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1 Introduction
A large psychology and experimental literature documents that decision-makers’ forecasts

of their future circumstances appear overly influenced by the surprises embedded in their

current circumstances. In economics, this feature of belief formation has been captured by

the diagnostic expectations (DE) paradigm, formulated recently by Bordalo et al. (2018),

building on the representativeness heuristic by Kahneman and Tversky (1972). While

promising in the breadth of its potential implications, so far the DE paradigm has focused on

environments where the surprise is determined exogenously and perceived with respect to

a reference belief in the immediate past. However, these two characteristics appear overly

restrictive in applications because decisions often involve a feedback between agents’ beliefs

and endogenously determined economic states, and empirical evidence indicates that the

selective memory recall may be based on more distant information sets.1

Motivated by these observations, our paper makes three main contributions. First,

we develop micro-foundations to jointly address the theoretical challenges associated with

modeling (i) the feedback between optimal actions and agents’ DE beliefs over both exogenous

and endogenous variables, and (ii) the time-inconsistencies in those optimal actions that

arise when selective memory recall is based on a more distant past, rather than just the

immediate past. Second, we show that under distant memory, but not under recent memory,

the interaction between actions and DE beliefs naturally generate endogenous repeated

boom-bust cycles in response to a single initial shock. Third, we build on these foundations

to propose a portable solution method to study DE in linear recursive macroeconomic models,

which can thus accommodate large-scale dynamic stochastic general equilibrium models.

We leverage the tractability of our proposed method to incorporate DE into an estimated

quantitative New Keynesian model of the type widely used for policy analysis. We find that

DE about endogenous states and distant memory recall play a critical role in replicating the

empirically documented boom-bust cycle in response to a monetary policy shock.

In the recent formulation of Gennaioli and Shleifer (2010) and Bordalo et al. (2018), under

the assumption of normality of the data generating process, DE distort current rational

expectations (RE) with a term that depends on the difference between current RE (the

representative, or diagnostic group) and lagged RE (the reference, or comparison group).

Thus, the size of distortion is proportional to the revision in RE (or the representative

information). In Bordalo et al. (2018), this idea is formalized in terms of two parameters. A

1For example, Bordalo et al. (2020b) find that a reference belief based on the four quarters ago information
set seems to account well for the empirical over-reaction observed in the surveys of professional forecasters,
while Bordalo et al. (2019b) argue that the sluggishness in expected returns is best explained by a reference
information set eleven quarters in the past.
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parameter θ controls the severity of the distortion, while a parameter J controls the lag of

those reference beliefs.

Applied theory contributions. In the first part of the paper, we use a three-period

consumption-savings model to analyze the implications of DE beliefs under endogenous states

and distant memory recall. We identify two theoretical challenges.

First, in an economic model, a future uncertain object (such as consumption) typically

depends both on future exogenous forces (such as future income shocks) and on the agent’s

current endogenous actions (such as current savings). We emphasize how this latter, additional

source of dependence, which we label endogenous predictability, raises the challenge of jointly

determining forward-looking optimal actions and DE forecasts. We micro-found this joint

determination as the outcome of an intra-person Nash equilibrium between a Memory and

Deliberation self. We argue that this approach is consistent with recent evidence provided by

Bordalo et al. (2021) showing that memory is to some extent spontaneous: the new relevant

data (e.g., current income shock) and the particular hypotheses under consideration (e.g.,

conditional density over future consumption), jointly bring to the top of the agent’s mind

events that associate that relevant data with the hypothesis, without necessarily disentangling

the particular sources behind this event association.

Second, when the reference point for the DE distortion depends on the distant past (J > 1),

as opposed to the immediate past (J = 1), the law of iterated expectations (LOIE) fails. In a

multi-period model, the failure of the LOIE is important because it leads to time-inconsistent

choices, as a result of the change in beliefs induced by imperfect memory. To address the

issue of time inconsistency, we adopt the näıveté approach (e.g. O’Donoghue and Rabin

(1999)). The agent fails to take into account that her preferences are time-inconsistent and

thinks that in the future she will make choices under perfect memory recall, or RE. However,

when the future arrives, the agent ends up changing behavior and be again subject to her

imperfect memory recall. We find the näıveté approach psychologically coherent and more

consistent with the underlying foundation of diagnostic beliefs as a heuristic and a mental

short-cut than the alternative approach of sophistication. Under sophistication, the agent

fully understands how imperfect memory recall changes her future preferences. Furthermore,

the näıveté approach turns out to be computationally more tractable, since the current naive

agent does not need to internalize the life-time indirect effect of the current action on the

formation of future comparison groups.

The consumption-savings model yields two critical insights. First, the DE agent exhibits

a higher marginal propensity to consume (MPC) out of temporary income shocks relative to

the RE agent.2 The current high income innovation leads the agent to make a consumption-

2Jappelli and Pistaferri (2010), Kueng (2018), Fagereng et al. (2020) and McDowall (2020) find that the
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savings decision under an ‘as if’ overly optimistic view of future consumption. This perception

arises because memory is overly influenced by the statistical association between periods of

high income realizations and subsequent high consumption realizations. Memory is not cued

to distinguish whether this association arises because high income realizations are associated

with high subsequent income realizations (an effect that is in fact absent with temporary

shocks) or with periods of high savings. In both cases, what memory spontaneously recalls is

that high future consumption realizations typically follow (‘good times’ are typically followed

by ‘good times’). Second, when memory recall is based on the more distant past (J > 1),

the surprise in current capital relative to past expectations emerges as a novel informational

state that determines the agent’s decisions. This is because the current level of capital is not

a sufficient statistic for the comparison group in forming DE.

We showcase the importance of this novel informational state dynamics by studying

an infinite-horizon extension of our setup: the permanent income hypothesis (PIH) model.

Under distant memory, a single, temporary income shock can generate endogenous, repeated

boom-bust cycles because past actions feed into current beliefs, that in turn inform new

actions. Following a positive iid income shock, the income surprise creates optimism about the

future, leading to over-consumption. This initial over-consumption is eventually followed by

disappointment in the available amount of capital, as the comparison group evolves to reflect

past good times. Once again the agent over-reacts, cutting consumption more forcefully than

what she would under RE, causing a bust. Subsequently, the over-accumulation of capital

leads to positive surprises and renewed optimism. As a result of this surprise her consumption

recovers, and so on. The larger the lag J of the reference expectation, the longer and more

severe the under- and over-accumulation of capital.

Methodological contribution and quantitative evaluation. In the second part of

the paper we first explain how to solve linear general equilibrium models in the presence of

DE (under näıveté) by using standard solution methods, such as Sims (2000). In a nutshell,

the model is solved under the assumption that agents can observe the current state of the

economy, but that when they form expectations they are subject to DE. In turn, DE are

based on a linear transformation of a shadow RE law of motion. Our solution method is

portable, tractable and, importantly, also allows for general forms of how memory recall loads

on different past information sets.

We apply this solution method to incorporate DE into a quantitative New Keynesian

MPC out of temporary income shocks is puzzlingly large, even for financially un-constrained agents. Our
mechanism differs from two recent related approaches that generate such high MPCs. Lian (2020) shows that
(partial) sophistication is key for an agent to decide to save less today out of anticipation of future mistakes.
In Ilut and Valchev (2020), agents are similarly naive as in our benchmark model, but have uncertainty over
their optimal consumption functions, which endogenously leads to stable beliefs characterized by high MPC.
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model (Christiano et al. (2005), Smets and Wouters (2007)). Given our particular interest in

the role played by distant memory recall, we model the reference distribution in a flexible

manner, as a weighted average of lagged RE expectations. We estimate the model using

a Bayesian version of the impulse-response-function (IRF) matching method developed by

Christiano et al. (2010), where the empirical IRFs are recovered using a local Jordà (2005)

projection to a Romer and Romer (2004) monetary policy shock.

We find that the DE model reproduces the empirical IRFs to a monetary policy shock well,

successfully generating a persistent and hump-shaped boom-bust cycle in consumption and

other macro variables. In contrast, the RE model fails in delivering the empirical boom-bust

and amplitude, indicating that DE are a critical force in the estimated model. As a result, the

marginal likelihood, a Bayesian measure of fit that penalizes models with more parameters,

heavily favors the estimated DE over the RE model. In addition, the DE model is also able to

match remarkably well untargeted empirical responses, including the Survey of Professional

Forecasters expectations on inflation and GDP growth.

Distant memory is crucial for the empirical success of the DE NK model. The estimated

memory weights are centered on expectations formed five and six quarters ago. A re-estimated

model imposing the constraint of recent memory (J = 1) finds no role for DE, with the

estimated IRFs identical to the RE ones. This is because distant memory and the degree of

diagnosticity θ are complements and interact to amplify the role of DE through the feedback

between memory and actions. Counterfactual simulations imposing smaller lags J highlight

that distant memory affects both the magnitude and the duration of boom-bust cycles. The

longer the lag in memory, the more consequential the actions taken by agents in the meantime.

As in the consumption-savings and the PIH models, this result can be understood in

light of surprises in the capital stock. An expansionary monetary policy shock stimulates

consumption and investment so the stock of capital increases and the agent is positively

surprised by the resources available. Spending further rises, which in turn leads to more

capital stock and further positive capital surprise. This virtuous feedback loop continues

until the reference expectation of capital begins to catch up to the realized capital. The agent

is then less optimistic about the future and begins cutting back on spending. Eventually, she

becomes disappointed in the level of capital relative to the reference distribution formed at

the height of the boom, leading her to over-correct. Consumption is now reduced below the

steady-state level, pushing down the level of aggregate demand and capital accumulation. A

bust period arises, where the feedback between beliefs and actions leads to further economic

declines and disappointment.

In contrast to the consumption-savings and the PIH models, where the interest rate was

constant, in the New Keynesian model the consumption boom-bust must now be accompanied
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by a corresponding movement in the interest rate. Perceived consumption growth under DE

is linked to the perceived real interest rate. The perceived real rate is negatively related to the

perception of changes in the price level and can be decomposed into (i) the one-step-ahead

expectation of inflation under DE and (ii) the surprise in the current price level. We label

this second term the perceived innovation in cumulative inflation, because the surprise in

today’s price level reflects the cumulative inflation between the current period and the time

at which reference expectations were formed. On impact, because of an increase in utilization,

inflation declines. This determines a negative surprise in the price level and a lower than usual

expected future price level that is consistent with a perceived acceleration in consumption.

Inflation eventually starts picking up, leading to a reduction in the negative surprises for the

price level and then to positive surprises. This path determines a reversal in the perceived

innovation in cumulative inflation, which moves into the positive territory during the bust part

of the cycle, when agents find the resulting high perceptions of future price level consistent

with their pessimism about future consumption.

Our paper is closely related to some recent contributions that study DE in macro models.

Bordalo et al. (2019a) analyzes DE about a TFP process to account for credit cycles, Maxted

(2020) builds a He and Krishnamurthy (2019) style macro-finance model featuring DE, while

d’Arienzo (2020) introduces DE into a term-structure model to study bond market puzzles.

L’Huillier et al. (2021) further shares a similar interest with us in introducing DE into

linear, dynamic general equilibrium models. We contribute to the literature in two key ways.

First, we address the conceptual challenges of modeling the role of endogenous states and

distant memory recall in jointly affecting DE beliefs and optimal actions. In particular,

compared to this existing work, we confront the problem of time inconsistency by providing

a behavioral foundation of näıveté and sophistication and show that distant memory is

necessary to generate repeated boom-bust cycles in response to a single initial shock.3 Second,

in quantitative terms, we propose and use an easily portable solution method to estimate

a New Keynesian model with DE to show that the feedback between actions and distant

memory is critical in replicating the boom-bust cycle we recover from the data.

2 DE with endogenous states and distant memory
Consider an environment where the only source of stochasticity is a (one-dimensional)

Yt process. Time is discrete and indexed by t. Let Y t denote the history {Y0, ..., Yt} of Yt

realizations up to, and including, time t. At any t, the agent observes Y t. Under the true

3In this context, L’Huillier et al. (2021) study the role of endogenous states in driving DE beliefs, but
their analysis and solution method applies only when memory is based on the immediate past. d’Arienzo
(2020) explores the LOIE failure as a mechanism for a maturity increasing overreactions of expectations to
news. Here we connect this failure to time-inconsistency and study it in models with endogenous states.
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data generating process (DGP) Yt+1 is conditionally normal:

Yt+1 = µY (Y t) + εt+1, (1)

where εt+1 are mean-zero iid normal shocks with variance σ2 > 0. Here µY (.) gives the time

t conditional mean, as a function of current and past Yt realizations.

Endogenous predictability. We now introduce the process through which selective

memory recall distorts subjective forecasts in the presence of endogenous states. Let Ct+1 be

the random variable that the agent is interested in forecasting (e.g. future consumption or

future wealth). Suppose that its underlying DGP is

Ct+1 = µC,Y (Y t) + µC,K(Y t) + δεt+1. (2)

In the expression above, µC,Y (.) captures the exogenous predictability in Ct+1 that arises

because of the exogenous state Y t+1. Instead, µC,K(.) reflects the endogenous part of the law

of motion of Ct+1. In an economic model, in which Ct+1 is partly endogenously-determined,

this component arises from actions that are optimally set as a response to Y t. We refer to

the determination through µC,K(.) as endogenous predictability. Finally, |δ| > 0 reflects the

exposure of Ct+1 to εt+1, ensuring that the former is also non-predetermined as of time t.

The two sources of predictability can be added and summarized as an overall predictability:

µC(Y t) ≡ µC,Y (Y t) + µC,K(Y t). (3)

To illustrate how the two sources of predictability interact with each other, let Ct+1 be

future consumption determined by a budget constraint as Yt+1 +Kt, where Yt+1 is a stochastic

labor income with a conditional mean µY (Y t) = ρYt and Kt is accumulated savings. For the

sake of the argument, suppose that Kt is optimally determined as αYt. Then, the underlying,

true density for Ct+1 has δ = 1 and conditional predictability

µC(Y t) = (ρ+ α)Yt. (4)

Diagnostic beliefs. We now discuss how selective memory recall may distort agent’s

subjective probability judgments over Ct+1. For this purpose, we build on Gennaioli and

Shleifer (2010), Bordalo et al. (2018) who formulate a behavioral model of diagnostic expecta-

tions (DE). The fundamental psychological first-principle basis for this model is that due to

limited and selective memory retrieval, subjective probability assessments are overweighted by

event realizations that are “representative,” in the sense of the Kahneman and Tversky (1972)

representativeness heuristic of probabilistic judgments. This heuristic has been motivated

and documented by a large psychology and experimental literature (e.g. Bordalo et al. (2018),

Bordalo et al. (2020a), and Bordalo et al. (2021)).

The basic intuition brought forward by DE is that the judged probability of an otherwise
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uncertain event partly reflects its ‘true,’ objective, frequency (the ‘kernel of truth’) as well

as a subjective element that reflects the accessibility of that event in the agent’s working

memory. When new information arrives, memory selectively recalls more vividly past events

that are more associated with, or representative of, the current news. In our context, we

describe the DE model as the distorted density

hθt (Ĉt+1) = h(Ĉt+1|µC(Y t)) = µC(Ŷ t)

[
h(Ĉt+1|µC(Y t) = µC(Ŷ t))

h(Ĉt+1|µC(Y t) = Et−J [µC(Y t)])

]θ
1

a
(5)

where a is an integration constant that ensures that hθt (Ĉt+1) integrates to one. We use ‘hats’

when needed to emphasize the specific realization of any given random variables.

There are several important elements in this distorted distribution hθt (Ĉt+1), all of which

appear in some form in the earlier formulations of DE (e.g. Bordalo et al. (2018)). First,

h(Ĉt+1|µC(Y t) = µC(Ŷ t)) is the true density in equation (2) of a future realization Ĉt+1 for

a given current realization of the conditional mean, µC(Ŷ t). Second, Et−J [µC(Y t)] is the

comparison group for the random variable µC(Y t). Et−J [.] denotes the expectation operator

for any arbitrary random variable conditional on t− J information (i.e. conditional on Y t−J)

under the true law of motion for Yt in equation (1). This comparison group gives the state

prevailing if there is no news, compared to the immediate (J = 1), or more distant past

(J > 1). Third, θ > 0 captures the severity of representativeness on judgments. In contrast,

if θ = 0, memory recall is frictionless and the heuristic has no effects. Fourth, the distorted

density in equation (5) applies if and only if the conditional variance δ2σ2 > 0 in equation (2).

When δ2σ2 = 0, the conditional likelihood of observing any other scenario for Ĉt+1 than the

one the agent is now fully informed on (given by µC(Ŷ t)) has become equal to zero. As noted

by Gennaioli and Shleifer (2010), the lack of such conditional (or “residual”) uncertainty

leaves no room for memory to distort conditional forecasts.4

Bordalo et al. (2018) show how the normality assumption of h(.) leads to a tractable

characterization of hθt (.). Specifically, compared to h(.), under the DE density hθt (.) the

random variable Ct+1 remains conditionally normally distributed with the same variance

δ2σ2 > 0, but a distorted conditional mean

Eθt (Ct+1) = µC(Ŷ t) + θ[µC(Ŷ t)− Et−J [µC(Y t)]]. (6)

The DE distortion captures the over-reaction of the conditional mean to the new information.

This distortion is proportional by a factor of θ to the ‘surprise’ in the realized conditional

4This natural property also implies that if the agent is only interested in forecasting (or ‘now-casting’) a

random variable like µC(Y t), conditional on observing Y t, then Eθt [µC(Y t)] = Et[µC(Y t)] = µC(Ŷ t). In the

language developed in Bordalo et al. (2018), to compute Eθt [µC(Y t)] the realization µC(Ŷ t) constitutes its
infinitely representative state (see appendix in Bordalo et al. (2018) on Corollary 1).
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mean. The surprise in the RE mean, in turn, depends on the new information arising between

time t− J and current t, i.e. the realized path for Yt−J+1, ...Yt, through the function µC .

Memory and endogenous predictability. We emphasize that the ‘kernel of truth’

µC(Y t) that appears in the distorted density captures the overall statistical predictability.

This representation thus treats all sources of predictability equally and jointly. In our example,

it means that memory recall does not treat the component due to exogenous predictability,

µC,Y (Y t), as different from the component due to endogenous predictability, i.e. µC,K(Y t).5

The conceptual emphasis on the overall statistical predictability also conforms with recent

evidence provided by Bordalo et al. (2020a), Bordalo et al. (2021) showing that memory is in

important ways spontaneous. In particular, when cued by the decision-problem at hand to

think through hypotheses (i.e. conditional density) over the future random variable Ct+1,

decision-makers are not triggered to think separately about its sources, i.e. whether high Ct+1

is predicted separately by the µC,Y (.) or µC,K(.) component. Instead, (i) the new relevant

data and (ii) the particular hypotheses under consideration, jointly bring to the top of the

agent’s mind events that associate that relevant data with the hypothesis, without necessarily

disentangling the particular sources behind this event association.

