
Midastar: Threshold autoregression with data

sampled at mixed frequencies

Kaiji Motegi1 John W. Dennis2

1Kobe University
2Institute for Defense Analyses

Econometrics Workshop

Institute for Economic Studies, Keio University

July 5, 2022

Motegi & Dennis (Kobe & IDA) MIDAS + TAR = Midastar July 5, 2022 1 / 52



Introduction: Background

A time series often has heterogeneous properties below versus
above a certain threshold (threshold effects).

One of the most well-known models in this field is the threshold
autoregression (TAR) proposed by Tong (1978).

In TAR, a target variable y follows AR(p) with coefficients being
different across regimes, and a regime switch is triggered when a
threshold variable x crosses a constant threshold parameter µ.

Many variants and extensions of TAR have been proposed:

1 smooth transition autoregression (Granger & Teräsvirta, 1993);
2 threshold regression (Hansen, 2000);
3 threshold kink (Hansen, 2017);
4 time-varying threshold (e.g., Motegi, Cai, Hamori & Xu, 2020;

Motegi, Dennis & Hamori, 2022).
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Introduction: Motivation

In the existing threshold models, the target variable y and the
threshold variable x are assumed to be sampled at the same
frequency.

In practice, time series are often sampled at different frequencies
(e.g., daily, weekly, monthly, quarterly, etc.).

In the existing literature of threshold models, a variable of the
higher frequency is aggregated into the lower level.

Temporal aggregation has an adverse effect on statistical
inference due to the loss of information (e.g., Silvestrini &
Veredas, 2008).

The goal of this project is to extend the TAR model to mixed
frequency data.
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Introduction: Methodology

To achieve our goal, we rely on the literature of Mixed Data
Sampling (MIDAS) econometrics originated with Ghysels,
Santa-Clara & Valkanov (2004).

We propose Midastar models by combining MIDAS and TAR:

1 The Midastar model of the first kind (Midastar I):
low frequency y and high frequency x.

2 The Midastar model of the second kind (Midastar II):
high frequency y and low frequency x.

For both scenarios, x just determines regimes and y is not
regressed onto x. This feature makes the Midastar models
different from existing MIDAS-type models:

1 Both Midastar I and Midastar II are easy to formulate.
2 Parameter proliferation is less an issue.
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Introduction: Methodology

The Midastar models have the regression parameters β (i.e.,
intercepts and AR parameters) and the nuisance parameters γ
(i.e., the delay and threshold parameters).

Partition β = (β⊤
1 ,β

⊤
2 )

⊤ by regimes.

The nuisance parameters γ are unidentified if and only if
threshold effects are absent (i.e., β1 = β2).

When threshold effects are absent, the Midastar models reduce
to single-regime AR models.

When threshold effects are present, the Midastar models are able
to detect them, while the low frequency TAR models have a risk
of pointing to spurious non-threshold effects.
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Introduction: Main results

We estimate (β,γ) via a two-step procedure called profiling.

To test the no-threshold-effect hypothesis, we adopt the
wild-bootstrap tests of Hansen (1996).

The proposed methods have desired statistical properties in large
and finite samples.

We present two separate empirical examples:

1 Midastar I for Japan’s COVID-19 data.

2 Midastar II for U.S. macroeconomic indicators.

For both examples, the bootstrap tests based on the Midastar
models reject the null hypothesis of no threshold effects, while
the tests based on the aggregated TAR fail to reject the null.
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Midastar I: Set-up

Let us begin with a single-frequency framework where time
periods are denoted as

L = {1, . . . , n}.

Let {yt}t∈L be a target variable; let {xt}t∈L be a threshold
variable.

The two-regime TAR model of Tong (1978) is specified as

yt =

{
α1 +

∑p
k=1 ϕ1kyt−k + ut if xt−d < µ,

α2 +
∑p

k=1 ϕ2kyt−k + ut if xt−d ≥ µ, t ∈ L.

y has different autocorrelation structures below vs. above the
threshold parameter µ.
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Midastar I: Motivation

Now assume the target variable y is observed at a low frequency
and the threshold variable x is observed at a high frequency.

