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Abstract

We consider the problem of allocating indivisible objects without monetary trans-

fers. Each agent has a unit-demand preference involving indifferences and there is a

constraint on possible allocations. Under the assumption that the constraints consti-

tute a discrete structure called an integral polymatroid, our new mechanism is efficient,

respects priorities, is strategy-proof, and polynomial-time computable. We discuss ap-

plications to the problem of allocating time slots for vaccination.

Keywords: No-transfer allocation, constraints, weak preference relation, efficiency,

strategy-proofness, discrete convex analysis

1 Introduction

Governments often need to allocate scarce resources among agents without monetary

transfers, as can be widely observed during the Covid-19 pandemic. Real-life allocations

possess two key features that are typically precluded from the standard model: weak pref-

erences and constraints. To see their practical relevance, consider the problem of allocating

time slots for vaccination thruogh a centralized system: a local government sets up dates on

which residents can get vaccinated, each resident submits her list of possible dates in order

of preference, and the local government decides who gets vaccinated on which date. In this

problem, it is often the case that an agent is available on several dates, i.e., she is indifferent

between them.1 Alongside indifferences, constraints on possible allocations also need to be

∗First version: April 2, 2022.
†JSPS Research Fellow, the University of Tokyo, Tokyo, Japan (email: koji.yokote@gmail.com).
1Indifferences of preferences also emanate from other sources such as lack of information. For concrete

examples, see, e.g., Erdil and Ergin (2017).
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taken into account. Each date has its quota, i.e., the maximum number of residents who can

be vaccinated on that day, and the sum of vaccinated people throughout the dates cannot

exceeds the number of available vaccine doses.2 Determining vaccination venues as well as

dates further complicates the constraints.

The purpose of the present paper is to introduce a new mechanism for object alloca-

tion problems under weak preferences and constraints. To handle indifferences inherent in

weak preferences, a standard approach is to break ties and then apply a mechanism un-

der strict preferences,3 most notably serial dictatorship (Satterthwaite and Sonnenschein,

1981).4 However, this idea might lead to an inefficient outcome.5 To see this point, suppose

that there are three objects, k1, k2, k3 (each has quota 1), and three agents, 1, 2, 3, with the

following preferences:6

• Agent 1: k1 ∼ k2 � k3.

• Agent 2: k2 � k3 � k1.

• Agent 3: k3 � k1 � k2.

Let us break 1’s indifference relation as k2 � k1 and run serial dictatorship with order

1→ 2→ 3. Then, 1 gets k2, 2 gets k3, and 3 gets k1. There is a (weakly) Pareto-improving

allocation: 1 gets k1, 2 gets k2, and 3 gets k3.

The cause of the inefficiency is to finalize 1’s allocation as k2 although she is happy

with k1 or k2. If we allow agent 1 to receive k1 or k2, however, then each agent’s final

allocation has multiple candidates in general, thus creating a combinatorial problem. This

poses a computational challenge, particularly when we deal with constraints. To overcome

this problem, we assume that the constraints constitute an integral polymatroid, a concept

in discrete mathematics. Importantly, the class of integral polymatroids permits hierarchical

constraints as a special case, which are widely observed in real problems. Applying techniques

of discrete convex analysis (Murota, 2003), we show that our new mechanism is polynomial-

time computable. Furthermore, the mechanism satisfies desirable properties: it is efficient,

respects priorities, and is strategy-proof. Here, the second property of respecting priorities

2These constraints appear in real problems because a local government receives a certain amount of
vaccine doses from the central government and then distributes them; see the vaccination programs of, e.g.,
India (National Portal of India, 2022), Japan (Prime Minister’s Office of Japan, 2022), or the United States
(Washinton State Department of Health, 2022).

3Abdulkadiroğlu et al. (2009) deal with the issue of breaking ties of school priorities in a school choice
problem.

4Svensson (1999) proves that a mechanism is neutral and group strategy-proof if and only if it is a serial
dictatorship. Pycia and Ünver (2017) provide a generalization of Svensson’s result.