Intuitively, and anticipating our consumption-savings application, consider the illustrative

equation (4), with positive loadings ρ and α. Memory is overly influenced by the statistical

association between periods of high income realizations and subsequent high consumption

realizations (since here the sum ρ + α > 0). Memory is not cued to distinguish whether

this association arises because high income realizations are associated with high subsequent

income realizations (separately due to ρ > 0) or with periods of high savings (separately

due to α > 0). In both cases, what memory spontaneously recalls is that high consumption

realizations typically follow (‘good times’ are typically followed by ‘good times’).6

Joint endogenous determination. The distorting effects of DE discussed above,

motivated by empirical and conceptual appeal, take as given the endogenously-determined

predictability through µC,K(Y t) in equation (2). When such predictability arises from actions

that are in turn affected by DE beliefs, a first theoretical challenge arises - optimal actions

and DE beliefs need to be jointly determined. For example, in a consumption-savings

5This formalization avoids arbitrary decompositions of how the agent recalls and thinks about the different
parts that affect the conditional mean of Ct+1. For example, the agent could further decompose µC,Y (Y t)
and/or µC,K(Y t) into specific sources of exogenous and/or endogenous predictability. This representation
rules out such decompositions. As such, it is conceptually consistent with the approach in earlier work on
DE where different sources of exogenous predictability are not treated differently. This interpretation is also
at the heart of the formal result in Bordalo et al. (2018) showing that it is not possible to freely bring a
predetermined variable outside the DE operator.

6This simple example also makes clear that for endogenous predictability to arise, a feedback between
beliefs and actions is necessary: If α = 0, there is no endogenous predictability. The Online Appendix presents
an investment model that illustrates this point.
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model, optimal savings is (i) endogenously affected by DE beliefs over future consumption

(like Eθt (Ct+1) in equation (6)) and (ii) in turn affects the underlying statistical process for

consumption, over which selective memory recall distorts those DE beliefs (like the conjectured

response coefficient α in equation (4)).

To briefly preview our approach, we will interpret this joint determination as the outcome

of a Nash equilibrium of an intra-personal game between two components of individual

decision-making, Memory (forming DE beliefs, given actions) and Deliberation (finding

optimal actions, given DE beliefs).7 A fixed point between actions and beliefs will then ensure

that the ‘kernel of truth’ component of DE beliefs (like µC(Y t) in equation (6)) is consistent

with the endogenous predictability implied by optimal actions.

Distant memory and LOIE. A second conceptual challenge in economic models driven

by DE beliefs arises because the Law of Iterated Expectations (LOIE) fails when DE is based

on distant memory. To see this issue in the environment summarized by equations (1) and

(3), consider some arbitrary periods t > J , integer n ≥ 1, and some comparison group t− J
in equation (5), where J ≥ 1. As discussed in Bordalo et al. (2018), Corollary 1, we can

establish (proof in Appendix) that

Lemma 1. LOIE holds generically under DE, i.e. Eθt
[
Eθt+1[Ct+1+n]

]
= Eθt [Ct+1+n], if and

only if memory is based on the immediate past (i.e J = 1).

The key term in Eθt
[
Eθt+1[Ct+1+n]

]
that determines if LOIE holds is the perceived surprise

Et[Ct+1+n]− Et[Et+1−J [Ct+1+n]]. (7)

Intuitively when memory is based on more distant past (J > 1), the time t expectation over

the t+ 1 DE forecast of Ct+1+n introduces an additional lagged forecast (here Et+1−J [Ct+1+n])

which would not be otherwise included in the time t DE forecast of Ct+1+n itself. Indeed, the

key term in equation (7) becomes generically zero if and only if J = 1.

We show below that the failure of the LOIE under distant memory typically leads to

time-inconsistency in optimal actions. To confront this issue, we study decision outcomes as

an intra-personal game between current and future selves (i.e näıveté vs. sophistication, as

for example in O’Donoghue and Rabin (1999) and Laibson (1997)).

Plan. The rest of the paper is organized as follows. In Section 3 we use a simple

consumption-smoothing problem to present our approach to the joint determination of DE

beliefs and optimal actions in the presence of endogenous states, with recent and distant

memory. In Section 4 we incorporate DE into a quantitative New Keynesian model of the

7We thank an anonymous referee for suggesting this interpretation.
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type widely used for policy analysis, showcasing both the methodological tractability and

quantitative success of our approach.

3 Joint determination of beliefs and actions under DE
The previous section illustrated the DE representation and introduced the conceptual

challenges we are interested in addressing. In this section, we start with a three-period

consumption-saving model to detail our approach. We solve the model under RE and then

introduce DE. We first discuss the issue of jointly determining optimal actions and DE beliefs

in the presence of endogenous predictability. We consider the case of recent (J = 1) and

distant (J > 1) memory. We discuss two alternative ways to handle the time inconsistency

that arises with distant memory, namely näıveté and sophistication, and opt for the former

as a benchmark. We then analyze the economic implications of the interaction between

endogenous predictability and distant memory, in a simple infinite horizon extension. In the

last subsection, we micro-found the joint determination of beliefs and actions as the outcome

of an intra-person Nash equilibrium between a Memory and Deliberation self.

Economic environment. An agent born at a generic time 1 inherits beliefs from J

periods ago and capital K0 from last period. In each period, the agent receives the exogenous

income Yt = Y + εt for t = 1, 2, 3, where εt are mean zero i.i.d. normal shocks with variance

σ2 > 0. At time 1, the agent chooses actual savings K1 and a contingent plan for savings at

time 2, K2, so to maximize current utility and the expected discounted sum of future utilities.

Here we also assume for simplicity a real interest rate r = 0, a discount factor β = 1, and a

quadratic utility function u(C) = bC − .5C2, where b > 0 and C < b are such that utility is

increasing in consumption in that region. The three-period assumption greatly simplifies this

problem, as her optimal end-of-life K3 = 0, since we rule out bequests motives.

3.1 Rational Expectations solution

We first solve the model under RE. At time 1, the agent solves

max
K1,K2

{u(C1) + E1 [u(C2) + u(C3)]} (8)

s.t. C1 = Y1 +K0 −K1; C2 = Y2 +K1 −K2; C3 = Y3 +K2 −K3.

and at time 2, the agent solves, given the inherited capital K1,

max
K2

{u(C2) + E2 [u(C3)]} (9)

s.t. C2 = Y2 +K1 −K2; C3 = Y3 +K2 −K3.

Proposition 1. The solution under RE is time consistent and is given by

K1 = αREK0
K0 + αREε1 ε1, K2 = αREK1

K1 + αREε2 ε2,
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where αREK0
= 2

3
= αREε1 and αREK1

= 1
2

= αREε2 .

First, under RE, agents spread their resources so to achieve a perfectly smooth consumption

path (in expectation). Second, the marginal propensity to save is invariant to the origin

(savings K0 and K1 or income shock ε1 and ε2) of available resources. Finally, the time

consistency means that the planned savings policy K2(K1, ε2) under time 1 problem (8)

coincides with the optimal policy K2(K1, ε2) under time 2 problem (9).

3.2 Diagnostic Expectations solution

We now introduce DE. We use θ, p-superscripts and θ-superscripts to denote planned

choices and equilibrium choices, respectively, under the DE problem. The time 1 problem is

to choose actual savings Kθ,p
1 and a contingent plan for Kθ,p

2 to maximize

max
Kθ,p

1 ,Kθ,p
2

{
u(Cθ,p

1 ) + Eθ1
[
u(Cθ,p

2 ) + u(Cθ,p
3 )
]}

(10)

s.t. Cθ,p
1 = Y1 +K0 −Kθ,p

1 ; Cθ,p
2 = Y2 +Kθ,p

1 −K
θ,p
2 ; Cθ,p

3 = Y3 +Kθ,p
2 −K3.

The end-of-life savings K3 is optimally set to zero. The first-order conditions are:

Cθ,p
1 = Eθ1

[
Cθ,p

2

]
, Eθ1

[
Cθ,p

2

]
= Eθ1

[
Cθ,p

3

]
At time 2, conditional on Kθ

1 and Y2, the agent re-optimizes (and thus may exhibit

time-inconsistency) over her initially planned Kθ,p
2 , by looking for a Kθ

2 that solves

max
Kθ

2

[
u(Cθ

2) + Eθ2u(Cθ
3)
]

(11)

s.t. Cθ
2 = Y2 +Kθ

1 −Kθ
2 ; Cθ

3 = Y3 +Kθ
2 −K3.

The first-order condition at time 2 is:

Cθ
2 = Eθ2

[
Cθ

3

]
(12)

Before solving the model and discussing the differences between recent and distant memory,

we find it useful to explain how to interpret the optimization problem under imperfect memory.

An intra-personal game interpretation. Our proposed approach to micro-found the

joint determination of actions and DE beliefs in the presence of endogenous predictability

takes the form of a Nash equilibrium of an intra-personal game between Memory (self M)

and Deliberation (self D) part of a decision-maker.

In this formulation, the Memory self captures the psychology of selective memory recall,

and builds on properties discussed in Section 2. In particular, conditional on the new,

representative information cued by the observed exogenous variation (here the current

income shock), Memory constructs DE beliefs over the future variable of interest for current

decision-making (here of future consumption). In this construction, Memory takes as given

11



a relationship that associates exogenous variation to the overall (i.e., both exogenous and

endogenous) predictability in that variable of interest. As introduced in Section 2, our

approach thus continues to be motivated by the spontaneous property of memory documented

in works like Bordalo et al. (2020a) and Bordalo et al. (2021). In turn, Deliberation finds

optimal current actions (e.g. current savings), as a function of economic states (income

shock and inherited capital) and of the conditional DE forecasts provided by Memory. In

equilibrium, we then impose that the endogenous part of the associative relationship used by

Memory is consistent with the optimal response function of Deliberation.

We defer derivations to Section 3.4. For the purposes of describing the emerging solution,

we note for now that our approach allows us to formally represent an optimality condition

such as in equation (12) as characterizing the Kθ
2 that solves

Y2 +Kθ
1 −Kθ

2︸ ︷︷ ︸
=Cθ2

= E2

[
Y3 +Kθ

2

]︸ ︷︷ ︸
=E2[Cθ3 ]

+θ
[
E2

[
Y3 +Kθ

2

]
− E2−J

[
Y3 +Kθ

2

]]
.︸ ︷︷ ︸

= Perceived surprise in conditional mean

(13)

Intuitively, self D optimally chooses Kθ
2 to implement perceived consumption smoothing,

where the RHS of the equation gives the self M ’s DE belief over Cθ
3 and connects to the

discussion around the DE representation in equation (6). In the presence of endogenous

predictability the ‘kernel of truth’ component (i.e. E2[Y3 +Kθ
2 ]) is an equilibrium outcome,

which by itself is consistent with the agent’s (i.e. self D) own optimal action for Kθ
2 .8

With this interpretation of the joint determination of actions and beliefs at hand, we now

proceed to characterize their properties by distinguishing between recent and distant memory.

3.2.1 Recent Memory (J = 1)

We prove two properties when memory recall is based on the immediate past, i.e. J = 1.

Proposition 2. When J = 1, the conditional time-2 optimal solution Kθ
2(Kθ

1 , ε2) is identical

(‘time-consistent’) to the time-1 optimal contingent plan Kθ,p
2 (Kθ

1 , ε2).

To see this, note that while the optimal time-1 plan Kθ,p
2 in equation (10) is set such

that Eθ1
[
Cθ,p

2 − C
θ,p
3

]
= 0, the conditional optimal Kθ

2 solves the time-2 perceived tradeoff

Cθ
2 − Eθ2[Cθ

3 ] = 0. Since the LOIE holds when J = 1 (Lemma 1), the conditional optimal Kθ
2

implements exactly the time-1 desired consumption path under Kθ,p
2 :

Eθ1
[
Cθ

2 − Cθ
3

]
= Eθ1

[
Cθ

2 − Eθ2Cθ
3

]
= 0.

Guided by the RE solution, we conjecture an optimal policy of a similar form:

Kθ
1 = αθK0

K0 + αθε1ε1; Kθ
2 = αθK1

Kθ
1 + αθε2ε2.

8The iid assumption on Yt also simplifies here the environment so that there is no exogenous predictability.
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Proposition 3. When J = 1, compared to the RE policy functions, the optimal policy

functions Kθ
1 and Kθ

2 feature the same optimal response to the endogenous state but a muted

response to the current income innovation, i.e.

αθK0
=

2

3
= αREK0

; αθK1
=

1

2
= αREK1

; αθε1 =
2

3 + θ
< αREε1 ; αθε2 =

1

2 + θ
< αREε2 .

The intuition for the muted savings response to the income shock is at the heart of

the endogenous predictability mechanism that we emphasize. To see this, recall the t = 2

optimality in equation (13), which for J = 1 reads

Y + ε2 +Kθ
1 −Kθ

2 = E2

[
Y + ε3 +Kθ

2

]
+ θ

[
E2

[
Y + ε3 +Kθ

2

]
− E1

[
Y + ε3 +Kθ

2

]]
Given a current unusually high income shock ε2, and thus level of assets Kθ

2 , the agent

correctly recognizes that her total future resources and consumption are likely to be higher

than usual. Since income Y3 is iid, this conditional predictability of future resources comes

just from Kθ
2 , which through the response αθK1

induces the endogenous persistence from ε2

to Cθ
3 . As described in the motivating Section 2, an agent subject to the representativeness

heuristic is then overly influenced by her perception of the new information contained in this

unusual state of high total expected resources Y +Kθ
2 . Due to her imperfect memory, she

recalls more vividly state realizations that are representative in light of this new information

and inflates the likelihood of future resources Y3 +Kθ
2 to be high.

In other words, selective memory recall associates the current high income innovation with

past times of optimism about total future resources. Such association does not occur here for

the standard reason of exogenous income being persistent. Instead, it arises because past

savings have smoothed past income innovations through time, making them endogenously

persistent. Thus, due to these selective memory associations, a higher current income

innovation leads the agent to currently act under an “as if” overly optimistic view of future

resources. The kernel of truth is satisfied, given that it is in fact the case that current good

times predict future good times, but the agent’s memory overstates the strength of this

relation and is not cued to discern that the relation arises because of her behavior. Given this

memory-based view, the agent optimally consumes more and saves less today than the RE

agent, resulting in a high marginal propensity to consume (MPC) and a lack of consumption

smoothing as measured by an external observer.9

Let us turn now to the DE response to the endogenous state Kθ
1 . The key economic

observation here is that when J = 1, the economic state Kθ
1 also serves as the necessary

9Our simple economic model does not feature financial constraints, usually viewed as the standard economic
reason for high MPC. Thus, our model’s implication speaks closer to the challenge posed to standard models
by the empirical evidence on high MPC out of temporary income shocks of financially un-constrained agents
(see for example evidence in Kueng (2018), Fagereng et al. (2020) and McDowall (2020)).
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and sufficient conditioning information to form the comparison group E2−J
[
Y + ε3 +Kθ

2

]
.

Therefore, the DE beliefs’ over-reaction to the new information, Kθ
2 −E2−J [Kθ

2 ], only contains

the current innovation ε2 and not the endogenous state Kθ
1 , that was already known when

the reference expectations were formed. Thus, when J = 1, DE affect the reaction to ε2, but

not to Kθ
1 - indeed, the latter response remains identical to the RE one.

3.2.2 Distant Memory (J > 1)

Now consider the case when memory recall is based on the more distant past, i.e. J > 1.

Proposition 4. When J > 1, the conditional time-2 optimal solution for Kθ
2 is not equal to

the time-1 optimal contingent plan Kθ,p
2 (Kθ

1 , ε2) (i.e. it is not ‘time-consistent’).

This result is a direct manifestation of the LOIE failure under distant memory (Lemma 1).

As we show in the Online Appendix, the time inconsistency arises because of the information

content of Kθ,p
1 with respect to the capital expected at time 0 (assuming J = 2). Between

when reference expectations were formed, at time 0, and when a new decision is made, at

time 2, an income shock occurred and agents reacted to the shock. As a result, capital is not

what the agent expected it to be. Agents do not take into account this surprise in capital

when they solve the planning problem at time 1.

Faced with this inherent time-inconsistency, we then need to model the agent’s current

beliefs about her future actions. Here we use insights from existing literature on time-

inconsistency (e.g. the seminal work by Strotz (1955) and Pollak (1968)) that point to

two different frameworks. The first approach, coined in this literature as näıveté in the

O’Donoghue and Rabin (1999) sense, used for example in Akerlof (1991), models an agent

who does not forecast her future self’s behavior to be governed by the representativeness

heuristic. The second approach is sophistication (e.g. Laibson (1997)), where the agent

understands that her future action is dictated by the representativeness heuristic.

Näıveté problem. Under näıveté , the time 1 problem is

max
Kθ

1

{
u(Cθ

1) + Eθ1
[
u(CRE

2 ) + u(CRE
3 )

]}
(14)

where the agent at time 1 believes her time 2 future self will take the action KRE
2 so to

max
KRE

2

[
u(CRE

2 ) + E2[u(CRE
3 )]

]
. (15)

The RE-superscript on a time t variable signify choices that are made under an RE policy

function, taking as given the state variable entering that period. From the budget constraints,

the (forecasted) consumption choices are therefore

Cθ
1 = Y1 +K0 −Kθ

1 ; CRE
2 = Y2 +Kθ

1 −KRE
2 ; CRE

3 = Y3 +KRE
2 −KRE

3 ,
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where Kθ
1 (and KRE

2 ) signify the choice resulting from a DE under näıveté (and RE, respec-

tively) policy function that solve (14) (and (15), respectively) and trivially KRE
3 = 0.

The optimal solution for Kθ
1 in equation (14) solves the intertemporal tradeoff

Cθ
1 = Eθ1

[
CRE

2 +
∂KRE

2

∂Kθ
1

(
CRE

3 − CRE
2

)]
, (16)

This captures the direct effects of the current choice on tomorrow’s consumption and the

indirect effects through the capital choice at time 2, anticipated to follow KRE
2 (where

∂KRE
2

∂Kθ
1

= 0.5 by Proposition 1) and the resulting consumption path.

Lemma 2. Under näıveté, for any J ≥ 1, the tradeoff for the optimal Kθ
1 in equation (16)

reduces to

Cθ
1 = Eθ1[CRE

2 ]. (17)

The key for this result is that the future self is expected to optimally select KRE
2 , which

conditional on time 2 states achieves E2[C
RE
3 ]− CRE

2 = 0. Thus, (CRE
3 − CRE

2 ) equals just

the income innovation ε3, unpredictable under Eθ1 (for any J ≥ 1). Due to this induced

unpredictability, for the naive agent the indirect effect of Kθ
1 as a relevant state for future

conditionally optimal choices can be ignored - a form of envelope-theorem result that makes

the problem particularly tractable.

While these are her beliefs at time 1, entering period 2 with the state realization Kθ
1

and new information determined at time 2, her problem is once again influenced by the

representativeness heuristic. Her conditionally optimal action solves

max
Kθ

2

[
u(Cθ

2) + Eθ2[u(CRE
3 )]

]
, (18)

where Cθ
2 = Y2 +Kθ

1 −Kθ
2 and CRE

3 = Y3 +Kθ
2 −KRE

3 . The optimal action implements

Cθ
2 = Eθ2[CRE

3 ]. (19)

The behavioral interpretation of equations (14), (15) and (18) is that, at time 1, the agent

maximizes assuming that after time 2 the future selves will not be subject to any memory

heuristics (i.e. she will act ‘fully rationally’), even though at time 2 the decision maker ends

up changing behavior and is in fact subject to her imperfect memory recall.

Joint naive beliefs and actions. To characterize the resulting optimal actions and

DE beliefs, we can extend the terminology introduced earlier in section 3.2 around Memory

and Deliberation selves to account for the näıveté assumption. In particular, similar to the

argument around equation (13), we look to impose equilibrium consistency of beliefs for the

Memory self of the naive agent.