Assume the ratio of sampling frequencies, m, is known and fixed
across time. (Example: m = 3 if y is sampled quarterly and x is
sampled monthly.)

Define the set of high frequency time periods as H = ∪t∈LHt,
where

Ht =

{
t− 1 +

1

m
, t− 1 +

2

m
, . . . , t

}
, t ∈ L.

For each t ∈ L, we observe a single realization yt for the target
variable, while we sequentially observe {x∗

j}j∈Ht for the threshold
variable.
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Midastar I: Motivation

Let {w1, . . . , wm} be the pre-specified linear aggregation scheme
such that wk ≥ 0 for all k and

∑m
k=1wk = 1.

Two well-known examples of the linear aggregation scheme:

1 Stock aggregation: wk = 1(k = m) for k ∈ {1, . . . ,m}.
2 Averaging: wk = 1/m for k ∈ {1, . . . ,m}.

For t ∈ L, let xt =
∑m

k=1wkx
∗
t−1+k/m be a temporal aggregation

of x∗.

In the existing literature, the single-frequency TAR model is
fitted to {yt, xt}t∈L even if {x∗

t}t∈H are observable.

In the MIDAS literature, it is well known that such a temporal
aggregation often has an adverse impact on inference due to the
loss of information on x∗.
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Midastar I: Specification

To avoid the temporal aggregation of x∗, we propose the
Midastar model of the first kind (Midastar I):

yt =

α1 +
∑p

k=1 ϕ1kyt−k + ut if x∗
t− d

m

< µ,

α2 +
∑p

k=1 ϕ2kyt−k + ut if x∗
t− d

m

≥ µ, t ∈ L.

The delay of d high frequency periods is taken from the integer
time period t, exploiting the high frequency observations of x∗.

The choice set of the delay parameter d is D ⊆ N.

The choice set of the threshold parameter µ is X ∗ = {x∗
t}t∈H.
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Midastar I: Threshold effects

Stack the regression parameters for each regime:

βr = (αr, ϕr1, . . . , ϕrp)
⊤, r ∈ {1, 2}.

Threshold effects are absent if β1 = β2.

Threshold effects are present if β1 ̸= β2.

If threshold effects are absent, the high frequency threshold
variable x∗ is irrelevant and the Midastar I and the aggregated
TAR are essentially equivalent. Hence, the two models are
equally capable of detecting the truth of no threshold effects.
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Midastar I: Threshold effects

If threshold effects are present, the aggregated TAR model is
generally misspecified relative to the Midastar I, since the former
cannot capture the high frequency delay.

The misspecification results in the failure to identify the true
value of β.

In particular, the aggregated TAR can reach a wrong conclusion
that β1 = β2 (spurious non-threshold effects).

This insight is in line with the well-known fact that temporal
aggregation tends to weaken nonlinearities in original series
(e.g., Granger & Lee, 1999).

In this sense, the Midastar I captures threshold effects more
precisely than the aggregated TAR.
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Midastar I: Key features

The number of parameters in the Midastar I does not depend on
m, hence a large value of m would not be an issue.

Parameter proliferation due to large m is a major issue in many
strands of the MIDAS literature:

1 unrestricted MIDAS regression (e.g., Foroni, Marcellino &
Schumacher, 2015);

2 mixed frequency vector autoregression (e.g., Ghysels, 2016;
Ghysels, Hill & Motegi, 2016);

3 regression-based Granger causality tests (e.g., Ghysels, Hill &
Motegi, 2020);

Given the Midastar I, empirical studies with large m are feasible.

Furthermore, a time-varying mt can easily be allowed.
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Midastar I: Matrix representation

Stack the regression and nuisance parameters:

β =

[
β1

β2

]
, γ =

[
d
µ

]
.