5This fact was previously pointed out by Bogomolnaia et al. (2005); see the first paragraph of Section 4
therein.

6k1 � k2 is read “k1 is more preferred than k2” and k1 ∼ k2 is read “k1 is indifferent to k2”.
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is a fairness condition; assuming that there is a priority order over agents (which is identical

across objects), the property guarantees that no agent envies the outcome of the allocation

of an agent with a lower priority.

Related literature

The closest to our study is Svensson (1994), who introduces a new mechanism that

satisfies efficiency, fairness, and strategy-proofness under weak preferences. Our contribution

is threefold. First, while Svensson (1994) assumes that each object has quota 1,7 we allow for

a wider class of constraints on feasible allocations. Second, although Svensson (1994) does

not deal with computational problems, we prove that our mechanism is polynomial-time

computabile. Third, we describe our algorithm in terms of eliminating excess demand, thus

making it intuitive and clarifying the connection to existing matching/auction mechanisms.

Building upon Svensson’s (1994) result, Bogomolnaia et al. (2005) characterize a class

of mechanisms that satisfy efficiency, strategy-proofness and other desiderata as a selection

from a so-called bi-polar serially dictatorial rule. However, they do not offer a computation-

ally tractable selection. Fairness and consitraints are not considered either. Jaramillo and

Manjunath (2012) analyze object allocation under weak preferences while allowing some

objects to be intially owned by an agent. Our result is distinguished from theirs in that

constraints and fairness are taken into account. Erdil and Ergin (2017) develop a general

model of two-sided matching under weak preferences. Their model allows both sides of the

market to have weak preferences but does not handle constraints. Erdil and Ergin (2017)

propose a new algorithm that finds a stable and efficient outcome in polynomial time. The

key difference from our result is that their algorithm does not satisfy strategy-proofness.

A notable feature of our analysis is to utilize the notion of a matroid. Recently, matroid

and its variations have been integrated into the notion of M-convexity in discrete convex

analysis (Murota, 2003). Prior work has revealed that M-convexity is fundamental for run-

ning the DA/TTC algorithms under constraints; see Hafalir et al. (2022) and the literature

review therein.

The remainder is organized as follows. Section 2 introduces our model. Section 3 defines

our new mechanism and presents the main theorem about its properties. Section 4 concludes.

The proof of the main theorem is relegated to Section 5.

2 Model

Our notation partly follows that of Kojima and Manea (2010).

7Under this assumption on quotas, our mechanism coincides with Svensson’s mechanism.
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Let N = {1, . . . , n} be a set of agents and let K be a set of objects (more precisely,

object types). There is a special object, called the null object, denoted φ; let K̄ := K∪{φ}.
An allocation is a vector µ := (µi)i∈N that assigns object µi ∈ K̄ to agent i. For an

allocation µ, we define xµ ∈ ZK≥0 by

xµk = |{i ∈ N : µi = k}| for all k ∈ K,

representing the vector of the number of agents who receive each object (except the null

object). We assume that there is a set of feasible vectors F ⊆ ZK≥0 with F 6= ∅. An

allocation µ is said to be feasible if xµ ∈ F . Let A denote the set of feasible allocations.

Remark 1. We assume F ⊆ ZK≥0 rather than F ⊆ ZK̄≥0, thus imposing no restriction on the

number of the null object allocated to the agents. The underlying assumption is that the

null object is not scarce.

We illustrate feasible vectors in the example of allocating time slots for vaccination.

Suppose that there are two dates, K = {k, `}, on which residents can get vaccinated. Up to

100 residents can be accommodated on either day, but there are only 150 vaccine doses in

total. Then,

F =
{
x ∈ ZK≥0 : 0 ≤ xk ≤ 100, 0 ≤ x` ≤ 100, 0 ≤ xk + x` ≤ 150

}
. (1)

Each agent i has a weak (complete and transitive) preference relation over K̄, denoted

%i; let �i and ∼i denote the strict and indifference relations induced from %i, respectively.

