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Abstract

We develop an investment model with capital budgeting, where firms endogenously
learn about firm fundamentals and make partially flexible investment plans. In the
model, high-productivity firms have an incentive to acquire better information, giving
rise to a novel channel of improved information allocation that reduces capital misallo-
cation. However, net gains hinge on the cost of learning. We quantify the importance
of this channel by calibrating our model to data on firms’ expectations and planned
investment. Misallocation is substantially mitigated when only learning incentives are
accounted for, but these net gains are reduced because learning costs empirically in-
crease in productivity.
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1 Introduction
Capital budgets and investment plans typically involve pre-commitments of significant fi-

nancial, physical, organizational, or human capital, as well as costly external financing

(Harris et al. 1982; Harris and Raviv 1996, 1998; Malenko 2019; Graham 2022). These

pre-commitments in turn render deviations from capital budgets costly or even infeasible

(Plambeck and Taylor 2007; Dyreng et al. 2021). Consequently, ex ante acquisition of infor-

mation regarding the prospects of a project is valuable since it improves the capital budgeting

process and minimizes the risk of costly adjustment ex post. However, making better fore-

casts is costly since it requires manager attention as well as internal and external information

collection. Thus, managers face a trade-off between the costs of planning and the costs of

adjusting these plans ex post. In this paper, we develop a theory in which such trade-offs in

capital budget formation is a central feature, examine the interplay of these two forces, and

study its theoretical and quantitative implications for the macroeconomy.

We develop a theoretical framework to study how managers endogenously choose to ac-

quire information when forming capital budgets, and we use it, along with unique microdata

on firm expectations and investment plans, to quantitatively evaluate how these decisions

impact firm value and aggregate capital misallocation. The key contribution of our theoreti-

cal approach is that it allows us to parsimoniously decompose the cross-sectional distribution

of firm information acquisition behavior into contributions from private benefits and cost;

in turn, it allows us to quantify the contributions these individual channels have on capi-

tal misallocation across firms.1 Our results emphasize the complementarity in average firm

productivity and information acquistion for firm production, whereas our quantitative re-

sults unveil that the marginal cost of information acquisition is rising in productivity, leading

most firms to not fully internalize these complementarities. Consequently, we find substantial

1Our approach towards quantifying the unobserved private value of information for capital budgeting mirrors
recent advances in the macroeconomics and finance literature in using implicit values to measure private or
unobserved values of intangible assets; see, for instance, the approach taken by Bhandari and McGrattan
(2020) to estimate the sweat equity of private firms, or Farboodi et al. (2021) to estimate the private value
of financial information.
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potential gains to be made from information reallocation across firms.

To formulate our framework, we develop a general-equilibrium investment model with

heterogeneous firms a la Hopenhayn (1992) and embed endogenous capital budgeting. We

emphasize three key dimensions of capital budgeting. First, firm managers formulate an in-

vestment plan prior to observing their productivity for the current fiscal year, then consider

final adjustments to investment decisions after observing their productivity. The information

set the firm has for forecasting current productivity includes their previous period produc-

tivity, as well as new information purchased during the initial periods of the current fiscal

year. For example, firms can purchase enterprise resource management software (such as

SAP, which introduces an internal accounting system to track the performance of differ-

ent business and products within a firm), or engage with consultants for market research.

Second, it is costly to deviate from investment plans ex post (Harris and Raviv 1996). Con-

sequently, managers do not fully react to new information in real time, leading to losses in

firm value resulting from over- or under- investment. Taken together, these two dimensions

of capital budgeting and investment in practice imply that firms have an incentive to acquire

better information to formulate more precise forecasts of both revenue and the marginal

product of investment, even though information acquisition is costly. Finally, we allow for

heterogeneous comparative advantage with regards to information acquisition, capturing the

idea that different types of firms might have access to different technologies for information

acquisition.

A key theoretical result of the model is that the marginal benefit of an additional “unit” of

information for a firm always increases in its previous period productivity, which reflects the

intuition that a similarly-sized forecasting error would be costlier for a higher productivity

firm. Our result implies that information and productivity are complements in production,

at both the firm and aggregate levels. This finding is akin to the predictions of a standard

model of purely physical factor inputs, leading us to interpret information as an implicit

factor of production (i.e., an intangible asset). Importantly, we derive our result using stan-
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dard assumptions on the firm’s revenue-generating function. We believe that this implication

of the standard investment model for information acquisition is new to the literature, and

consequently potentially important for future quantitative work in pricing the value of infor-

mation, or future studies which wish to further examine capital budgeting in this context.

Our result implies that heterogenous incentives for information acquisition arises endoge-

nously in our model, giving rise to a distribution of information across firms. Moreover, due

to the complementarity between productivity and information, firm values and aggregate

productivity are higher in our economy compared to a standard model with a degenerate

distribution of information (but otherwise identical economy). This effect implies that cap-

ital budgeting creates an “information allocation effect” whereby firms’ endogenous choice

of information leads to the allocation of scarce resources (information) to firms that benefit

from it the most. That said, the extent to which this effect is realized depends on the rel-

ative comparative advantage of different firms in acquiring information. Quantifying these

gains therefore requires access to a dataset that, at a minimum, allows us to observe firm

investment plan formation and sales forecasts. While this combination of data is rare in

empirical settings, it would allow us to measure how flexible investment is when firms make

forecasting errors, and how forecasting errors relate to productivity.

To that end, we bring in a large, nationally representative firm-level panel dataset from

the Japan Ministry of Finance (MoF). The data contain firms’ internal forecasts of sales and

profits, and investment plans, as well as their realized values and other standard balance

sheet and income statement items. This provides us key data to calibrate our model, which

we use to draw indirect inference of the aforementioned information allocation effect. In

addition, we present empirical predictions that guide our identification strategy, and also

help provide reduced-form evidence of the model mechanism.

Our calibrated model imply that high-productivity firms have a strong incentive to ac-

quire better information. When we assume that there isn’t comparative advantage in in-

formation acquisition costs, our model predicts that a 1% increase in initial firm-level total
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factor productivity (TFP) leads to an average of 0.065% decrease in the dispersion of fore-

cast errors of current fiscal year TFP. This magnitude is economically large, given that the

standard deviation of forecast errors of TFP, and TFP itself, are around 0.14 and 0.82 re-

spectively. Quantitatively, information acqusition under these assumptions would eliminate

almost all misallocation of capital due to uncertainty around capital budgeting. Specifically,

when we compare this economy to an otherwise equivalent one with a degenerate distribu-

tion of information (but same average uncertainty), our economy sees only a 0.06% loss in

measured TFP, whereas the comparison model predicts a 0.66% loss.

However, we find that the correlation in the data is substantially weaker. Consequently,

when we calibrate our model to also replicate the allocation of information as implied by this

statistic, we find TFP losses of around 0.53%, which is substantially closer to the economy

with a degenerate information distribution. Specifically, our calibrated model reveals that

high-productivity firms face a substantially higher marginal cost to reducing their uncer-

tainty. We argue that this finding is intuitive: While our model describes all firms facing the

same problem (i.e., reducing uncertainty), the types of uncertainty faced by different firms

(and thus information required) are probably highly heterogeneous. For instance, smaller

or less productive firms have relatively straightforward ways to improve productivity, such

as streamlining production processes or upgrading technology. Meanwhile, larger and more

sophisticated firms have more complex operations where searching for improvements may

involve consolidating information across different processes or business lines.

We futher investigate the implications of this finding for firm value and the aggregate

economy. To be precise, we consider an exercise where a hypothetical social planner can,

through a series of subsidies and taxes, reallocate information towards higher productivity

firms while holding the level of aggregate uncertainty fixed. Importantly, the social planner

has the exact same information set as the firm, basing this reallocation entirely only on the in-

titial distribution of productivities. Holding wages fixed (i.e., in partial-equilibrium), we find

substantial gains to firm values, ranging from 2.8% to 4.1% depending on initial conditions.
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Moreover, we find that aggregate output rises by about 2.60% relative to our baseline, even

though the implicit cost of such a reform is only 0.15% of pre-reform aggregate output. How-

ever, when we consider general-equilibrium effects, the gains are more muted, with aggregate

output increasing by around 0.66%, although the reform cost remains essentially identical

to the partial-equilibrium model. The key reason for this difference is because the improved

allocation of information leads to a sharp increase in labor demand by high-productivity

firms, which overwhelms the reduction in labor demand by low-productivity who see infor-

mation reallocated away from them. This raises overall labor demand, substantially driving

up wages, which in turn mutes the gains of information reallocation.

After discussing the related literature below, the rest of our paper proceeds as follows:

Section 2 describes our model, and Section 3 presents our main theoretical results; Section 4

describes our data and presents our calibration strategy and results; Section 5 discusses the

quantitative results of our calibrated model; and finally, Section 6 concludes.

Related Literature

Our results contribute to several strands of the macroeconomics and corporate finance lit-

erature. First, our paper builds on the large literature in corporate finance that studies

the implementation of capital budgets and its implications for capital misallocation across

projects within a firm (e.g., Harris and Raviv 1996; Malenko 2019; Graham 2022; Bernardo

et al. 2004a). Closest to our research is Harris and Raviv (1996), who also argue that unan-

ticipated shocks to productivity can lead to inefficient investment because it is difficult to

adjust actual investment relative to budgeted capital expenses in real-time. However, the

key theoretical focus of this literature has been on relating this inertia to optimal mechanism

design as a result of intrafirm agency and information frictions (Harris et al. 1982; Antle and

Eppen 1985; Harris and Raviv 1996; Bernardo et al. 2004b; Malenko 2019). In contrast, our

paper takes partial inflexibility as a given, and examine firm incentives to acquire better

information about their projects ex ante in light of these inflexibilities. Moreover, our focus

is on the broader macroeconomic implications of capital budgeting quality, in particular,
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how variations in capital budgeting quality can explain capital misallocation across firms.

Second, our paper connects to the large literature on informational rigidity and rational

inattention (e.g., Sims 2003; Reis 2006; Coibion and Gorodnichenko 2015; Ilut and Valchev

2020; see, in particular, the handbook chapter by Baley and Veldkamp 2021 and the ref-

erences therein). While a general thrust of the literature has focused on the implications

of rational inattention for business cycle and inflation dynamics (e.g., Van Nieuwerburgh

and Veldkamp 2009; Maćkowiak and Wiederholt 2015; Baley and Blanco 2019; Ilut and

Saijo 2020), our paper focuses on the interaction between rational inattention and capital

budgeting, and connect this channel to a broader study on dynamic capital misallocation.

Importantly, our paper emphasizes the complementarity between information and productiv-

ity at both the firm and aggregate levels. At the firm level, we show that higher productivity

firms always have a natural incentive to acquire better information, since they value informa-

tion more.2 At the aggregate level, we show that a pure reallocation of information towards

higher productivity firms can substantially ameliorate misallocation arising from uncertainty.

As a whole, these results, to the best of our knowledge, is new to the literature.

Based on costly information acquisition, our theoretical results also help inform recent

empirical findings on firm expectations formation. Recent findings suggest that higher pro-

ductivity firms tend to make better forecasts over both microeconomic and macroeconomic

forecasts, a finding that we also replicate in our data. For instance, Bloom et al. (2021)

find that high-productivity firms make better forecasts of future firm revenue and Tanaka

et al. (2020) find similar results with respect to macroeconomic aggregates. Different from

these papers, our model endogenizes information acquisition, providing an explanation for

empirically observed patterns of managerial forecasting based on rational agents with costly

learning. Our model allows us to relate firm characteristics to the cross-sectional distribution

of forecast errors. We argue that this heterogeneity is important for the overall aggregate

effects of managerial beliefs. Our framework also allows for a number of interesting exten-

2Our emphasis on heterogeneity in returns to learning across firm types mirror recent research by Broer et al.
(2020), although the authors focus on household heterogeneity and consequences for wealth inequality.
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sions examining the interplay of how firms choose to acquire information and choose other

variables such as corporate financial or investment policy. Our approach and inference is

therefore similar to Farboodi et al. (2021), who study the incentives investors have to ac-

quire information, and present a comprehensive framework to measure the private value of

financial information.

Third, our findings relate to the voluminous research studying the sources of capital

misallocation following the seminal work of Restuccia and Rogerson (2008) and Hsieh and

Klenow (2009). In focusing on informational rigidity and investment inflexibility, our paper

most directly relates to the literature emphasizing the role of uncertainty, time-to-build, and

capital adjustment frictions as a source of capital misallocation (Asker et al. 2014; David

et al. 2016; David and Venkateswaran 2019). However, our analysis emphasizes the role of

information misallocation as the driver of capital misallocation across firms. Our emphasis

on studying the underlying intangible factors backing the distribution of tangible factors of

production mirrors recent research in the literature (e.g., Bhandari and McGrattan 2020;

Whited and Zhao 2021).

Finally, from an empirical perspective, we add to the literature by directly verifying and

quantifying our mechanisms using a unique novel data set of firm expectations, which should

provide researchers a unique and rich setting to understand corporate investment behavior.

Prior studies with investment plans use managerial forecasts made by a small number of

public firms, who are only a special subset of the economy, or firm panels with qualitative

forecasts regarding sales or investment (e.g., Bachmann et al. 2013; Bachmann and Elst-

ner 2015; Bachmann et al. 2017; Barrero 2021; Bloom et al. 2021). Other studies involve

experiments designed to elicit the expectations formations process of private individuals or

firm managers, but do not explicitly study capital investment behavior and ex post firm

profitability (e.g., Coibion and Gorodnichenko 2015; Fuster et al. 2020; Coibion et al. 2020).

Importantly, this setting allows us to uncover a key finding: information acquisition costs,

as estimated, are sharply increasing in firm productivity. In other words, high-productivity
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firms face a comparative disadvantage in information acquisition, despite evidence showing

that high-productivity firms make more accurate forecasts.

2 Model
We model capital budgeting and expensing parsimoniously by incorporating three compo-

nents: (i) information acquisition, where firms can invest in better information to improve

the accuracy of their investment plans; (ii) investment plan formation, where firms lay out

their investment plans for the year; and (iii) capital expensing, where firms decide how much

capital to actually purchase, subject to inertia driven by costly deviation from the initial

plans. After presenting the model, Section 3 shows how information plays a similar role to

a factor of production through firms’ capital budgeting process, and how the endogenous

allocation of information across firms affect aggregate productivity.

2.1 Economic Environment

We follow a standard setup for agents, households, and final goods producers. We consider a

discrete time infinite horizon model with infinitely lived agents. The economy is populated by

a representative household and representative final goods producing firm, and heterogeneous

intermediate goods producing firms. Each model period is 1 year, corresponding to our

sample frequency. Although the household and final goods firm play a limited role in our

analysis, we present their setup as they are necessary for studying the impact of information

allocation on aggregate productivity. The representative household discounts time at rate β,

inelastically supplies a fixed quantity of labor N = 1 and has preferences over consumption

of a final aggregate consumption good. The representative final goods firm produces the

final aggregate good given by Yt =

(∫ 1

0
y
η−1
η

i,t di

) η
η−1

, where i is a specific intermediate good

and η is the elasticity of substitution across goods. The usual cost minimization problem for

the final goods firm yields the standard demand schedule for each good i as pi,t = y
− 1
η

i,t PtY
1
η

t ,

where Pt ≡
(∫ 1

0
p1−η
i,t di

) 1
1−η is the CES price index, giving us PtYt =

∫ 1

0
pi,tyi,tdi. For the rest

of the paper, we will set the final consumption good as the numeraire and normalize P to 1.
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Each intermediate goods firm i produces a differentiated good based on the production

function yit = zitk
α
itl

1−α
it , where zit is idiosyncratic stochastic productivity, kit is the beginning-

of-period capital stock, lit is labor hired by the firm, and α ∈ (0, 1) is the capital share of the

firm. We assume log zit follows log zi,t = ρ log zi,t−1 + εit, where εi,t ∼ N (0, σ2
ε ). In addition,

capital depreciates at a geometric rate δ. Finally, each unit of labor costs a wage w, and

we assume that lit is chosen after zit has been observed. As such, firms choose labor to

maximize static profits which are determined by the residual demand function above. Under

these assumptions, without loss of generality, we can directly rewrite the firm’s gross profit

function net of labor cost as

π = A (wt, Yt) z
Θz
i,t k

Θk
i,t , (1)

where Θz ≡
η−1
η

1−(1−α) η−1
η

, Θk ≡
α η−1

η

1−(1−α) η−1
η

, and A (w, Y ) > 0 is a function of the endogenous

aggregate wage and output.