Define binary variables which represent the regime:

I∗1t(µ) = 1 (x∗
t < µ) , I∗2t(µ) = 1 (x∗

t ≥ µ) , t ∈ H.

Stack the regressors:

zt =


1
yt
...

yt+1−p

 , Zt(γ) =

[
zt−1I

∗
1,t− d

m

(µ)

zt−1I
∗
2,t− d

m

(µ)

]
, t ∈ L,

The matrix representation of the Midastar I is given by

yt = Zt(γ)
⊤β + ut, t ∈ L.
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Profiling estimation of the Midastar I

To estimate the regression parameter β and the nuisance
parameter γ, we adopt a two-step procedure called profiling.

If γ were given, then the least squares estimator for β would be
analytically available:

β̂(γ) =

{∑
t∈L

Zt(γ)Zt(γ)
⊤

}−1{∑
t∈L

Zt(γ)yt

}
.

The profiling estimator for γ is given by:

γ̂ = argmin
γ∈Γ

∑
t∈L

{
yt −Zt(γ)

⊤β̂(γ)
}2

.

The profiling estimator for β is given by β̂ = β(γ̂).
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Profiling estimation of the Midastar I

Asymptotic properties of the profiling estimator depends
crucially on whether threshold effects are absent or present.

Threshold effects are absent if β1 = β2, in which case γ is
unidentifiable.

Threshold effects are present if β1 ̸= β2, in which case γ is
identifiable.

Define the no-threshold-effect hypothesis:

H∗
0 : β1 = β2 vs. H∗

1 : β1 ̸= β2.

Motegi & Dennis (Kobe & IDA) MIDAS + TAR = Midastar July 5, 2022 17 / 52



Profiling estimation of the Midastar I

Theorem 1 (Profiling estimator)

Under standard regularity conditions, the following are true:

1
√
n{β̂(γ)− β0} ⇒ N{0,V (γ)} for each fixed γ ∈ Γ.

2 β̂(γ)
p→ β0 uniformly over γ ∈ Γ.

3 Under H∗
1 , γ̂ − γ0 = Op(n

−1) and
√
n(β̂ − β0)

d→ N{0,V (γ0)}.

See the full paper for the regularity conditions, the construction
of V (γ), and the proof of Theorem 1.

Under H∗
0 , the asymptotic distribution of β̂ is non-standard.
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Testing the no-threshold-effect hypothesis

Testing H∗
0 requires the wild bootstrap of Hansen (1996), as γ

is unidentified and β̂ is not asymptotically normal under H∗
0 .

Formulate the no-threshold-effect hypothesis H∗
0 as a linear

parametric restriction:

H∗
0 : R∗β = 0 vs. H∗

1 : R∗β ̸= 0.

where R∗ = (Ip+1, −Ip+1).

The Wald test statistic conditional on γ is given by:

W∗
n(γ) = nβ̂(γ)⊤ (R∗)⊤

{
R∗V̂n(γ)(R

∗)⊤
}−1

R∗β̂(γ).

See the full paper for the construction of V̂n(γ).
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Testing the no-threshold-effect hypothesis

Incorporate all possible values of γ as in:

supW∗
n = sup

γ∈Γ
W∗

n(γ).

Let g(W∗
n) be either supW∗

n, aveW∗
n, or expW∗

n.

Let {g{W∗(b)
n }}Bb=1 be the set of wild-bootstrap test statistics.

(See the full paper for the bootstrap procedure.)

The bootstrap p-value is defined as:

p̂Bn (H
∗
0 ) =

1

B

B∑
b=1

1
[
g
{
W∗(b)

n

}
≥ g(W∗

n)
]
.

Reject H∗
0 if p̂Bn (H

∗
0 ) < a, where a ∈ (0, 1) is the nominal size.
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Testing the no-threshold-effect hypothesis

Theorem 2 (Bootstrap test for H∗
0)

Under standard regularity conditions, the following are true:

1 Under H∗
0 , p̂

B
n (H

∗
0 ) is asymptotically uniform on [0, 1].

