g}, 1, a_{t-1})$$
(42b)

Settlement set for preemptive renegotiation

$$R^{B}(b_{t}, k_{t}^{g}, 1) = \begin{cases} a_{t-1} \in A : V^{PRO}(b_{t}, k_{t}^{g}, 1, a_{t-1}) \ge V^{PASS}(b_{t}, k_{t}^{g}, 1, a_{t-1}) \\ V^{*ACT}(b_{t}, k_{t}^{g}, 1, a_{t-1}) \ge V^{*REJ}(b_{t}, k_{t}^{g}, 1, a_{t-1}) \end{cases}$$
(43)

Model: Creditor's Problem

Expected profit

$$\pi^{c}(b_{t+1}, k_{t+1}^{g}, 0, a_{t}) = \begin{cases} q(b_{t+1}, k_{t+1}^{g}, 0, a_{t})b_{t+1} - \frac{1}{1+r^{*}}b_{t+1}, & \text{if } b_{t+1} \ge 0 \\ \frac{\delta(b_{t+1}, k_{t+1}^{g}, 0, a_{t})}{1+r^{*}}(-b_{t+1}) - q(b_{t+1}, k_{t+1}^{g}, 0, a_{t})b_{t+1} & \text{if } b_{t+1} < 0 \text{ and } \\ a_{t-1} \in PRE(b_{t}, k_{t}^{g}, 0) \\ [\frac{1-p^{D}(b_{t+1}, k_{t+1}^{g}, 0, a_{t})}{1+r^{*}} + \frac{p^{D}(b_{t+1}, k_{t+1}^{g}, 0, a_{t}) \int_{A} \gamma(b_{t+1}, k_{t+1}^{g}, 1, a_{t}) d\mu(a_{t+1} | a_{t})}{1+r^{*}}] \\ \times (-b_{t+1}) - q(b_{t+1}, k_{t+1}^{g}, 0, a_{t})(-b_{t+1}), & \text{otherwise} \end{cases}$$
 (50)

Equilibrium bond price

$$q(b_{t+1}, k_{t+1}^g, 0, a_t) = \begin{cases} \frac{1}{1+r^*} & \text{if } b_{t+1} \ge 0 \\ \frac{\delta(b_{t+1}, k_{t+1}^g, 0, a_t)}{1+r^*} & \text{if } b_{t+1} < 0 \text{ and} \\ a_{t-1} \in PRE(b_t, k_t^g, 0) & (53) \end{cases}$$

$$\frac{1-\rho^D(b_{t+1}, k_{t+1}^g, 0, a_t)}{1+r^*} + \frac{\rho^D(b_{t+1}, k_{t+1}^g, 0, a_t) \int_A \gamma(b_{t+1}, k_{t+1}^g, 1, a_t) d\mu(a_{t+1} | a_t)}{1+r^*} & \text{otherwise} \end{cases}$$

$$\frac{1}{1+r^*} = \frac{\rho^D(b_{t+1}, k_{t+1}^g, 0, a_t) \int_A \gamma(b_{t+1}, k_{t+1}^g, 1, a_t) d\mu(a_{t+1} | a_t)}{1+r^*} & \text{otherwise} \end{cases}$$

$$\frac{1}{1+r^*} = \frac{\rho^D(b_{t+1}, k_{t+1}^g, 0, a_t) \int_A \gamma(b_{t+1}, k_{t+1}^g, 1, a_t) d\mu(a_{t+1} | a_t)}{1+r^*} & \text{otherwise} \end{cases}$$

Quantitative Analysis - Parameters

• TFP - AR(1) process:

$$\log(a_t) = \rho \log(a_{t-1}) + \epsilon_t, \tag{54}$$

Household utility function - GHH, CRRA:

$$u(c_t, l_t) = \frac{(c_t - \frac{l_t^{1+\psi}}{1+\psi})^{1-\sigma}}{1-\sigma}, \qquad v(g_t) = \frac{g_t^{1-\sigma_g}}{1-\sigma_g}$$
 (55)

Parameter	Value	Source			
Risk aversion for private consumption	$\sigma = 3$	Hatchondo et al. (forthcoming)			
Risk aversion for public consumption	$\sigma_g = 3$	Hatchondo et al. (forthcoming)			
Labor elasticity	$\psi = 0.48$	Mendoza (1991)			
Risk-free interest rate	$r^* = 0.01$	Aguiar et al. (2016), Yue (2010) - ÚS Treasury bill rate			
Public capital depreciation rate	$\delta^k = 0.04$	US BEA (1999)			
Direct productivity loss (post-default)	$\lambda_d = 0.05$	Asonuma and Trebesch (2016) - Computed (ARG)			
Direct productivity loss (preemptive)	$\lambda_p = 0.04$	Asonuma and Trebesch (2016) - Computed (URY)			
Country-specific parameters					
Weight on public consumption	$\omega = 0.80 \text{ (ARG)}/0.80 \text{ (URY)}$	Computed (ARG/URY)			
Labor income share	$\alpha^{I} = 0.64 \text{ (ARG)}/0.58 \text{ (URY)}$	Gordon and Guerron-Quintana (ARG)/Computed (URY)			
Public capital income share	$\alpha^k = 0.058 (ARG)/0.11 (URY)$	Computed (ARG/URY)			
Effective consumption tax rate	$\tau = 0.33 (ARG)/0.33 (URY)$	Computed - IMF WEO (ARG/URY)			
Public capital adjustment costs	$\Omega = 10 \text{ (ARG)/10 (URY)}$	Computed (ARG/URY)			
Auto-correlation of productivity shock	$\rho = 0.85 (ARG) / 0.90 (URY)$	Computed - MECON (ARG)/ BCU (URY)			
Standard deviation of productivity shock	$\sigma^a = 0.017 \text{ (ARG) } / 0.015 \text{ (URY)}$	Computed - MECON (ARG)/ BCU (URY)			
Bargaining power	$\phi = 0.93 (ARG)/0.70 (URY)$	Computed (ARG/URY)			
Discount rate	$\beta = 0.80 \text{ (ARG)}/0.80 \text{ (URY)}$	Computed (ARG/URY)			