Besides labor, managers also decide on capital inputs, which are quasi-fixed and deter-

mined in the previous period. The role of the manager is to make a sequence of investment

decisions to maximize the firm’s net present value, which the manager discounts at constant

rate 1
1+r

.3 We lay out the capital budgeting and investment decision of the manager and

discuss how capital budgeting affects the value of the firm below.

2.2 Capital Budgeting and Investment

As demonstrated in Figure 1, the investment problem is broken down into 3 sub-periods to

reflect capital budgeting (sub-period I and II) and expensing in practice (sub-period III).

First, a manager begins a fiscal year with full information on last period productivity z−1 but

no information about the realization of TFP innovation ε (and thus, no information about

z). Second, the manager must make a capital budget for the year; but before laying out the

budget, she has the option to purchase better information about the year’s prospects ε (e.g.,

3Because managers do not have any agency costs in our model, we interchangeably use the term “manager”
or “firm” when discussing corporate policy.
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by doing costly market research). Finally, after setting a budget, the manager observes the

current year’s productivity and decides how much labor to hire and how much actual capital

to spend on investment. Importantly, any deviation of investment from the capital budget is

costly, providing an incentive to make better investment plans at the beginning of the fiscal

year. We discuss each sub-period in more detail below.

Sub-period I: Information Acquisition. The manager of firm i begins period t with

full information on last period’s productivity zi,t−1, but does not observe εi,t. However, she

is able to improve on her information by acquiring a signal with precision 1/σ2
i,t. For some

choice of σi,t, the manager will receive a signal si,t about current productivity, given by

si,t = ui,t + εi,t, where ui,t ∼ N
(
0, σ2

i,t

)
. The manager learns by Bayesian updating: after

observing the signal, the manager’s belief over the posterior distribution of zi,t is given by

log z̃i,t ∼ N (log ẑi,t,Vi,t) , where log ẑi,t ≡ ρ log zi,t−1 + σ2
ε

σ2
i,t+σ

2
ε
si,t. si,t is the expected current

period productivity and Vi,t is the posterior variance of productivity (equivalently, V−1
i,t is

the signal precision). The ratio Vi,t
σ2
ε

captures the amount of learning, reflecting the amount

of chosen uncertainty relative to the prior.4 Given our information structure, we can define

a TFP shock as follows:

Definition 1. (TFP shock) A TFP shock is defined as log z−log ẑ, that is, the log-difference

between realized and forecasted TFP.

However, information acquisition is costly and follows a cost function,

C (σi,t, zi,t−1) = ξzζi,t−1σ
−2
i,t , (2)

where ζ controls the degree to which information acquisition costs are correlated with initial

4Note that with our specification, uit becomes degenerate at 0 when σi,t → 0; in other words, this reduces
to the standard timing whereby firms perfectly observe current productivity.
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productivity zi,t−1. This specification allows us to nest a variety of potential learning costs.5

When ζ = 0, the marginal cost of improving signal precision is constant and homogeneous

across firms, whereas when ζ > 0 (ζ < 0), higher productivity firms face higher (lower)

marginal costs. For the following two sub-periods, we drop the i subscript and denote

variables from past productivity with z−1.

Sub-period II: Investment Plan Formation. After observing the signal and forming

an updated belief log z̃t over the distribution of εt, the manager makes an investment plan

kpt+1. We assume as a model primitive that these investment plans have to be made prior

to making an actual investment in order to achieve next-period capital stock kt+1. Our

assumption is motivated by both capital investment practice and the corporate finance liter-

ature.6 Importantly, managers have an incentive to make accurate plans because it is costly

to deviate from the plan.7 Given some plans and actual investment, the manager faces the

5We allow for this generic structure since there is no clear evidence as to whether the marginal cost of learning
should be increasing, constant, or decreasing in firm productivity. Importantly, as we will show, our model
structure allows us to identify this parameter, which will allow us to conduct our key counterfactual analysis
later in the paper. In general, increasing marginal costs (ζ > 0) can happen if larger (and thus higher
productivity) firms also have more complicated management structures relative to smaller (less productive)
firms, which leads to greater co-ordination failure across production units and chains of command (Harris
et al. (1982); Malenko (2019)). Constant marginal costs arise in standard rational inattention models which
formulates a capacity constraint or fixed costs of learning that are independent of productivity (e.g., Sims
(2003); Reis (2006)). Finally, decreasing marginal costs (ζ < 0) can occur if high-productivity managers
naturally are better at information processing due to the implementation of better management systems (e.g,
Bloom et al. (2007)), or if information acquisition has a degree of increasing returns to scale (e.g.,Begenau
et al. (2018)).

6In practice, capital budgeting is a core process in the allocation of capital within a firm, and any deleterious
effects of poor capital budgeting could arise for a variety of reasons (e.g., Mao 1970; Myers 1974; Schall
et al. 1978; Arnold and Hatzopoulos 2000; Ryan and Ryan 2002), which is outside the scope of this paper.
In the context of the macroeconomics literature, this relates to the idea of time-to-build and time-to-plan
(e.g., Kydland and Prescott (1982); Christiano and Todd (1996)), where completely inflexible investment
plans are model primitives.

7This assumption on costly plan deviation can be micro-founded by operational inefficiencies such as those
modeled by Harris and Raviv (1996) and Malenko (2019), which feature information asymmetry within a
firm and costly verification (auditing) of spending within a firm. In both models, the constrained optimal
capital budgeting rule is to allocate a planned amount for capital expenditure, then incur costly verification
for realized spending that deviates from plans. In this framework, costs are due to information frictions in
the decentralized organization, such as auditing or various meetings.
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following cost function φ(kpt+1, kt+1) for any deviation from the plan:

φ
(
kpt+1, kt+1

)
=
χ

2

(
kt+1

kpt+1

− 1

)2

kpt+1, (3)

where χ ≥ 0 denotes the severity of the cost function and χ = 0 implies that plans are

irrelevant. Although the parametrization of the cost function is analogous to a traditional

convex physical adjustment cost function, it is a penalty for investment plan deviations

rather than deviations from the firm’s current capital stock.8 We show later in Section

3 that our key qualitative insights regarding information allocation do not hinge directly

on this functional form assumption. However, this choice of functional form permits us to

more closely match the data in our quantitative exercise. Finally, given our functional form

assumption, it is convenient to define an investment plan deviation as follows:

Definition 2. (Investment Plan Deviation) An investment plan deviation is defined as ut ≡

log kt+1−log kpt+1, that is, the log-difference between realized and planned next-period capital.

Sub-period III: Investment. After making an investment plan, the manager perfectly

observes current period productivity zi,t. Knowing that zt follows an AR(1) process, the

manager uses her updated information to decide how much capital to invest for use in the

next period, subject to the aforementioned adjustment cost φ(kpt+1, kt+1) in Equation 3.

2.3 Bellman Equations

We can now define the problem recursively. Let J(k, kp, z) denote the value function of

the manager after all shocks have been realized (i.e., at sub-period III), W (k, s, z−1) the

value function of the manager after a signal has been observed (i.e., sub-period II), and

finally V (k, z̃, z−1) the value function of the manager at the beginning of the period (i.e.,

sub-period I). To simplify notation, we denote variables in the future with a ·′, drop both i

8This assumption also means that there are no physical adjustment costs inducing inertia in firm investment
decisions.
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and t subscripts, and denote past productivity with z−1.

The manager’s Bellman equation at sub-period III is given by

J (k, kp, z) = max
k′

π + (1− δ) k − k′ − χ

2

(
k′

kp
− 1

)2

kp +
1

1 + r
E
[
V
(
k′, z̃′, z

)
|z
]

(4)

s.t. log z̃′ ∼ N
(
ρ log z, σ2

ε

)
,

where next-period capital k′ is chosen to maximize expected profits, taking into account that

deviations from investment plans are costly. While costs show up in the dynamic program

of the manager, we assume that they are “utility” costs in our baseline model. Therefore,

they do not consume any resources in terms of labor, capital, or profits and hence do not

directly affect firm value.

Thus, the Bellman equation in sub-period II, after the signal has been observed, is given

by

W (k, s, z−1, σ) = max
kp

E [J (k, kp, z) |s, z−1, σ] (5)

s.t. log z ∼ N
(
ρ log z−1 +

σ2
ε

σ2 + σ2
ε

s,V
)
,

where the manager chooses investment plan kp, taking into account the potential future

need to deviate from the plan. The manager makes a capital budget kp accounting for

the full distribution of possible investment choices, since she does not know what current

productivity is at this point.

Finally, in anticipation of the final two sub-periods, the Bellman equation in sub-period

I is given by

V (k, z̃, z−1) = max
σ
−ξzζ−1σ

−2 + E [W (k, s, z−1, σ)] (6)

s.t. s = u+ ε

u ∼ N
(
0, σ2

)
,
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where the manager chooses the signal quality σ of today’s productivity, whereby a more

precise signal is costlier to acquire but adds value to the firm by reducing the size of ex post

investment plans deviations. The manager knows the productivity from the previous period

z−1.

2.4 Equilibrium Definition

A stationary competitive equilibrium is defined by a measure of firms Λ; a set of policy

functions {σ (z−1, k;w, Y ) , kp (z−1, k, s;w, Y ) , k′ (z−1, k, s, z;w, Y )}; a set of value functions

{V,W, J}; intermediate good prices {pi,t}i∈Λ; wage w; and a Markov transition function Γ

induced by the policy function k′ and exogenous productivity z′ such that (1) the distribution

of firms is invariant (Λ = Γ (Λ)), (2) the labor market clears, and (3) the intermediate goods

market clears.

Having laid out the model primitives, we next turn to a discussion on how these firm-level

decisions affect the aggregate information allocation across firms and discuss implications for

aggregate productivity.

3 Capital Budgeting: Micro Choices and Macro Out-

comes
Because capital budgeting involves acquiring and using costly information, information be-

haves as an implicit factor of production. This section studies the information acquisition

choice that a firm makes, the distribution of information acquisition across firms, and the

resulting impact on aggregate productivity. Finally, we discuss our identification strategy

for mapping the model to the data and present the quantitative implications of our model

in Section 5.

3.1 Within-Firm Information Acquisition

Firms have an incentive to acquire better information and make more accurate plans because

deviating from investment plans is costly. To illustrate this, we focus first on the impact
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on firm profits assuming that investments are completely unadjustable once set in place

(i.e., χ = ∞). This assumption isolates the information channel, without complicating the

analysis when allowing for partial adjustment, and allows us to derive a global solution.

Appendix B contains all relevant formal proofs for the propositions below.

Proposition 1. (Marginal Benefit of Learning 1) Suppose χ =∞. Then,

1. the ex ante (sub-period I) expected value of the firm is strictly decreasing in the posterior

uncertainty V, and

2. the value of increasing signal precision (i.e., decreasing V) is increasing in initial firm

productivity z−1. That is, information and productivity are complements at the firm-

level.

Proposition 1 summarizes two aspects of capital budgeting. First, it points out that

information is desirable, and all firms prefer to face lower uncertainty since it increases firm

value. This effect can be seen in Equation 7, which expresses the overall marginal benefit

of information as a constant multiplied by two terms, z
ρφz

1−φk
−1 and

∂Fπ(V−1)
∂V−1 , that correspond

to a productivity effect and information effect, respectively. We show that
∂Fπ(V−1)
∂V−1 > 0,

therefore capturing the desirability of information for all firms.9

MB ≡ 1

1 + r

∂E [V (′)]

∂V−1
=

1

1 + r
h̄ z

ρφz
1−φk
−1︸ ︷︷ ︸

pure productivity effect

∂Fπ (V−1)

∂V−1︸ ︷︷ ︸
pure information effect

(7)

Second, we can see from the expression above that the term z
ρφz

1−φk
−1 is increasing in z−1; in

other words, the marginal benefit from lowering uncertainty (i.e., incentive for information

acquisition) increases in productivity. Figure 2 plots the marginal benefit of information

9Note that this is different from the Abel-Hartmann-Ooi effect, which emphasizes a volatility effect. This
effect is captured in the h̄ constant, which is a function of σ2

ε . The exact derivation of h̄ is detailed in
Appendix B.
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acquisition for a high and low productivity firm.10 Beyond delivering intuition and a clear

solution, the simplified model with χ =∞ has also an added advantage in emphasizing that

our baselines results are not driven by our parametric assumptions on the investment plan

adjustment cost channel. Rather, this result derives entirely from standard assumptions on

the revenue generating function of the firm.

[Figure 2 Here]

Moreover, although higher productivity firms always have a higher benefit of learning,

the amount of endogenous learning also takes into account the marginal cost function of

information acquisition, stated in Proposition 2 below.

Proposition 2. (Net Benefit of Learning) For some threshold ζ̄ > 0, the optimal signal

precision is weakly increasing in initial firm productivity when ζ < ζ̄, weakly decreasing when

ζ > ζ̄, and does not depend on productivity when ζ = ζ̄.

The indifference condition (derived in Appendix B) that determines the firm’s choice of

V is given by

∂C
∂V−1︸ ︷︷ ︸
MC

≡ ξzζ =
1

1 + r
h̄z

ρ2Θz
1−Θk
−1

∂Fπ (V−1)

∂V−1
≡ 1

1 + r

∂E [V (′)]

∂V−1︸ ︷︷ ︸
MB

,

where the right side of the equation is the marginal benefit formula from Equation 7. This

indifference condition is analogous to standard equations connecting physical factor inputs to

firm production. Just as factor inputs and productivity are complements in production, so are

information and productivity once we account for endogenous learning. While information

is not an explicit input into production, our reformulation of the firm’s marginal benefit

10To put our model mechanism in the context of a real life example, consider the impact of capital budgeting
mistakes on the profitability of a large grocery store chain as compared to a “mom-and-pop” corner store.
Our model predicts that the same relative mistake (i.e., same percentage investment plan deviation) will
naturally have a larger level impact on the bottom line of the large chain as compared to the corner store.
This difference then leads the large chain to preemptively make better investment plans (for instance, by
engaging external consultants) relative to the corner store.
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function re-expresses all physical factor inputs as functions of information choices. This is

similar to recent advances in the finance literature emphasizing the role of financial factors

as an implicit input into firm production and value added (Whited and Zhao (2021)).

On the input cost side of the equation, our formulation of C is analogous to models where

the implicit cost of factor inputs is correlated with the idiosyncratic state of the firm (e.g.,

where the tightness of financial constraints correlate with the cash flow or productivity of the

firm as in Hennessy et al. (2007); Midrigan and Xu (2014)). In our case, we interpret ζ as a

reduced-form “wedge” that affects overall information allocation in the spirit of the literature

on firm-level wedge accounting (e.g., Hsieh and Klenow (2009); David and Venkateswaran

(2019); Whited and Zhao (2021)). Correspondingly, we consider an economy where ζ = 0

as a “first-best” reference where information allocation is not distorted by implicit wedges.

For illustration, Figure 2 shows two examples, one where the marginal cost is constant (i.e.,

ζ = 0) and one where the net benefit is constant (i.e., ζ = ζ̄). When ζ = 0, the optimal

signal precision is increasing in productivity, reflecting the natural complementarity between

information and productivity; in contrast, when ζ = ζ̄, all firms choose identical signal

precisions because the cost of information acquisition is rising sharply in productivity and

overwhelms the complementarity between information and productivity.