2 Under H∗
1 , p̂

B
n (H

∗
0 )

p→ 0 as n → ∞ and B → ∞.

See the full paper for the regularity conditions and the proof.

The bootstrap test for H∗
0 is asymptotically valid; the test has

size approaching the nominal size a under H∗
0 , and power

approaching 1 under H∗
1 .

Motegi & Dennis (Kobe & IDA) MIDAS + TAR = Midastar July 5, 2022 21 / 52



Midastar II: Motivation

Now assume the target variable y is observed at a high frequency
and the threshold variable x is observed at a low frequency.

Assume the ratio of sampling frequencies, m, is known and fixed
across time. (Example: m = 3 if y is sampled monthly and x is
sampled quarterly.)

For each t ∈ L, we sequentially observe {y∗j}j∈Ht for the target
variable, while we observe a single realization xt for the
threshold variable.

For t ∈ L, let yt =
∑m

k=1wky
∗
t−1+k/m be an aggregation of y∗.

In the existing literature, the single-frequency TAR model is
fitted to {yt, xt}t∈L even if {y∗t }t∈H are observable.

Such a temporal aggregation can make inference less accurate.
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Midastar II: Specification

To avoid the temporal aggregation of y∗, we propose the
Midastar model of the second kind (Midastar II):

y∗t =

α1 +
∑p

k=1 ϕ1ky
∗
t− k

m

+ u∗
t if x⌈t⌉−d < µ,

α2 +
∑p

k=1 ϕ2ky
∗
t− k

m

+ u∗
t if x⌈t⌉−d ≥ µ, t ∈ H.

Since x is observed at the low frequency, the delay parameter d
needs to be integer-valued (i.e., D ⊆ N).

Similarly, the choice set of µ needs to be X = {xt}t∈L.
Suppose x⌈t⌉−d < µ for some t ∈ H, then regime 1 keeps arising
at the m consecutive high frequency periods:

H⌈t⌉ = {⌈t⌉ − 1 + 1/m, ⌈t⌉ − 1 + 2/m, . . . , ⌈t⌉}.
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Midastar II: Threshold effects

The aggregated TAR model with finite lag length q ∈ N is
generally misspecified relative to the Midastar II, as aggregating
an AR(p) process results in an infinite-order AR process in
general (e.g., Lütkepohl, 1984; Ghysels, Hill & Motegi, 2016).

Hence, fitting the aggregated TAR model can lead to two types
of incorrect conclusions:

1 pointing to the absence of threshold effects when present in
reality (i.e., spurious non-threshold effects);

2 pointing to the presence of threshold effects when absent in
reality (i.e., spurious threshold effects).

Spurious non-threshold effects are the major problem of
aggregating y∗. It is well known that temporal aggregation is
inclined to weaken threshold effects (Granger & Lee, 1999).
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Midastar II: Threshold effects

Spurious threshold effects are a more manageable problem.

If y∗ follows the single-regime AR process, then the aggregated
y follows AR(∞) in general.

Fitting the aggregated TAR model with finite lag length q ∈ N
results in misspecification, but the original process can be well
approximated by using qn lags such that qn → ∞ as n → ∞ at
a proper rate (e.g., Lütkepohl & Poskitt, 1996).

Thus, it should be technically feasible to reach the correct
conclusion of no threshold effects via the aggregated TAR(qn).
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Midastar II: Key features

The number of parameters in the Midastar II does not depend
on m. Hence, the Midastar II operates well when m takes a
large or time-varying value.

Another virtue of the Midastar models is that both Scenario I
(i.e., low frequency y and high frequency x∗) and Scenario II
(i.e., high frequency y∗ and low frequency x) are easy to handle.