We denote by R the set of all weak preference relations. Let %:= (%i)i∈N ∈ RN denote the

preference profile of all agents. For j ∈ N , we use the notation %−j:= (%i)i∈N\{j}.

Following Svensson (1994) and Pathak et al. (2021), we assume that there is a baseline

priority order π, which is a linear order over N . To quote Pathak et al. (2021): “This

priority order captures the ethical values guiding the allocation of the scarce medical re-

sources.” In the context of time slot allocation for vaccination, if j ∈ N is an elderly person

or essential personnel and h ∈ N is a young healthy person, then j is given a higher priority

than h, which is represented as j π h.8 Without loss of generality, we assume that

j π h⇐⇒ j < h.

Namely, an agent with a smaller index has a higher priority.

A mechanism ϕ : RN → A maps preference profiles to feasible allocations. At %∈ RN ,

agent i is assigned object ϕi(%). We focus on the following three properties:

8The order π could represent other fairness considerations such as needs or waiting time.
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• ϕ is efficient if, for any %∈ RN , ϕ(%) is efficient at %, i.e., there exists no µ ∈ A such

that [
µi % ϕi(%) for all i ∈ N

]
and

[
µj � ϕj(%) for some j ∈ N

]
.

• ϕ respects priorities if, for any %∈ RN , there exist no j, h ∈ N with h > j such

that

ϕh(%) �j ϕj(%).

• ϕ is strategy-proof if, for any %∈ RN , there exists no j ∈ N and %′j∈ R such that

ϕj(%
′
j,%−j) �j ϕj(%).

The first and third properties are standard in the mechanism design literature. The second

property was introduced by Svensson (1994) under the name of “weak fairness”; Pathak

et al. (2021) and Aziz and Brandl (2021) introduce a related property in the context of

medical rationing. It states that an agent j never envies the outcome of another agent h

who has a lower priority than j (recall that j π h whenever h > j). In the context of time

slot allocation, if an elderly person j cannot get vaccinated on any of her possible dates,

then a young healthy person h > j cannot get vaccinated on any of j’s possible dates either.

3 New mechanism

This section consists of four subsections. Sections 3.1 and 3.2 deal with preliminaries,

which are used to define our new mechanism in Section 3.3. Section 3.4 presents our main

result about the properties of the new mechanism.

We introduce two pieces of notation. For k ∈ K, let 1lk ∈ ZK≥0 denote the k-th unit

vector, i.e., 1lkk = 1 and 1lk` = 0 for all ` 6= k. For L ⊆ K and x ∈ ZK≥0, let x(L) :=
∑

k∈L xk.

3.1 Integral polymatroid

To establish a positive result on efficient computation, we borrow a concept in discrete

mathematics. We say that F ⊆ ZK≥0 with F 6= ∅ is an integral polymatroid (Welsh, 1976)

if it satisfies the following two conditions:

(M1) For any x ∈ F and y ∈ ZK≥0 with y ≤ x, it holds that y ∈ F .
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(M2) For any x, y ∈ F with x(K) < y(K), there exists k ∈ K with xk < yk such that

x+ 1lk ∈ F .

The former condition implies that we deal with an upper bound constraint. The latter

condition is the key property of a matroid, stating that a vector x with a smaller coordinate

sum than y can move “one step close” to y while staying inside F .

Remark 2. A mechanism ϕ is said to satisfy individual rationality if, for any %∈ RN

and any i ∈ N , it holds that ϕi(%) %i φ. One easily verifies that, under (M1), individual

rationality is implied by efficiency.