There are two properties of equilibrium consistency that arise here. First, the ‘kernel of
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truth’ component part is

E2[CRE
3 ] = Y +Kθ,∗

2 − E2[KRE
3 ],

where Kθ,∗
2 is the optimal choice by the Deliberation self (which Memory self takes as given)

and we make specific the role of perceived future optimal behavior under RE through E2[KRE
3 ].

Second, the comparison group for the time-2 naive Memory self is the RE forecast made by

the former (J periods ago) naive self about time-3 perceived optimal behavior. Since naive

agents at any given time believe future optimal behavior to be governed by the RE policy, the

comparison groups are also built under forecasts of future optimal RE behavior. Therefore,

this internal consistency requires that the comparison group is built as

E2−J [E2[CRE
3 ]] = E2−J [Y +KRE

2 − E2[KRE
3 ]].

Put together, the naive Deliberation self solves the trade-off in (19), where the naive

Memory self’s beliefs are (as a counterpart of the RHS of equation (13)):

Eθ2[CRE
3 ] = E2[CRE

3 ] + θ
(
E2[CRE

3 ]− E2−J [CRE
3 ]
)
, (20)

where we used the LOIE under RE to simplify the comparison group expression above.

Solution under näıveté. We focus on J = 2 in this three-period model. The optimality

conditions (17), (19), and the RE policies of Proposition 1 produce the following solution.

Proposition 5. When J = 2, the optimal time 1 and 2 policy functions under näıveté are

Kθ
1 = − 2θ

3(2 + θ)
N−1,0[K0] +

2

3
K0 +

2

3 + θ
ε1,

Kθ
2 = − θ

2(2 + θ)
N0,1[Kθ

1 ] +
1

2
Kθ

1 +
1

2 + θ
ε2,

where N−1,0 [K0] ≡ K0 − E−1 [K0] and N0,1

[
Kθ

1

]
≡ Kθ

1 − E0

[
KRE

1

]
represent the surprises in

the stock of capital with respect to the expectations formed in the past.

The difference with the J = 1 case of Proposition 3 is the presence of a novel informational

state, given by the surprise in capital.10 These novel state dynamics arise because the

economic states K0 and Kθ
1 are not sufficient statistics anymore for the comparison group

that matters for decisions at time 1 and 2, respectively. With J = 2, the relevant comparison

groups are built on conditional expectations E−1[K0] and E0[KRE
1 ], respectively.

In particular, in Proposition 5 the elasticities on K0 and Kθ
1 continue to recover the

role of capital stock as an economic state, which influences decisions as in the RE policy

function. The novel informational role is captured by the elasticities on N−1,0[K0] and N0,1[Kθ
1 ].

Consider, for example, an increase in Kθ
1 caused by a positive innovation in ε1. A higher Kθ

1

10When J = 1, because the LOIE holds, the time-consistent policy functions of Proposition 3 are equivalent
to those derived under näıveté (or sophistication). See Proposition 7 in the Online Appendix.
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than expected at time 0 under the relevant comparison group leads to a perceived positive

innovation in Kθ
2 − E0[KRE

2 ]. Since agents are over-influenced by this surprise, they become

over-optimistic about future resources and invest less. This explains why the innovation

N0,1

[
Kθ

1

]
enters with a negative sign in the time 2 policy function. Similar intuition explains

why the innovation N−1,0 [K0] enters with a negative sign in the time 1 policy function.

Under recent memory (J = 1), these news terms collapse to zero: N0,0 [K0] ≡ K0 −
E0 [K0] = 0 and N1,1

[
Kθ

1

]
≡ Kθ

1 − E1

[
KRE

1

]
= 0. In the second relation, we have used

E1

[
KRE

1

]
= Kθ

1 because a projection of current capital at horizon zero is always equal to the

current capital, no matter the data generating process that Memory uses when forming the

projection. Intuitively, when J = 1, the news terms disappear because the stock of capital

inherited from the past is already part of the information set entering the comparison group.

Instead, when J > 1, the agent makes decisions in the meantime, and these decisions create

surprises with respect to the comparison group based on the more distant past.

Näıveté vs sophistication. We conclude this subsection by briefly considering the

alternative assumption of sophistication. We provide details in the Online Appendix. For

the time 2 policy function we recover the same coefficients as the näıveté case, except that

E0[Kθ
1 ] enters into the savings rule instead of E0[KRE

1 ]. This occurs because we assume that,

in order to maintain belief consistency across selves, the sophisticated agents’ comparison

group is the expectation formed J periods ago by the former sophisticated self. In turn, at

time 1 the agent would choose a different plan than what she anticipates will be her optimal

time-2 conditional action. Thus, her optimal time 1 action aims to fix that misalignment.

The sophistication counterpart of the optimality condition in equation (16) contains indirect

effects of the current action on the future policy. Since the agent anticipates that she will

over-consume at time 2, the consumption-smoothing motive between time 1 and 2 leads the

agent to consume more at time 1 out of temporary income shock ε1 relative to näıveté.

In extending the theoretical framework of this consumption-smoothing model to more

realistic and quantitatively relevant business cycle models, we propose to focus on the näıveté

approach. The key reason is is that the sophistication approach’s required hyper-rationality

runs counter to the motivation of modeling agents’ beliefs about their future circumstances as

influenced by a heuristic. Indeed, the latter is usually viewed as a cognitive, mental shortcut

that allows agents to make judgments quickly and efficiently (Tversky and Kahneman (1975)

and Kahneman (2011)).11 The näıveté approach is arguably psychologically more coherent

and consistent with the underlying foundation of diagnostic beliefs as a heuristic reflecting a

11Part of this hyper-rationality is that in infinite-horizon models the current sophisticated agent would
internalize the life-time indirect effect of current savings as a future information state, i.e. how current savings
affect the formation of comparison groups that will matter in the future selective memory recall of the past.
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memory representation affected by imprecise, selective, and less than fully rational recall.12

Moreover, computationally the näıveté approach is also significantly more tractable, a

property that we explain and leverage in the rest of the paper. Therefore, we present the

näıveté approach as a ‘portable extension of existing models’ (as advocated by Rabin (2013))

that tractably incorporates the psychology foundation of the representativeness heuristic and

the role of imperfect memory recall in standard business cycle models.

3.3 Distant memory and boom-bust cycles

Our analysis shows that the interaction between endogenous economic states and distant

memory introduces novel informational states that affects the model’s propagation mechanism.

In this subsection we use the simplest infinite-horizon extension of the three-period model to

showcase this altered propagation.

In particular, we study the permanent income hypothesis (PIH) model under DE with

näıveté. We continue to assume quadratic utility and iid income shocks. Households can save

buying capital at the price q = (1 + r)−1 , where r > 0 is the exogenous real interest rate and

the discount factor is β = (1 + r)−1. The time t budget constraint is then:

Kt = (1 + r)(Kt−1 + Y + εt − Ct).

As before, we first solve the model under RE, where the FOC is:

CRE
t = Et(CRE

t+1).

In the Appendix, we conjecture and verify the RE consumption policy function:

CRE
t =

r

1 + r

(
KRE
t−1 + εt

)
+ Y (21)

and the resulting RE saving decision

KRE
t = KRE

t−1 + εt (22)

Thus, under RE, capital is a random walk and shocks have a permanent effect on savings.

Similar to Subsection 3.2.2 under DE and näıveté the agent’s problem at time t is:

max
Kθ
t

{
u(Cθ

t ) + Eθt
[
V(Kθ

t )
]}
, (23)

where the continuation utility V(.) reflects the maintained assumption that the agent at time

t believes her future selves from time t+ 1 on will act under RE. Thus the agent expects that

the time t+ 1 self will take the action KRE
t+1 so as

V(Kθ
t ) = max

KRE
t+1

[
u(CRE

t+1) + Et+1

[
V(KRE

t+1)
]]
. (24)

12In terms of literature, the näıveté approach is also consistent with how previous contributions such as
Bordalo et al. (2019a) and Maxted (2020) dealt with the failure of LOIE in exogenous processes.
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Proposition 6. The optimal savings policy function under DE and näıveté is

Kθ
t = Kθ

t−1 −
rθ

1 + r (1 + θ)
Nt−J,t−1

(
Kθ
t−1

)
+

1 + r

1 + r (1 + θ)
εt.

where the news term Nt−J,t−1

(
Kθ
t−1

)
≡ Kθ

t−1 − Et−J [KRE
t−1].

In the Appendix we show that this solution arises from the FOC of the problem in (23)

Cθ
t = Eθt (CRE

t+1),

where the agent anticipates future behavior according to the t+ 1 RE policy (see equation

(21)), similar to the result detailed in Lemma 2. As in the three period model (see Proposition

5), the DE solution presents an additional informational state variable Nt−J,t−1

(
Kθ
t−1

)
. This

state variable is relevant to the extent that it induces optimism or pessimism about the

future as a result of a discrepancy between the resources currently available and those

anticipated based on the agent’s imperfect memory. Furthermore, this additional state

variable is activated only to the extent that memory is based on the distant (J > 1) past.

Consistent with the discussion in Subsection 3.2.2 (in particular around equation (20)),

the comparison group is based on the RE solution. This is how the agent perceives capital

should have evolved based on the information available at time t− J. Thus, using the law of

motion for capital under RE in equation (22) we have Et−J [KRE
t−1] = Kθ

t−J , where Kθ
t−J is the

capital in place at t− J . The optimal policy in Proposition 6 becomes:

Kθ
t = Kθ

t−1 −
rθ

1 + r (1 + θ)

[
Kθ
t−1 −Kθ

t−J
]

+
1 + r

1 + r (1 + θ)
εt. (25)

The solution above elucidates that both the severity of the DE distortion captured by θ > 0

and the lag in the reference distribution J matter to determine the behavior of consumption

and capital in response to a transitory shock. Figure 1 illustrates how these two margins

interact with each other in a model in which DE apply to both exogenous and endogenous

variables. Specifically, we consider a unitary income shock that dissipates after one period.

The three rows report the consumption response, the capital response, and the response of

the surprise in capital scaled by the DE parameter θ (i.e., θ
[
Kθ
t−1 −Kθ

t−J
]
), respectively.

Across columns, we vary the lag of the reference distribution, J , while the different lines in

each panel are obtained by varying the severity of the DE distortion, θ. For each variable,

the panels are on the same scale to facilitate the comparison.

Endogenous booms and busts. Under DE, the initial capital response to a transitory

shock εt is smaller than under RE (evident from equation (25)). The initial capital response

decreases with θ, but it does not vary with J . This is because the shock is always unpredictable,

no matter when the reference expectations were formed. In other words, the information

content of the initial shock does not vary with respect to J . The under-accumulation of
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Figure 1: Permanent Income Hypothesis model

Notes : The figure reports the impulse responses to a unitary iid shock for the Permanent Income Hypothesis

model. The three rows report the responses of consumption, capital, and the surprise in capital scaled by the

DE parameter θ (i.e., θ
[
Kθ
t−1 −Kθ

t−J
]
), respectively. Across columns, we vary the lag of the reference

distribution, J , while the different lines in each panel are obtained by varying the severity of the DE

distortion, θ. For each variable, the panels are on the same scale to facilitate the comparison.

capital translates in an over-reaction in consumption. Under recent memory (J = 1, first

column), the path reverts to the one followed under RE after one period. Analytically, with

J = 1 the news state in equation (25) is irrelevant. This is consistent with the fact that

when J = 1 there are no further perceived surprises, as shown in the third row. Of course,

both consumption and capital are permanently lower than under RE because of the initial

under-accumulation of capital, but the impulse response is now flat, as under RE.

Moving from left to right, we can appreciate the importance of allowing for distant

memory. While the initial response is not affected, the persistence of the initial over-reaction

is controlled by J . More importantly, after J + 1 periods the agent is surprised again.

However, this time the surprise is the result of the interaction between Deliberation and

Memory. Consider the case J = 2 (second column). In period 3, the memory formed at

time 1 becomes relevant. Now the agent is disappointed in the current level of capital. This

is because Memory recalls the projection based on the stock of capital that was available

at time 1, the reference value for period 3. Capital is lower than expected because in the
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meantime the DE agent has consumed too much. The response of the DE agent at time 3 is

to cut consumption more than what an RE agent would do if confronted with the same level

of capital. As J increases (third and fourth column), not only it takes longer for the agent to

reverse her behavior, but the correction also increases in magnitude. Thus, J does not only

affect the lag in the correction, but also its amplitude.

As J increases, an additional, crucial feature of distant memory becomes more visible:

A single, initial shock can endogenously induce repeated boom-bust cycles. As J increases,

kinks and inflection points occur with lags and magnitudes that depend on J . Consider the

case of J = 8 (fourth column). As before, a first kink occurs in period J + 1 = 9, when the

agent reacts to a disappointing level of savings by cutting consumption more than what she

would have done under RE. As the agent keeps accumulating capital and the reference level of

capital progressively declines, consumption recovers. The third row highlights that the agent

eventually becomes positively surprised by the amount of capital that she has at her disposal.

This is the result of her own actions in response to the perceived low stock of capital. She is

accumulating capital, while the reference value is constantly declining. As a result, capital

and consumption start slowing down, generating an inflection point. Eventually, a second

kink occurs (in period 2J + 1 = 17). Now the reference level of capital is increasing once

again, as a result of the agent past behavior. Thus, the agent is disappointed by her current

level of capital compared to what she was expecting based on her past behavior.

Overall, distant memory creates rich interactions between the actions taken by the agent

and her memory. The extent of the DE distortion captured by the parameter θ and the lag of

the reference distribution as captured by J interact to create repeated boom-bust cycles. A

large DE distortion implies that agents react forcefully to perceived surprises in the amount

of resources. This behavior creates the conditions for future surprises. Kinks in the response

of the economy occur every J periods, but inflection points can occur in between these kinks

as past actions induce changes in beliefs. Finally, if memory were based on an average of

multiple lags of past expectations, as in our quantitative model of Section 4, instead of on a

single lag J , the kinks would appear smoother and more similar to turning points.

3.4 Memory and deliberation equilibrium

Before moving to the methodology and quantitative model of Section 4, we re-connect

to Subsection 3.2, where we have introduced the interpretation of the agent solving the DE

problem in the presence of endogenous predictability as a form of a Nash equilibrium between

a Memory self and a Deliberation self. We now detail this interpretation in the context of

the second period problem (11) and the resulting condition (13).

Consider first self M . Given the new information Y2 and the inherited capital Kθ
1 , self M
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is characterized by the following conditional normal density over Cθ
3

Cθ
3 ∼ N(µθC3

(Y2, K
θ
1), σ2

C3
), (26)

where µθC3
and σ2

C3
are the perceived conditional mean and variance, respectively. This

conditional density captures the spontaneous self M ’s reaction to the new information, when

cued about the hypothesis involved in forecasting Cθ
3 . Part of our equilibrium consistency

requirement is that this reaction function will conform to the ‘kernel of truth’ component

of DE formation. As such, the arguments for µθC3
(.) already anticipate that consistency (we

keep the state space simpler here by assuming J = 1), but at this stage this memory reaction

is taken as given.

Deliberation, given memory formation. We now formalize how self D accounts for

the effect of her choice Kθ
2 on expected Cθ

3 , when we insist that perceptions over Cθ
3 are

controlled by self M and thus given by the process in (26). For this purpose, suppose first

that self D’s action is given by a particular choice K̃θ
2 . Taking as given the primitive memory

process in equation (26) and for any given K̃θ
2 , the perception of self M ’s can be recasted as

Cθ
3 ∼ N(mθ

C3
+ K̃θ

2 , σ
2
C3

). (27)

To connect with the concept of ‘residual uncertainty’ introduced in Section 2, we can view

mθ
C3

as the memory distortion over the residual, conditionally stochastic part of Cθ
3 .13 This

distortion can thus be further interpreted as self M ’s response, or adjustment, in forecasting

Cθ
3 , as a function of its primitive belief µθC3

(.) and the number K̃θ
2 . The function is

mθ
C3

(µθC3
(Y2, K

θ
1), K̃θ

2) = µθC3
(Y2, K

θ
1)− K̃θ

2 . (28)

The basic intuition here is that self D views Kθ
2 as the component of Cθ

3 that she can

affect, by reasoning that one extra unit of savings today must mean one more unit of available

Cθ
3 tomorrow. Instead, she takes as given the mθ

C3
part of expected Cθ

3 as a memory distortion

that self D cannot manipulate.

Turning to the self D’s time-2 problem in equation (11), she now takes as given a value

for mθ
C3

in self M ’s density in (27), to optimize

max
Kθ

2

[
u(Y2 +Kθ

1 −Kθ
2) +

∫
u[σC3ξ +mθ

C3
+Kθ

2 ]φ (ξ) dξ

]
,

where φ(ξ) denotes the standard normal density. The first-order condition for the optimal

13By the time t = 3 budget constraint the residual uncertainty here is formally over Y3. Thus, any shock
realization Y3 that achieves any given realization Ĉθ3 is now perceived as Ŷ3 = Ĉθ3−K̃θ

2 . Equation (27) captures
an as if memory’s perceived distribution for Y3 ∼ N(mθ

C3
, σ2
C3

). This formulation is not saying that memory

suddenly thinks in isolation over each individual component of Cθ3 . For example, if Cθ3 = K̃θ
2 +

∑N
i=1 Y3,i, i.e.

if there would be multiple sources of stochasticity indexed by i, then the sum
∑N
i=1 Y3,i ∼ N(mθ

C3
, σ2
C3

).
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choice of Kθ
2 is then given by

Y2 +Kθ
1 −Kθ

2 =

∫
[σC3ξ +mθ

C3
+Kθ

2 ]φ (ξ) dξ

Integrating with respect to ξ, and further using equation (28), this condition gives self D’s

optimal response for Kθ
2 as

Kθ
2(Y2, K

θ
1 , µ

θ
C3

(Y2, K
θ
1)) = Y2 +Kθ

1 − µθC3
(Y2, K

θ
1), (29)

a function of the economic states and the given memory mapping µθC3
(.). Economically, the

resulting optimal choice for Kθ
2 implements the time-2 perceived consumption smoothing

Cθ
2 = Y2 +Kθ

1 −Kθ
2(Y2, K

θ
1 , µ

θ
C3

(Y2, K
θ
1)) = µθC3

(Y2, K
θ
1). (30)

Consistency of beliefs. Turning to the memory mapping µθC3
(.), DE put discipline on its

formation by imposing the ‘kernel of truth’ consistency of beliefs, as follows:

Definition 1. The DE equilibrium self M ’s density (26) over Cθ
3 is

µθ,∗C3
(Y2, K

θ
1) = µC3(Y2, K

θ
1) + θ

(
µC3(Y2, K

θ
1)− E1[µC3(Y2, K

θ
1)]
)

(31)

where consistency of beliefs in the ‘kernel of truth’ component requires that

µC3(Y2, K
θ
1) = E2[Cθ

3 ] = Y +Kθ,∗
2 (Y2, K

θ
1), (32)

and the perceived conditional uncertainty σ2
C3

over Cθ
3 to equal V2[C3] = σ2 > 0.

In turn, by equation (29) the equilibrium action under DE for self D satisfies

Kθ,∗
2 (Y2, K

θ
1) = Y2 +Kθ

1 − µ
θ,∗
C3

(Y2, K
θ
1). (33)

Put together, the resulting perceived consumption smoothing

Cθ,∗
2 = Y2 +Kθ

1 −K
θ,∗
2 (Y2, K

θ
1) = µθ,∗C3

(Y2, K
θ
1). (34)

underlines our early equation (13). In this formal sense we have interpreted throughout a

single first-order condition like equation (13) as the equilibrium outcome of a game between

Memory and Deliberation, where we impose consistency of beliefs on the ‘kernel of truth’

component of DE.