Extant research using firm-level forecasting data (e.g., Tanaka et al. (2020); Bloom et al.

(2021)) has shown that higher productivity firms appear to formulate more precise forecasts

over fundamental variables associated with firm profitability (e.g., sales, GDP), leading to the

hypothesis that higher productivity firms have a comparative advantage in forecasting. Our

model delivers the same effect but provides an alternative interpretation: higher productivity

firms make better forecasts because they have higher incentives to acquire better information.

In contrast, the comparative advantage of firms in forecasting depends on the marginal cost

of information acquisition. Our model does not take a stand on this, allowing for high-

productivity firms to exhibit comparative advantage relative to low-productivity firms when

ζ < 0 (and vice versa when ζ > 0). In the next section, we will use our data to quantify the
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degree to which high-productivity firms do exhibit a comparative advantage with regards to

forecasting by inferring the value of ζ using our identification strategy discussed below.

Finally, we now return to discussing the role of the investment plan adjustment cost in

our model. While our global result in Proposition 1 is derived under the special case where

investment plans are immutable (χ =∞), the results remain when we return to the general

model under a local approximation, as formally stated in Proposition 3 below:

Proposition 3. (Marginal Benefit of Learning 2) Suppose 0 < χ <∞. Then the results of

Proposition 1 are preserved under a log-linear approximation for next-period capital choice

k′.

This gives rise to a natural corollary:

Corollary 1. (Net Benefit in General Model) The results of Proposition 2 are preserved

under a log-linear approximation for next-period capital choice k′ for the general model with

0 < χ <∞.

While the inclusion of partially flexible investment plans might seem superfluous to our

focus on information allocation, Section 4 shows that empirically, firms appear able to de-

viate from their plans in response to real-time productivity shocks. This implies that an

assumption of immutable plans will overstate the effects of uncertainty and information re-

allocation. Therefore, to estimate ζ and conduct quantitative counterfactual exercises, we

adopt a simple cost function to improve our model fit to the data and avoid the risk of

overstating the quantitative role of information.

3.2 Across-Firm Information Allocation and Aggregate Productiv-

ity

Endogenous learning depends on firms’ heterogenous productivities, which when aggregated,

affect economy-wide productivity. We illustrate this by presenting an aggregation result

relating arbitrary allocations of information to aggregate total factor productivity (TFP) for
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a simplified version of our model with χ =∞. We define TFP ≡

(∫
y
η−1
η dΛ

) η
η−1

(
∫
kdΛ)

α
(
∫
ldΛ)

1−α , where Λ

is the distribution of firms and Proposition 4 states the result.

Proposition 4. Information and productivity are complements in firm production at the

aggregate level. For any given marginal distributions of initial period productivity z−1 and

information choice V, TFP is decreasing in the correlation between z−1 and V.

The result is analogous to a model where the distribution of physical factor inputs are

arbitrarily imposed and the total stock of factors are fixed such that TFP gains arise solely

from factor reallocation. In the context of physical factors, because productivity and factors

of production are explicitly modeled as complements, it is obvious that TFP would increase

if factors are reallocated towards higher productivity firms.

Our contribution is to show that a similar result holds for productivity and information—

an implicit factor of production—where such complementarity is neither explicit nor obvious

prima facie. Crucially, Proposition 4 also reflects how the information allocation aspect of

capital budgeting can affect aggregate TFP. In our model, the parameter ζ determines the

net benefit of information acquisition and is key to whether high productivity firms actually

acquire more information in practice. Quantifying the importance of this channel will be a

key exercise in the following sections.

3.3 Model Identification and External Validation

Having developed the theoretical framework to show how information acquisition through

capital budgeting affects input choices, our next goal is to quantify the degree to which this

information allocation mechanism affects firm value and aggregate output. We proceed in

two steps. First, we present our identification strategy that connects the capital budgeting

decision of the firm to key identifying moments. Next, we present two additional predic-

tions of our model, which we will use to externally validate the primitive assumption that

investment plans are not fully flexible but also not completely immutable.
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3.3.1 Model Parameter Identification

Following the literature, the bulk of our model parameters either use standard values or

are estimated independent of the model. Three remaining keys parameters (χ, ζ, ξ) need to

be estimated. We estimate these parameters by targeting three moments and connect each

moment to the corresponding parameter that it identifies.

Identification 1. The average cross-sectional dispersion of TFP shocks, with TFP shocks

defined as in Definition 1, depends on the intercept of marginal cost ( ξ ).

Identification 2. The average cross-sectional dispersion of investment plan deviations,

with investment plan deviations defined as in Definition 2, depends on the adjustment cost

parameter (χ ).

Identification 3. The correlation of lagged TFP with the dispersion of TFP shocks depends

on the slope of the marginal cost to information acquisition ( ζ).

We briefly discuss the intuition behind our identification strategy and defer more detailed

and formal derivations to Appendix B.5. First, our marginal cost parameter ξ is identified

using the dispersion of TFP shocks because ξ determines the average cost a firm needs to

pay to acquire information. Per our model definition, TFP shocks are simply forecast errors.

Consequently, since increases in ξ reduce the average amount of information acquired, the

average size of forecast errors will increase, leading to a larger dispersion of TFP shocks.

Second, our adjustment cost parameter χ most directly affects the dispersion of invest-

ment plan deviations since it affects the degree to which plans are adjustable. However,

an issue is that both χ and ξ are intrinsically tied together: a higher adjustment cost χ

(independent of marginal cost ξ) increases the benefit of information and leads to more in-

formation acquisition, reducing the average dispersion of TFP shocks and plan deviations,

while a lower ξ also reduces the dispersion of TFP shocks and investment plan deviations.

However, because χ has an indirect effect on information acquisition while ξ has an indi-

rect effect on investment adjustment, the non-linear map from χ and ξ to the two moments

permit identification. We formally derive this result in the Appendix (see Equation 28) and
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show that the ratio of these two moments is in fact only a function of χ. To show the

intuition of how the parameters are identified, we construct “isomoment” plots in Figure 3 to

illustrate the intuition. Here, we construct a series of graphs that report the set of parameter

pairs that give rise to the same targeted moment, holding all else constant. In the case of

identifying ξ and χ, it is most useful to focus on the first two rows of figures, where we

see that every pair of ξ and χ maps uniquely into the two aforementioned moment targets,

whereas multiple pairs of ζ (and ξ or χ) can map into the same two moment targets.

Finally, ζ most directly relates to the correlation between uncertainty and firm productiv-

ity (Proposition 3 and Corollary 2). Most importantly, our cost function assumptions imply

that the map between these variables is monotone, and that a firm’s information acquisition

policy will depend on its initial productivity except for the knife-edge case when ζ = ζ̄. This

effect is reflected in the last two panels of our isomoment plots (Panels h and i of Figure

3). Moreover, although ζ will also have an impact on the first two moments, as we already

pointed out, the map between parameter pairs of ζ (and ξ or χ) to the first two moment

targets is not unique. This result allows us to “isolate” ζ via the last moment target.

3.3.2 External Validation of Model

We now discuss two additional predictions that we use to validate our model. Confirming

that these predictions hold in the data helps us to verify our main model channels.

Prediction 1. In a “horse race” regression for forecasting actual firm investment, investment

plans will attenuate the forecasting power of expected productivity for actual investment.

Intuitively, the less flexible the plan, the less actual investment should adjust to TFP

shocks. Prediction 1 serves to reject the null that investment plans are fully flexible, which is

important since capital budgeting is only relevant if investments plans are not fully flexible.

This prediction arises from the investment plan equation (Equation 23 of Appendix B),

where we show that investment plans are a function of both expected productivity and the

precision of these expectations. Since actual investment itself depends on investment plans,

investment plans will have a stronger forecasting power than expected productivity alone,
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since the latter accounts for only a fraction of the variation in the former. In Appendix

B.6.2, we formally show that the degree to which investment plans attenuate the forecasting

power of expected productivity decreases in the flexibility of investment plans. Our next

prediction formally tests whether investment plans are immutable.

Prediction 2. The size of investment plan deviations is increasing in the size of realized

TFP shocks.

This prediction arises directly from the investment Euler equation (equation 21 of Ap-

pendix B), where we show that except for the limiting case when plans are completely im-

mutable, actual investment will in general be positively correlated with TFP shocks. There-

fore, this prediction relates to the assumption that investment plans are at least partially

flexible and clarifies why we assume an adjustment cost function in our quantitative model

rather than simply assuming immutable plans.

Having discussed the link between firm-level capital budgeting to firm value and aggre-

gate productivity, we turn to quantifying the impact of this mechanism, which requires a

calibration of model parameters. A challenge to calibrating our model is data availability, as

the identification criteria above requires observing three key variables that are not typically

jointly available in widely used datasets: (1) expected (i.e., forecasted) and realized TFP, (2)

capital budgets (i.e., investment plans) and realized capital expenditures, and (3) the corre-

lation of the variation of productivity shocks with past productivity. In the next section, we

introduce a novel dataset from Japan which includes all of the necessary information.

4 Empirical Analyses
In the following subsections, we discuss our main data sources and the definition and con-

struction of the key variables, present reduced-form analyses that validate the qualitative

predictions of our model, and finally calibrate our model and discuss the results and model

sensitivity.
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4.1 Data and Sample Construction

Our sample comes from combining two datasets from the Japanese Ministry of Finance

(MoF): the Business Outlook Survey (BOS) and the Annual and Quarterly Financial State-

ments Statistics of Corporations by Industry. The BOS contains firm-level forecasts/spending

plans and their realizations, while the Annual (Quarterly) Financial Statistics survey pro-

vides detailed year-end (quarter-end) financial statistics such as cash holdings, debt, total

employment, and cost of labor for the fiscal period. Although the two surveys are dis-

tinct, they follow the same sampling procedure and target the same firms (Appendix C).

Responding to both surveys is mandatory; the response rates for large firms in our sample

are between 87% and 88.8%.11 Merging the data creates a nationally representative panel

of both public and large private firms in Japan with information on their expectations and

financial statements.

4.1.1 Summary Statistics

Our main sample includes all industries but drop firm-year observations with zero sales,

missing labor costs, and missing net plants, property, and equipment information. The final

sample contains around 6,000 firms a year, ranges from fiscal year 2005 to 2016, and accounts

for around 60% of total employment in Japan.12

[Table 1 Here]

Table 1 reports the general characteristics of our merged sample, including the mean,

standard deviation, skewness, and the 25th, 50th, and 75th percentile of key variables. Panel

A reports balance sheet variables from the Annual Financial Statistics survey and Panel B

reports constructed variables. The average total assets of a firm in our sample is 88 billion

yen (approx. US$7,500,000) with a median of 26.7 billion yen (approx. US$2,300,000),

11Charoenwong et al. (2020) considers the strategic reporting motives of firms and shows that the forecasted
profit and sales data exhibit similar, if not less biased and more accurate, distributional properties than
publicly reported forecasts among publicly listed companies.

12In Japan, a fiscal year ranges from April to March. For example, fiscal year 2005 ranges from April 2005
to March 2006.
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and the average capital stock of 50 billion yen (approx. US$4,300,000) with a median of

12.3 billion yen (approx. US$1,060,000). On average, firms plan to invest 7.7% of capital

and actually invest around around 7.6% of capital. Although the interquartile range of the

investment plan deviations are roughly the same order of magnitude as for the actual realized

investment, the standard deviation is 5.6% compared to the realized investment rate of 9.6%

and the distribution of investment plan deviations as a percentage of capital is tighter and

less skewed than those of the realized or planned investment rate.13

4.1.2 Definition and Construction of Key Variables

Firms are surveyed around six weeks into the first quarter about their forecasted sales, profits,

and investment spending plans for the full fiscal year. For variables derived from sales and

profits, we refer to the differences between actual and realized variables as “shocks.” Our

interpretation, following from our model assumptions and consistent with Bachmann and

Elstner (2015), is that differences between actual and predicted sales or profits are largely

driven by circumstances outside of a firm’s control and thus can be interpreted as innovations

to a firm’s information set. In contrast, for investment plans, we refer to the differences

between realized and planned values as “deviations from plan”, since investment spending is

under a firm’s control and thus differences between realized and planned values are choices

made by a firm. Such deviations reflect both a firm’s reactions to real-time innovations to

its information set and the degree of flexibility to adjust realized capital expenses relative to

its planned expenses.14

13While not a focus of the paper, we report more detailed investment characteristics in Table C.4 (Appendix
C.2), drawn from the Annual Financial Statistics survey. Around 16% of firms in our sample exhibit
negative gross investment, while around 17% report a gross investment rate in absolute value lower than
1%. In general, the statistics involving investment are comparable to public firms in the United States
(for instance, see Clementi and Palazzo (2019) for statistics computed using data from Compustat North
America).

14To verify that the BOS corporate plans and forecasts are economically relevant, we conduct regression
analyses similar to that of Gennaioli et al. (2015), and report the results in Appendix Section A.1. Observed
capital spending plans appear informative for realized spending, generating results quantitatively similar
to or even larger than those in Gennaioli et al. (2015).
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TFP, Expected TFP, and TFP Shocks The firm “fundamental” we consider is revenue-

based total factor productivity (TFP). For computing realized TFP, we follow Asker et al.

(2014) and assume firms operate Cobb-Douglas production functions with capital (labor)

intensity α (1 − α) and face isoelastic demand curves with elasticity η. Given values for α

and η, we can back out TFP z using the identity

z =
(py)

η−1
η

kαl1−α
, (8)

where py is the firm’s total value-added for the fiscal year, k is the firm’s physical capital

stock measured at the end of the last fiscal year, and l is the number of full-time equivalent

labor hired as of the end of the current fiscal year. We defer our full description to Appendix

A.2.

We also compute an approximate measure of the firm’s expected TFP using data on

expected sales and balance sheet variables and use it to infer the TFP shock the firm faces.

This is unlike prior research, which typically uses the fitted value of an AR(1) regression as a

proxy for a firm’s expected TFP and the residuals as the TFP shock a firm faces. Specifically,

we define expected TFP ze as

ze ≡ (pye)
η−1
η

kαl1−α
, (9)

where pye is the firm’s expected total value-added for the fiscal year (which we compute from

expected sales), and k and l are the same as above. We define a TFP “shock” in the data ε̃

as

ε̃ ≡ log z − log ze. (10)

This follows our model definition of a TFP shock as being the log-difference of realized

and forecasted TFP (log z − log ẑ). However, because the definition above uses only an

25



approximation of expected TFP (specifically, due to Jensen’s inequality, log ẑ 6= log ze), it

consequently mismeasures the TFP shock. Nonetheless, in Appendix A.2.4, we show that

given the timing convention and parametric assumptions of our model in Section 2, these

measurement issues do not affect our qualitative results and are unlikely to be quantitatively

large. The main intuition is that log ze essentially suffers from classical measurement error,

introducing an attenuation bias when expected TFP is used as an explanatory variable in

our analyses, which does not affect the sign of a regression coefficient. Relatedly, for the

case of ε̃, the TFP shock is (i) amplified by a fixed factor that is a function of only η and α,

meaning the measured shock will be too large relative to the true shock, and (ii) suffers from

measurement error coming from variations in the firm’s degree of uncertainty (i.e., V). The

former can be directly corrected for in our analyses, and the latter variation is quantitatively

small relative to log realized TFP.

Finally, we need to compute firm value-added to operationalize our measurement strat-

egy. Unfortunately, the Financial Statistics survey does not give us a direct measure of

intermediate inputs, so we cannot compute value-added directly. Therefore, we impute the

firm’s material share based on industry input-output tables provided by the Ministry of

Economy, Trade and Industry (analogous to those produced by the Bureau of Economic

Analysis in the United States) which follows standard approaches in the literature (e.g.,

David and Venkateswaran 2019). Our exact measurement strategy is detailed in Appendix

A.2.