To see a concrete example of an integral polymatroid, we introduce an additional defini-

tion. We say that F is hierarchical if:

• there exists a family K ⊆ 2K such that, for any L,L′ ∈ K, either L ∩ L′ = ∅ or L ⊆ L′

or L′ ⊆ L holds; and

• for each L ∈ K, thete exists qL ∈ Z≥0 such that

F =
{
x ∈ ZK≥0 : x(L) ≤ qL for all L ∈ K

}
. (2)

It is known that F given by (2) is an integral polymatroid. This type of constraints naturally

appear in real problems. One such example is provided in (1). Another example is when

x vaccine doses are available in January and additional y doses are available in February.

In this case, the sum of vaccinated residents in January is no greater than x and the total

number of vaccinated residents in January and February is no greater than x+ y. This case

also can be accommodated by hierarchical feasible vectors.

3.2 Requirement function and existence of feasible allocation

Throughout this section, we fix %∈ RN . For i ∈ N , take an integer ri ∈ {1, . . . , |K̄|},
which we call a rank. We define the set of top ri ranked objects (at %i), denoted

K̄i(ri;%i), inductively as follows:

K̄i(1;%i) = {k ∈ K̄ : k %i ` for all ` ∈ K̄},
K̄i(ri;%i) =

{
k ∈ K̄ : k %i ` for all ` ∈ K̄\ ∪ri−1

s=1 K̄i(s;%i)
}

for all ri = 2, . . . , |K̄|.

For example, if K̄ = {k, `, φ} and 1’s preference is k ∼1 ` �1 φ, then

K̄1(1;%1) = {k, `}, K̄1(2;%1) = {k, `, φ}, K̄1(3;%1) = {k, `, φ}.
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We often write K̄i(ri) rather than K̄i(ri;%i) when the preference relation is clear from the

context. Note that K̄i(ri) ⊆ K̄i(r
′
i) whenever ri ≤ r′i.

For i ∈ N , we define i’s requirement function ρi : 2K × {1, . . . , |K̄|} → {0, 1} as

follows:

ρi(L, ri;%i) =

1 if K̄i(ri) ⊆ L,

0 otherwise.

We often write ρi(L, ri) rather than ρi(L, ri;%i). In words, ρi(L, ri) = 1 means that i requires

at least one object in L in order to receive an object ranked ri or higher. Since L is chosen

not from 2K̄ but from 2K , the following implication holds:

for any L ∈ 2K , φ ∈ K̄i(ri) =⇒ ρi(L, ri;%i) = 0. (3)

Take an agent set {1, . . . ,m} ⊆ N (1 ≤ m ≤ n) and a profile r := (ri)i∈N (called a rank

profile). We say that excess demand occurs at ({1, . . . ,m}, r) if there exists L ∈ 2K

such that

m∑
i=1

ρi(L, ri) > max
x∈F

x(L). (4)

The objects in L are in short supply at r in the sense that we cannot give all the agents

in {1, . . . ,m} a top ri ranked object. We say that excess demand does not occur at

({1, . . . ,m}, r) if there exists no L ∈ 2K that satisfies (4).

Remark 3. The requirement function was previously introduced in an auction setting; see

Demange et al. (1986) or Gul and Stacchetti (2000). Their auction algorithms proceed by

increasing the prices of the commodities in excess demand. Our novelty is to convey the

technique to a setting without monetary transfers; we adjust ranks, not prices.

The following proposition asserts that, at a given rank profile, excess demand does not

occur if and only if there exists a feasible allocation.

Proposition 1. Fix %∈ RN . Suppose that F is an integral polymatroid. Let r be a rank

profile. Then, the following are equivalent:

(i) There exists µ ∈ A such that µi ∈ K̄i(ri) for all i ∈ N .

(ii) Excess demand does not occur at (N, r).

Proof. An integral polymatroid is known to satisfy a notion of discrete convexity called
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M\-convexity.9 Thus, the claim follows from the so-called discrete separation theorem for

M\-convex sets; see Yokote (2020).10

Remark 4. In practice, F is bounded; in the example of time slot allocation for vaccination,

the number of people who can get vaccinated is always below a certain number. Under

this assumption, it is computationally easy to check whether excess demand occurs or not.