In the existing MIDAS models, Scenario II is less straightforward
than Scenario I (e.g., Ghysels, Sinko & Valkanov, 2007; Ghysels,
Hill & Motegi, 2020).
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Monte Carlo simulation I: Design

Suppose the DGP is the Midastar I:

yt =

α10 + ϕ10yt−1 + ϵt if x∗
t− d0

m

< µ0,

α20 + ϕ20yt−1 + ϵt if x∗
t− d0

m

≥ µ0, t ∈ L.

Suppose α10 = α20 = 0, d0 = 1, µ0 = 0, and ϵt
i.i.d.∼ N (0, 1).

Let ϕ10 = 0.2 and ϕ20 ∈ {0.2, 0.8}.

When ϕ20 = 0.2, threshold effects are absent and the DGP
reduces to the single-regime AR(1) process.

When ϕ20 = 0.8, threshold effects are present and the DGP does
not degenerate.
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Monte Carlo simulation I: Design

Suppose the DGP of x∗ is AR(1):

x∗
t = 0.4x∗

t− 1
m
+ ν∗

t , ν∗
t

i.i.d.∼ N (0, 1), t ∈ H.

Assume {ϵt}t∈L and {ν∗
t }t∈H are mutually independent.

Let m = 3 and n ∈ {120, 240, 480}.
The Midastar model of the first kind is specified as

yt =

α1 + ϕ1yt−1 + ut if x∗
t− d

m

< µ,

α2 + ϕ2yt−1 + ut if x∗
t− d

m

≥ µ, t ∈ L.

The space of the delay parameter d is D = {1, 2, 3}.
The space of the threshold parameter µ is X ∗ = {x∗

t}t∈H.
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Monte Carlo simulation I: Design

For each of J = 1000 Monte Carlo samples, we estimate
β = (α1, ϕ1, α2, ϕ2)

⊤ and γ = (d, µ)⊤ via profiling.

The null hypothesis of no threshold effects is written as

H∗
0 : ϕ10 = ϕ20 vs. H∗

1 : ϕ10 ̸= ϕ20.

To test H∗
0 , we perform the bootstrap with the sup-Wald,

ave-Wald, and exp-Wald statistics as well as their LM versions.

The rejection frequencies of each test are computed, where the
nominal size is 5% and the number of bootstrap iterations is
B = 500.

The rejection frequencies correspond to empirical size when
ϕ10 = ϕ20 and empirical power when ϕ10 ̸= ϕ20.
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Monte Carlo simulation I: Design

To inspect the consequence of temporal aggregation, we also fit
the TAR model after aggregating x∗:

yt =

{
α1 + ϕ1yt−1 + ut if xt−d < µ,

α2 + ϕ2yt−1 + ut if xt−d ≥ µ, t ∈ L.

The aggregation scheme is the stock aggregation:

xt = x∗
t , t ∈ L.

The space of the delay parameter d is D = {1, 2, 3}.
The space of the threshold parameter µ is X = {xt}t∈L.
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Monte Carlo simulation I: Results

Performance of the profiling estimation (Midastar I, ϕ20 = 0.2)

n = 120 n = 240 n = 480

Bias Stdev Bias Stdev Bias Stdev

α1 0.006 0.269 −0.002 0.190 0.002 0.133

ϕ1 −0.009 0.274 −0.007 0.170 −0.007 0.126

α2 0.001 0.260 0.006 0.193 0.000 0.128

ϕ2 −0.006 0.251 0.006 0.171 −0.004 0.127

d 0.995 0.820 1.014 0.829 0.948 0.808

µ −0.015 0.750 −0.016 0.730 0.010 0.726

In this table, γ is unidentified since ϕ10 = ϕ20 = 0.2.

β̂ − β0 = Op(n
−1/2) (consistency).

γ̂ = Op(1) (inconsistency).