To ensure that our strategy is robust, we also consider an alternative measure of value-

added using sales minus the costs of goods sold. As a robustness check, we verify that all of

our results would be qualitatively similar using this measure as a measure of value-added.

However, an issue with using costs of goods sold is that while it captures the total cost of

intermediate inputs, it also includes part (but not all) of labor costs that would systematically

bias our estimates of value added and labor intensity downwards. In contrast, our imputed

material shares approach introduces measurement error without systematic bias. Therefore,
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we choose the imputed material share approach as our baseline estimate.

Investment, Investment Plans and Deviations from Investment Plans Firms are

surveyed regarding their planned and actual investment-related spending, including infor-

mation over three broad categories of spending: plants, property and equipment (PP&E),

land, and software. We use PP&E as our definition of “capital”, and consider investment

rates rather than investment levels by normalizing investment values by the end-of-previous-

period capital stock. Planned investment (denoted by ip) are reported planned investments

from the beginning of the fiscal year, while actual investment (denoted by i) are the realized

spending at the end of the fiscal year. For investment plan deviations, we use definition 2

by imputing next-period capital stock using the perpetual inventory method with a fixed

geometric rate of depreciation.

A caveat for our empirical analysis is that the investment values in the survey data only

reflect capital expenses. This means that firms that plan to and / or actually disinvest

will report ip = 0 and i = 0. This data truncation biases our measure of investment plan

deviations toward 0, which means that we will underestimate investment flexibility. We

discuss this bias in more detail in Appendix A.2.6 and argue that based on our simulations,

we do not believe that this bias meaningfully affects our empirical results. In addition,

we will also incorporate this measurement error in the model’s calibration to the relevant

targeted moments.

4.1.3 Summary Statistics of Key Variables

As discussed in the previous section, our calibration requires three pieces of information:

(1) dispersion of TFP shocks, (2) dispersion of investment plan deviations, and (3) the

correlation of TFP with dispersion of TFP shocks. While we do not directly observe these

three statistics in the data, we can compute their empirical counterparts per our definitions

in the preceding subsections. For additional information, we report the statistics for TFP

and investment at the industry level in Tables A.2 and A.3, respectively. Finally, in the next

27



section, we document the correlation between lagged productivity and the dispersion of TFP

shocks.

We highlight two important caveats. First, as we already noted, the above-mentioned

TFP dispersion is mismeasured. Consequently, as we can see in Column 6 of Table A.2, the

dispersion of TFP is often larger than that of the corresponding volatility of TFP. However,

we show in the Appendix that, we can directly invert back the true TFP shock dispersion

if we assume homogenous uncertainty (Equation 18). Therefore, as an additional check,

Column 7 shows readjusted values according to our formula. We see that all values are now

typically around one-half that of the volatility of TFP. Second, in the BOS, we only observe

i and i ≥ 0. We will account for these empirical issues when calibrating our model.

4.2 External Empirical Validation

We now present reduced-form empirical analyses to validate our model’s extended predic-

tions. We report validation tests in Table 2. For notation, subscript i indexes a firm, j(i)

indexes the industry firm i is in, and t is a fiscal year.

First, we run a regression specification of the form

ii,t
ki,t

= αj(i),t + β
ipi,t
ki,t

+ γ log zei,t + εi,t, (11)

where αj(i),t represents industry and year fixed effects. The coefficients of interest are γ,

which captures the relation between expected TFP and investment, and β, which captures

the relation between investment plans and investment. To conduct the “horse race”, we first

run the regression with only expected TFP alone to show the benchmark result, and then

run the same regression again including investment plans. Column 1 shows the relationship

between investment and expected TFP. Column 2 adds investment plans as a regressor. As

predicted, while expected TFP is strongly and positively correlated with investment, the

presence of investment plans sharply attenuates the importance of these expected TFP by

over two-thirds and improve R2 almost 7-fold. This finding suggests that investment plans
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might indeed feature a high degree of inflexibility.

[Table 2 Here]

Prediction 2 suggests the size of plan deviations is increasing in the size of TFP shocks.

To test this, we run a regression specification of the form:

log (1 + |ui,t|) = αj(i),t + β log (1 + |ε̃i,t|) + ui,t, (12)

where αj(i),t represents industry and year fixed effects. The coefficient of interest is β, which

relates the size of investment deviations to the size of TFP shocks. We report our result

in Column 3, which shows that a 1% increase in the size of TFP shocks leads to a 0.13%

increase in the size of investment plan deviations.

Finally, in Column 4, we present a third statistic of interest: the correlation between

lagged productivity and the dispersion of TFP shocks. We proxy for the dispersion of TFP

shocks using the absolute size of firm forecast errors for TFP, as given by log (1 + |ε̃|). We

then run a regression specification of the form

log (1 + |ε̃i,t|) = αj(i),t + β log zi,t−1 + ηi,t, (13)

where for notation, subscript i indexes a firm, j(i) indexes the industry firm i is in, t is a

fiscal year, and αj(i),t represents industry and year fixed effects. The coefficient of interest is

β, which relates the size of TFP forecast errors to the firm’s last period productivity. The

results show that for our baseline measure of TFP, a 1% increase in the level of TFP leads

to a 0.009% decrease in the size of TFP forecast errors. In other words, realized TFP in the

previous fiscal year is negatively correlated with the size of TFP shocks in the current fiscal

year. Table A.5 in Appendix A.2 also reports this correlation at the industry level.
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4.3 Model Calibration

We now briefly discuss our model calibration strategy, having described our data source.

First, we fix a subset of parameters based on values from existing literature: r = 0.02,

consistent with an annual real interest rate of 2%; δ = 0.06 and η = 4 following standard

assumptions; and set N = 1 and P = 1 as a normalization. Then, we set another subset

of parameters (σε, ρ, α) based on direct estimation from the data. These parameters are

estimated at the industry level, but we use only the estimates for the manufacturing sector

in our benchmark calibration. For our baseline calibration, we use the estimates derived

with an assumption of η = 4, following the literature (Bloom et al. 2018). As a robustness

check, we also consider η = 3 and η = 6, spanning the range of commonly used values for

the elasticity of substitution. All parameter values are reported in Panel A of Table 3. A

detailed description of the estimation strategy, as well as full estimates for all industries, are

deferred to Appendix A.2.

Finally, we calibrate our model in general equilibrium for the remaining three key pa-

rameters: the cost of information acquisition ξ, the cost of deviation of investment plans χ,

and ζ, which captures the relationship between the marginal cost of information acquisition

and productivity. ξ, χ, and ζ are jointly calibrated to three moments: (i) dispersion of TFP

shocks relative to the volatility of TFP, (ii) the dispersion of investment deviations, and

(iii) the regression coefficient on lagged productivity. This strategy follows our identification

argument as discussed in Section 3.3. Moreover, we simultaneously solve for the endogenous

wages and aggregate output, such that these values are consistent with our market-clearing

conditions at the calibrated parameter values.15 All calibrated parameter values are reported

in Panel B of Table 3.

We now address an important concern with calibrating our model to the empirical mea-

sures of TFP and investment. As explained in Section 4.1.3, TFP shocks and investment

15To compute model moments in the steady state, we simulate a panel of 10,000 firms for 50 years and drop
the first 30 years as a burn-in.
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plan deviations are mismeasured due to the exact variable definitions in the survey. To

address the issue of constructing expected TFP from expected sales, we recreate the exact

same mismeasurement in our calibration; similarly, to address the truncation bias in invest-

ment expenditures, for any simulated firms that made (or planned on making) a negative

investment, we replace i and ip with zeros in our calibration.

4.4 Calibration Results and Sensitivity

We report our calibrated parameter values in Panel B of Table 3, while Panel A of Table 4

reports our calibration results for our benchmark and robustness exercises, demonstrating a

nearly perfect model fit for all three specifications. Moreover, we find qualitatively similar

parameter values across all three specifications.

We further validate the model’s calibrated parameters by considering the same regressions

as in Section 4.2 and comparing the model-predicted regression results with the data. The

results are reported in Panel B of Table 4. For Prediction 1, we report the relative change in

the coefficient on TFP before and after controlling for investment plans, while for Prediction

2, we report the regression coefficient on TFP shocks. Relative to the data, our calibrated

model predicts a weaker attenuation from including investment plans as an additional control

variable, and larger responses of investment deviations to TFP shocks, indicating that our

model overstates the degree of investment plan flexibility. However, we believe the fit is

reasonable given the simplicity of our model. Importantly, this over-prediction of investment

flexibility implies that any of the negative effects of capital budgeting as practiced, as we

discuss later, can be seen as a lower bound of estimates, since the quantitative impact of

capital budgeting is decreasing in investment flexibility. Finally, given that our results are

qualitatively similar across all specifications, in the interest of space, we only discuss them

in the context of our baseline calibration.

While investments appear to be somewhat flexible, we find that the total implied cost

incurred by information acquisition is almost fifteen times that of investment plan adjust-

ments (when interpreted as resource costs, they amount to around 0.15% and 0.012% of
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aggregate output respectively). This implies that there is a strong preference by firms to be

correct ex ante rather than to respond to forecast errors ex post by deviating from plans. As

such, we focus on the learning channel in this paper, and leave for future research a further

study of the underlying microfoundations of investment flexibility. This finding also shows

why we needed to model some flexibility, since ignoring it would overstate the importance

of learning.

Figure A.1 reports the full distribution of firm residual uncertainty in terms of the poste-

rior uncertainty V as a share of prior uncertainty σ2
ε (i.e.,

V
σ2
ε
), and reports the broad statistics

associated with it. We see that an average firm has a residual uncertainty of around 27.6%

that of its prior, and that there is relatively small dispersion in firm uncertainty, with an

interquartile range of around 3.1%. Our overall findings suggest that there is substantial

resolution of uncertainty, similar to recent findings in the literature that rely on indirect

inference techniques.16 Notably, if we had directly applied our formula (Equation 18) for

inverting out the true dispersion of TFP shocks, we would have obtained a similar ratio of

around 27.8%. This is consistent with our argument that the mismeasurement driven by

unobserved heterogeneity in V is relatively small.

In the baseline calibration, ζ is estimated to be large and positive, implying that the

marginal cost of learning increases sharply in firm productivity. Our finding implies that

high-productivity firms face a comparative disadvantage in information acquisition relative

to low-productivity firms. That said, the negative correlation between productivity and firm

uncertainty that we find in the data indicates that the gross benefits of information outweigh

the costs, leading high-productivity firms to acquire relatively more information. Our results

provide a useful interpretation for similar recent empirical findings that high-productivity

firms make more precise forecasts of profitability and related fundamentals (e.g., Tanaka et al.

(2020); Bloom et al. (2021)). While a natural hypothesis is that high-productivity firms have

a comparative advantage in forecasting, our results suggest the opposite: the correlations

16For instance, David et al. (2016) develop a model with similar timing restrictions to ours and find V
σ2
ε
≈ 0.41

in the United States.
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observed in the data happen in spite of the comparative disadvantage high-productivity

firms have.17

To further investigate the importance of private incentives for information acquisition

with respect to aggregate information allocation, we next calibrate a counterfactual model

imposing ζ = 0, and target only the first two moments. In other words, we uncover the

counterfactual distribution of information across firms, holding the average investment un-

certainty and flexibility fixed. Doing so allows us to quantify the degree to which higher

productivity firms would have acquired more information if marginal costs were equal across

firms. We find that high-productivity firms have substantial private incentives to acquire bet-

ter information; when ζ = 0, the correlation between productivity and uncertainty becomes

almost eight times higher (Panel B of Table 4). Moreover, while the average uncertainty is

identical across both models, the counterfactual predicts a substantially larger dispersion—

with an interquartile range of around 27.2%—indicating much stronger sorting of firms into

high- and low-information.

[Table 4 Here]

Our results so far suggest that there is a substantial role of information “misallocation”.

As discussed in Section 3, we view our parametrization of C as akin to a form of dynamic

wedge accounting, similar to the approach by David and Venkateswaran (2019). At the

individual firm level, our counterfactual suggests that high-productivity firms are substan-

tially constrained in the amount of learning they can do, which might negatively impact firm

value. At the aggregate level, our inferred distribution of wedges also substantially reverses

the strong negative covariance between productivity and uncertainty (i.e., cov (z−1,V)) that

would have naturally arose due to the complementarity between productivity and informa-

tion. Consequently, this can lead to losses in aggregate productivity. In the next section,

17In previous versions of this paper, we have shown that similar derivations can be made for the benefit
side of the equation if we allow for aggregate shocks to profitability or permanent firm characteristics
with respect to productivity. While these extensions map more directly to the findings of the empirical
literature, they are abstracted from this paper since this is not our main focus.
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our goal will be to present the quantitative implications of our findings with respect to firm

value and aggregate outcomes.

5 Quantitative Model Implications
The results in this section emphasize the gains to information reallocation. To that end, we

compare our baseline model to a counterfactual featuring the same average uncertainty and

degree of investment flexibility, but with a different joint distribution of productivity and

uncertainty that arises when ζ = 0. Our choice of this counterfactual relates to Section 3,

emphasizing our study of information as an implicit factor of production. The premise is

that the correlation between the cost of information acquisition and productivity arises solely

due to a distortive wedge as parameterized by ζ, and we are quantifying the implications of

these wedges for firm value and aggregate outcomes. In doing so, we follow the literature

on factor misallocation in assuming that the cost of factor inputs are not correlated with

productivity (e.g. Hsieh and Klenow (2009); David and Venkateswaran (2019); Whited and

Zhao (2021)).

We interpret the concept of an economy with the same average degree of investment

flexibility and uncertainty as a recalibrated counterfactual model that replicates the average

uncertainty in our baseline model, and the degree to which firms adjust their investment

spending relative to plans. The recalibration is done in partial equilibrium using prices from

our baseline model to avoid the confounding effects of price changes on our inference.18 We

then consider the impact in general-equilibrium.

5.1 Private Gains to Information Reallocation

Our first analysis focuses on the impact of information allocation on firm value. As we are

emphasizing the effect of information allocation across firms of different productivities, we

18An alternative is to impose χ at the baseline calibrated value, then recalibrate ξ to only target the average
dispersion of TFP shocks. Therefore, “same flexibility” in this case would be interpreted as one where
the cost of adjustment stays the same; however, this latter calibration will not be able to simultaneously
match the average dispersion of investment plan deviations. Nonetheless, we have experimented with this
specification and found that both alternatives predict almost identical results.
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define firm value from an ex ante perspective similar to equation 6, where for a firm with a

given prior productivity z−1, firm value is computed as

Π (z−1) ≡ Ez−1

∞∑
t=1

(
1

1 + r

)t
(π (zt, kt)− (r + δ) kt) .

In other words, we compute the ex-dividend value of a firm using our Bellman equations

(equations 4 to 6), subtracting the dollar cost of capital but not information acquisition

costs or investment plan adjustment costs, since we do not consider them as direct costs of

operations in our baseline. For simplicity, and to emphasize the capital budgeting process,

we net out the dividend flow at period 0 (i.e., π0 − (r + δ) k0) because it does not depend

on the capital budgeting decision of the firm at time 0. To operationalize the computation,

for a given value of z−1, we simulate a panel of 5,000 firms and track the panel for 20 years.

We then compute the discounted net present value of each realized stream of dividend flow

and average them across all firms. We then repeat the exercise over a grid of z−1 using the

exact same draw of TFP and noise shocks, using a grid that covers 2.5 standard deviations

of TFP values on both sides of the mean. The improvement in firm value for each state z−1

in the baseline relative to the counterfactual is calculated as:

∆Π (z−1) = 100×
(

Πcounterfactual (z−1)

Πbaseline (z−1)
− 1

)
.

[Figure 4 Here]

Figure 4 shows the improvement in firm value as a function of z−1, broadly increases in z−1

following the intuition of our model that high-productivity firms have the most to gain from

acquiring better information. We also see that improvements are across the board, ranging

from around 2.8% to 4.1% of firm value. Noticeably, even low-productivity firms benefit

from such a reallocation of information. For low-productivity firms, a positive correlation

between productivity and information acquisition costs (ζ > 0) implies that they enjoyed an
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implicit subsidy in information acquisition through lower costs; as such, information is in

fact being reallocated away from them in our counterfactual exercise.