To see this point, we define the excess demand function at ({1, . . . ,m}, r), denoted

ED : 2K → Z, as follows:

ED(L) =
m∑
i=1

ρi(L, ri)−max
x∈F

x(L) for all L ∈ 2K .

One easily verifies from (4) that excess demand occurs at ({1, . . . ,m}, r) if and only if

max
L∈2K

ED(L) > 0. According to existing results in discrete convex analysis, ED(·) satisfies a

condition called supermodularity and its maximum value can be computed in time polynomial

in the number of agents and objects.11 It is also computationally easy to find an allocation

in Proposition 1(i) (if any) thanks to algorithms for submodular flow problems.12

3.3 Generalized Svensson mechanism

Throughout this section, we fix %∈ RN . We define our new algorithm, the generalized

Svensson mechanism, as follows:

• Step 0: Let i0 = 1 and r0 = (1, . . . , 1).

• Step t ≥ 1:

(a) If excess demand occurs at ({1, . . . , it−1}, rt−1), then define

it = it−1; rtit−1 = rt−1
it−1 + 1 and rti = rt−1

i for all i 6= it−1.

Go to step t+ 1.

(b) Otherwise, define it = it−1 + 1 and rt = rt−1.

∗ If it ≤ n, then go to step t+ 1.

9See, e.g., Section 4.7 of Murota (2003).
10As noted by Yokote (2020), the characterization here is a generalization of Hall’s (1935) theorem.
11Supermodularity follows from the discrete conjugacy theorem; see Theorem 8.12 of Murota (2003). For

polynomial-time computability, see Section 10.2 of Murota (2003).
12See Section 10.4 of Murota (2003).

8



∗ Otherwise, terminate the algorithm and define the outcome as a feasible al-

location µ ∈ A such that µi ∈ K̄i(r
t
i) for all i ∈ N (which always exists by

Proposition 1).13

Note that (a) does not occur indefinitely by (3), and (b) does not occur indefinitely either

because the number of agents is finite. This mechanism coincides with Svensson’s (1994)

mechanism when

F =
{
x ∈ ZK≥0 : xk ≤ 1 for all k ∈ K

}
.

The algorithm proceeds by sequentially expanding the set of agents and the set of objects

K̄i(ri) for i = 1, . . . , n. The procedure starts as if there is only one agent {1}, who accepts

only her first-ranked objects K̄1(1). Here, excess demand does not occur if φ ∈ K̄1(1) or

xk ≥ 1 for some x ∈ F and k ∈ K̄1(1). Suppose that either of the conditions holds true.

Then, we expand the agent set from {1} to {1, 2} and go to step 2. Both agents accept

only their first-ranked objects, namely, those contained in K̄1(1) (for agent 1) and K̄2(1) (for

agent 2). We check whether, given the acceptable sets of objects, excess demand occurs or

not: if not, then we leave agent 2’s tentative rank unchanged, i.e., r2
2 = r1

2 = 1; otherwise,

we ask agent 2 to increase her tentative rank, i.e., r2
2 = r1

2 + 1 = 2. This means that, in step

3, agent 2 accepts the objects in K̄2(2), the set of first- and second-ranked objects. As agent

2 accepts more objects compared to the previous step, there is a higher chance that excess

demand does not occur. We continue this process until there is no excess demand. Then,

we invite agent 3 to the player set {1, 2} and repeat the same procedure.

3.4 Main result

Let ϕGS denote the generalized Svensson mechanism.

Theorem 1. Suppose that F is an integral polymatroid. Then, ϕGS is efficient, respects

priorities, and is strategy-proof.

Proof. See Section 5.

It is noteworthy that ϕGS does not satisfy group strategy-proofness, a stronger notion

than strategy-proofness.14 For M ⊆ N , let %M := (%i)i∈M and %−M := (%i)i∈N\M .