- Debtor's choice between preemptive and non-preemptive and between repayment and default - Mean public capital
 - Preemptive when debt is high and TFP is low
 - Default when debt is high and TFP is low

- Debtor's choice among preemptive, default and repayment Mean public capital
 - Replication of Asonuma and Trebesch (2016)
 - (c) Choice for Preemptive Restructuring, Default and Repayment (Uruguay)

- Debtor's choice among hard, soft and no expenditure consolidation -Mean public capital
 - Hard consolidation under post-default, soft under preemptive
 - Hard, soft and no consolidation under repayment

- Front-loaded (hard) expenditure consolidation & no restructuring (green)
- Back-loaded (hard) expenditure consolidation & post-default (red)
 - (c) Choice among strategies of expenditure consolidation and restructuring (Uruguay)

(i) Business Cycle Statistics

	Urugua	ay 2003	Argentina	2001-2005
	Data	Baseline	Data	Baseline
		Model		Model
Target statistics				
Pre-restructuring period				
Average public consumption & transfers/GDP ratio (%)	19.4	20.5	20.0	22.9
Public investment (std. dev.)/output (std. dev.)	5.8	3.04	5.1	5.9
Restructuring period				
Average output deviation during debt renegotiations (%)	-2.28	-3.0	-3.47	-4.50
Non-target statistics				
Pre-restructuring period				
Public sector				
Public consumption & transfers (std. dev.)/output (std. dev.)	1.09	1.00	1.26	1.23
Corr.(public consumption & transfers, output)	0.35	0.74	0.52	0.85
Average public investment/GDP ratio (%)	4.18	3.70	1.31	1.60
Average public expenditure/GDP ratio (%)	23.5	24.2	21.3	23.5
Average public investment/public expenditure ratio (%)	16.9	14.7	6.2	6.4
Restructuring period				
Public sector				
Public consumption & transfers (std. dev.)/output (std. dev.)	$2.0^{1/}$	0.78	0.99	2.36
Corr.(public consumption & transfers, output)	$1.0^{1/}$	0.89	0.99	0.77
Average public consumption & transfers/GDP ratio (%)	25.2	20.7	20.2	23.3
Average public investment/GDP ratio (%)	3.20	3.25	1.19	1.47
Average public expenditure/GDP ratio (%)	28.4	23.9	21.3	24.7
Average public investment/public expenditure ratio (%)	11.2	15.8	5.7	5.9
Expenditure consolidation choice	front-loaded	front-loaded	back-loaded	back-load

(ii) Non-business Cycle Statistics

	Uruguay 2003		Argentina 2001-2005	
	Data	Baseline Model	Data	Baseline Model
Target statistics				
Default probability (%)	3.26	3.03	3.26	3.05
Average recovery rate (%)	87.1	83.0	25.0	27.1
Pre-restructuring period				
Average debt/GDP ratio (%)	59.1	48.0	45.4	44.7
Bond spreads: average (%)	7.7	1.03	9.4	1.65
Bond spreads: std. dev. (%)	5.1	1.50	7.6	2.25
Corr.(debt/GDP, spreads)	1.00	0.11	0.92	0.18
Restructuring period				
Restructuring strategy	preemptive	preemptive	post-default	post-default
Average debt/GDP ratio (%)	130.5	51.6	130.5	50.7
Duration of renegotiations/ exclusion (quarters)	1.0	4.3	14.0	11.2
Average public investment recovery (quarterly) from t-1 to pre-restructuring level	10.3	7.5	12.0	8.5

• Strategies of expenditure consolidation and debt restructuring

Public investment around debt restructuring and debt distress

Recoveries in public investment and restructuring duration

(a) Post-default Restructuring (Argentina) (b) Preemptive Restructurings (Uruguay)

 Public Consumption and Transfers around Restructurings and Debt Distress

Two Key Determinants

• Role of preemptive restructuring choice and public capital

(i) No Preemptive Restructuring Choice

(ii) Fixed Public Capital

Conclusion

- New data and stylized facts on expenditure consolidation and debt restructurings
- New theoretical explanation on sovereign debt crises and resolution
 - Choice between front- and back-loaded consolidation
 - Role of two types of expenditure consolidation in sovereign debt crises and resolution
- Quantitative analysis of model rationalizes the stylized facts