The net gains of reallocation for low-productivity firms arise because firms are forward-

looking and productivity is mean-reverting. Even though low-productivity firms are subsi-

dized when ζ > 0, firms understand that they will eventually end up in a high-productivity

state in the future and face an implicit tax on information acquisition. Consequently, this

inter-temporal consideration means that even low-productivity firms prefer having infor-

mation reallocated away from them now, in anticipation of having information reallocated

towards them in the future when the benefits are substantially larger.

5.2 Aggregate Gains to Information Reallocation

Having discussed the implications of information reallocation at the firm-level, we now turn

to quantifying the aggregate gains from information reallocation. To conduct our analysis,

we first quantify the total TFP loss arising from uncertainty alone, since this helps us to put

in context the maximum possible gains from information reallocation. We consider a model

where uncertainty is homogeneous across firms, but the degree of investment flexibility is

otherwise the same as our baseline model, and compute TFP relative to a model where firms

face no uncertainty about current productivity. Column 1 in Table 5 shows the amount of

TFP loss from uncertainty alone is about 0.66%.

Next, we quantify the degree to which information reallocation mitigates these losses.

For our baseline (Column 2), we find that TFP loss is about 0.53%, an improvement over

the counterfactual where information is homogeneously allocated across firms. This finding

follows directly from our Proposition 4. In our baseline model, since the calibrated ζ < ζ̄,

the covariance between productivity and uncertainty is negative, leading to mitigation of

TFP losses. Turning to the ζ = 0 counterfactual, we find that TFP loss is about 0.06%.

In other words, if firms did not face these implicit wedges to learning, aggregate TFP loss

due to uncertainty would have been virtually eliminated via an improvement allocation of

information.
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Overall, our results suggest that there are substantial gains from reallocating informa-

tion towards high-productivity firms. However, our baseline calibration implies that few of

these gains are realized due to the aforementioned wedges on the cost of information acqui-

sition. However, while our counterfactual exercise demonstrates that substantial gains can

be achieved if these wedges are removed, our analyses so far precludes a discussion of the

costs of such reallocation as well as potential general-equilibrium effects. We now turn to a

brief exploration of the cost and net benefits of information reallocation.

[Table 5 Here]

5.3 The Cost of Reallocation

To provide a simple quantification, we assume that a social planner is able to impose targeted

subsidies τ (z−1) at the firm-level such that ξzζ−1τ (z−1) = ξ∗, where ξ∗ is the parameter value

in the counterfactual model. In other words, the social planner places additional wedges such

that firms perceive that the marginal cost of learning is no longer correlated with productivity,

but in a way such that average uncertainty across both economies are preserved. The total

cost of such a reallocation is computed as
∫
z−1

ξzζ−1 (σ−2 (z−1; τ (z−1))− σ−2 (z−1)), where

σ−2 (·) is the information acquisition policy function under each scenario.

In partial equilibrium, keeping prices fixed, we continue to find net gains to all firms’

values if we assume that these costs are distributed out as a lump-sum to firms (Panel

a of Figure 5). This result arises because the overall costs are relatively small, reaching a

maximum of around 0.75% of pre-reform firm value. Likewise, we find substantial net benefits

at an aggregate level, with long-run aggregate output increasing by about 2.6%, whereas the

total cost amounts to around 0.15% of pre-reform aggregate output. However, a weakness

of this partial-equilibrium approach is that it does not respect the resource constraints in

our model, namely that labor supply is inelastic and demand is endogenous. We therefore

further explore the impact of the reallocation exercise in general-equilibrium.

In general equilibrium, conducting a similar exercise as in the PE counterfactuals but
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allowing wages and prices to adjust endogenously, we find that gains are no longer uncon-

ditional across the distribution. Instead, Panel b of Figure 5 shows that lower productivity

firms appear to be hurt by the reallocation exercise. The difference between partial and

general equilibrium counterfactual analyses arises from our assumption that labor supply

is inelastic. Specifically, due to the improvement in information allocation, labor demand

by higher productivity firms increases (Figure 6) while labor demand by lower productiv-

ity firms decreases. However, aggregate labor demand is disproportionally driven by higher

productivity firms and total demand increases. This translates purely to a rise in wages in

general-equilibrium due to inelastic labor supply, which causes firms to reduce the amount

of workers hired. Consequently, firm revenue and profits are relatively lower in general-

equilibrium. Notably, while demand for firm output also rises in equilibrium, which in turn

increases firm value, the rise in labor cost is sharper than that of demand, decreasing firm

profits. In our calibrated model, this in turn implies that the gains to lower productivity

firms, which are only realized in the longer term, are outweighed by the permanent rise in

labor cost associated with this policy change and they are hurt by the information realloca-

tion.

At the aggregate level, we see a similar effect playing out. While the total cost of

the reform still amounts to around 0.15% of pre-reform aggregate output, similar to our

partial equilibrium analyses, long-run aggregate output increases by a smaller level of around

0.66%. While the gains are more muted in general equilibrium, these improvements are still

substantial in comparison to the cost of the reallocation exercise.

Overall, we view the partial- and general- equilibrium approaches as both valid counter-

factual analyses that highlight the importance of labor market effects. In particular, any

policymakers considering whether such an information reallocation policy, for example by

subsidizing the purchase of information technology to improve internal controls and internal

reporting/information gathering, should consider how labor supply may react to the technol-

ogy’s impact on labor demand. On the one hand, if labor supply is able to increase and fully
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absorb the rise in labor demand such that wages remain unchanged, the net effects will be

closer to those in the partial equilibrium analyses. On the other hand, if labor supply cannot

accommodate the higher labor demand due to the information reallocation, then gains are

muted and low productivity firms may be worse off.

6 Conclusion
In this paper, we develop a theory of capital budgeting, featuring a trade-off between infor-

mation acquisition for improved capital budgeting against the cost of information acquisition.

We theoretically and quantitatively examine the interplay of these two forces, and find that

while firms of higher productivity benefit strongly from better information, the cost of infor-

mation acquisition is also sharply rising in productivity, leading most firms to not internalize

these benefits. We show that a theoretical “reallocation” of information from low- to high-

productivity firms can generate substantial private and aggregate benefits, although the

degree of gains depend on the assumptions of the labor market.
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7 Tables and Figures

Table 1: Summary Statistics

The table below shows the summary statistics of our firm-year panel. The total number of firms in our sample is 5,989, of which
2,273 are publicly listed and the rest are private companies. To reduce the influence of outliers on these summary statistics, we
winsorize variables at the 1% level. Capital stock is the Net Plants, Property & Equipment. Profits are reported ordinary profits
according to Japanese Generally-Accepted Accounting Principles (GAAP). The Wage Bill is the sum of total salary cost for
employees and company officers as well as the bonus for employees and company officers. Investment plans are represented as
a percentage of end-of-previous-fiscal-year capital stock. Employment is the number of employees is represented as the number
of full-time equivalent workers and may include fractions. TFP shocks are defined in the main text with additional details in
Appendix Section A.2. All numbers are rounded to three significant digits or three decimal points, whichever results in fewer
decimal points.

Panel A: Firm Fundamentals
Percentile

Variable Mean SD Skew 25th 50th 75th

Total Assets (mn) 88,100 205,000 4.81 11,060 26,700 67,300
Capital Stock (mn) 50,000 131,000 5.14 4,590 12,300 33,100

Employment (count, FTE) 1,180 2,100 3.63 162 466 1,180
COGS (mn) 57,100 125,000 4.62 4,950 17,400 49,800

Wage Bill (mn) 1,670 3,120 4.11 229 649 1,650
Sales (mn) 72,700 152,000 4.47 7,810 23,800 66,300

Expected Sales (mn) 75,300 157,000 4.43 8,100 24,700 68,800
Profits (mn) 3,760 9,050 4.56 207 920 3,070

Expected Profits (mn) 3,700 8,650 4.57 247 930 3,000
Total Capital Investment (mn) 3,060 8,500 5.23 121 545 1,990

Total Capital Investment Plan (mn) 3,250 9,160 5.20 100 554 2,030
Panel B: Constructed Variables

Investment (% of Capital) 7.63 9.55 2.67 1.63 4.58 9.76
Capital Investment Plan (% of Capital) 7.73 9.78 2.67 1.40 4.69 10.1

Investment Plan Deviations (% of Capital) -0.140 5.55 0.63 -1.64 -0.0610 0.947
log TFP Shock -0.127 0.480 -1.06 -0.275 -0.043 0.082
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Table 2: Testing Model Predictions

In the table below, Columns 1 and 2 report Prediction 1 from Section 3. Column 3 tests Prediction 2 from Section 3. Column
4 reports the β from Equation (13) for the pooled sample. Expectations, actual values, and shocks are winsorized at the 1%
level. All regressions include industry and year fixed effects. Standard errors are clustered by firm and shown in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Dependent Variable: ii,t/ki,t log(1 + |ui,t|) log (1 + |ε̃i,t|)
(1) (2) (3) (4)

log zei,t 1.759*** 0.489***
(0.170) (0.126)

ipi,t
ki,t

0.638***
(0.048)

log (1 + |ε̃i,t|) 0.013***
(0.003)

log zi,t−1 -0.009***
(0.002)

Observations 30,441 30,441 30,441 30,441
R2 0.055 0.410 0.031 0.240

Table 3: Parameter estimates

The table below reports our parameter estimates. Panel A reports the parameter values estimated directly off the data, while
Panel B reports calibrated parameters. All values are rounded to 3 decimal placeswhere appropriate.

Parameters η = 4 η = 3 η = 6

(1) (2) (3)
Panel A: Estimated parameters

α 0.353 0.273 0.418
ρ 0.947 0.954 0.941
σ 0.263 0.260 0.268

Panel B: Calibrated parameters
χ 0.1110 0.0803 0.1431
ξ 2.4867 1.5656 4.3761
ζ 2.1543×105 1.4381×105 0.3898×105
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Table 4: Model Fit

The tables below reports our model fit for our baseline model and counterfactual model with homogenous learning cost. We
report results for both our benchmark calibration assuming η = 4, as well as our alternative assumptions with η = 3 and η = 6.
In panel A, we reported model fit per our targeted moments. Note that we also clear the market for labor and output down to
a tolerance of 10−8. In panel B of each table, we report model fit per untargeted moments, namely, our predictions from the
earlier section. All results are rounded to 3 decimal places or 3 significant figures.

Panel A: Targeted Moments Panel B: Untargeted Moments
Moments Data Baseline Homog. Cost Moments Data Baseline Homog. Cost

η = 4
σẑ−z
σε

1.024 1.024 1.024 Prediction 1 0.279 0.426 0.353

σ
(
k′

kp

)
0.073 0.073 0.073 Prediction 2 0.013 0.231 0.240

ρ (z−1, |ε̃|) -0.0087 -0.0087 — ρ (z−1, |ε̃|) -0.0087 — -0.065
(N,P ) = (1, 1) — (1, 1) (1, 1)

η = 3
σẑ−z
σε

1.006 1.006 1.006 Prediction 1 0.249 0.324 0.254

σ
(
k′

kp

)
0.073 0.073 0.073 Prediction 2 0.012 0.243 0.334

ρ (z−1, |ε̃|) -0.010 -0.010 — ρ (z−1, |ε̃|) -0.010 — -0.089
(N,P ) = (1, 1) — (1, 1) (1, 1)

η = 6
σẑ−z
σε

1.038 1.038 1.038 Prediction 1 0.303 0.218 0.154

σ
(
k′

kp

)
0.073 0.073 0.073 Prediction 2 0.014 0.220 0.232

ρ (z−1, |ε̃|) -0.0026 -0.0025 — ρ (z−1, |ε̃|) -0.0026 — -0.118
(N,P ) = (1, 1) — (1, 1) (1, 1)

Table 5: Capital Budgeting and Capital Misallocation

The table below reports aggregate TFP relative to a model where firms do not face any uncertainty regarding their contempo-
raneous productivity. The measures are reported as percentage decreases relative to the reference. All results are rounded to 3
decimal places or 3 significant figures.

Fixed V, χ <∞ Baseline Counterfactual
(1) (2) (3)

η = 4 0.657 0.535 0.059
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Figure 1: Model Timing

This figure illustrates the three sub-periods of our model.

Sub-period I / II (Noisy z) Sub-period III (Actual z)

• Begin period up with z−1

• Signal s = ε+ u, u ∼ N(0, σ2)
• Costly learning: MC ξzζ−1

of ↑ precision

• Make investment plans kp

• Choose actual investment k′
subjected to adjustment cost

χ
2

(
k′

kp
− 1
)2
kp

Figure 2: Marginal Benefit and Marginal Cost of Improving Signal Precision

The figures below plot illustrative graphs of how the marginal benefit and cost of learning vary with firm productivity. Graphs
are plotted against V−1 (i.e., increasing signal precision). Panel a plots two representive solutions when marginal costs are
constant (i.e., ζ = 0). Panel b plots two representive solutions when the net benefit is constant in productivity (i.e., ζ = ζ̄).
Vertical dash lines indicate where the marginal cost meets marginal benefit for each value of productivity.

(a) Constant marginal cost (ζ = 0).
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(b) Constant net benefit (ζ = ζ̄).
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Figure 3: Isomoment Plots

The figures below plot isomoment plots for each possible combination of parameter pairs. The first row reports isomoment plots
for the average dispersion of TFP shocks, the second row reports isomoment plots for the average dispersion of investment plan
deviations, and the last row plots the correlation of lagged TFP with dispersion of TPF shocks. All results are computed using
our targeted moments as per Panel A of Table 4.
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(d) Moment 2: ξ vs χ
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(g) Moment 3: ξ vs χ
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Figure 4: Gains to Firm Value Post-Reallcation

The figures below plots the gains in net present firm value after removal of the information acquisition wedges.
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Figure 5: Gains to Firm Value After Accounting for Costs

The figures below plot gains to net present firm value relative to the baseline model, computed in partial-equilibrium (Panel a)
and general-equilibrium (Panel b). The net present value includes the life time cost of pay for the policy.
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Figure 6: Changes In Labor Demand

The figures below plot the change in labor demand relative to the baseline model. A negative number implies that labor demand
decreases in the counterfactual. Blue solid line: PE. Red dashed line: GE.
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Online Appendix

A Empirical Methodology and Data Details

A.1 How Good are Forecasts and Plans?

We verify that the forecasts and plans reported by a firm do in fact predict its realized

counterparts. In other words, these forecasts and plans are relevant. To do so, we use

regressions of the form:

yi,t = αj(i),t + αi + βE [yi,t] + εi,t (14)

where the i subscript indexes a firm, j(i) indexes the MoF industry of the firm, and t indexes

a fiscal year. The variables E [yi,t] is the forecast or plan of the outcome variable yi,t made

from the first quarter of the same fiscal year, αi denotes firm fixed effects, and αj(i),t denotes

industry-by-year fixed effects. Standard errors are clustered by firm. The outcome variables

considered are realized capital investment, land investments, software expenses, profits, and

sales. As discussed, for investment, land investment, and software expenses, the expectation

variable is interpreted as a spending plan; while for profits and sales, the expectation variable

is interpreted as a forecast.

The empirical specification in Equation 14 controls for industry and macroeconomic

shocks and compares firms with higher expected spending plans with those in the same

industry and year with lower investment plans. The coefficient of interest is β – capturing

the importance of plans on actual realizations across different fiscal years. β = 1 corresponds

to perfectly sticky plans which do not permit ex post adjustments while β = 0 corresponds

to completely uninformative plans for actual spending. Finally, in addition to reporting the

point estimate, we also consider the statistical importance represented by the relative im-
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provement of the R2 in the regressions compared against a regression specification without

the expectation variable.