4 A quantitative DE New Keynesian model
We leverage the previous qualitative insights to incorporate DE into a quantitative New

Keynesian model of the type widely used for policy analysis. We emphasize the critical role

played by endogenous predictability and distant memory recall in this new class of models.

Methodologically, we formally rely on the näıveté approach to model beliefs, as argued earlier.

This allows us to develop a tractable and recursive solution method to characterize equilibrium
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laws of motion when agents act under DE. We estimate our model and show that it replicates

the empirical boom-bust cycle in response to a monetary policy shock.

In deriving our theoretical results, we made use of the tractability arising in a model

with Gaussian shocks where perceived tradeoffs are linear, thus maintaining conditional

normality. However, in more general cases, the non-linear version of the model will not lead

to a conditionally normal distribution. Indeed, in the class of models that we analyze in this

section, it is the solution of the log-linearized model that has this property. In this setting,

we exploit the convenient formulation of the representativeness heuristic based on the density

hθ in equation (5) by applying it on the log-linearized perceived tradeoffs. Our primitive

approach, in line with what proposed in Bordalo et al. (2018), consists of emphasizing the

role of the representativeness heuristic in distorting the perceptions of the marginal tradeoffs.

We find the direct modeling of perceptions of linearized marginal tradeoffs as distorted by

the density hθ appealing because: (a) in linearized models these perceptions guide actual

(marginally driven) decisions, and (b) in standard Gaussian environments these tradeoffs

can be tractably characterized, a feature that we leverage throughout the paper. In our

final remarks, we briefly discuss directions for future research, including how to allow for

non-linearities while preserving tractability.

4.1 The model

The model features monopolistic competition in the labor and goods market, subject to

adjustment costs in setting nominal prices. Consumption-investment decisions are influenced

by real rigidities, in the form of habit formation and investment adjustment costs, and

monetary policy follows a Taylor rule.

Household. The representative household chooses capital Kθ
t , investment Iθt , capital

utilization rate uθt , bonds Bθ
t , consumption Cθ

t , labor N θ
h,t and nominal wage W θ

h,t to solve

max
Kθ
t ,I

θ
t ,u

θ
t ,B

θ
t ,C

θ
t ,N

θ
h,t,W

θ
h,t

[
ln(Cθ

t − bC
θ

t−1)−
(N θ

h,t)
1+η

1 + η
+ βEθtV(Sθt+1)

]
(35)

subject to the budget constraint

P θ
t C

θ
t + P θ

t I
θ
t + PB,θ

t Bθ
t + (ϕw/2)

(
W θ
h,t/W

θ
h,t−1 − γΠ

)2
W θ
t

= Bθ
t−1 + P θ

t R
k,θ
t uθtK

θ
t−1 +W θ

h,tN
θ
h,t +

∫ 1

0

Dθ
i,tdi− P θ

t a(uθt )K
θ
t−1.

where P θ
t is the price level, Rk,θ

t is the capital rental rate, and
∫ 1

0
Dθ
i,tdi is the combined

current nominal profits from intermediate firms, given below in the firms’ profit maximization

problem. PB,θ
t is the price of bond that pays 1 unit of consumption at t+ 1 so PB,θ

t = 1/Rθ
t ,

where Rθ
t is the gross nominal interest rate. We allow for a capital utilization rate uθt choice,

subject to a resource cost specified as a(uθt ) = Rk(1 + τ)−1
(
(uθt )

1+τ − 1
)
. We explain the
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continuation value V(.) in detail below.

Each household is monopolistically competitive in its labor supply. A perfectly competitive

labor packer combines household labor and sells the composite labor N θ
t to intermediate

firms, described below, using the CES technology N θ
t =

[∫ 1

0
(N θ

h,t)
1
λn dh

]λn
, where λn controls

the steady-state wage markup. The packer’s cost minimization leads to a standard demand

curve taken by the household as an additional constraint in solving equation (35), namely

N θ
h,t = N θ

t

(
W θ
h,t/W

θ
t

)−λn/(λn−1)
, where W θ

t is the aggregate wage level.

As we detail below, our approach handles large state space models, which allows us to

incorporate DE into a NK model with nominal and real frictions that are typical of such

quantitative business cycle models (see e.g., Christiano et al. (2005) and Smets and Wouters

(2007)). In particular, the budget constraint above describes how nominal wages are subject

to an adjustment cost (as in Kim (2000)), governed by the parameter ϕw, where γ is the

rate of deterministic technological progress and Π is the steady-state inflation rate. On the

preference side, note that in equation (35) we allow for habit formation, where C
θ

t−1 is the

average aggregate consumption in the previous period and b is the external habit parameter.

Finally, the optimization in equation (35) is further subject to the physical capital law of

motion, which features a standard quadratic investment adjustment cost

Kθ
t = (1− δ)Kθ

t−1 +
{

1− (κ/2)
(
(Iθt /I

θ
t−1)− γ

)2
}
Iθt ,

where δ is the depreciation rate and κ is the adjustment cost parameter.

As explained in Section 3, in this näıveté approach, in evaluating the continuation value

V(.) in equation (35), the household assumes that her and other agents’ future conditional

preferences and resulting conditionally optimal actions will be taken under perfect memory

(or RE), given values of the states entering next period, collected in the vector Sθt+1. To

construct that continuation value we thus set up a ‘shadow’ economy (indexed by RE) where

the household problem is solved under perfect memory, conditional on inherited states:

V(Sθt ) = max
KRE
t ,IREt ,uREt ,BREt ,CREt ,NRE

h,t ,W
RE
h,t

[
ln(CRE

t − bCθ

t−1)− (1 + η)−1NRE
h,t + βEtV(SREt+1)

]
,

subject to the budget constraint

PRE
t CRE

t + PRE
t IREt + PB,RE

t BRE
t + (ϕw/2)

(
WRE
h,t /W

θ
h,t−1 − γΠ

)2
WRE
t

= Bθ
t−1 + PRE

t uREt Rk,RE
t Kθ

t−1 +WRE
h,t N

RE
h,t +

∫ 1

0

DRE
i,t di− PRE

t a(uREt )Kθ
t−1.

The law of motion for capital is given by

KRE
t = (1− δ)Kθ

t−1 +
{

1− (κ/2)
(
IREt /Iθt−1 − γ

)2
}
IREt ,

while the labor demand curve is simply NRE
h,t = NRE

t

(
WRE
h,t /W

RE
t

)−λn/(λn−1)
.
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Firms. The final output is produced by a perfectly competitive representative firm that

combines a continuum of intermediate goods Y θ
i,t using the CES technology:

Y θ
t =

[∫ 1

0

(Y θ
i,t)

1
λf di

]λf
,

where λf controls the steady-state markup. Intermediate goods firms’ production function is

Y θ
i,t = (uθi,tK

θ
i,t)

α(γtN θ
i,t)

1−α, where Kθ
i,t and N θ

i,t are the capital and labor employed by firm i.

From the cost minimization problem, the real marginal cost is given by

MCθ
t =

(Rk,θ
t )α(W θ

t /P
θ
t )1−α

αα(1− α)1−αuθi,t(γ
t)1−α .

As with households, intermediate firms also face an adjustment cost (à-la Rotemberg

(1982)) in changing their nominal price. Their problem is to choose P θ
i,t to maximize

(Cθ
t − bCθ

t−1)−1Dθ
i,t/P

θ
t + βEθtVf (P θ

i,t), (36)

where Dθ
i,t =

(
P θ
i,tY

θ
i,t − P θ

tMCθ
t Y

θ
i,t − (ϕp/2)

(
P θ
i,t/P

θ
i,t−1 − Π

)2
P θ
t Y

θ
t

)
and ϕp is the price

adjustment cost parameter. Vf (.) is the continuation value

Vf (P θ
i,t−1) = max

PREi,t

[
(CRE

t − bCθ
t−1)−1DRE

i,t /P
θ
t + βEtVf (PRE

i,t )
]
,

where DRE
i,t =

(
PRE
i,t Y

RE
i,t − PRE

t MCRE
t Y RE

i,t − (ϕp/2)
(
PRE
i,t /P

θ
i,t−1 − Π

)2
PRE
t Y RE

t

)
. Thus, in

equation (36), firms’ instantaneous payoff is given by current real profits and the continuation

value is given by the discounted sum of real profits Vf(P
θ
i,t). Under näıveté, in computing

continuation value, agents assume that firms inherit the chosen price P θ
i,t (which is relevant

for the adjustment cost) but future prices are set according to RE.

Market clearing and monetary policy. The resource constraint is given by

Cθ
t + Iθt + (ϕp/2)

(
Πθ
t − Π

)2
Y θ
t + (ϕw/2)

(
Πθ
w,t − γΠ

)2
W θ
t /P

θ
t + a(uθt )K

θ
t−1 = Y θ

t ,

where Πθ
w,t ≡ W θ

t /W
θ
t−1 is nominal wage inflation. The central bank follows a Taylor rule:

Rt/R
θ =

(
Rθ
t−1/R

)ρR {(Π̃θ
t/Π

)φπ (
Y G,θ
t /(γY G,θ

t−1 )
)φY}1−ρR

exp(εt), εt ∼ N(0, σ2
R),

where Π̃θ
t ≡ 0.25

∑3
s=0 Πθ

t−s is annual inflation, εt is the iid monetary policy shock, and GDP

is defined as Y G,θ
t ≡ Cθ

t + Iθt . We provide the equilibrium conditions in Appendix C.

4.2 Solution method

Our solution method exploits the fact that naive DE agents expect future actions to be

taken under the RE policy function. Below we outline our solution method. We provide

additional details and formulas in Online Appendix D.
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1. The first step of the solution algorithm consists of obtaining the shadow RE law of

motion used by agents to form DE. We start from a linear RE system

Γ0x
RE
t = Γ1x

RE
t−1 + Ψεt + ΠηREt , (37)

where xREt , εt and ηREt are vectors of endogenous variables, shocks, and expectation

errors, respectively. This RE system is simply the RE version of the economy, with

linear equilibrium conditions where DE (Eθt ) is replaced with RE (Et).

A recursive law of motion can be obtained, using for example Sims (2000),

xREt = TRExREt−1 + RREεt.

2. Consider a linear DE system

Γθ
0x

θ
t = Γθ

2Eθt [yREt+1] + Γθ
1x

θ
t−1 + Ψθεt, (38)

where we provide expressions for Γθ
0, Γθ

2, Γθ
1 and Ψθ in the Appendix. Relative to the

RE system (37), which implicitly defines expectations in xREt by using expectation

errors ηREt , the DE system (38) explicitly accommodates DE (Eθt [yREt+1]).

We can substitute the Eθt [yREt+1] in the DE system (38) as

Eθt [yREt+1] = Et[yREt+1] + θ(Et[yREt+1]− Ert [yREt+1]), (39)

where Ert [yREt+1] denotes the comparison group, or the reference distribution, characteriz-

ing the representativeness heuristic. Our method allows for a general form of memory

recall and thus of this comparison group. In particular, as we further explain below, we

model this reference distribution in a flexible, yet parsimonious manner, as a weighted

average of lagged RE expectations:

Ert [yREt+1] =
J∑
j=1

αjEt−j[yREt+1], (40)

where {αj}Jj=1 are weight parameters on lagged expectations (and thus
∑J

j=1 αj = 1).

Let yREt = MxREt , where M is a selection matrix that selects variables from a vector

xREt . Given the DE beliefs characterized by (39) and (40), the system (38) then becomes

Γθ
0x

θ
t = Γθ

2

[
(1 + θ) MTRExθt −

J∑
j=1

θαjM
(
TRE

)j+1
xθt−j

]
+ Γθ

1x
θ
t−1 + Ψθεt, (41)

where TRE is the auto-regressive component of the RE solution. The expression (41)

also clarifies that agents form DE based on state variables inherited from the DE

economy, but assuming that in the future the economy follows the RE law of motion.
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3. Inverting matrices and rewriting (41) more compactly gives the DE law of motion:

zθt = Tθzθt−1 + Rθεt, (42)

where we provide expressions for Tθ and Rθ in Appendix D and zθt is a vector that

includes not only xθt but also its lags. Finally, we check that all variables over which we

take DE present residual uncertainty using the formula we provide in Appendix D.

The key advantages of our solution method are thus its portability and tractability : a

researcher can transform a standard linear dynamic equilibrium model (37) and compute the

DE law of motion (42) with a few additional lines of code.

4.3 Estimation

Our aim is to demonstrate that DE matter in practical and policy-relevant settings. We

choose the estimation method that aligns with this goal. The starting point of our analysis

is a local projection estimation of impulse responses to a monetary policy shock using U.S.

quarterly macroeconomic data over the sample period 1969Q1–2006Q4.14 Specifically, we

estimate the following regressions:

xt+h = ch + τh1 t+ τh2 t
2 +

L∑
l=1

Ahl xt−l +
I∑
i=0

Bh
i et−i + ut+h, h = 0, . . . , H

where xt is the variable of interest and et is the Romer and Romer (2004) monetary policy

shock, extended by Coibion et al. (2017). The coefficients of interest are {Bh
0}Hh=0. We set

L = 4 and I = 0 and compute the impulse response for H = 32 horizons.

We estimate the model parameters using the Bayesian version of the impulse-response-

matching method, developed by Christiano et al. (2010). In this method, the likelihood

depends on how closely the model matches the empirical response to a shock. The likelihood

is then combined with priors on the model parameters.15 In our empirical analysis below, we

target the impulse responses of four variables: log real per capita consumption, log per capita

hours worked, log GDP deflator inflation, and the log Federal Funds rate (FFR). We then

also use the implied responses of four other variables, namely log real per capita investment,

log real per capita GDP, SPF expected inflation, and SPF GDP growth expectations, as

‘untargeted’ moments that serve as external validation.16

14We do not include the period after 2007Q1 to avoid complications arising from the zero lower bound.
15We provide a detailed description of the estimation method in the Online Appendix E.
16To obtain real per capita GDP we divide real GDP by total population. Real per capita consumption is

measured by the sum of personal consumption expenditure on nondurables and services divided by total
population. Real per capita investment is the sum of gross private domestic investment and personal
consumption expenditure on durables divided by total population. Per capita hours worked is the total hours
in nonfarm business sector divided by total population.
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We fix several parameters before the estimation. The deterministic growth rate γ and the

steady-state inflation rate Π are set to 1.004 and 1.01, respectively, which imply a steady-state

annual output growth rate of 1.6% and the annualized inflation rate of 4%. The capital

share α, the discount factor β and the depreciation rate δ are set to 0.3, 0.99 and 0.025,

respectively. We set λf and λn to 1.1, which imply steady-state price and wage markups of

10%. For parameters that are common in the New Keynesian literature, we center our priors

around conventional values.

For the diagnostic parameter θ, we choose a conservative prior that puts significant weight

on the RE case (θ = 0) but also encompasses the estimates found in Bordalo et al. (2018)

and Bordalo et al. (2019b) (θ ≈ 1). Specifically, we chose a Normal distribution with mean 0

and standard deviation 0.2, but we truncate this prior above θ ≥ 0 so as to be consistent

with the theoretical restriction that the diagnosticity parameter has to be (weakly) positive.

Note that the prior mode of this truncated Normal distribution is 0.17 As explained above

(see equation (40)), we allow for flexible reference expectations in memory recall and thus

the comparison group is a weighted average of lagged expectations. To estimate the weights

{αj}Jj=1 on past memory, we consider a parsimonious parameterization. We set J = 32 and

estimate the mean µ and the standard deviation σ of a Beta distribution. We then rescale

and discretize the implied Beta(µ, σ2) distribution to span the discrete interval [0,32] and

obtain the weights α̃j . We then apply the transformation αj = α̃j/(
∑J

j=1 α̃j) so that {αj}Jj=1

sum to one. We report the priors and all estimated parameters in Table 1 in the Online

Appendix, while below we focus on the key parameters that control the effects of DE.

4.4 Results

Figure 2 presents the local projection impulse responses (black solid lines) to a one-

standard-deviation expansionary monetary policy shock along with the 90% confidence bands.

In response to a reduction in the FFR, real variables such as hours and consumption all

increase in a hump-shaped manner, peaking around 10 quarters after the initial shock. These

variables then undershoot below the steady states and reach their trough around 5 to 6 years

after the shock, followed by a gradual recovery.18 Inflation builds up slower and tends to

peak at the end of the boom, followed by a slow return to the steady state.

The DE New Keynesian model (blue lines with circles) reproduces the empirical impulse

response functions (IRF) well, successfully generating the boom-bust cycle observed in the

data. We use three alternative models to argue that the DE distortion and distant memory

provide the key mechanism for this successful fit.

17Online Appendix F shows that results are similar if we center the prior for θ around 1.
18McKay and Wieland (2021) find a similar boom-bust pattern in their estimated responses to a monetary

policy shock.
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Figure 2: Impulse responses to a monetary policy shock: Fit for targeted responses

Notes: This figure reports impulse responses for targeted variables. The black lines are the mean responses

from the local projection and the shaded areas are the 90% confidence bands. The blue circled lines are IRFs

from the baseline model with DE, allowing for distant memory. The green squares are IRFs from the DE

model imposing that recall is based only on recent memory. In this case, J = 1 by assumption. The red

dashed lines are IRFs from the counterfactual RE model where we set θ = 0 while holding fixed other

estimated parameters. The magenta dashed lines are IRFs from the re-estimated RE model. The

consumption and hours responses are in percentage deviations from steady states while inflation and the

FFR are in annual percentage points.

Alternative models. First, we evaluate a counterfactual RE model, where we set the

diagnostic parameter θ = 0, while holding fixed all other estimated parameters. This coun-

terfactual model (red dashed lines) generates transitory and negligible responses, indicating

that much of our success is due to the DE mechanism. Second, we re-estimate the model

under RE, i.e., imposing the constraint that θ = 0. The re-estimated RE model (magenta

dashed lines) fails in delivering the empirical boom-bust dynamics and the amplitude of the

IRFs. As a result, the marginal likelihood, a Bayesian measure of fit that penalizes models

with more parameters, is (−345− (−369) =) 24 log points higher in the DE model.

In the third and final exercise, we re-estimate the DE model (i.e., we allow for θ ≥ 0) but

impose the constraint that J = 1. Strikingly, we then estimate a value of θ = 0. As a result,

in this alternative model that constrains memory recall to be based entirely on the immediate

past, the IRFs (green squares) coincides with those of the re-estimated RE model.19 This

exercise showcases how in our model distant memory and DE distortion θ are complements,

since they interact and jointly magnify the role of DE.