13If there are multiple feasible allocations, we choose an arbitrary one.
14This observation is consistent with Ehlers’s (2002) theorem stating that there exists no efficient and

group strategy-proof mechanism under weak preferences.
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• ϕ is group strategy-proof if, for any %∈ RN , there exists no M ⊆ N and %′M∈ RM

such that[
ϕi(%

′
M ,%−M) %i ϕi(%) for all i ∈M

]
and

[
ϕj(%

′
M ,%−M) �j ϕj(%) for some j ∈M

]
.

To see that ϕGS violates this condition, let N = {1, 2, 3}, K̄ = {k, `, φ}, and

F =
{
x ∈ ZK≥0 : xk ≤ 1, x` ≤ 1

}
.

Suppose that the agents have the following true preferences:

• Agent 1: k ∼ ` � φ.

• Agent 2: ` � φ � k.

• Agent 3: k � φ � `.

Our algorithm proceeds as follows:

• Step 1: N0 = {1}, r0 = (1, 1, 1). Excess demand does not occur. Expand the agent

set.

• Step 2: N1 = {1, 2}, r1 = (1, 1, 1). Excess demand does not occur. Expand the agent

set.

• Step 3: N2 = {1, 2, 3}, r2 = (1, 1, 1). Excess demand occurs. Increase r2
3 from 1 to 2.

• Step 4: N3 = {1, 2, 3}, r3 = (1, 1, 2). Excess demand does not occur. The algorithm

terminates with final allocation µ1 = k, µ2 = `, µ3 = φ.

Now, suppose that 1 and 3 collude and submit the following preferences:

• Agent 1: ` � φ � k.

• Agent 3: k � φ � ` (same as the true preference).

Then, our algorithm proceeds as follows:

• Step 1: N0 = {1}, r0 = (1, 1, 1). Excess demand does not occur. Expand the agent

set.

• Step 2: N1 = {1, 2}, r1 = (1, 1, 1). Excess demand occurs. Increase r1
2 from 1 to 2.

• Step 3: N2 = {1, 2}, r2 = (1, 2, 1). Excess demand does not occur. Expand the agent

set.
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• Step 4: N3 = {1, 2, 3}, r3 = (1, 2, 1). Excess demand does not occur. The algorithm

terminates with final allocation µ1 = `, µ2 = φ, µ3 = k.

Compared to the allocation under true preferences, agent 1 is indifferent and agent 3 becomes

strictly better off, showing that group strategy-proofness is violated.

4 Conclusion

In this paper we have developed an efficient, priority-respecting, and strategy-proof mech-

anism when preferences involve indifferences and constraints are imposed on feasible alloca-

tions. The key idea is to reject an agent as being not qualified for object k only if excess

demand occurs whenever the agent receives k. Here, indifference relations are taken into

account, thus recovering the efficiency loss inherent in serial dictatorship with tie-breaking

that ignores indifferences.

5 Proof of Theorem 1

Throughout this section, we abbreviate “generalized Svensson mechanism” as GS.

Proof of efficiency: Fix %∈ RN . Suppose for a contradiction that ϕGS(%) is not efficient.

Then, there exists a feasible allocation µ such that every agent receives a weakly better

object than that under ϕGS(%) and at least one agent receives a strictly better object. For

each i ∈ N , we define r∗i by

r∗i = min
{
ri ∈ {1, . . . , |K̄|} : µi ∈ K̄i(ri)

}
.

Let t be the first step of GS under % at which rt−1
j = r∗j and rtj > r∗j for some j ∈ N ; since

there is at least one agent who strictly preferes the object under µ than that under ϕGS(%),

such a step t always exists. Since t is the first step, we have

rt−1
i ≤ r∗i for all i = 1, . . . , j − 1. (5)

By the definition of r∗ and the fact that every agent weakly prefers the object under µ than

that under ϕGS(%),

rt−1
i ≥ r∗i for all i = 1, . . . , j − 1. (6)
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Combining (5) and (6), together with rt−1
j = r∗j , it holds that

rt−1
i = r∗i for all i = 1, . . . , j.