Our empirical results suggest the corporate plans and forecasts contained in the BOS

are good predictors of actual realizations, and hence economically relevant. Columns 1

through 3 of Panel A in Table A.1 study spending plans for physical capital investment,

land investment, and software spending, while Columns 4 and 5 evaluate profits and sales

forecasts. For realized physical capital investment, plans have an estimated coefficient of

0.666 and increase the R2 by 28% relative to a model with only firm and industry-by-quarter

fixed effects. For land investment, plans have an estimated coefficient of 0.904 and increase

the R2 by 32%. For software expenses, plans have an estimated coefficient of 0.494 and

increase the R2 by only 7%. These results for both the point estimates and relative statistical

fit improvements are consistent with an intuitive ranking of how costly it is to adjust your

investment plans: changing a firm’s land purchasing plan incurs the highest cost, followed by

physical capital investment, and then by software spending. Notably, spendings for costlier

deviation from plans will carry a coefficient closer to one and account for a larger statistical

variation of actual realized investment.

Table A.1: Spending Plans and Forecasts

The table below reports the results of estimating equation 14. Expectations and actual values are winsorized at the 1% level.
All regressions include firm and industry-by-year fixed effects. Standard errors are clustered by firm and shown in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Dependent Variable: yt

yt = PP&E Land Software Profits Sales

Purchases Spending

(1) (2) (3) (4) (5)

E [yt] 0.666*** 0.904*** 0.494*** 0.759*** 0.915***

(0.015) (0.0401) (0.028) (0.030) (0.012)

Observations 26,718 26,588 26,412 26,718 26,718

R2 0.739 0.442 0.839 0.885 0.995

R2 without Expected Value 0.578 0.335 0.787 0.802 0.940

Relative % Increase 28% 32% 7% 10% 36%
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A.2 Measurement Strategy and Issues

In this section, we detail our measurement strategy for the variables described in the main

text, and address some potential issues that arise with our measurement strategy.

A.2.1 Imputing value-added

The basic assumption in our model is that we have a physical production function given by

y = zkαl1−α. Under assumptions of constant elasticity of substitution (CES) across goods and

monopolistic competition, we get the “sales” production function py = zθkαθl(1−α)θ, where

θ ≡ η−1
η
. An issue arises for our measurement strategy because although this is conceptually

a “value-added” production function, we do not observe value-added in the data—only total

sales. As such, even if we knew the exact parameters of the production function, we are not

able to directly back out TFP using our data.

Therefore, to address this issue, we impute value-added by constructing it using total

sales scaled by one minus the fraction of industry-level material costs to total sales based on

aggregate statistics. This is common practice in the literature when direct measures of firm

intermediate costs are not available (e.g., David and Venkateswaran (2019)). Our industry-

level material share estimates are obtained from the Japanese Ministry of Economy, Trade,

and Industry (METI), which we report in Column 1 of Table A.2.
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Table A.2: TFP and TFP Shocks by Industry

The table below reports our estimates using our imputed materials share approach, for value-added, capital cost share, TFP parameters, and the dispersion of TFP shocks
relative to the volatility of TFP, with the assumption that η = 4. All estimates are computed at the industry level, except for the overall results which are pooled regressions.
Value-added to total sales ratios (i.e., one minus the imputed materials share) come from Ministry of Economics, Trade, and Industry. The adjusted ratio uses the formula in
Equation 18, assuming that the variance of V is approximately 0. All results are rounded to 3 decimal places or 2 significant figures, where appropriate.

Value-added, As Capital Cost SD AR(1) SD TFP Adjusted
Industry Fraction of Total Sales Share (θα) AR(1) Coef (ρ) Resid. Error (σε) Shock (σε̃) σε̃

σε
ratio

(1) (2) (3) (4) (5) (6) (7)
Agriculture 0.497 0.409 0.903*** (0.028) 0.176 0.213 1.208 0.621

Mining and Construction 0.425 0.491 0.961*** (0.007) 0.191 0.218 1.141 0.586
Manufacturing 0.304 0.264 0.942*** (0.008) 0.218 0.346 1.583 0.814

Metals and Machinery 0.324 0.238 0.920*** (0.006) 0.249 0.384 1.541 0.792
Retail and Wholesale Trade 0.690 0.635 0.989*** (0.003) 0.181 0.132 0.728 0.374

Eateries and Real Estate 0.709 0.595 0.953*** (0.008) 0.276 0.162 0.586 0.301
Transportation 0.544 0.383 0.972*** (0.004) 0.193 0.149 0.770 0.396

Utilities and Services 0.489 0.415 0.963*** (0.007) 0.287 0.200 0.697 0.368
Medical, School, and

0.609 0.305 0.901*** (0.014) 0.422 0.283 0.671 0.345
Misc. Services

Overall 0.483 0.398 0.947*** (0.003) 0.263 0.270 1.024 0.526
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A.2.2 Estimating α

Similar to Asker et al. (2014), we assume that capital is quasi-fixed (like in our model) but

labor is free to adjust every period after productivity z has been observed. Let profits net

of labor cost be py − wl. Then the optimality condition for labor is

MRPL ≡ (1− α) θzθkαθl(1−α)θ = w

=⇒ wl

py
= (1− α) θ.

In other words, we can identify (1− α) θ by simply computing the labor share in value-

added. We follow Asker et al. (2014) by computing the industry median from the individual

firm-year level labor cost shares:

̂(1− α) θ = median

{
wl

py

}
.

Finally, α can be backed out using a given assumed value of η, keeping in mind the identity

that θ = η−1
η
. As our benchmark, we assume η = 4, following the literature (e.g., Asker

et al. (2014); Bloom et al. (2018)). However, we also consider values of η = 3 and η = 6 as

a robustness check. We report our estimates for our benchmark assumption (in the form of

capital cost shares) in Column 2 of Table A.2.

A.2.3 Estimating TFP, Expected TFP and TFP Shocks

With θ and α in hand, we compute realized TFP (in levels) as

z =
( py

kαθl(1−α)θ

) 1
θ
,

where py is value-added for the fiscal year, used in computing α. In computing the statistical

moments associated with z, we residualize log z using year (and industry, where relevant)

fixed effects, and fit AR(1) regressions to log z. The autocorrelation and volatility of TFP,

used in the model calibration, are reported in Columns 3 and 4 of Table A.2.

54



To compute expected TFP ze (in levels), we assume that

ze =

(
pye

kαθl(1−α)θ

) 1
θ

,

where pye is forecasted value-added for the fiscal year. Finally, we define TFP “shocks” as

ε̃ ≡ log z − log ze,

that is, the difference between forecasted TFP and actual TFP. The dispersion of TFP

shocks is reported in Column 5 of Table A.2, while in Column 6, we report the dispersion of

TFP shocks relative to the volatility of TFP.

It is clear that our measured ze is only an approximation of the “true” expected TFP. To

be precise, our measurement strategy gives a value of expected TFP that can be expressed

as

ze =

E
[
zθ+

θ2(1−α)
1−(1−α)θ

]
z
θ2(1−α)

1−(1−α)θ


1
θ

,

which is not E [z]. This measurement is, in large part, why the dispersion of TFP shocks is

generally larger than the volatility of TFP. However, in the next subsection, we proceed to

explain why this mismeasurement is not an area of concern for us.

A.2.4 Mismeasured Expected TFP: Why It Happens and Why It Does Not

Matter For Our Results

We structure our discussion here in three stages. First, we show that under certain circum-

stances, measured expected TFP will always exhibit a negative bias, but the bias is small

and irrelevant. Second, we show why, due to our data limitations, the bias in ze can be

large, and cannot be signed in general. In particular, we formally derive an expression to
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quantify this (see equation 15 in this appendix). Finally, we show that the bias in ε̃ (i.e.,

TFP shocks, our object of interest) can always be signed. Specifically, the bias is only in

one direction: our mismeasured TFP shocks is always smaller (or more negative) than the

true TFP shock. Importantly, because our focus is on studying ε̃, not ze, this means that

our qualitative results are not affected by the mismeasurement in ze.

Best case scenario: Bias in ze is small and can be signed We begin by emphasizing

here that it is impossible to directly estimate an unbiased measure of expected TFP using

just balance sheet data alone, even if we observe all possible expectations of these balance

sheet variables. For instance, in our setup, suppose we observed expected labor or α = 1. In

both cases, the expression above is reduced to

ze
∗

=
(
E
[
zθ
]) 1

θ ,

where we denote ze∗ as the expected TFP one would back out under the assumptions above.

Due to Jensen’s inequality, ze∗ < E [z] since θ < 1. That is to say, the mismeasured expected

TFP is always smaller than the true expected TFP. For example, suppose we assume that

the firm’s expectations follow our model, then

ze
∗

=

[
zρθ−1 exp

(
σ2
ε

σ2 + σ2
ε

θs

)
exp

(
1

2
θ2V

)] 1
θ

= zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2
θV
)
,

where s is the private signal as observed by the firms in our model, and σ (and corresponding

V) is the endogenous choice of uncertainty. The unbiased expected value of z is

E [z] = zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2
V
)
.
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This gives us a biased estimated of expected TFP, specifically,

ze
∗ − E [z] = zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)[
exp

(
1

2
θV
)
− exp

(
1

2
V
)]

< 0,

where the bias shows up because of the terms in the square brackets. However, because the

volatility of TFP (i.e, σε) is typically small, and V < σ2
ε , the bias will be relatively small. In

other words, ze∗ ≈ E [z].

The generic case: Bias in ze is large and cannot be signed In our case, we do not

observe expected labor, and α is clearly less than unity. However, if we follow our model’s

assumptions (as in Section 2), we can make further headway into understanding the source

of the bias, by expressing expected TFP as

ze =

z
ρθ+ρθ̂
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp

(
1
2

(
θ + θ̂

)2

V
)

zθ̂


1
θ

,

where θ̂ ≡ θ2(1−α)
1−(1−α)θ

. The above expression can be further reduced to

ze = zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)exp

(
1
2

(
θ + θ̂

)2

V
)

exp
(
θ̂ε
)


1
θ

= ze
∗

exp
((
θθ̂ + 1

2
θ̂2
)
V
)

exp
(
θ̂ε
)


⇔ log ze = log ze

∗
+

(
θθ̂ +

1

2
θ̂2

)
V− θ̂ε (15)

where we utilize the fact that z = zρ−1 exp
(

σ2
ε

σ2+σ2
ε
s
)

exp (ε) with ε ∼ N (0,V) being the mean

0 innovations arising under the posterior distribution (i.e., true TFP shocks), per our model

assumptions; and we further substituted in the definition for ze∗ . Notice that even after
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taking ze∗ as our reference, there is no clear direction for the bias in expected TFP, which

depends on the exact innovation the firm receives. Notably, the implication here is that

ε̃ introduces attenuation bias into our regression framework. That said, as we reported in

Table 2, we find that investment is positively and significantly correlated with log ze despite

the attenuation bias, suggesting that the bias might not be that severe.

Large unsigned bias in ze does not matter for our results We now turn to relating

mismeasurement in ze to mismeasurement in the forecast errors. Specifically, we can derive

a bias for forecast errors as

ze

z
=

z
ρθ+ρθ̂
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp

(
1
2

(
θ + θ̂

)2

V
)

zθ̂+θ


1
θ

=

z
ρθ+ρθ̂
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp

(
1
2

(
θ + θ̂

)2

V
)

z
ρ(θ̂+θ)
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp
((
θ + θ̂

)
ε
)


1
θ

=

exp

(
1
2

(
θ + θ̂

)2

V
)

exp
((
θ + θ̂

)
ε
)


1
θ

⇔ ε̃ ≡ log z − log ze =
1

θ

((
θ + θ̂

)
ε− 1

2

(
θ + θ̂

)2

V
)

=
θ + θ̂

θ

(
ε− 1

2

(
θ + θ̂

)
V
)
. (16)

Note that the corresponding unbiased measure of TFP shocks is simply ε.

It is clear now why neither our main empirical results in Section 4 nor that in our

calibration in Section 5 are affected by the bias in expected values — the bias in ε̃ is constant

(it is shifted by 1
2

(
θ + θ̂

)
V). We further relate this mismeasurement to our empirical results

and calibration strategy as follows.
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Relationship to Section 4 As an example, consider two firms with V, one that

receives an innovation of ε = 0 and another with an innovation of ε = 1
2

(
θ + θ̂

)2

V. Our

shocks measure is biased: For the first firm, we record it as having a negative shock, whereas

for the second firm, it has a shock of zero. However, since our regressions use cross-sectional

variations in identifying the effect of shocks to investment deviations (or investment itself),

relative to the first firm, the second firm still receives a “larger” shock, so our regressions are

still consistent. To be precise, suppose we fit a regression of the form

y = α + βε̃+ u,

where u is the usual error term, and y is either ∆i
k

or i
k
. Our interest is in using ε as a

regressor, which we do not observe, and is thus replaced with ε̃ as in our empirical strategy.

Then this gives us,

β̂ =
cov (ε̃, y)

var (ε̃)

=

cov

(
1
θ

((
θ + θ̂

)
ε− 1

2

(
θ + θ̂

)2
V
)
, y

)
var

(
1
θ

((
θ + θ̂

)
ε− 1

2

(
θ + θ̂

)2
V
))

=
θ

θ + θ̂

var (ε)

var (ε) + var
(

1
2

(
θ + θ̂

)
V
)
− 2cov

(
ε, 1

2

(
θ + θ̂

)2
V
)
β − cov

(
1
2

(
θ + θ̂

)
V, y

)
var (ε)

 .

Note that ε ∼ N (0,V); therefore, E [ε | V] = E [ε], implying cov (ε,V) = 0. Therefore, the

expression above reduces to

β̂ =
θ

θ + θ̂

var (ε)

var (ε) + var
(

1
2

(
θ + θ̂

)
V
)
β − cov

(
1
2

(
θ + θ̂

)
V, y

)
var (ε)

 . (17)
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If we assume that V is homogeneous across firms, as is typically done in the literature (for

example, Bloom et al. (2018); Tanaka et al. (2020)), equation 17 reduces to

β̂ =
θ

θ + θ̂
β.

In other words, our estimated β̂ will be smaller than the true unbiased elasticity of investment

with respect to TFP shocks β; however, the qualitative correlation will always remain the

same (i.e., investment is positively correlated with realized shocks).

However, as we show in our model, V is heterogeneous across firms. That said, if y

is investment deviations (∆i
k
), cov

(
V, ∆i

k

)
≈ 0. This is because, through the lens of our

model, firms with higher uncertainty make larger ex post mistakes in both directions. In

other words, while the absolute size of investment deviations are increasing in V, it is not

correlated with V. Therefore, the mismeasurement is not an issue for us when studying

investment deviations.

Relationship to Section 5 In the case of our calibration, a similar logic follows.

For simplicity, again first assume that all firms have the same V. Our calibration strategy

then depends solely on the dispersion of TFP shocks being proportional to the posterior

variance. Specifically, if we could observe “correct” TFP shocks, then our identification

strategy would simply be to map var (ε̃) to our model parameters (i.e., we directly observe

the posterior variance). For our shocks measure, we observe, assuming that firms have the

same V, var (ε̃) =
(
θ+θ̂
θ

)2

var (ε) — but this is simply a scaled measure of the true posterior

variance. As such, our indirect inference strategy will remain consistent in estimating the

true amount of posterior variance.

However, as we note, V is heterogenous across firms, and so we cannot directly invert out
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var (ε). Specifically, as we already derived,

var (ε̃) =

(
θ + θ̂

θ

)2 [
var (ε) + var

(
1

2

(
θ + θ̂

)
V
)]

. (18)

As such, in our model calibration, we choose var (ε̃) as a target for calibration, rather than

simply invert var (ε) directly from the data.