Untargeted moments. The model also matches remarkably well the IRFs that were

19It is then not surprising that the marginal likelihood of the re-estimated RE model beats that of the
re-estimated DE model with J = 1 by (−369− (−371) =) 2 log points, because the DE model with J = 1
has an additional parameter θ that is not estimated to be significant.
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Figure 3: Impulse responses to a monetary policy shock: Fit for untargeted responses

Notes : This figure reports impulse responses for untargeted variables. The black lines are the mean responses

from the local projection and the shaded areas are the 90% confidence bands. The blue circled lines are IRFs

from the baseline model with DE, allowing for distant memory. The green squares are IRFs from the DE

model imposing that recall is based only on recent memory. In this case, J = 1 by assumption. The red

dashed lines are IRFs from the counterfactual RE model where we set θ = 0 while holding fixed other

estimated parameters. The magenta dashed lines are IRFs from the re-estimated RE model. The responses

of GDP and investment are in percentage deviations from the steady states while the inflation and output

growth expectations are in annual percentage points.

not targeted in the estimation. The first two panels of Figure 3 report the responses of GDP

and investment to the monetary policy shock. The model delivers a good fit. The right two

panels of Figure 3 report the impulse response of expected inflation and expected output

growth.20 The model generates expectations that are very much in line with those observed

in the data, even though we did not target those expectations in our estimation exercise.21

Figure 3 also shows that the re-estimated RE version does a worse job in accounting for these

untargeted moments. Formally, we find that the root-mean-square error (RMSE) for the DE

model is 0.52, while for the re-estimated model RE it is 0.64. Crucially, focusing only on the

untargeted survey moments (inflation and output growth expectations), the RMSE for the

DE model is 0.25, while for the re-estimated RE model it is 16% larger, at 0.29.22

20We measure inflation and output growth expectations using the median of the SPF survey responses
of one-quarter-ahead inflation and output growth expectations, respectively. We assume that the model
implied inflation and output growth expectations coincide with what a DE agent in the model would predict
(Eθt [π̂REt+1] and Eθt [∆Ŷ

G,RE
t+1 ]).

21In the Online Appendix F, we estimate the model targeting inflation and output growth expectations
and show that it can generate boom-bust cycles in macro variables.

22We compute RMSE =
√∑N

i=1

∑T
t=1(IRF idata,t − IRF imodel,t)2/T , where IRF idata,t and IRF imodel,t

indicate the local projection IRF and model IRF, respectively, for (i) GDP, investment and expected inflation
and output growth (all untargeted moments) or for (ii) expected inflation and output growth (untargeted
survey moments only).
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Figure 4: Estimated selective memory

(a) Estimated memory weights αj (b) Empirical role of distant memory

Notes: The left panel reports the estimated memory weights αj . The right panel reports the consumption

IRF in the estimated DE model (blue circled line) and the counterfactual model where only recent memory

matters (orange dotted line) and when only two-period-ago memory matters (green line with plus signs).

DE parameters. We estimate θ = 1.97 for the parameter controlling the severity of

the DE distortion. This value is in the same order of magnitude of previous estimates (for

example, Bordalo et al. (2018), Bordalo et al. (2019a), d’Arienzo (2020), L’Huillier et al.

(2021), which tend to estimate θ ≈ 1), even if larger. However, we note that the existing

estimates are based primarily on models where imperfect memory is assumed to be driven

only by the immediate past, an assumption that we show fundamentally changes inference in

our structural model (per our discussion of the DE version imposing J = 1).

The mean and standard deviation of the Beta distribution that controls the weights α′js

attached to each of the J = 32 lagged expectations entering the comparison group are 0.17

and 0.03, respectively. As shown in the left panel of Figure 4, these estimates imply that

the weights are centered on the expectations formed six quarters ago, with positive weights

assigned to expectations formed between three and ten quarters ago. To further examine

the importance of distant memory and complement our previous discussion on alternative

models, the right panel of Figure 4 shows how the impulse response for consumption changes

as we vary the lag for the reference distribution. We consider the counterfactual case in

which only recent memory matters (J = 1) or when only two-period-ago expectations matter

(J = 2). Other parameters are fixed at the benchmark estimates. Reducing the lag impacts

the frequency and the amplitude of the boom-bust cycles. As we discuss below, when J

increases the effects of past misperceptions accumulate, leading to larger fluctuations.
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4.5 Mechanism

We have emphasized throughout this paper that the interaction of endogenous states

and distant memory affects equilibrium actions and DE beliefs. In this class of NK models,

these effects occur both on the real and nominal side of the economy, which in equilibrium

are jointly determined. To describe the overall mechanism in this model, we first focus on

consumption dynamics by leveraging the qualitative insights on repeated boom-busts of the

PIH model of Subsection 3.3. In contrast to the PIH model, where the real interest rate was

constant, a consumption boom-bust is now accompanied by a corresponding movement in

the perceived real interest rate. Thus, our second line of argument is to describe the nominal

side, and in particular the novel and critical role played by perceptions over inflation.

4.5.1 Capital surprise as an endogenous informational state

We have described in detail in the PIH model how the interaction of endogenous pre-

dictability and distant memory delivers a novel, informational state, capturing surprises

over the endogenous state of capital. A similar force characterizes this richer NK model.

In particular, resembling Proposition 6, the surprise Nk
J,t−1 ≡ k̂θt−1 − Ert [k̂REt−1] emerges as an

endogenous informational state. Here Ert [k̂REt−1] is the reference expectation for k̂t−1, where we

use lowercase letters with hats to denote variables in log-deviations from the steady states.23

Figure 5 shows the path of equilibrium capital k̂θt−1, its reference expectation Ert [k̂REt−1]

(in top left panel), and the resulting equilibrium surprise Nk
J,t−1 (solid line in bottom left

panel). An expansionary monetary policy shock stimulates consumption and investment

so capital k̂θt−1 increases. The reference distribution Ert [k̂REt−1] moves slowly, so the agent is

positively surprised by the resources available. Due to these positive surprises, consumption

and investment further rise, which in turn leads to more capital stock and further positive

capital surprises. This virtuous feedback loop continues until the reference expectation

Ert [k̂REt−1] of capital begins to catch up to the realized k̂θt−1. The agent is then less optimistic

about the future and begins cutting back on consumption and investment.

Eventually, the economy enters a bust phase when the agent becomes disappointed in

the level of capital relative to the reference distribution formed at the height of the boom.

The capital surprise Nk
J,t−1 thus turns from positive to negative, leading now the agent to

over-correct. Consumption is now reduced below the steady-state level, pushing down the

level of aggregate demand and capital accumulation. A bust period arises, where the feedback

between perceived pessimism leads to further economic declines and disappointment in the

agent’s perceptions of her resources (relative to her more optimistic forecast formed several

23By equation (40), this reference expectation is a weighted average of projections over capital at t− 1,

conditional on t− j information. When j = 1, this projection is simply the observed realized state k̂θt−1, while

for j > 1 the projection makes t− j conditional forecasts over the uncertain k̂t−1 using the RE law of motion.
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Figure 5: Capital, consumption, and perceived real rate

Notes: The figure reports the response to the monetary policy shock for capital, consumption, and the

perceived real rate (top panels). We also report responses of the capital and consumption surprises and the

perceived innovation in cumulative inflation, scaled by θ (bottom panels).

periods ago). Thus, similar to the illustrations in the PIH model, in this quantitative model

an endogenous boom-bust in the informational state Nk
J,t−1 emerges, triggered by the sole

realization of an iid shock (here the monetary policy shock).

As emphasized in Section 3, when memory recall is based only on immediate past (i.e.,

J = 1), there is no perceived surprise over the endogenous state k̂θt−1, since its realization

entirely informs the comparison group relevant for the DE beliefs. Indeed, in a counterfactual

case where J = 1, the reference expectation Ert [k̂REt−1] = k̂θt−1 and thus the perceived surprise

Nk
J,t−1 = 0 at all times, as shown by the flat magenta dotted line in the bottom left panel of

Figure 5. The same panel also shows that as soon as J = 2 the surprise Nk
J,t−1 is activated

(the green dashed line). However, in the counterfactual DE model where J = 2, the duration

and magnitude of the surprise are both very small. In contrast, consistent with the discussion

around the PIH model (see also Figure 1), the more distant memory estimated in our model

increases both the duration and the magnitude of the boom-bust cycles in the surprise Nk
J,t−1.
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4.5.2 Joint real and nominal dynamics

We now analyze the key mechanism behind the joint determination of the real and the

nominal side, and in particular the novel and critical role played by inflation dynamics. For

this purpose, we focus on the Euler equation for bonds, momentarily ignoring habit formation:(
Cθ
t

)−1

P θ
t

= βRθ
tEθt

[(
CRE
t+1

)−1

PRE
t+1

]
,

that, expressing in terms of deviations from the steady state and rearranging, becomes

Eθt [ĉREt+1]− ĉθt = r̂θt − Eθt [π̂REt+1]− θ
[
pθt − Ert

[
pREt

]]︸ ︷︷ ︸
Surprise in price level

= r̂θt − Eθt [π̂REt+1]− θπ∗J,t︸ ︷︷ ︸
Perceived real rate

,
(43)

where

π∗J,t ≡
∑J

j=1αj
(
π̂θt−j+1,t − Et−j[π̂REt−j+1,t]

)︸ ︷︷ ︸
Perceived innovation in cumulative inflation

= pθt − Ert
[
pREt

]
,

and each term π̂t−J+1,t = π̂t−J + π̂t−J+1 + ...π̂t = pt−pt−J−π denotes the cumulative inflation

between t− J and t. For further reference, we denote that surprise, or perceived innovation

in cumulative inflation, as the equilibrium object π∗J,t.
24

Thus, in the Euler equation (43) the perceived consumption growth (on the LHS) equals

the perceived real rate (on the RHS), where both equilibrium objects are jointly formed

under beliefs driven by DE. We analyze these two objects in turn.

Consider first expected consumption growth under DE, given by:

Eθt [ĉREt+1]− ĉθt = Et[ĉREt+1] + θ
(
Et[ĉREt+1]− Ert [ĉREt+1]

)︸ ︷︷ ︸
Surprise in expected consumption

− ĉθt (44)

where Ert [ĉREt+1] =
∑J

j=1αjEt−j ĉREt+1, by equation (40). The top middle panel of Figure 5 plots

the elements entering equation (44). During the boom (bust) phase ĉθt and Et[ĉREt+1] rise (fall)

by a similar amount, with the reference expectation Ert [ĉREt+1] moves sluggishly. In turn, the

DE beliefs Eθt [ĉREt+1] overreact by a factor of θ to the surprise (Et[ĉREt+1]− Ert [ĉREt+1]) in expected

consumption. This surprise, plotted in the bottom middle panel of Figure 5, is an endogenous

equilibrium object. The top and bottom middle panels thus show that this surprise is a key

driver of the expected consumption growth under DE.

As made transparent by our consumption-smoothing model, the surprise in expected

24In the special case of J = 1, per our earlier analytical results, equilibrium variables under the RE
law of motion respond to endogenous states in the same way as they do under the DE law of economy,
making the equilibrium perceived innovation in cumulative inflation take the simpler but equivalent form
π∗
1,t = π̂θt −Et−1π̂

θ
t . This form recovers the nominal price surprise object that distorts consumption smoothing

in the NK model of L’Huillier et al. (2021) who focus their analysis entirely on the J = 1 case.
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consumption is generally a function of the surprise in both (i) the exogenous innovation and

(ii) the endogenous states. It is only when J = 1 that the latter does not matter, since then

the time t exogenous shock is the only change in the information set from the immediate past

t− 1 to current t. The magenta dotted line in Figure 5 confirms that in a counterfactual with

J = 1 the surprise in expected consumption moves only at the time of the exogenous shock.

Instead, when memory is based on more distant past, the perceived surprises embedded

in the realized path of the endogenous states matter for the DE overreaction to Et[ĉREt+1] in

equation (44). In fact, the middle bottom panel of Figure 5 shows that the path of the

surprise in expected consumption tracks closely the path of the surprise in capital, Nk
J,t−1

(plotted in the bottom left panel). Intuitively, like in the consumption-smoothing model of

Section 3, a positive (negative) surprise Nk
J,t−1 makes the agent overly optimistic (pessimistic)

about future resources.25 The endogenous boom-bust in the information state Nk
J,t−1 is thus

reflected in periods of endogenous optimism and pessimism over future consumption.26 The

counterfactual of J = 2 (green dashed line) indicates again that further memory lags, like in

our estimated model, amplify both the duration and magnitude of the boom-bust dynamics.

We now turn to the formation of DE beliefs over nominal prices and their role in affecting

the perceived real rate. The top right panel of Figure 5 shows how the boom and bust in

expected consumption growth Eθt [ĉREt+1]− ĉθt discussed above is mirrored by a corresponding

rise and fall in the perceived real interest rate, r̂θt − Eθt [π̂REt+1]− θπ∗J,t. By equation (43), DE

affect this rate through two channels. The first is DE over future inflation, Eθt [π̂REt+1]. The

second channel is the perceived surprise in the price level, or π∗J,t. Intuitively, holding constant

Eθt [ĉREt+1] and
(
r̂θt − Eθt [π̂REt+1]

)
, a higher innovation π∗J,t makes the perceived expected future

price relatively high, thus lowering the incentives to postpone consumption.

The bottom right panel of Figure 5 shows how this second channel, operating through

the surprise π∗J,t, drives most of the variation in the perceived real rate. To understand the

equilibrium path of π∗J,t, recall from Figure 2 that on impact, due to an increase in utilization,

inflation π̂θt declines, which determines a negative surprise in the price level. As shown in

Figure 2, π̂θt then starts to gradually recover and eventually rises above steady state during

the economic boom, as in the data. This rise first leads to a recovery in the surprise π∗J,t back

to steady state from below. Importantly, as inflation accelerates at the end of the boom,

25While this intuition is similar to the consumption-smoothing model where capital was the only relevant
endogenous state, in this rich NK model, due to its nominal and real frictions, the set of relevant endogenous
states that affect Et

[
ĉREt+1

]
is larger than just k̂t−1. However, the close proportionality between the path of

surprises in Et
[
ĉREt+1

]
and k̂t−1 indicates that in equilibrium the former is primarily influenced by the latter.

26The Online Appendix shows that the perceived increase in consumption more than compensates for the
habit stock. In other words, not only agents expect consumption to be higher in the future, but they also
expect it to grow with respect to the habit stock, lowering the marginal utility. Furthermore, we show that
even without consumption habit our model is able to generate boom-bust cycles.
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selective memory recall starts to increasingly weigh the high price level states, leading to

positive surprises in π∗J,t, as indicated in Figure 5. This path determines a reversal in the

perceived innovation in cumulative inflation, which now moves into the positive territory

during the bust part of the cycle.

DE beliefs determine misperceptions on the real and nominal side of the economy that are

consistent with each other. Indeed, the bottom row of Figure 5 shows how the cycle of opti-

mism/pessimism over future consumption tracks in equilibrium the cycle of negative/positive

perceptions of prices. In particular, in the boom phase, the over-reaction to negative surprises

in inflation lead to a high perceived real rate that is consistent with a perceived acceleration

in consumption arising from over-reactions to capital surprises. As the reference distribution

for both capital and prices slowly adjusts to their corresponding realized path, a reversal

occurs. The economic boom endogenously creates the conditions for a bust, where negative

surprises over capital and perceived deceleration in future consumption are consistent with

high perceptions of future price levels and a low perceived real rate.

The same bottom row of Figure 5 shows systematically across its three panels the

importance of our estimated distant memory process. Distant memory creates larger revisions

in expectations, leading to larger surprises, and larger belief distortions. This explains why

the parameter J does not only affect the frequency of the boom-bust cycle but also the

amplitude. When J = 1, there are no surprises in the endogenous states, and the over-reaction

in expected consumption and price level arises only at the time of the shock. When J = 2,

the dynamics are still small and short-lived. Instead, under a more distant memory, agents

expectations are constantly revised and missperceptions build. In our model, past decisions

affect current expectations and generate new distortions that feed into current decisions,

creating endogenous waves of optimism and pessimism - a form of Minsky (1977) moments.

The success of the DE model also stems from its ability to accurately match inflation

dynamics. As in the data, inflation movements seem relatively small with respect to fluctua-

tions in real activity. To study this disconnect, consider the relation between inflation and

marginal costs (see Online Appendix F for the derivation):

π̂θt = κp

∞∑
i=1

βiEθt [m̂c
RE
t+i ] + κpm̂c

θ
t .

The above expression makes clear that inflation depends on the DE of future marginal costs

for a given starting value of current marginal costs. To understand the effect of the distorted

beliefs about future marginal costs, consider the following counterfactual measure of inflation:

π̂CFt = κp

∞∑
i=0

βiEt[m̂cθt+i].
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Figure 6: Inflation, marginal costs, and New Keynesian Phillips Curve

Notes: The figure reports the response to the monetary policy shock for inflation, marginal costs (scaled by

κp), and a counterfactual measure of inflation built assuming that agents can correctly foresee the future

path of marginal costs.

The expression above captures the path of inflation that an econometrician who can accurately

predict the realized path of marginal costs would compute.27

Figure 6 reports the path for marginal costs (scaled by κp), inflation, and for the counter-

factual measure of inflation. On impact, DE inflation drops because an increase in utilization

lowers marginal costs. DE inflation keeps declining for a couple of quarters, as in the data,

because agents keep revising their expectations about future marginal costs. The counterfac-

tual measure of inflation also drops on impact, but it immediately starts increasing because

there are no further revisions in expectations after the first period. As marginal costs start

increasing, DE inflation starts recovering, and so does the counterfactual measure of inflation.

Importantly, the counterfactual measure of inflation shows much larger fluctuations than

actual inflation. This is because the actual path of marginal costs is more persistent than

what is perceived by our agents. Thus, for a given movement in marginal costs, DE lead to

under-reaction of inflation because agents expect a relatively fast return of marginal costs to

the steady state. An external observer who were endowed with the path of real activity and

marginal costs would conclude that the Phillips curve is quite flat. Indeed, the estimated

value for the slope of Phillips curve, κp, is significantly larger for the DE model, at 0.0502,

compared to 0.0337 in the re-estimated RE model. While the RE model needs to appeal to

a flat Phillips curve to try to reconcile the dynamics in real activity and inflation, the DE

model is able to reconcile them based on the distorted expected path for marginal costs.

We conclude this subsection by discussing one additional point. In this economy there is

27Notice that this measure of inflation does not coincide with the shadow RE inflation, because the expected
path of marginal costs is based on the DE economy.
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positive co-movement between the key real aggregate variables (consumption, investment,

hours). The economic channel is typical to the New Keynesian models. Intuitively, following

the expansionary monetary policy shock, the demand for goods (consumption and investment)

is stimulated. In this demand-driven economy, equilibrium is largely restored through a

higher capacity utilization, which not only directly increases the supply of goods, but also

leads to a larger labor productivity and thus stimulates firms’ labor demand.

5 Conclusions
In this paper, we build on the DE paradigm proposed by Bordalo et al. (2018) to analyze

the qualitative and quantitative implications of the joint determination of DE beliefs and

optimal actions in the presence of (i) endogenous states and (ii) distant memory recall. In

the first part of the paper, we use a three-period consumption-savings model as a laboratory

to provide behavioral micro-foundations for our analysis that we argue are psychologically

and model-coherent. We then extend the model to the infinite horizon to show that under

distant memory the interaction between actions and DE beliefs naturally generate repeated

boom-bust cycles in response to a single initial shock. In the second part of the paper, we

develop a portable solution method that can be used to enrich standard general equilibrium

models with DE. We incorporate DE into a quantitative New Keynesian model of the type

widely used for policy analysis. We uncover a critical and novel role played by endogenous

states and distant memory recall, which allows the DE model to replicate the empirical

boom-bust cycle dynamics in response to a monetary policy shock.

There are two main avenues for future research. First, deriving and studying optimal

monetary policy under different behavioral assumptions regarding agents’ expectations

would have important policy implications and further expand the practical relevance of DE.

Second, it will be interesting to allow for non-linearities, such as changes in policy makers’

behavior, stochastic volatility, and occasionally binding constraints. The methods developed

in this paper can be extended to accommodate these cases by leveraging the conditional

log-normality of the equilibrium distributions, as in the work of Dew-Becker (2014) and

Bianchi et al. (2022). These extensions will allow us to incorporate asset pricing, breaks in

the transmission mechanisms of the shocks, and changes in volatility of the macroeconomy in

general equilibrium models featuring DE.
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Online Appendix for “Diagnostic Business Cycles”

Francesco Bianchi, Cosmin Ilut and Hikaru Saijo

A An Investment Model and Endogenous Predictability

In this Appendix we study a two-period investment model that illustrates the point we

made in footnote 6 regarding the endogenous predictability.