These results are in line with our theorems.
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Monte Carlo simulation I: Results

Performance of the profiling estimation (Midastar I, ϕ20 = 0.8)

n = 120 n = 240 n = 480

Bias Stdev Bias Stdev Bias Stdev

α1 0.001 0.167 −0.002 0.105 0.000 0.066

ϕ1 −0.032 0.152 −0.019 0.077 −0.009 0.053

α2 0.011 0.173 0.005 0.100 0.002 0.067

ϕ2 −0.013 0.156 −0.001 0.079 −0.002 0.053

d 0.134 0.449 0.006 0.089 0.000 0.000

µ 0.004 0.346 −0.001 0.149 −0.001 0.070

In this table, γ is identified since ϕ10 ̸= ϕ20.

β̂ − β0 = Op(n
−1/2) (consistency).

γ̂ − γ0 = Op(n
−1) (super-consistency).

These results are in line with our theorems.
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Monte Carlo simulation I: Results

Rejection frequencies of the bootstrap tests for H∗
0 (Midastar I)

ϕ20 = 0.2 (empirical size) ϕ20 = 0.8 (empirical power)

n = 120 n = 240 n = 480 n = 120 n = 240 n = 480

sup-Wald 0.251 0.151 0.095 0.876 0.982 1.000

ave-Wald 0.092 0.076 0.069 0.764 0.962 1.000

exp-Wald 0.188 0.117 0.079 0.863 0.983 1.000

sup-LM 0.029 0.037 0.046 0.562 0.952 1.000

ave-LM 0.028 0.047 0.055 0.527 0.911 1.000

exp-LM 0.024 0.040 0.040 0.600 0.962 1.000

For all tests, the empirical size approaches 5% as n → ∞.

The LM tests have sharper size than the Wald tests in small
samples.

For all tests, the empirical power is sufficiently high in small
samples, and approaches 100% as n → ∞.
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Monte Carlo simulation I: Results

Performance of the profiling estimation of the aggregated TAR

(DGP: Midastar I, ϕ20 = 0.2)

n = 120 n = 240 n = 480

Bias Stdev Bias Stdev Bias Stdev

α1 −0.011 0.262 0.005 0.188 −0.001 0.133

ϕ1 −0.009 0.251 −0.006 0.177 −0.000 0.126

α2 0.002 0.263 0.003 0.190 0.002 0.127

ϕ2 −0.014 0.254 −0.009 0.178 0.001 0.126

In this table, the true DGP is the single-regime AR(1).

Hence, the aggregated TAR model is correctly specified.

β̂ − β0 = Op(n
−1/2) (consistency).
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Monte Carlo simulation I: Results

Performance of the profiling estimation of the aggregated TAR

(DGP: Midastar I, ϕ20 = 0.8)

n = 120 n = 240 n = 480

Bias Stdev Bias Stdev Bias Stdev

α1 0.003 0.269 −0.001 0.180 0.006 0.131

ϕ1 0.252 0.271 0.256 0.183 0.266 0.137

α2 0.001 0.279 −0.002 0.195 −0.001 0.129

ϕ2 −0.308 0.247 −0.281 0.184 −0.275 0.129

In this table, the true DGP is the two-regime Midastar I.

Hence, the aggregated TAR model is misspecified.

ϕ̂1 is positively biased and ϕ̂2 is negatively biased.

Both ϕ̂1 and ϕ̂2 are converging to around 0.5, a signal of
spurious non-threshold effects.
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Monte Carlo simulation I: Results

Rejection frequencies of the bootstrap LM tests for H∗
0

based on the aggregated TAR (DGP: Midastar I)

n = 120 n = 240 n = 480

ϕ20 sup ave exp sup ave exp sup ave exp

0.2 0.030 0.040 0.031 0.045 0.048 0.040 0.044 0.039 0.041

0.8 0.030 0.040 0.027 0.034 0.049 0.041 0.067 0.081 0.072

When ϕ20 = 0.2, the true DGP is the single-regime AR(1).

1 The aggregated TAR model is correctly specified.

2 The empirical size is sufficiently close to 5%.

When ϕ20 = 0.8, the true DGP is the two-regime Midastar I.