A.2.5 Summary statistics of investment and investment plans at the industry

level

Table A.3: Investment, Investment Plans, and Investment Plan Deviations by Industry

The table below reports our statistics for investment, investment plans, and deviation from investment plans as defined in
the main text. All estimates are computed at the industry-by-industry level, except for the overall results which are pooled
regressions. All results are rounded to 3 decimal places or 2 significant figures, where appropriate.

ip/k log k′

kp

Industry Mean std. dev. Mean std. dev.
(1) (2) (3) (4)

Agriculture Forestry 10.976 11.639 1.025 0.104
Textfiles, Food, Paper Products 5.745 6.763 1.009 0.103

Manufacturing 9.842 10.086 1.002 0.113
Manufacturing - Electronic, Computer Equipment 9.687 10.488 1.012 0.302

Transportation 4.615 6.177 1.014 0.101
Misc Retail and Real Estate 4.641 7.443 1.014 0.189

Non-retore retialers and finance 8.772 11.955 1.039 0.386
Utilities and Services 8.843 13.65 1.063 0.523

Medical, School, and Miscellaneous Services 5.210 10.889 1.027 0.198

Overall 7.612 9.931 1.02 0.273

A.2.6 Issues with the investment variable

We briefly discuss the issue with our investment variable here. To be precise, there are three

cases when this happens, summarized in Table A.4 below.

Case I Case II Case III
True i and ip i > 0 and ip < 0 i < 0 and ip < 0 i < 0 and ip > 0

Observed i and ip i > 0 and ip = 0 i = 0 and ip = 0 i = 0 and ip > 0

Table A.4: Three cases where ∆I is mismeasured.
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We account for this issue using three strategies. First, the crudest of the three, we simply

drop any observation for which i or ip is reported as zero.19 We find that our main results

are robust to this data treatment. Second, we use the fact that we observe actual capital

expenses in the Annual Financial Statistics survey to impute actual (dis)investment done

by the BOS firms. This would in theory address the bias generated in Case III. However,

the capital expenses in the Financial Statements do not line up perfectly with the BOS due

to discrepancies in accounting treatment in the two surveys. Moreover, this approach does

not address Case I or II. As such, we consider this imputation method only as a robustness

check. We do find that our results are robust to this alternative source of capital expenses

data. Third, when calibrating our model, we use an indirect inference approach similar to

how we address the bias in estimating expected TFP. This method addresses all three cases.

A.2.7 Summary statistics for correlation of lagged TFP with TFP shocks at

the industry level

Table A.5: TFP Shocks and Initial Firm Productivity

The table below reports the regression coefficient β from the regression specification as described in Equation 13 at the industry-

by-industry level, as well as the pooled sample. Expectations, actual values, and shocks are winsorized at the 1% level. Standard

errors are clustered by firm and shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Industry Coefficient
Agriculture -0.031 (0.019)

Mining and Construction 0.007 (0.005)
Manufacturing -0.021 (0.007)***

Metals and Machinery -0.040 (0.005)***
Retail and Wholesale Trade -0.005 (0.002)**

Eateries and Real Estate 0.010 (0.004)***
Transportation 0.007 (0.003)**

Utilities and Services -0.008 (0.003)**
Medical, School, and Miscellaneous Services -0.019 (0.005)***

Overall -0.009 (0.002)***

19This strategy borrows from Bachmann et al. (2017) with details from footnote 12 of their paper.
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A.3 Additional Model-Implied Figures and Tables

We report here the additional figures referenced in the main text, namely the distribution of

firm uncertainty and associated descriptive statistics. Figure A.1 below plots the distribution

of firm uncertainty, and the table below reports broad descriptive statistics associated with

this distribution.

Figure A.1: The distribution of signal precision.

The figure below plots the distribution of V
σ2 for the baseline model. The solid red line is a reference for the signal precision

under the counterfactual assumption that the distribution of information is degenerate.

Table A.6: The distribution of signal precision.

The table below reports selected descriptive statistics associated with the distributions in Figure A.1.

Percentile
Model Mean SD Skew 25th 50th 75th

η = 4 0.642 0.089 0.413 0.580 0.636 0.698

63



B Model Proofs

B.1 Proof of Proposition 1

For the case where χ = 0, we can compress the sub-periods into just the first two sub-periods,

and impose k′ = kp. With this simplification, the Euler equation for investment plans after

a signal has been observed is simply

exp

(
1

2
Θ2
zσ

2
ε

)
ΘkA (w)E

[
zΘzρ|z−1, s

]
kpΘk−1 = r + δ.

With some rearrangement, we get that optimal investment plans are given by

kp =

(
exp

(
1
2
Θ2
zσ

2
ε

)
ΘkA (w)

r + δ
E
[
zΘzρ|z−1, s

]) 1
1−Θk

=

(
exp

(
1
2
Θ2
zσ

2
ε

)
ΘkA (w)

r + δ
zρ

2Θz
−1

) 1
1−Θk

exp

(
ρΘz

1−Θk

σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2

(ρΘz)
2

1−Θk

V

)
(19)

By substituting in equation 19 into the profit function, realized (next-period) profits, net

of capital cost, can be expressed as

π′ = A (w) z′Θz

(
exp

(
1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ
zρ

2Θz
−1

) Θk
1−Θk

exp

(
ρΘzΘk

1−Θk

σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2

Θk

1−Θk
(ρΘz)

2 V
)
− ...

... (r + δ)

(
exp

(
1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ
zρ

2Θz
−1

) 1
1−Θk

exp

(
ρΘz

1−Θk

σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2

(ρΘz)
2

1−Θk
V

)

Therefore, ex ante expected profits, gross of the information acquisition cost, can be

expressed as,

64



πe ≡ E
[
E
[
π′|s

]
|V, z−1

]
= E

A (w) z′Θz

(
exp

(
1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ
zρ

2Θz
−1

) Θk
1−Θk

exp

(
ρΘzΘk

1−Θk

σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2

Θk

1−Θk
(ρΘz)

2 V
)
− ...

... (r + δ)

(
exp

(
1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ
zρ

2Θz
−1

) 1
1−Θk

exp

(
ρΘz

1−Θk

σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2

(ρΘz)
2

1−Θk
V

)
|V, z−1


= E[

(
exp

(
1

2
Θ2
zσ

2
ε

)
A (w)

) 1
1−Θk

(r + δ)
− Θk

1−Θk z
ρ2Θz
1−Θk
−1 exp

(
ρΘz

1−Θk

σ2
ε

σ2 + σ2
ε

s

)
×

exp

(
1

2

(ρΘz)
2

1−Θk
V

)
Θ

1
1−Θk
k

(
1−Θk

Θk

)
|V, z−1]

= Θ
1

1−Θk
k

(
1−Θk

Θk

)(
exp

(
1

2
Θ2
zσ

2
ε

)
A (w)

) 1
1−Θk

(r + δ)
− Θk

1−Θk exp

(
1

2

(
ρΘz

1−Θk

)2

σ2
ε

)
︸ ︷︷ ︸

≡h̄

z
ρ2Θz
1−Θk
−1 ×

exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

)
︸ ︷︷ ︸

≡Fπ(V−1)

= h̄z
ρ2Θz
1−Θk
−1 Fπ

(
V−1

)
The marginal benefit of information is then

1

1 + r

∂E [V (′) |V, z−1]

∂V−1
=

1

1 + r

∂πe

∂V−1

=
1

1 + r
h̄z

ρ2Θz
1−Θk
−1

∂Fπ (V−1)

∂V−1

which is the expression in the main text for equation 7. Notice that the term h̄ > 0,
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while the partial derivative term evaluates to

∂Fπ (V−1)

∂V−1
= −V2

∂ exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV
)

∂V

= −V2 ×

(
−1

2

(
ρΘz

1−Θk

)2

Θk

)
Fπ
(
V−1

)
=

1

2

(
ρΘz

1−Θk

)2

ΘkV2Fπ
(
V−1

)
> 0.

In other words, the marginal benefit of purchasing more information is positive, which

proves point 1 of Proposition 1. The proof of point 2 follows through trivially, since the

exponent term on z−1 is strictly larger than 0.

B.2 Proof of Proposition 2

We next turn to proving Proposition 2.

Proof. From Proposition 1, we already showed that the marginal benefit of a lower posterior

variance is increasing in z−1. The marginal cost is given by

∂

∂V−1
ξzζ−1σ

−2 = ξzζ−1

where the cost of lowering posterior uncertainty is increasing, and its dependence on z−1 is

determined by ζ. Equating the marginal cost and benefit, and with some trivial rearrange-

ment of terms, gives us

ξ (1 + r) z
ζ− ρ2Θz

1−Θk
−1 = h̄

∂Fπ
(
V−1

)
∂V−1

, (20)

where V−1 solves the implicit equation above. Importantly, notice that the right-hand side

term is not a function of z−1. Note that the expression
∂Fπ(V−1)
∂V−1 has the following proporties:

(1) limV−1→0
∂Fπ(V−1)
∂V−1 = 0; (2) is increasing when V−1 < Ṽ−1 for some threshold Ṽ−1; (3)

bounded at the threshold Ṽ−1; (4) is decreasing for the same threshold when V−1 > Ṽ−1;
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and (5) limV−1→∞
∂Fπ(V−1)
∂V−1 = 0. In other words, the marginal benefit is increasing for

values of V−1 (low information), but decreasing as the amount of information increases;

correspondingly, the value function is convex at low levels of V−1 and concave otherwise.

Consequently, if an interior solution to equation 20 exists, then two solutions
(
V−1
l ,V−1

h

)
exist, with V−1

l < Ṽ−1 < V−1
h . However, the value of V that maximizes the value function is

V−1
h , so if an interior solution exists, the right-hand side term is decreasing in V−1. Otherwise,

the solution will simply be Ṽ−1.

On the left-hand side, we see that the term is strictly decreasing in z−1 if ζ < ρ2Θz
1−Θk

,

constant in z−1 if ζ = ρ2Θz
1−Θk

, and increasing in z−1 if ζ > ρ2Θz
1−Θk

. In other words, the threshold

ζ̄ described in the main text is simply ρ2Θz
1−Θk

. Therefore, an application of the inverse function

theorem tell us that, for an interior solution, the choice of V−1 is increasing in z−1 if ζ < ζ̄,

constant in z−1 if ζ = ζ̄, and decreasing in z−1 if ζ > ζ̄. Otherwise, for cases where V = Ṽ,

productivity is uncorrelated with learning.

B.3 Proof of Proposition 3

We now derive the proof for our general model. To prove this proposition, we will first

prove the following two lemmas, which will establish that the value of the firm, gross of

the signal acquisition cost but net of adjustment costs, is strictly increasing in the posterior

uncertainty.

Lemma 1. The expected ex ante adjustment cost is increasing in V.

Lemma 2. The expected ex ante value of the firm, gross of adjustment costs, is decreasing

in V.

We first derive some common terms that will be useful in proving the two lemmas. We

begin by deriving the solution to k′. To do so, first recall that the Euler equation for

investment reduces to

exp

(
1

2
Θ2
zσ

2
ε

)
ΘkA (w) zΘzρk′Θk−1 − (1 + r)χ

k′

kp
= r + δ − (1 + r)χ. (21)
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The log-linear approximate solution for k′, around the non-stochastic steady state, is there-

fore given by

∆k′ = φz∆z + φk∆k
p

=⇒ k′ = k̄1−φkzφz (kp)φk , (22)

where for some generic variable x and steady state value x̄, ∆x ≡ x−x̄; φz = Θzρ(r+δ)
(1+r)χ+(r+δ)(1−Θk)

and φk = (1+r)χ
(1+r)χ+(r+δ)(1−Θk)

; and k̄ =
[

ΘkA(w)
r+δ

] 1
1−Θk

(with exp
(

1
2
Θ2
zσ

2
ε

)
ΘkA (w) zΘzρk′Θk−1 = r + δ in the non-stochastic steady-state). We see

that φz > 0 and φk ∈ (0, 1), where in particular, limχ→0 φz = ρ
1−Θk

and limχ→0 φk = 0 returns

us to the usual frictionless model, and limχ→∞ φz = 0 and limχ→∞ φk = 1 moves us to a

model where only plans matter.

Next, we can substitute this solution for k′ into the Bellman equation in the main text,

and obtain

W (k, s, z−1, σ) = max
kp

E

[
π + (1− δ) k − k′ − χ

2

(
k′

kp
− 1

)2

kp + βE
[
V
(
k′, z̃′, z

)
|z
]
|s, z−1, σ

]

s.t.

log z ∼ N
(
ρ log z−1 +

σ2
ε

σ2 + σ2
ε

s,V
)
,

where we write k′ as a function of kp and z. This gives us the expected value of the firm after

a signal has been observed, but before a plan has been made. Taking first order conditions,

and following some algebra, we can obtain the optimal kp as

kp =
√

E [k′2|s]

=⇒ kp =

√
E
[(
k̄1−φkzφz (kp)φk

)2
]

=⇒ kp = k̄z
ρφz

1−φk
−1

(√
E [exp (2φzε) |s]

) 1
1−φk ,
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where ε is the underlying innovations of z. Noting that the posterior distribution of ε (i.e.,

after the signal s has been observed) is given by ε ∼ N
(

σ2
ε

σ2+σ2
ε
s,V

)
we can express kp as

kp = k̄z
ρφz

1−φk
−1

(√
exp

(
2φz

σ2
ε

σ2 + σ2
ε

s+ 2φ2
zV
)) 1

1−φk

= k̄z
ρφz

1−φk
−1 exp

(
φz

1− φk
σ2
ε

σ2 + σ2
ε

s

)
exp

(
φ2
z

1− φk
V
)
. (23)

Before moving on, it is useful to note that planned investment is increasing in V for small

enough s (in particular, it is always increasing in V when s → 0). This reflects a precau-

tionary term coming from insurance against any upside risk, which becomes increasingly

dominant as s becomes smaller (in the limit, there is only upside risk and no downside risk).

This term exists, in part, because our specific formulation of the adjustment cost is bounded

below while unbounded above.

We can now formally derive a proof for Lemma 1.

Proof. We begin by substituting the solution for k′ and kp back into the original cost function,

which gives

φ (k′, kp) =
χ

2

(
k′

kp
− 1

)2

kp

=
χ

2

(
exp (φzε) exp

(
− φzσ

2
ε

σ2 + σ2
ε

s

)
exp

(
−φ2

zV
)
− 1

)2

...

...

(
k̄z

ρφz
1−φk
−1 exp

(
1

1− φk
φzσ

2
ε

σ2 + σ2
ε

s

)
exp

(
φ2
z

1− φk
V
))

.

The ex ante cost function prior to the realization of signals is therefore
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E
[
φ
(
k′, kp

)
|σ
]

= E

[
χ

2

(
k′

kp
− 1

)2

kp|σ

]

= E

[
E

[
χ

2

(
k′

kp
− 1

)2

kp|s

]
|σ

]

= E

[
χ

2
E

[(
exp

(
−φz

σ2
ε

σ2 + σ2
ε

s

)
exp

(
−φ2

zV
)

exp (φzε)

)2

...

...− 2 exp

(
−φz

σ2
ε

σ2 + σ2
ε

s

)
exp

(
−φ2

zV
)

exp (φzε) + 1|s...
]

...

(
k̄z

ρφz
1−φk
−1 exp

(
1

1− φk
φzσ

2
ε

σ2 + σ2
ε

s

)
exp

(
φ2
z

1− φk
V
))
|σ
]

= χk̄z
ρφz

1−φk
−1 FA (V) , (24)

where we define FA (V) ≡ exp

[
1
2

(
φz

1−φk

)2

σ2
ε

] (
1− exp

(
−1

2
φ2
zV
))

exp
(
φ2
z

2

(
1−2φk

(1−φk)2

)
V
)

for

notational convenience, and noting that χk̄z
ρφz

1−φk
−1 > 0.