We start with the problem under RE.

max
I1

D1 +
1

1 + r
E [D2]

D1 = A1K
ν
1 − I1

D2 = A2K
ν
2 + (1− δ)K2

K2 = (1− δ)K1 + I1

where r > 0, 0 < δ < 1, 0 < ν < 1, and K1 are taken as given. At is an i.i.d. Normal process.

We can replace the constraints in the object function and derive the FOC:

1

1 + r
E
[
νA2 ((1− δ)K1 + I∗1 )ν−1 + (1− δ)

]
= 1

We obtain:

I∗1 =

[
R + δ

νE [A2]

] 1
ν−1

− (1− δ)K1

Thus, A1 is irrelevant as long as dividends are allowed to be negative.

In turn, under DE:

max
I1

D1 +
1

1 + r
Eθ [D2]

D1 = A1K
ν
1 − I1

D2 = A2K
ν
2 + (1− δ)K2

K2 = (1− δ)K1 + I1

We can replace the constraints and compute the FOC:

1

1 + r
Eθ
[
νA2 ((1− δ)K1 + I∗1 )ν−1 + (1− δ)

]
= 1

In equilibrium, under the assumption of the model, the optimal investment choice is not

stochastic. Thus, despite the non-linearity of the problem, normality is preserved. Since the

product of a normal times a constant is still a normal, we get:

(1 + θ) ν ((1− δ)K1 + I∗1 )ν−1 E [A2]− θν ((1− δ)K1 + I∗1 )ν−1 E−1 [A2] = (1 + r)− (1− δ)
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Given that TFP is i.i.d., we have E [A2] = E−1 [A2]:

ν ((1− δ)K1 + I1)ν−1 E [A2] = (1 + r)− (1− δ)

Then

I∗1 =

[
r + δ

νE [A2]

] 1
ν−1

− (1− δ)K1

Thus, the solution is identical to the RE solution. This is because there is no revision in

expectations coming from what happens at time 1.

B Omitted Proofs

B.1 Proof of Lemma 1

Proof.

Eθt
[
Eθt+1 [Ct+1+n]

]
= Eθt [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]

= Et [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]

+ θ {Et [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]

−Et−J [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]}

= Et [Ct+1+n] + θ (Et [Ct+1+n]− Et−J [Ct+1+n])

+ θ(1 + θ) (Et [Ct+1+n]− EtEt+1−J [Ct+1+n])

The term (Et [Ct+1+n]− EtEt+1−J [Ct+1+n]) in the last line is generically zero if and only if

J = 1. Thus, Eθt
[
Eθt+1 [Ct+1+n]

]
= Eθt [Ct+1+n] if and only if J = 1.

B.2 Proof of Proposition 1

Proof. The first order conditions at time 1 are:

C1 = E1 [C2]

E1 [C2] = E1 [C3]

or, equivalently

Y1 +K0 −K1 = E1 [Y2 +K1 −K2]

E1 [Y2 +K1 −K2] = E1 [Y3 +K2]

The solution at time 1 and 2 can be obtained with backward induction or a guess-and-verify

approach. We opt for the guess-and-verify approach because since it is easy to generalize for

the infinite horizon case. We then guess that the solution assumes the following form:

K1 = αRE1 (K0 + ε1) ;K2 = αRE2 (K1 + ε2)
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We then have:

K0 + ε1(1− αRE1 ) = E1

[
ε2 + αRE1 (K0 + ε1)− αRE2

(
αRE1 (K0 + ε1) + ε2

)]
E1

[
ε2 + αRE1 (K0 + ε1)− αRE2

(
αRE1 (K0 + ε1) + ε2

)]
= E1

[
ε3 + αRE2

(
αRE1 (K0 + ε1) + ε2

)]
Equating coefficients, we get

αRE1 =
2

3
, αRE2 =

1

2

It is immediate to verify that the solution is time-consistent. The agent at time 2 solves

the problem (9). The first order condition at time 2 is:

C2 = E2 [C3] ,

or, equivalently

ε2 +K1 −K2 = E2 [ε3 +K2] .

We obtain:

K2 =
1

2
[K1 + ε2] = αRE2 [K1 + ε2] .

B.3 Proof of Proposition 2 and 3

Proof. For the time 1 problem, we conjecture the planned policy:

Kθ,p
1 = αθ,pK0

K0 + αθ,pε1 ε1; Kθ,p
2 = αθ,pK1

Kθ,p
1 + αθ,pε2 ε2.

We have two first-order conditions:

Y1 +K0 −Kθ,p
1 = Eθ1

[
Y2 +Kθ,p

1 −K
θ,p
2

]
(45)

Eθ1
[
Y2 +Kθ,p

1 −K
θ,p
2

]
= Eθ1

[
Y3 +Kθ,p

2

]
(46)

We first solve for the planned policy for period 2 by plugging in the conjecture into (46):

Eθ1
[
Kθ,p

1 −
(
αθ,pK1

Kθ,p
1 + αθ,pε2 ε2

)]
= Eθ1

[
αθ,pK1

Kθ,p
1 + αθ,pε2 ε2

]
Eθ1
[(

1− 2αθ,pK1

)
Kθ,p

1 − 2αθ,pε2 ε2

]
= 0

Then:

(1 + θ)
(

1− 2αθ,pK1

)
Kθ,p

1 − θE0

[(
1− 2αθ,pK1

)
Kθ,p

1

]
= 0(

1− 2αθ,pK1

) [
(1 + θ)αθ,pε1 ε1 + αθ,pK0

K0

]
= 0

Hence we have:

αθ,pK1
=

1

2
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Endowed with the contingent plan for time 2, we can then solve for the time 1 problem:

Y1 +K0 −Kθ,p
1 = Eθ1

[
Y2 +Kθ,p

1 −K
θ,p
2

]
ε1 +K0 −Kθ,p

1 = (1 + θ)E1

[
Kθ,p

1 −
1

2
Kθ,p

1

]
− θE0

[
Kθ,p

1 −
1

2
Kθ,p

1

]
ε1 +K0 −Kθ,p

1 = (1 + θ)
1

2

[
αθ,pK0

K0 + αθ,pε1 ε1

]
− θ1

2
αθ,pK0

K0

We get:

Kθ,p
1 = − (1 + θ)

1

2

[
αθ,pK0

K0 + αθ,pε1 ε1

]
+ θ

1

2
αθ,pK0

K0 + ε1 +K0

Kθ,p
1 = −1

2

[
(1 + θ)αθ,pε1 − 2

]
ε1 +

[
1− 1

2
αθ,pK0

]
K0

Matching coefficients:

αθ,pK0
=

2

3
, αθ,pε1 =

2

3 + θ

Note that when J = 1, there is no contingent plan formed at time 1 on how to react to

ε2, given that ε2 does not impact utility at time 1. It is then immediate to verify that the

plan is time consistent. The agent at time 2 inherits the capital Kθ
1 and solves (11). The first

order condition at time 2 is:

Cθ
2 = Eθ2

[
Cθ

3

]
.

We conjecture the solution Kθ
2(Kθ

1 , ε2) = αθK1
Kθ

1 + αθε2ε2. Then:

Y2 +Kθ
1 −Kθ

2(Kθ
1 , ε2) = E2

[
Y3 +Kθ

2(Kθ
1 , ε2)

]
+ θ

[
E2

(
Y3 +Kθ

2(Kθ
1 , ε2)

)
− E1

(
Y3 +Kθ

2(Kθ
1 , ε2)

)]
ε2 +Kθ

1 −Kθ
2(Kθ

1 , ε2) = αθK1
Kθ

1 + αθε2ε2 + θαθε2ε2

We have:

Kθ
2(Kθ

1 , ε2) = (1− αθK1
)Kθ

1 + (1− αθε2 − θα
θ
ε2

)ε2

Matching coefficients, we obtain:

αθK1
=

1

2
= αθ,pK1

, αθε2 =
1

2 + θ

B.4 Proof of Proposition 4

Proof. We first solve the planning problem at time 1. We conjecture the solution:

Kθ,p
1 = αθ,pN−1,0[K0]N−1,0 [K0] + αθ,pK0

K0 + αθ,pε1 ε1; Kθ,p
2 = αθ,pK1

Kθ,p
1 + αθ,pε2 ε2.

where N−1,0 [K0] ≡ K0−E−1 [K0] represents the surprise in the stock of capital with respect to

the expectations formed in the past. Note that E−1 [N−1,0 [K0]] = 0. We have two first-order
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conditions:

Y1 +K0 −Kθ,p
1 = Eθ1

[
Y2 +Kθ,p

1 −K
θ,p
2

]
(47)

Eθ1
[
Y2 +Kθ,p

1 −K
θ,p
2

]
= Eθ1

[
Y3 +Kθ,p

2

]
(48)

We first solve for the planned policy for period 2 by plugging in the conjecture into (48):

Eθ1
[
Kθ,p

1 −K
θ,p
2

]
= Eθ1

[
Kθ,p

2

]
Eθ1
[(

1− 2αθ,pK1

)
Kθ,p

1 − 2αθ,pε2 ε2

]
= 0

Then:

(1 + θ)
(

1− 2αθ,pK1

)
Kθ,p

1 − θE−1

[(
1− 2αθ,pK1

)
Kθ,p

1

]
= 0(

1− 2αθ,pK1

) [
(1 + θ)

(
αθ,pK0

K0 + αθ,pε1 ε1

)
− θE−1α

θ,p
K0
K0

]
= 0

Hence we have:

αθ,pK1
=

1

2

Note that the planned solution for time 2 is identical to the case in which J = 1. This

is because distant memory does not affect how the agent evaluates the trade-off between

consumption at time 2 and consumption at time 3 from the point of view of time 1.

Endowed with the contingent plan for time 2, we can then solve for the time 1 problem:

ε1 +K0 −Kθ,p
1 = (1 + θ)E1

[
Kθ,p

1 −
1

2
Kθ,p

1

]
− θE−1

[
Kθ,p

1 −
1

2
Kθ,p

1

]
ε1 +K0 −Kθ,p

1 = (1 + θ)
1

2

[
αθ,pN−1,0[K0]N−1,0 [K0] + αθ,pK0

K0 + αθ,pε1 ε1

]
− θ1

2
αθ,pK0

E−1 [K0]

ε1 +K0 −Kθ,p
1 = (1 + θ)

1

2

[
αθ,pN−1,0[K0]N−1,0 [K0] + αθ,pε1 ε1

]
+

1

2
αθ,pK0

K0 + θ
1

2
αθ,pK0

N−1,0 [K0]

ε1 +K0 −Kθ,p
1 =

1

2

[
(1 + θ)αθ,pN−1,0[K0] + θαθ,pK0

]
N−1,0 [K0] + (1 + θ)

1

2
αθ,pε1 ε1 +

1

2
αθ,pK0

K0

Then:

Kθ,p
1 = −1

2

[
(1 + θ)αθ,pN−1,0[K0] + θαθ,pK0

]
N−1,0 [K0] +

[
1− 1

2
αθ,pK0

]
K0 −

1

2

[
(1 + θ)αθ,pε1 − 2

]
ε1

Hence we have

αθ,pK0
=

2

3
, αθ,pε1 =

2

3 + θ

and

αθ,pN−1,0[K0] = − θ

3 + θ
αθ,pK0

= − 2θ

3 (3 + θ)

Note that even when J > 1, there is no contingent plan formed at time 1 on how to

react to ε2, given that this does not impact utility at time 1. However, with respect to the

case of recent memory, now we have an additional state variable that depends on the news
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component of the inherited capital, N−1,0 [K0] . For a given level of inherited capital K0, the

larger the surprise, the lower the amount saved at time 1. This distortion increases with θ.

We now verify that the plan made at time 1 for time 2 is time inconsistent. The agent at

time 2 inherits the capital Kθ
1 and solves (11). The first order condition at time 2 is:

Cθ
2 = Eθ2

[
Cθ

3

]
.

We conjecture the solution Kθ
2 = αθ

N0,1[Kθ
1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2. Then:

Y2 +Kθ
1 −Kθ

2 = E2

[
Y3 +Kθ

2

]
+ θ

[
E2

[
Y3 +Kθ

2

]
− E0

[
Y3 +Kθ

2

]]
ε2 +Kθ

1 −Kθ
2 = E2

[
αθN0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2

]

+ θ

 E2

[
αθ
N0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2

]
−E0

[
αθ
N0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2

]


We get:

ε2 +Kθ
1 −Kθ

2 = αθN0,1[Kθ,p
1 ]

N0,1

[
Kθ,p

1

]
+ αθK1

Kθ,p
1 + αθε2ε2

+ θ

[
αθN0,1[Kθ,p

1 ]
N0,1

[
Kθ,p

1

]
+ αθK1

Kθ,p
1 + αθε2ε2 − E0α

θ
K1
Kθ,p

1

]
Then:

ε2 +Kθ
1 −Kθ

2 =
[
(1 + θ)αθN0,1[Kθ

1 ]
+ θαθK1

]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + (1 + θ)αθε2ε2

Rearrange:

Kθ
2 = −

[
(1 + θ)αθN0,1[Kθ

1 ]
+ θαθK1

]
N0,1

[
Kθ

1

]
+
(
1− αθK1

)
Kθ

1 −
[
(1 + θ)αθε2 − 1

]
ε2

Matching coefficients, we obtain:

αθK1
=

1

2
, αθε2 =

1

2 + θ

and

αθN0,1[Kθ
1 ]

= − θ

2 + θ
αθK1

= − θ

2 (2 + θ)
.

The revised time 2 policy can then be rewritten as

Kθ
2 =

θ

2(2 + θ)
E0

[
Kθ

1

]
+

1

2 + θ
Kθ

1 +
1

2 + θ
ε2,

and so the coefficient on Kθ
1 is not equal to that of the time 1 plan (which is 0.5).

The time inconsistency arises because of the information content of Kθ,p
1 with respect to

the capital expected at time zero. Between when reference expectations were formed, at time

0, and when a new decision is made, at time 2, an income shock occurred and agents reacted
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to the shock. As a result, capital is not what the agent expected it to be. Agents do not take

into account this surprise in capital when they solve the planning problem at time 1.

B.5 Proof of Proposition 5

Proof. To obtain the time 1 policy function, we consider the conjecture

Kθ
1 = αθN−1,0[K0]N−1,0 [K0] + αθK0

K0 + αθε1ε1.

The time 1 trade-off is given by

Cθ
1 = Eθ1

[
CRE

2

]
.

The right hand side equals

Eθ1
[
CRE

2

]
= (1 + θ)E1

[
Y2 +Kθ

1 −KRE
2

]
− θE−1

[
Y2 +KRE

1 −KRE
2

]
= (1 + θ)E1

[
Y + ε2(1− αREε2 ) +Kθ

1(1− αREK1
)
]
− θE−1

[
Y + ε2(1− αREε2 ) +KRE

1 (1− αREK1
)
]

= Y + (1− αREK1
)
[
(1 + θ)Kθ

1 − θE−1

[
KRE

1

]]
= Y +

1

2

[
(1 + θ)Kθ

1 −
2

3
θE−1 [K0]

]
where we have substituted in the RE policy KRE

2 = αREK1
K1 + αREε2 ε2 in the second line and

substituted in αREK1
= 1/2 and αREK0

= 2/3 in the fourth line. Connecting this with the left

hand side, we have

ε1 +K0 −Kθ
1 =

1

2

[
(1 + θ)Kθ

1 −
2

3
θE−1 [K0]

]
.

Plugging in the conjectured solution Kθ
1 = αθN−1,0[K0]N−1,0 [K0] + αθK0

K0 + αθε1ε1 and equating

coefficients give us

αθN−1,0[K0] = − 2θ

3(3 + θ)
, αθK0

=
2

3
, αθε1 =

2

3 + θ
.

To obtain the time 2 policy function, we consider the conjecture

Kθ
2 = αθN0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2

[
CRE

3

]
.

The right hand side equals

Eθ2
[
CRE

3

]
= (1 + θ)E2

[
Y3 +Kθ

2

]
− θE0

[
Y3 +KRE

2

]
= Y + (1 + θ)Kθ

2 − θE0

[
KRE

2

]
= Y + (1 + θ)Kθ

2 −
1

2
θE0

[
KRE

1

]
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where we substituted in αREK1
= 1/2. Connecting this with the left hand side, we have

ε2 +K1 −Kθ
2 = (1 + θ)Kθ

2 −
1

2
θE0K

RE
1 .

Plugging in the conjectured solution Kθ
2 = αθ

N0,1[Kθ
1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2 and equating

coefficients give us

αθN0,1[Kθ
1 ]

= − θ

2(2 + θ)
, αθK1

=
1

2
, αθε2 =

1

2 + θ
.

B.6 Proof of Proposition 7

The proposition below considers näıveté and sophistication under J = 1. The näıveté

problem was described in the main text. Entering period 2, the sophisticated agent’s problem

is

max
Kθ

2

[
u(Cθ

2) + Eθ2u(Cθ
3)
]

(49)

where now

Cθ
2 = Y2 +Kθ

1 −Kθ
2 ;Cθ

3 = Y3 +Kθ
2 −Kθ

3 . (50)

Sophistication means that at time 1 the agent understands that her future action is dictated

by equation (49) (as well as Kθ
3 = 0). Thus, the sophisticated agent solves

max
Kθ

1

{
u(Cθ

1) + Eθ1
[
u(Cθ

2) + u(Cθ
3)
]}
, (51)

where Cθ
1 = Y1 +K0 −Kθ

1 , while Cθ
2 and Cθ

3 are determined as in (50). We assume that the

comparison group for Kθ
2 is E2−JK

θ
2 , i.e. the conditional expectation of the DE savings choice

at time 2 made J periods ago by the former sophisticated self, under the true density.

Proposition 7. When J = 1, the näıveté and sophistication policy functions are the same

and recover the DE optimal choices based on time-consistency.

Proof. Policies under näıveté. Conjecture

Kθ
1 = αθK0

K0 + αθε1ε1; Kθ
2 = αθK1

Kθ
1 + αθε2ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2

[
CRE

3

]
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The right hand side equals

Eθ2
[
CRE

3

]
= (1 + θ)E2

[
Y3 +Kθ

2

]
− θE1

[
Y3 +KRE

2

]
= Y + (1 + θ)Kθ

2 − θE1

[
KRE

2

]
= Y + (1 + θ)Kθ

2 −
1

2
θK1,

where we substituted in αREK1
= 1/2 in the third line. Connecting this with the left hand side,

we have

ε2 +Kθ
1 −Kθ

2 = (1 + θ)Kθ
2 −

1

2
θKθ

1 .

Plugging in the conjectured solution Kθ
2 = αθK1

Kθ
1 + αθε2ε2 and equating coefficients give us

αθK1
=

1

2
, αθε2 =

1

2 + θ
.

By Lemma 2 the time 1 trade-off is given by

Cθ
1 = Eθ1

[
CRE

2

]
.