This implies that, for any L ∈ 2K and any i = 1, . . . , j,

ρi(r
t−1
i , L;%i) = 1 =⇒ µi ∈ L. (7)

Then, for any L ∈ 2K ,

max
x∈F

x(L) ≥ |{i ∈ {1, . . . , j} : µi ∈ L}| ≥
j∑
i=1

ρi(r
∗
i , L;%i),

where the first inequality follows from the fact that µ is a feasible allocation and the second

inequality follows from (7). We obtain a contradiction to the fact that excess demand occurs

at ({1, . . . , j}, rt−1).

Proof of respecting priorities: Fix %∈ RN . Suppose for a contradiction that there exist

j, h ∈ N with h > j such that

ϕGSh (%) �j ϕGSj (%).

Let k∗ := ϕGSh (%). By k∗ �j ϕGSj (%), there exists a step t of GS under % at which k∗ ∈
K̄j(r

t−1
j ) and excess demand occurs, i.e., there exists L ∈ 2K such that

j∑
i=1

ρi(r
t−1
i , L) > max

x∈F
x(L). (8)

Since excess demand does not occur when the agent set is {1, . . . , j − 1},

j−1∑
i=1

ρi(r
t−1
i , L) ≤ max

x∈F
x(L). (9)

By definition,

ρj(r
t−1
j , L) ≤ 1. (10)
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Combining (8)-(10), the inequalities of (9) and (10) reduce to equalities. By (10) (holding

as equality),

K̄j(r
t−1
j ) ⊆ L,

which together with k∗ ∈ K̄j(r
t−1
j ) implies k∗ ∈ L. Together with (9) (holding as equality),

j−1∑
i=1

ρi(r
t−1
i , L) = max

x∈F
x(L).

This implies that, at ϕGS(%), all the objects in L are allocated exhaustively to the agents

in {1, . . . , j − 1}. Since k∗ ∈ L, we obtain a contradiction to k∗ = ϕGSh (%) and h > j.

Proof of strategy-proofness: Fix a true preference profile %∈ RN . Suppose for a con-

tradiction that an agent j ∈ N becomes stricly better off by submitting a false preference

%′j∈ R, i.e.,

ϕGSj (%′j,%−j) �j ϕGSj (%).

Let r′ denote the rank profile at the end of GS under (%′j,%−j).

The proof goes in parallel with that of ϕ respecting priorities. Let k∗ := ϕGSj (%′j,%−j).

By k∗ �j ϕGSj (%), there exists a step t of GS under % at which k∗ ∈ K̄j(r
t−1
j ;%j) and excess

demand occurs, i.e., there exists L ∈ 2K such that

j∑
i=1

ρi(r
t−1
i , L;%i) > max

x∈F
x(L). (11)

Since excess demand does not occur when the agent set is {1, . . . , j − 1},

j−1∑
i=1

ρi(r
t−1
i , L;%i) ≤ max

x∈F
x(L). (12)

By definition,

ρj(r
t−1
j , L;%j) ≤ 1. (13)

Combining (11)-(13), the inequalities of (12) and (13) reduce to equalities. By (13) (holding

as equality),

K̄j(r
t−1
j ;%j) ⊆ L,
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which together with k∗ ∈ K̄j(r
t−1
j ;%j) implies k∗ ∈ L. Since all the agents in {1, . . . , j − 1}

submit the same preferences between % and (%′j,%−j), it holds that rt−1
i = r′i for all i =

1, . . . , j − 1. Together with (12) (holding as equality),

j−1∑
i=1

ρi(r
′
i, L;%i) = max

x∈F
x(L).

This implies that, at ϕGS(%′j,%−j), all the objects in L are allocated exhaustively to the

agents in {1, . . . , j − 1}. Since k∗ ∈ L, we obtain a contradiction to k∗ = ϕGSj (%′j,%−j).
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