1 The aggregated TAR model is misspecified.

2 There is almost no power (spurious non-threshold effects).
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Empirical application I: Set-up

There is a rapidly growing literature in which time series analysis
is performed on COVID-19 statistics (e.g., Motegi, Dennis &
Hamori, 2022).

We analyze the threshold effects of the number of new
confirmed cases (Case) on the number of patients in hospital
(Hosp) in Japan.

Our World in Data (OWID) is a well-known data source for the
COVID-19 research.

For Japan, OWID offers daily data of Case and weekly data of
Hosp. This motivates the use of the Midastar I with m = 7,
where the target variable is weekly Hosp and the threshold
variable is daily Case.
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Empirical application I: Set-up

Here are some notations:

Hospt = the number of COVID-19 patients in hospital

per million people at week t ∈ L;
Caset = the number of new confirmed cases of COVID-19

per million people at day t ∈ H;

yt = ∆ lnHospt

= lnHospt − lnHospt−1

= the weekly growth of Hosp;

x∗
t = ∆ lnCaset

= lnCaset − lnCaset−1/m

= the daily growth of Case.
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Empirical application I: Data
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Sample period: May 28, 2020 – December 15, 2021.

Sample size: n = 81 weeks, or mn = 567 days.

We observe the second through fifth waves of the pandemic.
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Empirical application I: Data
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Are there threshold effects of ∆ lnCase on ∆ lnHosp?

Does the growth of the number of the patients in hospital have
heterogeneous autocorrelation structures when the number of
new confirmed cases is below versus above a certain threshold?
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Empirical application I: Methodology

We fit the Midastar I with p = 4 and m = 7:

yt =

{
α1 +

∑4
k=1 ϕ1kyt−k + ut if x∗

t−d/7 < µ,

α2 +
∑4

k=1 ϕ2kyt−k + ut if x∗
t−d/7 ≥ µ, t ∈ L.

Regime 1: contraction phase. Regime 2: expansion phase.

The space of the delay parameter d is D = {1, . . . , 21}.
The space of the threshold parameter µ is X ∗ = {x∗

t}t∈H.
Let βr = (αr, ϕr1, . . . , ϕr4)

⊤ for regime r ∈ {1, 2}.
Estimate β = (β⊤

1 ,β
⊤
2 )

⊤ and γ = (d, µ)⊤ via profiling.

Test the no-threshold-effect hypothesis H∗
0 : β1 = β2 based on

the bootstrap exp-LM test.

Motegi & Dennis (Kobe & IDA) MIDAS + TAR = Midastar July 5, 2022 41 / 52



Empirical application I: Results

The estimated threshold parameter is µ̂ = 0.001.

The share of the contraction phase to the whole sample is
exactly 50%.

The estimated delay parameter is d̂ = 8 days.

The no-threshold-effect hypothesis H∗
0 is rejected at the 5%

level, with the bootstrap p-value being 0.022. Hence, the
persistence structures of the number of patients in hospital differ
significantly across the regimes.
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Empirical application I: Results
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We roughly observe that yt < 0 when x∗
t−d̂/7

< 0 (i.e.,

contraction) and yt > 0 when x∗
t−d̂/7

≥ 0 (i.e., expansion).

The regime-specific sample mean of y is −0.049 for the
contraction phase and 0.028 for the expansion phase.
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Empirical application I: Results
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The regime-wise implied autocorrelations ρ̂r(h) are plotted.

The oscillation of the correlation under the expansion has the
larger amplitude and the higher frequency than under the
contraction.
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Empirical application I: Results

For comparison, we fit the aggregated TAR model with p = 4.

The estimated delay parameter is d̂ = 1 week, almost agreeing
with our main result of d̂ = 8 days.

The no-threshold-effect hypothesis H∗
0 cannot be rejected at

the 5% level, with the bootstrap p-value of the exp-LM test
being 0.076.