The right hand side equals

Eθ1
[
CRE

2

]
= (1 + θ)E1

[
Y2 +Kθ

1 −KRE
2

]
− θE0

[
Y2 +KRE

1 −KRE
2

]
= (1 + θ)E1

[
Y + ε2(1− αREε2 ) +Kθ

1(1− αREK1
)
]
− θE0

[
Y + ε2(1− αREε2 ) +KRE

1 (1− αREK1
)
]

= Y + (1− αREK1
)
[
(1 + θ)Kθ

1 − θE0

[
KRE

1

]]
= Y +

1

2

[
(1 + θ)Kθ

1 −
2

3
θK0

]
where we have substituted in the RE policy KRE

2 = αREK1
Kθ

1 + αREε2 ε2 in the second line and

substituted in αREK1
= 1/2 and αREK0

= 2/3 in the fourth line. Connecting this with the left

hand side, we have

ε1 +K0 −Kθ
1 =

1

2

[
(1 + θ)Kθ

1 −
2

3
θK0

]
.

Plugging in the conjectured solution Kθ
1 = αθK0

K0 + αθε1ε1 and equating coefficients give us

αθK0
=

2

3
, αθε1 =

2

3 + θ
.

Policies under sophistication. Conjecture

Kθ
1 = αθ,sK0

K0 + αθ,sε1 ε1; Kθ
2 = αθ,sK1

Kθ
1 + αθ,sε2 ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2

[
Cθ

3

]
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The right hand side equals

Eθ2Cθ
3 = (1 + θ)E2

[
Y3 +Kθ

2

]
− θE1

[
Y3 +Kθ

2

]
= Y + (1 + θ)Kθ

2 − θE1

[
Kθ

2

]
= Y + (1 + θ)Kθ

2 − θα
θ,s
K1
Kθ

1 .

Connecting this with the left hand side, we have

ε2 +Kθ
1 −Kθ

2 = (1 + θ)Kθ
2 − θα

θ,s
K1
Kθ

1 .

Plugging in the conjectured solution Kθ
2 = αθ,sK1

Kθ
1 + αθ,sε2 ε2 and equating coefficients give us

αθ,sK1
=

1

2
, αθ,sε2 =

1

2 + θ
.

The time 1 trade-off is given by

Cθ
1 = Eθ1

[
Cθ

2 +
∂Kθ

2

∂Kθ
1

(
Cθ

3 − Cθ
2

)]
.

but the indirect effect of current choice captured by the last term disappears under J = 1, so

Cθ
1 = Eθ1

[
Cθ

2

]
.

The right hand side equals

Eθ1
[
Cθ

2

]
= (1 + θ)E1

[
Y2 +Kθ

1 −Kθ
2

]
− θE0

[
Y2 +Kθ

1 −Kθ
2

]
= (1 + θ)E1

[
Y + ε2(1− αθ,sε2 ) +Kθ

1(1− αθ,sK1
)
]
− θE0

[
Y + ε2(1− αθ,sε2 ) +Kθ

1(1− αθ,sK1
)
]

= Y + (1− αθ,sK1
)
[
(1 + θ)Kθ

1 − θE0

[
Kθ

1

]]
= Y +

1

2

[
(1 + θ)Kθ

1 − α
θ,s
K0
θK0

]
where we have substituted in the DE policy Kθ

2 = αθ,sK1
K1 + αθ,sε2 ε2 in the second line and

substituted in αθ,sK1
= 1/2 in the fourth line. Connecting this with the left hand side, we have

ε1 +K0 −Kθ,s
1 =

1

2

[
(1 + θ)Kθ

1 − α
θ,s
K0
θK0

]
.

Plugging in the conjectured solution Kθ
1 = αθ,sK0

K0 + αθ,sε1 ε1 and equating coefficients give us

αθ,sK0
=

2

3
, αθ,sε1 =

2

3 + θ
.

B.7 Proof of Proposition 8

The Proposition below considers the solution to the three-period model under distant

memory (J = 2) and sophistication.
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Proposition 8. When J = 2, under sophistication, the time 2 policy function is given by

Kθ
2 = αθ,sE0[K1]E0[Kθ

1 ] + αθ,sK1
Kθ

1 + αθ,sε2 ε2,

where the coefficients are identical to the näıveté case (modified to expressed in terms of

coefficients αθE0[K1], α
θ
K1

and αθε2) and are given by

αθ,sE0[K1] =
θ

2(2 + θ)
; αθ,sK1

=
1

2 + θ
; αθ,sε2 =

1

2 + θ
.

The time 1 policy function is given by

Kθ
1 = αθ,sE−1[K0]E−1 [K0] + αθ,sK0

K0 + αθ,sε1 ε1,

which compared to the näıveté policy function in Proposition 5 (modified to expressed in

terms of coefficients αθE−1[K0], α
θ
K0

and αθε1) is characterized by the following properties (1)

αθ,sε1 < αθε1 ; (2) αθ,sK0
< αθK0

if θ < 1, and αθ,sK0
> αθK0

if θ > 1; (3), αθ,sE−1[K0] > αθE−1[K0] if θ < 1,

and αθ,sE−1[K0] < αθE−1[K0] if θ > 1.

Proof. For the time 2 policy, consider the conjecture

Kθ
2 = αθ,sE0[K1]E0

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2

[
Cθ

3

]
The right hand side equals

Eθ2
[
Cθ

3

]
= (1 + θ)E2

[
Y3 +Kθ

2

]
− θE0

[
Y3 +Kθ

2

]
= Y +Kθ

2 + θ
[
Kθ

2 − E0

[
Kθ

2

]]
= Y + αθ,sE0[K1]E0

[
Kθ

1

]
+ αθ,sK1

Kθ
1 + αθ,sε2 ε2 + θ

[
αθ,sε2 ε2 + αθ,sK1

(
Kθ

1 − E0

[
Kθ

1

])]
.

Connecting this with the left hand side, we have

ε2 +Kθ
1 −Kθ

2 = αθ,sE0[K1]E0

[
Kθ

1

]
+ αθ,sK1

Kθ
1 + αθ,sε2 ε2 + θ

[
αθ,sε2 ε2 + αθ,sK1

(
Kθ

1 − E0

[
Kθ

1

])]
.

Plugging in the conjectured solution Kθ
2 = αθ,sE0[K1]E0

[
Kθ

1

]
+ αθ,sK1

Kθ
1 + αθ,sε2 ε2 and equating

coefficients give us

αθ,sE0[K1] =
1

2(2 + θ)
, αθ,sK1

=
1

2 + θ
, αθ,sε2 =

1

2 + θ
.

For the time 1 policy function, conjecture

Kθ
1 = αθ,sE−1[K0]E−1 [K0] + αθ,sK0

K0 + αθ,sε1 ε1.

The time 1 tradeoff is given by

Cθ
1 = Eθ1

[
Cθ

2 + αθ,sK1
(E2

[
Cθ

3

]
− Cθ

2)
]
, (52)
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where the term αθ,sK1
(E2C

θ
3 − Cθ

2) captures the fact that the sophisticated agent internalizes

the fact that the current choice affects the future tradeoff. This term is zero when J = 1

because in that case the plan is time consistent. The right hand side equals

Eθ1
[
Cθ

2 + αθ,sK1
(E2C

θ
3 − Cθ

2)
]

= (1− αθ,sK1
)Eθ1Cθ

2 + αθ,sK1
Eθ1Cθ

3

= (1− αθ,sK1
)
{

(1 + θ)E1

[
Y2 +Kθ

1 −Kθ
2

]
− θE−1

[
Y2 +Kθ

1 −Kθ
2

]}
+ αθ,sK1

{
(1 + θ)E1

[
Y3 +Kθ

2

]
− θE−1

[
Y3 +Kθ

2

]}
After some algebra, we find that this equals

= Y + (1− αθ,sK1
)(1 + θ)

[(
1− αθ,sE−1[K0] − α

θ,s
K1

)(
αθ,sE−1[K0]E−1 [K0] + αθ,sK0

K0

)
+ (1− αθ,sK1

)αθ,sε1 ε1

]
− (1− αθ,sK1

)θ
(

1− αθ,sE−1[K0] − α
θ,s
K1

)(
αθ,sE−1[K0] + αθ,sK0

)
E−1 [K0]

+ αθ,sK1
(1 + θ)

[
αθ,sE−1[K0]

(
αθ,sE−1[K0]E−1 [K0] + αθ,sK0

K0

)
+ αθ,sK1

(
αθ,sE−1[K0]E−1 [K0] + αθ,sK0

K0 + αθ,sε1 ε1

)]
− αθ,sK1

θ
(
αθ,sE−1[K0] + αθK1

)(
αθ,sE−1[K0] + αθ,sK0

)
E−1 [K0]

The left hand side is given by

Cθ
1 = Y + ε1 +K0 −Kθ

1 .

We then connect the left hand side to the right hand side and equate coefficients after

substituting in the conjectured solution for Kθ
1 . Equating coefficients, we have

αθ,sε1 =
1

1 + (1 + θ)
[
(1− αθ,sK1

)2 + (αθ,sK1
)2
] =

(2 + θ)2

(2 + θ)2 + (1 + θ) [(1 + θ)2 + 1]

αθ,sK0
=

1

1 + (1 + θ)
[
(1− αθ,sK1

)(1− αθ,sE0[K1] − α
θ,s
K1

) + αθ,sK1
(αθ,sE0[K1] + αθ,sK1

)
]

=
2(2 + θ)2

2(2 + θ)2 + (1 + θ) [(1 + θ)(1 + 2θ) + 3]

αθ,sE−1[K0] =
θ
[
(1− αθ,sK1

)(1− αθ,sE0[K1] − α
θ,s
K1

) + αθ,sK1
(αθ,sE0[K1] + αθ,sK1

)
]

1 + (1− αθ,sK1
)(1− αθ,sE0[K1] − α

θ,s
K1

) + αθ,sK1
(αθ,sE0[K1] + αθ,sK1

)
αθ,sK0

=
θ [(1 + 2θ)(1 + θ) + 3]

2(2 + θ)2 + (1 + 2θ)(1 + θ) + 3
αθ,sK0

which give the specific coefficients in Proposition 8. When we compare this sophistication

solution to the näıveté one, we find the patterns stated in Proposition 8.

The solution for the sophisticated choice Kθ
2 follows the same logic as for näıveté choice,

leading to the result in Proposition 8 that the optimal coefficients are the same. The subtle

difference here is the comparison group formation. The näıveté solution can leverage the
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law of motion for KRE
1 , so that E0

[
KRE

1

]
can be immediately plugged in the determination

of time 2 savings. In contrast, the corresponding E0

[
Kθ

1

]
is more difficult to transparently

assess because it requires computing a feedback effect between the Kθ
1 chosen by the time 1

sophisticated DE agent, which in turn is a function of expectations about Kθ
2 .

There are three conceptual forces that affect the coefficients of sophisticated time 1 policy

compared to their näıveté case. First, the agent now anticipates that she will over-consume

(relative to her naive beliefs) at time 2 out of K1, as the forecasted response of future savings

out of capital entering period 2 is smaller than under näıveté, i.e. αθ,sK1
< αREK1

. This force

alone, coming from the Eθ1
[
Cθ

2

]
term in (52), leads the agent to consume more today out of

ε1 to achieve consumption smoothing between period 1 and 2. Second, the misalignment of

her perceived tradeoffs means that following a positive innovation ε1, from the viewpoint

of current self, the time 2 self will under-consume in period t = 3 relative to t = 2. This

constitutes an indirect effect, i.e. the second term in (52), that leads to more savings. The

race between these two forces is dominated here by the former, direct effect, as αθ,sK1
< 0.5, and

thus the agent ends up saving less out of ε1 than under näıveté, i.e. αθ,sε1 < αθε1 . Third, there

is the conceptual difference of the comparison groups. With sophistication, the informational

state E0

[
Kθ

1

]
(a) matters for the Kθ

2 solution in Proposition 8 but also (b) needs to be itself

based on Kθ
1 , a choice that in turn is affected by Eθ1

[
Kθ

2

]
in equation (52). The effect of this

fixed point consideration is less transparent, as it turns out to amplify or dampen, through a

non-monotonic relationship with θ, the optimal responses of sophisticated time 1 savings to

K0 and E−1 [K0] compared to the näıveté case.

B.8 Proof of Proposition 6

We first guess and verify the RE solution. Conjecture consumption policy

CRE
t =

r

1 + r

(
KRE
t−1 + εt +

1 + r

r
Y

)
=

r

1 + r

(
KRE
t−1 + εt

)
+ Y

and the resulting savings

KRE
t = (1 + r)

[
KRE
t−1 + Y + εt −

r

1 + r

(
KRE
t−1 + εt

)
− Y

]
= (1 + r)

1

1 + r

[
KRE
t−1 + εt

]
= KRE

t−1 + εt
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Check the FOC by plugging in the above conjectures

CRE
t = Et(CRE

t+1)

r

1 + r

[
KRE
t−1 + εt

]
+ Y = Et

[
r

1 + r

[
KRE
t + εt+1

]
+ Y

]
r

1 + r

[
KRE
t−1 + εt

]
= Et

[
r

1 + r

[
KRE
t−1 + εt + εt+1

]]
r

1 + r

[
KRE
t−1 + εt

]
=

r

1 + r

[
KRE
t−1 + εt

]
so the both sides are indeed equal.

To solve for the DE poicy function, we take the FOC with respect to Kθ
t in (23):

u′(Cθ
t ) = Eθt

[
V ′(Kθ

t )
]
,

and use the envelope theorem in (24):

V ′(Kθ
t ) = u′(CRE

t+1).

Combining the two, we have

u′(Cθ
t ) = Eθt

(
u′(CRE

t+1)
)
.

We use the budget constraint to replace Cθ
t in the left hand side and obtain:

Kθ
t−1 + Y + εt −

Kθ
t

1 + r
= Eθt

[
r

1 + r

(
Kθ
t + εt+1

)
+ Y

]
Kθ
t−1 + εt −

Kθ
t

1 + r
=

r

1 + r
Eθt
(
Kθ
t + εt+1

)
Applying DE and using the fact that Et−JKRE

t = Et−J
[
KRE
t−1 + εt

]
, we have that the

expectation on the right hand side is equal to:

Eθt
[
Kθ
t + εt+1

]
= Kθ

t + θ
[
Kθ
t − Et−JKRE

t

]
= Kθ

t + θ
[
Kθ
t − Et−J

(
KRE
t−1

)]
Then

Kθ
t−1 + εt −

Kθ
t

1 + r
=

r

1 + r

[
Kθ
t + θ

[
Kθ
t − Et−J

(
KRE
t−1

)]]
Rearrange:

(1 + r)Kθ
t−1 + rθKθ

t−1 + (1 + r) εt = Kθ
t + rKθ

t + rθKθ
t + rθKθ

t−1 − rθEt−J
(
KRE
t−1

)
[1 + r (1 + θ)]Kθ

t−1 + (1 + r) εt = [1 + r (1 + θ)]Kθ
t − rθNt−J,t−1

(
Kθ
t−1

)
Then:

Kθ
t = Kθ

t−1 −
rθ

1 + r (1 + θ)
Nt−J,t−1

(
Kθ
t−1

)
+

1 + r

1 + r (1 + θ)
εt.

where Nt−J,t−1

(
Kθ
t−1

)
= Kθ

t−1 − Et−J
(
KRE
t−1

)
.

Consistent with the discussion above and the näıveté assumption, we assume that memory
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is based on the rational expectation solution. This is how the agent perceives capital should

have evolved from the point of view of time t− J. Thus, we have Et−J
(
KRE
t−1

)
= Kθ

t−J and

the solution becomes:

Kθ
t = Kθ

t−1 −
rθ

1 + r (1 + θ)

[
Kθ
t−1 −Kθ

t−J
]

+
1 + r

1 + r (1 + θ)
εt.

We can also rewrite this as:

Kθ
t =

1

1 + r (1 + θ)

[
Kθ
t−1 + rθKθ

t−J + (1 + r) εt
]
.

C Equilibrium Conditions of the New Keynesian Model

1. Capital Euler equation:

µθt = βEθt
[
(CRE

t+1 − bCθ
t )−1(Rk,RE

t+1 uREt+1 − a(uREt+1)) + µREt+1(1− δ)
]
,

where µθt is the Lagrangian multiplier on the capital accumulation equation.

2. Utilization choice:

Rk,θ
t = Rk(uθt )

τ

3. Investment first-order condition:

(Cθ
t − bCθ

t−1)−1 = µθt

{
1− κ

2

(
∆Iθt − γ

)2 − κ
(
∆Iθt − γ

)
∆Iθt

}
+ βEθt

[
µREt+1κ

(
∆IREt+1 − γ

) (
∆IREt+1

)2
]

4. Investment growth:

∆Iθt = Iθt /I
θ
t−1

5. Consumption Euler equation:

Qθ
t =

βRθ
t

Π
Eθt
[
QRE
t+1

]
6. Definition of Qθ

t :

Qθ
t

Qθ
t−1

=
Π

Πθ
t

(
Cθ
t − bCθ

t−1

Cθ
t−1 − bCθ

t−2

)−1

7. Capital accumulation:

Kθ
t = (1− δ)Kθ

t−1 +

{
1− κ

2

(
Iθt
Iθt−1

− γ
)2
}
Iθt

8. Real wage:

W̃ θ
t = MCθ

t (1− α)
Y θ
t

N θ
t

where W̃ θ
t ≡ W θ

t /P
θ
t is the real wage.
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9. Capital rental rate:

Rk,θ
t = MCθ

t α
Y θ
t

Kθ
t−1

10. Production function:

Y θ
t = (uθtK

θ
t−1)α(γtN θ

t )1−α

11. Optimal price setting:

Qθ
t

{
− 1

λf − 1
Y θ
t +

λf
λf − 1

MCθ
t Y

θ
t − ϕp

(
Πθ
t − Π

)
Πθ
tY

θ
t

}
+
βϕp
Π

Eθt
[
QRE
t+1

(
ΠRE
t+1 − Π

)
(ΠRE

t+1)2Y RE
t+1

]
= 0

12. Optimal wage setting:

Qθ
t

[(
− 1

λn − 1

)
N θ
t + (Cθ

t − bCθ
t−1)

(
λn

λn − 1

)(
N θ
t

)1+η 1

W̃ θ
t

− ϕw
(
Πθ
w,t − γΠ

)
Πθ
w,t

]
+
βϕw
Π

Eθt
[
QRE
t+1

(
ΠRE
w,t+1 − γΠ

)
(ΠRE

w,t+1)2
]

= 0

13. Nominal wage inflation:

Πθ
w,t = Πθ

t

W̃ θ
t

W̃ θ
t−1

14. Resource constraint:

Cθ
t + Iθt +

ϕp
2

(
Πθ
t − Π

)2
Y θ
t +

ϕw
2

(
Πθ
w,t − γΠ

)2
W̃ θ
t + a(uθt )K

θ
t−1 = Y θ

t

15. GDP:

Y G,θ
t = Y θ

t −
ϕp
2

(
Πθ
t − Π

)2
Y θ
t −

ϕw
2

(
Πθ
w,t − γΠ

)2
W̃ θ
t − a(uθt )K

θ
t−1

16. Taylor rule:

Rθ
t

R
=

(
Rθ
t−1

R

)ρR
(

Π̃θ
t

Π

)φπ (
Y G,θ
t

γY G,θ
t−1

)φY


1−ρR

exp(εt)

D Solution Algorithm

We start from a linear RE system

Γ0
n×n

xREt
n×1

= Γ1
n×n

xREt−1
n×1

+ Ψ
n×ns

εt
ns×1

+ Π
n×ne

ηREt
ne×1
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where xREt , εt and ηREt are vectors of endogenous variables, shocks, and expectation errors,

respectively. A recursive law of motion can be obtained, using for example Sims (2000), as:

xREt = TRExREt−1 + RREεt.

Note that the solution can be divided based on the non-expectation
(
x̃REt

)
and expectation

terms
(
EtyREt+1

)
: x̃REt

(n−ne)×1

EtyREt+1
ne×1

 =

 TRE
11

(n−ne)×(n−ne)
TRE

12
(n−ne)×ne

TRE
21

ne×(n−ne)
TRE

22
ne×ne


 x̃REt−1

(n−ne)×1

Et−1y
RE
t

ne×1

+

 RRE
1

(n−ne)×ns

RRE
2

ne×ns

 εt
where yREt+1 is a subset of x̃REt+1.

Define:

xθt =

 x̃θt
(n−ne)×1(
EtyREt+1

)θ
ne×1


Note that

(
EtyREt+1

)θ
denotes the realized value for rational expectations, so it is different

from EθtyREt+1. We have:

EtyREt+1 = MTRExθt =
(
EtyREt+1

)θ
where M is a matrix that extract the relevant elements from TRExθt . Note that the equation

needs to be included to the system of equations for the DE model because it provides the law

of motion for the realized expectations. To see this,

(EtyREt+1)θ = [M1 : 0]︸ ︷︷ ︸
M

[
TRE

11 TRE
12

TRE
21 TRE

22

][
x̃θt

(EtyREt+1)θ

]

= M1T
RE
11 x̃θt + M1T

RE
12 (EtyREt+1)θ

so

−M1T
RE
11 x̃θt + (I−M1T

RE
12 )(EtyREt+1)θ = 0.

It is useful to divide variables xREt in the original gensys system into non-expectation

terms and expectation terms: Γ0,11
(n−ne)×(n−ne)

Γ0,12
(n−ne)×ne

Γ0,21
ne×(n−ne)

Γ0,22
ne×ne


 x̃REt

(n−ne)×1

EtyREt+1
ne×1

 =

 Γ1,11
(n−ne)×(n−ne)

Γ1,12
(n−ne)×ne

Γ1,21
ne×(n−ne)

Γ1,22
ne×ne


 x̃t−1

(n−ne)×1

Et−1y
RE
t

ne×1


+

 Ψ1
(n−ne)×ns

Ψ2
ne×ns

 εt
ns×1

+

 Π1
(n−ne)×ne

Π2
ne×ne

 ηREt
ne×1
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Then, the model under DE can be expressed using matrix notation as:

Γθ
0x

θ
t = Γθ

2EθtyREt+1 + Γθ
1x

θ
t−1 + Ψθεt (53)

where Γθ
0 includes the RE restrictions: Γ0,11

(n−ne)×(n−ne)
0

(n−ne)×ne

−M1T
RE
11

ne×(n−ne)
I−M1T

RE
12

ne×ne


 x̃θt

(n−ne)×1(
EtyREt+1

)θ
ne×1

 =

 −Γ0,12
(n−ne)×ne

0
ne×ne

EθtyREt+1

+

 Γ1,11
(n−ne)×(n−ne)

Γ1,12
(n−ne)×ne

0
ne×(n−ne)

0
ne×ne


 x̃θt−1

(n−ne)×1(
Et−1y

RE
t

)θ
ne×1

+

 Ψ1
(n−ne)×ns

0
ne×ns

 εt
Then:

Γθ
0x

θ
t = Γθ

2E
θ
t y

RE
t+1 + Γθ

1x
θ
t−1 + Ψθεt

Γθ
0x

θ
t = Γθ

2

[
(1 + θ)EtyREt+1 −

J∑
j=1

θαjEt−jyREt+1

]
+ Γθ

1x
θ
t−1 + Ψθεt

Suppose that we do not need all elements in xθt to form expectations about the future.28 In

particular, we have

yREt = MxREt

xREt = TRExREt−1 + RREεt

but can be reduced to

yREt = M̃x̃REt

x̃REt = T̃REx̃REt−1 + R̃REεt

Then (53) becomes

Γθ
0x

θ
t = Γθ

2

[
(1 + θ) MTRExθt −

J∑
j=1

θαjM̃
(
T̃RE

)j+1

x̃θt−j

]
+ Γθ

1x
θ
t−1 + Ψθεt. (54)

28The method can easily allow for the case where we need full elements in xθt to form expectations. The
advantage of the current method is that its state space is smaller and hence is useful for a DSGE estimation,
among other things.
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This becomes: [
Γθ

0 − Γθ
2 (1 + θ) MTRE

]
xθt =

[
Γθ

1 − Γθ
2θα1M(TRE)2

]
xθt−1

− Γθ
2θα2M̃

(
T̃RE

)3

x̃θt−2

. . .

− Γθ
2θαJM̃

(
T̃RE

)J+1

x̃θt−J

+ Ψθεt.

The solution can be obtained inverting the left hand side matrix:

xθt =(Aθ
0)−1

[
Γθ

1 − Γθ
2θα1M(TRE)2

]
xθt−1

− (Aθ
0)−1Γθ

2θα2M̃
(
T̃RE

)3

x̃θt−2

. . .

− (Aθ
0)−1Γθ

2θαJM̃
(
T̃RE

)J+1

x̃θt−J

+ (Aθ
0)−1Ψθεt,

where Aθ
0 ≡

[
Γθ

0 − Γθ
2 (1 + θ) MTRE

]
.

Writing in a more compact form, we obtain
xθt

x̃θt−1
...

x̃θt−J+1


︸ ︷︷ ︸

zθt

=


(
Aθ

0

)−1 [
Γθ

1 − Γθ
2θα1M(TRE)2

]
−
(
Aθ

0

)−1
Γθ

2θα2M̃
(
T̃RE

)3

. . . −
(
Aθ

0

)−1
Γθ

2θαJM̃
(
T̃RE

)J+1

S 0 . . . 0

I

0 . . . 0


︸ ︷︷ ︸

Tθ
xθt−1

x̃θt−2
...

x̃θt−J


︸ ︷︷ ︸

zθt−1

+


(
Aθ

0

)−1
Ψθ

0
...

0


︸ ︷︷ ︸

Rθ

εt,
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where S is a selection matrix that relates xθt to x̃θt :

x̃θt = Sxθt .

Finally, we check that all variables over which we take DE present residual uncertainty.

To do this, we define a vector wRE
t = QxREt that extracts all relevant linear combinations

from the vector xREt . This vector contains all and only the variables over which we compute

DE. Then, for each element wREj,t of this vector we verify that the one-step-ahead conditional

variance is positive:

V art
(
wREj,t+1

)
= (QRREΣ(QRRE)′)j,j > 0,

where Σ ≡ Et[εt+1ε
′
t+1] and (·)j,j indicates the j-th diagonal element of the matrix.

E Estimation method

Our description of the methodology closely follows Christiano et al. (2010). The Bayesian

estimation of impulse-response-matching method first computes the ‘likelihood” of the data

using approximation based on standard asymptotic distribution theory. Let ψ̂ denote the

impulse response function calculated from a local projection and let ψ(θ) denote the impulse

response function from the DSGE model, which depend on the structural parameters θ.

Suppose the DSGE model is correct and let θ0 denote the true parameter vector; hence ψ(θ0)

is the true impulse response function. Then we have
√
T (ψ̂ − ψ(θ0))

d−→ N(0,W (θ0)),

where T is the number of observations and W (θ0) is the asymptotic sampling variance, which

depends on θ0. The asymptotic distribution of ψ̂ can be rewritten as

ψ̂
d−→ N(ψ(θ0), V ), V ≡ W (θ0)

T
.

We use a consistent estimator of V , where the non-diagonal terms are set to zero and the

main diagonal elements consist of the sample variance of ψ̂.29 As Christiano et al. (2011)

explains, there are two advantages of this approach. First, it improves small sample efficiency

and can be justified using a logic similar to the estimation of frequency-zero spectral densities

in Newey and West (1987). Second, the interpretation of the estimator is graphically intuitive

and transparent: it chooses parameters so that the model-implied impulse responses lie inside

a confidence interval around the empirical responses.30

The method then calculates the likelihood

L(ψ|θ) = (2π)−
N
2 |V |−

1
2 exp{−0.5[ψ̂ − ψ(θ)]′V −1[ψ̂ − ψ(θ)]},

29Altig et al. (2011) and Christiano et al. (2005) use this approach in a frequentist context.
30In contrast, when the non-diagonal terms of V are non-zero, the estimator also takes into account the

deviations of the model from data across different impulse responses in a non-intuitive manner.
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where N is the total number of elements in the impulse responses to be matched. Intuitively,

the likelihood is higher when the model-based impulse response ψ(θ) is closer to the empirical

counterpart ψ̂, taking into account the precision of the estimated empirical responses. We

use the Bayes law to obtain the posterior distribution p(θ|ψ):

p(θ|ψ) =
p(θ)L(ψ|θ)

p(ψ)
,

where p(θ) is the prior and p(ψ) is the marginal likelihood. We simulate the posterior

distribution p(θ|ψ) using the random-walk Metropolis-Hasting algorithm.

To conduct model comparisons, we use marginal likelihoods, computed from the MCMC

output using the Geweke (1999)’s modified harmonic mean estimator. Inoue and Shintani

(2018) provide asymptotic justification for a such exercise. In particular, they show that a

model with a higher marginal likelihood is either correct or a better approximation to true

impulse responses as the sample size approaches infinity.

F Additional Results

In this Appendix we report some additional results for the estimated DSGE model.

Table 1 reports the priors and the posterior mode for the model parameters of the DE

model and RE re-estimated model. Standard deviations are reported in parentheses. The

priors are symmetric across the two models and diffuse.

Figure 7 reports the consumption impulse responses of DE and RE models without

consumption habit. In the estimated DE model without habit, the diagnosticity parameter is

estimated to be significantly smaller than the benchmark DE model at θ = 0.64. The mean

and standard deviation of the Beta distribution that control the weights for the comparison

group are 0.35 and 0.17, respectively, resulting in a more distant and dispersed memory

relative to the benchmark estimated DE model with habit. The left panel of Figure 7 shows

that the DE model without habit is able to generate boom-bust cycle in consumption. In

response to an unexpected Fed rate cut, consumption initially spikes. This is because without

habit, according to the Euler equation (43), the lower-than-usual interest rate implies falling

consumption (negative expected consumption growth).31 In the medium run, consumption

gradually increases because, as shown in the right panel, unexpectedly high consumption

implies unexpectedly high RE consumption Et
[
ĉREt+1

]
(relative to the comparison group

Ert
[
ĉREt+1

]
) and hence high DE consumption Eθt

[
ĉREt+1

]
. As consumption drops, agents become

overly pessimistic (low Eθt
[
ĉREt+1

]
), feeding into significantly low consumption below trend.

An interesting difference of the no habit model compared to the benchmark DE model with

habit is that, because agents expect a quicker reversion of consumption to trend, movements

31In the benchmark model with habit, this initial spike is absent because habit suppresses the initial spike
by breaking the tight link between low rate and negative consumption growth.
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Table 1: Estimated parameters

Prior Posterior mode
Type Mean Std DE RE

η Inverse Frisch elasticity G 2 0.3 2.11 1.56
(0.28) (0.26)

b Consumption habit B 0.5 0.2 0.80 0.90
(0.01) (0.01)

τ Utilization cost IG 1 1 0.22 0.27
(0.01) (0.01)

κ Investment adjustment cost G 2 0.2 2.97 5.48
(0.20) (0.36)

ϕp Price adjustment cost G 100 20 195.4 291.28
(21.2)) (31.6)

ϕw Wage adjustment cost G 100 20 88.6 78.8
(20.3) (18.0)

ρR Taylor rule smoothing B 0.5 0.2 0.009 0.82
(0.008) (0.018)

φπ Taylor rule inflation N 1.5 0.4 1.000 1.000
(0.01) (0.025)

φY Taylor rule output N 0.1 0.05 0.67 0.23
(0.02) (0.05)

100σR Monetary policy shock IG 1 1 0.15 0.21
(0.01) (0.02)

θ Diagnosticity parameter∗ N 0 0.2 1.97 –
(0.10)

µ Memory distribution mean B 0.5 0.2 0.17 –
(0.01)

σ Memory distribution stdev G 0.2 0.05 0.03 –
(0.004)

Log marginal likelihood -345 -369

Notes: ‘DE’ corresponds to the model with diagnostic expectations and ‘RE’ corresponds to the rational

expectations version. B refers to the Beta distribution, N to the Normal distribution, G to the Gamma

distribution, IG to the Inverse-gamma distribution. (∗For the prior for the diagnoscity parameter, we

truncate the Normal distribution above θ ≥ 0.) Posterior standard deviations are in parentheses and are

obtained from draws using the random-walk Metropolis-Hasting algorithm. The marginal likelihood is

calculated using Geweke’s modified harmonic mean estimator.
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in DE consumption Eθt ĉREt+1 are smoother and, as a result, the surprise in cumulative inflation

π∗J,t plays a smaller role in determining the dynamics. Finally, note that in contrast to the

DE model, both counterfactual and re-estimated RE models generate transitory IRFs that

understate the amplitude of empirical consumption response. As a result, the log marginal

likelihood of the DE model is (−388− (−437) =) 49 log points higher than the RE model. We

conclude that the DE model delivers boom-bust dynamics irrespective of whether it features

consumption habit or not.

Figure 7: Consumption paths in a model without habit

Notes: The left panel shows the consumption IRFs in response to a monetary policy shock from the DE

model without habit (blue circled line), counterfactual RE model without habit (red dashed line) and the

re-estimated RE model without habit (magenta dashed line). The right panel plots DE expected

consumption (Eθt
[
ĉREt+1

]
), realized equilibrium consumption (ĉθt ), RE expected consumption (Et

[
ĉREt+1

]
) and

reference expectation (Ert
[
ĉREt+1

]
).

Figure 8 reports the model impulse responses when we use an alterative prior for the

diagnosticity parameter θ. Specifically, we consider a Normal prior with mean 1 and standard

deviation 0.2. We find that the estimated θ = 2.16, slightly higher than the benchmark

estimate of θ = 1.97. Nevertheless, the estimated DE IRF under the alternative prior is very

similar to the benchmark IRF reported in the paper.

Figure 9 reports the model impulse responses when we target the inflation and output

expectations. When expectations are targeted, the diagnosticity parameter is estimated

to be slightly lower than the benchmark DE model at θ = 1.77. The mean and standard

deviation of the Beta distribution that control the weights for the comparison group are

0.19 and 0.04, respectively and thus are similar to the estimated values in the benchmark

DE model. Figure 9 shows that the DE model is able to replicate the boom-bust cycles in
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Figure 8: Impulse responses to a monetary policy shock: Alternative prior for θ

Notes: The interpretation of the plotted lines follow their description for Figure 2. The responses of

consumption, hours, GDP and investment are in percentage deviations from the steady states while the

inflation, FFR and inflation and output growth expectations are in annual percentage points.

macro variables as well as the responses of survey expectations, although it slightly overstates

consumption during the decline after the peak. The counterfactual RE model where we set

the diagnosticity parameter θ to 0 while holding fixed other estimated parameters generates

transitory and negligible response. The re-estimated RE model misses the magnitude of the

bust in consumption, hours and GDP. It also has difficulty matching realized and expected

inflation. As a result, the log marginal likelihood of the DE model is (−636− (−645) =) 9

log points higher than the RE model.

Figure 10 reports the impulse response of the marginal utility to an expensionary monetary

policy shock, given that the estimated Euler Equation features habits:

−Eθt [λ̂REt+1] + λ̂θt = r̂θt − Eθt [π̂REt+1]− θπ∗J,t (55)

where

λ̂θt = −
ĉθt − bγ−1ĉθt−1

1− bγ−1
. (56)

Marginal utility follows a symmetric pattern with respect to consumption, once controlling

for habits. The initial increase in consumption is associated with low expected marginal utility

that induces expectations of even lower marginal utility. Thus, agents expect consumption
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Figure 9: Impulse responses to a monetary policy shock: Survey expectations as targets

Notes: The interpretation of the plotted lines follow their description for Figure 2. The responses of

consumption, hours, GDP and investment are in percentage deviations from the steady states while the

inflation, FFR and inflation and output growth expectations are in annual percentage points.

to increase even when controlling for the stock of habits. As the economy progresses in its

response to the shock, consumption starts declining and marginal utility to increase. However,

reference expectations for marginal utility also start increasing. This is because reference

expectations were formed at a time of high consumption. Under RE, agents expect a fairly

quick return to the steady state from above, implying consumption lower than the stock

of habits, leading to a positive RE marginal utility. However, under DE, the return to the

steady state is slower than expected as agents remain overly optimistic for a while. Agents

are still surprised by the high consumption, leading to a negative surprise in marginal utility,

amplified by DE. Thus, past decisions feed into current beliefs, affecting the duration and

amplitude of the cycle. It is only around 15 quarters that reference expectations catch up

with the current marginal utility. As consumption moves below trend, agents start expecting

a return to the steady from below, generating a negative reference expectation for marginal

utility as consumption is expected to be higher than the stock of habits. In the bust phase,

agents are surprised by the fact that consumption is still well below trend, leading to a

positive surprise in marginal utility, that induces magnified DE of high marginal utility in

the future.

How can we rationalize this behavior from the perspective of the Euler equation under
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Figure 10: Impulse response of marginal utility

Notes: The Figure shows the DE marginal utility (Eθt [λ̂REt+1]), realized equilibrium marginal utility (λ̂θt ), RE

marginal utility (Et[λ̂REt+1]) and reference expectation of marginal utility (Ert [λ̂REt+1]).

DE in (43)? As mentioned in the paper, a key role is played by the surprise in cumulative

inflation π∗J,t with respect to the reference expectations formed in the past. On impact,

because of an increase in utilization, inflation declines. This determines a negative surprise

in the price level that induces a misperception in the model relevant real interest rate that

starts increasing. This perceived high real interest is, in the eyes of the agent, justified

in light of a perceived acceleration in consumption that more than compensates for the

habit stock. In other words, not only agents expect consumption to be higher in the

future, but they also expect the marginal utility to be lower: −Eθt [λ̂REt+1] + λ̂θt > 0 implies

Eθt
[
ĉREt+1 − bγ−1ĉθt

]
−
[
ĉθt − bγ−1ĉθt−1

]
> 0. Eventually, inflation starts picking up, leading first

to a reduction in the negative surprises for the price level and then eventually to positive

surprises. This determines a reversal in the model relevant real interest rate that moves into

the negative territory during the bust part of the cycle, when agents find the perceived low

real interest rate justified in light of their excessive pessimism. Now not only they expect

consumption to decline, but also to do so in a way to increase the marginal utility.

G Alternative Expression of New Keynesian Phillips Curve

In this Appendix we derive an alternative expression of the New Keynesian Phillips Curve

(NKPC) of our DE model that we use to discuss the connection of inflation and real activity

in Section 4. Consider the NKPC:

π̂θt = βEθt [π̂REt+1] + κpm̂c
θ
t ,
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where κp ≡ (ϕpΠ
2(λf − 1))−1. The shadow RE NKPC reads:

π̂REt = βEt[π̂REt+1] + κpm̂c
RE
t .

Iterating forward the RE version of the NKPC, RE inflation can be expressed as:

π̂REt = κp

∞∑
i=0

βiEtm̂cREt+i .

Thus, we have:

π̂θt = κp

∞∑
i=1

βiEθt [m̂c
RE
t+i ] + κpm̂c

θ
t ,

where we have used the fact that DE are additive as long as uncertainty is present. This

expression makes clear that inflation depends on the DE of future marginal costs for a given

starting value of current marginal costs.

70