The Midastar I outperforms the aggregated TAR model in terms
of detecting the threshold effects.
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Empirical application II: Summary

In the full paper, we fit the Midastar II to U.S. macroeconomic
indicators:

1 y∗ = monthly nonfarm employment.

2 x = quarterly real gross domestic product.

Sample period: 1972M1–2007M12 (n = 144 quarters, or
mn = 432 months).

The bootstrap exp-LM test based on the Midastar II rejects H∗
0 ,

with the p-value being 0.029. Hence, the persistence structures
of the employment differ significantly across the regimes.

The bootstrap exp-LM test based on the aggregated TAR fails
to reject H∗

0 , with the p-value being 0.371. This result suggests
averaging y∗ has weaken the threshold effects.
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Conclusion

We have proposed the Midastar models, a novel extension of
TAR to mixed frequency data.

The Midastar I is designed for the low frequency target variable
y and the high frequency threshold variable x∗.

The Midastar II is designed for the high frequency target variable
y∗ and the low frequency threshold variable x.

The Midastar models are capable of detecting threshold effects
accurately, since all observations available are fully exploited.

The aggregated TAR can point to spurious non-threshold
effects due to the loss of information.
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Conclusion

The regression and nuisance parameters of the Midastar models
can be estimated via profiling.

The no-threshold-effect hypothesis can be tested by the
wild-bootstrap tests of Hansen (1996).

The proposed estimation and testing satisfy desired statistical
properties in both large and small samples.

The Midastar I is applied to the COVID-19 data of Japan,
finding significant threshold effects.

The Midastar II is applied to the U.S. macroeconomic indicators,
finding significant threshold effects.

These significant threshold effects vanish once the temporal
aggregation is executed (spurious non-threshold effects).
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Granger, C. W. J. and T. Teräsvirta (1993). Modelling Nonlinear
Economic Relationships. Oxford University Press.

Hansen, B. E. (1996). Inference when a nuisance parameter is not
identified under the null hypothesis. Econometrica, vol. 64, pp.
413–430.

Motegi & Dennis (Kobe & IDA) MIDAS + TAR = Midastar July 5, 2022 50 / 52



References

Hansen, B. E. (2000). Sample splitting and threshold estimation.
Econometrica, vol. 68, pp. 575–603.

Hansen, B. E. (2017). Regression kink with an unknown threshold.
Journal of Business & Economic Statistics, vol. 35, pp. 228–240.

Lütkepohl, H. (1984). Linear transformations of vector ARMA
processes. Journal of Econometrics, vol. 26, pp. 283–293.

Lütkepohl, H. and D. S. Poskitt (1996). Testing for causation using
infinite order vector autoregressive processes. Econometric Theory,
vol. 12, pp. 61–87.

Motegi & Dennis (Kobe & IDA) MIDAS + TAR = Midastar July 5, 2022 51 / 52



References

Motegi, K., X. Cai, S. Hamori, and H. Xu (2020). Moving average
threshold heterogeneous autoregressive (MAT-HAR) models. Journal
of Forecasting, vol. 39, pp. 1035–1042.

Motegi, K., J. W. Dennis, and S. Hamori (2022). Conditional
Threshold Autoregression (CoTAR). Working paper at Kobe
University and IDA.

Silvestrini, A. and D. Veredas (2008). Temporal aggregation of
univariate and multivariate time series models: A survey. Journal of
Economic Surveys, vol. 22, pp. 458–497.

Tong, H. (1978). On a threshold model. In: Pattern Recognition and
Signal Processing, ed. by C. H. Chen. Sijthoff & Noordhoff,
Amsterdam.

Motegi & Dennis (Kobe & IDA) MIDAS + TAR = Midastar July 5, 2022 52 / 52


	Introduction
	Table of contents
	Midastar I: Motivation and specification
	Midastar I: Estimation
	Midastar I: Hypothesis testing
	Midastar II
	Monte Carlo simulation I
	Empirical application I
	Empirical application II
	Conclusion
	References