We see that the FA term is the only term in the expression that depends on V. To study

the impact of V on the expected adjustment cost, it therefore suffices to study the marginal

effect of changing V on FA. To do so, we can take the derivative of FA with respect to V,

obtaining,

∂FA (V)

∂V
= exp

[
1

2

(
φz

1− φk

)2

σ2
ε

](
exp

(
−1

2
φ2
zV
)

1

2
φ2
z exp

(
φ2
z

2

(
1− 2φk

(1− φk)2

)
V
)

+ ...

...

(
1− exp

(
−1

2
φ2
zV
))

exp

(
φ2
z

2

(
1− 2φk

(1− φk)2

)
V
)
φ2
z

2

(
1− 2φk

(1− φk)2

))
= exp

[
1

2

(
φz

1− φk

)2

σ2
ε

]
exp

(
φ2
z

2

(
1− 2φk

(1− φk)2

)
V
)

1

2

(
φz

1− φk

)2

...

... (2φk − 1)

(
exp

(
−1

2
φ2
zV
)(

φ2
k

2φk − 1

)
− 1

)
.

We now proceed to show our proof for three cases.

Case 1: φk ≤ 1
2
.
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In this case, 2φk − 1 < 0 and likewise exp
(
−1

2
φ2
zV
) ( φ2

k

2φk−1

)
− 1 < 0. Therefore, it is

clear from the above expression that ∂FA(V)
∂V > 0 for all V. In other words, the expected

adjustment cost is always strictly increasing in V if φk ≤ 1
2
.

Case 2: 1
2
< φk < 1

In this case, 2φk − 1 > 0 and likewise φ2
k

2φk−1
> 1. To show that ∂FA(V)

∂V > 0, we need

to show that exp
(
−1

2
φ2
zV
) ( φ2

k

2φk−1

)
− 1 > 0. This implies that V < 2

φ2
z

log
(

φ2
k

2φk−1

)
, or

equivalently, V < 2
(

1
ρ(η−1)

)2 (
1

1−φk

)2

log
(

φ2
k

2φk−1

)
. Now recall that because V < σ2

ε , as long

as σ2
ε < 2

(
1

ρ(η−1)

)2 (
1

1−φk

)2

log
(

φ2
k

2φk−1

)
is satisfied, we can establish case 2. Keeping in

mind that
(

1
1−φk

)2

log
(

φ2
k

2φk−1

)
> 1 when 1

2
< φk < 1, this implies that for most reasonable

calibrations, σ2
ε � 2

(
1

ρ(η−1)

)2 (
1

1−φk

)2

log
(

φ2
k

2φk−1

)
. Therefore, ∂FA(V)

∂V > 0 for all feasible

choices of V. In other words, the expected adjustment cost is again always strictly increasing

in V if 1
2
< φk < 1.

Case 3: φk = 1

Note that this is the limiting case for which χ → ∞, where we also have φz = 0. In

this limiting case, we see from the expression that limχ→∞ exp
(
−1

2
φ2
zV
) ( φ2

k

2φk−1

)
− 1 = 0,

so limχ→∞
∂FA(V)
∂V = 0. Intuitively, since adjustment costs are infinitely large, the marginal

effect of improving information is trivially zero. In other words, we have shown that the

expected cost of violating the adjustment friction is increasing in the posterior uncertainty

V. This concludes the proof for Lemma 1.

We can also now formally derive a proof for Lemma 2.

Proof. To begin, recall that since the choice of V only affects next-period profits, this implies

that V only affects the value of the firm through this channel. Recalling that expected profits

net of investment cost (but gross of the adjustment cost), πe, is given by the expression

πe ≡ E
[
−k′ + 1

1 + r

(
E
[
A (w, Y ) z′Θzk′Θk |z

]
+ (1− δ) k′

)
|σ
]
,

it suffices to show that ∂πe

∂V < 0 to show that higher posterior uncertainty has a negative
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impact on the firm’s value gross of adjustment cost. To do so, it is convenient to rewrite the

expected next-period profit as

πe =
1

1 + r
E
[
E
[
A (w, Y ) z′Θzk′Θk |z

]
− (r + δ) k′|σ

]
.

We will now proceed to derive this as a function of V (and other initial conditions and

parameters). We can show that

E [k′|σ] = k̄z
ρφz

1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
exp

(
−1

2

(
φz

1− φk

)2

φ2
kV

)

and

E
[
E
[
A (w) z′Θzk′Θk |z

]
|σ
]

= A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θkz

ρ φz
1−φk
−1 exp

(
1

2
ϑσ2

ε

)
...

... exp

(
−1

2
Θ2
k

(
φz

1− φk

)2

φ2
k

2−Θk

Θk
V

)
,

with ϑ ≡ (ρΘz)
2 + 2ρΘzΘk

φz
1−φk

+
(

Θk
φz

1−φk

)2

.

Before proceeding, it is worth discussing briefly the economic intuition here. Notice

that the E [k′|σ] term is decreasing in V, that is, expected investment is decreasing in the

posterior uncertainty. This contrasts with the 1
2

(
φz

1−φk

)2

σ2
ε term, which says that expected

investment is increasing in the dispersion of productivity. This term is the usual volatility

effect that predicts investment increasing with uncertainty (due to its real option value),

whereas subjective uncertainty V decreases investment. Notice however that the term here is

pre-multiplied by φk, which is the weight on the investment plan in the manager’s investment

policy function. A more standard model of Bayesian learning would imply that φk = 1. In

our model, we nest this standard framework by allowing partial flexibility of plans. As such,

the ability to weakly deviate from planned investment (i.e., φk < 1) dampens the effect of

subjective uncertainty.

Moreover, notice that E
[
E
[
A (w) z′Θzk′Θk |z

]
|σ
]
(expected revenue) is also decreasing in
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V. Since expected investment is decreasing in V, this result is not surprising. Now with

these two terms in hand, we can rewrite the expected profits as

πe =
1

1 + r

[
A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θkz

ρ φz
1−φk
−1 exp

(
1

2
ϑσ2

ε

)
...

... exp

(
−1

2
Θ2
k

(
φz

1− φk

)2

φ2
k

2−Θk

Θk
V

)
−

... (r + δ) k̄z
ρφz

1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)

... exp

(
−1

2

(
φz

1− φk

)2

φ2
kV

)]

=
1

1 + r
k̄z

ρφz
1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
Fπ (V), (25)

where Fπ (V) is a function of the posterior uncertainty and other model parameters. Criti-

cally, this function does not include z−1, which pre-multiplies this function. Therefore, the

effect of V is always scaled by z−1. To show that increasing posterior uncertainty decreases

expected profits, we simply need to show that ∂Fπ(V)
∂V < 0 . We derive

∂Fπ (V)

∂V
=

(
1

2

(
φz

1− φk

)2

φ2
k

)
exp

(
−1

2

(
φz

1− φk

)2

φ2
kV

)
...[

A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θk−1 exp

(
1

2

(
ϑ−

(
φz

1− φk

)2
)
σ2
ε

)
...

... (−Θk (2−Θk)) exp

(
1

2

(
φz

1− φk

)2

φ2
k (1−Θk (2−Θk))V

)
+ (r + δ)

]
,

which means that for the previous condition to hold, we need the following condition

A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θk−1 exp

(
1

2

(
ϑ−

(
φz

1− φk

)2
)
σ2
ε

)
... > r + δ

... (Θk (2−Θk)) exp

(
1

2

(
φz

1− φk

)2

φ2
k (1−Θk (2−Θk))V

)
.
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But recall that k̄ =
[

ΘkA(w)
r+δ

] 1
1−Θk , which means that k̄Θk−1 = r+δ

ΘkA(w,Y )
. Substituting this

back into the equation above, we get

exp

(
1

2
Θ2
zσ

2
ε

)
exp

(
1

2
(ρΘz)

2 Θk

1−Θk

σ2
ε

)
(2−Θk) exp

(
1

2

(
φz

1− φk

)2

φ2
k (1−Θk (2−Θk))V

)
> 1.

Further substituting in ϑ−
(

φz
1−φk

)2

= (ρΘz)
2 Θk

1−Θk
, we reduce the expression to,

exp

(
1

2
Θ2
zσ

2
ε +

1

2
(ρΘz)

2 Θk

1−Θk
σ2
ε +

1

2

(
ρΘz

1−Θk

)2

φ2
k

(
1−Θk

(
1− 1

2
Θk

))
V

)
>

1

2−Θk
.

Notice that since Θk ∈ (0, 1), 1
2−Θk

∈
(

1
2
, 1
)
, the above relation is trivially true for all

parameter values, so ∂Fπ(V)
∂V < 0. Therefore, expected profits, gross of adjustment cost, is

decreasing in the posterior variance. This concludes the proof for Lemma 2.

With Lemma 1 and 2 in hand, we can now derive a proof for our proposition.

Proof. First, Lemma 2 tells us that the ex ante value of the firm, gross of signal acquisition

costs but net of adjustment cost, is strictly decreasing in V. This gives us, for the general

case, the equivalent of point 1 in Proposition 1.

To show point 2 of Proposition 1 in our general case, we can simply combine both the

expected adjustment cost and expected profits and take the first derivative with respect to

V. To recall, the first derivative of the expected adjustment cost is

∂E [φ (k′, kp) |σ]

∂V
= χk̄z

ρφz
1−φk
−1

∂FA (V)

∂V
,

and recall ∂FA(V)
∂V > 0. The marginal effect of V on firm value, net of adjustment cost, can

then be expressed as
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−∂E [φ (k′, kp) |σ]

∂V
+
∂πe

∂V
= −χk̄z

ρφz
1−φk
−1

∂FA (V)

∂V
+

1

1 + r
k̄z

ρφz
1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V

= k̄z
ρφz

1−φk
−1

(
−χ∂F

A (V)

∂V
+

1

1 + r
exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V

)
,

Note that this gives us, for the general case, the equivalent expression in Equation 7 in the

main text. Here, we also see that the term −χ∂F
A(V)
∂V + 1

1+r
exp

(
1
2

(
φz

1−φk

)2

σ2
ε

)
∂Fπ(V)
∂V < 0

and does not depend on z−1. In other words, initial productivity z−1 has a pure scaling effect;

that is, firms with higher initial productivity face a steeper cost of having a more dispersed

signal. Conversely, the benefits to get a better signal is increasing in initial productivity.

Formally, this statement is seen in the cross-derivative, which is given by

∂

∂z−1

(
−∂E [φ (k′, kp) |σ]

∂V
+
∂πe

∂V

)
=

ρφz
1− φk

k̄z
ρφz

1−φk
−1

−1 ...

...

(
χ
∂FA (V)

∂V
+

1

1 + r
exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V

)

< 0

Therefore, the benefits of having a lower posterior uncertainty is increasing in initial firm

productivity z−1. This thus concludes the proof, for the general case, of the equivalent of

point 2 in Proposition 1.

B.3.1 Derivation of Corollary 1

The derivation of this corollary is similar to the derivation of Proposition 1. Because the

marginal cost function is identical, we can see that the indifference condition for the general

model is given by

ξz
ζ− ρφz

1−φk
−1 = k̄

(
−χ∂F

A (V)

∂V−1
+

1

1 + r
exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V−1

)
, (26)
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where V−1 solves the implicit equation above. This formula is more complicated than the

special case for χ = ∞, but reflects the same insights. In particular, on the left-hand side,

we see that the term is strictly decreasing in z−1 if ζ < ρφz
1−φk

, constant in z−1 if ζ = ρφz
1−φk

,

and increasing in z−1 if ζ > ρφz
1−φk

. In other words, the threshold ζ̄ in this general case is

simply ρφz
1−φk

, which in fact evaluates to ρ2Θz
1−Θk

. Finally, an application of the inverse function

theorem tell us that the choice of V−1 is increasing in z−1 if ζ < ζ̄, constant in z−1 if ζ = ζ̄,

and decreasing in z−1 if ζ > ζ̄.

B.4 Proof of Proposition 4

We now derive the proof showing that information and productivity are complements in

production. To do this, we first derive an expression for TFP, per the definition in the main

text as follows,

Claim 1. TFP can be expressed as

TFP =

{
E

[
z
ρ2Θz
1−Θk
−1

]
E

[
exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

)]
+ cov

(
z
ρ2Θz
1−Θk
−1 , exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

))} 1−ν
ν

Proof. To derive this expression, we first note that the production function can be re-

expressed without labor as

y = zΘzν−1

kΘkν
−1

,

Next, we simply utilize Equation 23 by imposing k′ = kp, and substituting the solution back

into the production function,

y = zΘzν−1

(exp
(

1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ
zρ

2Θz
−2

) 1
1−Θk

exp

(
ρΘz

1−Θk

σ2
ε

σ2 + σ2
ε

s−1

)
exp

(
1

2

(ρΘz)
2

1−Θk
V−1

)Θkν
−1

⇔ yν = zΘz

(exp
(

1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ
zρ

2Θz
−2

) 1
1−Θk

exp

(
ρΘz

1−Θk

σ2
ε

σ2 + σ2
ε

s−1

)
exp

(
1

2

(ρΘz)
2

1−Θk
V−1

)Θk

,
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Now, to compute
∫
yνdΛ, we simply integrate over (i) all TFP shocks given a signal, (ii)

all possible signals for each z−2 and V−1, and (iii) all possible z−2 and V−1. This gives us,

∫
yν = E

[
z
ρ2Θz
1−Θk
−2 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV−1

)]
×exp

(
1

2

(
ρΘz

1−Θk

)2

σ2
ε

)
exp

(
1

2
Θ2
zσ

2
ε

)(
exp

(
1
2
Θ2
zσ

2
ε

)
ΘkA (w)

r + δ

) Θk
1−Θk


= X ν

1 E

[
z
ρ2Θz
1−Θk
−2 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV−1

)]
,

where X1 is a constant that is a function of model parameters and prices, and the expectation

operator is computed over the joint distribution of z−2 and V−1. This implies that aggregate

output Y can be expressed as

Y = X1E

[
z
ρ2Θz
1−Θk
−1 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

)] 1
ν

,

where we have iterated the variables one time step forward. Using a similar logic, we can

derive aggregate capital and labor as follows,

K =

(
exp

(
1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ

) 1
1−Θk

exp

(
1

2

(
ρΘz

1−Θk

)2

σ2
ε

)
E

[
z
ρ2Θz
1−Θk
−2 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV−1

)]

L =

(
(1− α) ν

w

) 1−α
1−(1−α)ν

exp

(
1

2

(
ρΘz

1−Θk

)2

σ2
ε

)
exp

(
1

2
Θ2
zσ

2
ε

)(
exp

(
1
2Θ2

zσ
2
ε

)
ΘkA (w)

r + δ

) Θk
1−Θk

×

E

[
z
ρ2Θz
1−Θk
−2 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV−1

)]
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This gives us

KαL1−α = X2E

[
z
ρ2Θz
1−Θk
−2 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV−1

)]α
E

[
z
ρ2Θz
1−Θk
−2 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV−1

)]1−α

= X2E

[
z
ρ2Θz
1−Θk
−2 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV−1

)]

= X2E

[
z
ρ2Θz
1−Θk
−1 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

)]
,

where in the last line, we also iterate the variables one time step forward. Coming both

expressions, we obtain,

TFP =
Y

KαL1−α

∝
E

[
z
ρ2Θz
1−Θk
−1 exp

(
−1

2

(
ρΘz

1−Θk

)2
ΘkV

)] 1
ν

E

[
z
ρ2Θz
1−Θk
−1 exp

(
−1

2

(
ρΘz

1−Θk

)2
ΘkV

)]

= E

[
z
ρ2Θz
1−Θk
−1 exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

)] 1−ν
ν

=

{
E

[
z
ρ2Θz
1−Θk
−1

]
E

[
exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

)]
+ cov

(
z
ρ2Θz
1−Θk
−1 , exp

(
−1

2

(
ρΘz

1−Θk

)2

ΘkV

))} 1−ν
ν

,

where the last line is the formula given in the claim. With the above expression, it is now

straightforward to prove Proposition 4. To see this, it is trivial to see that TFP is increasing

in the covariance term for any given marginal distributions of z−1 and V; likewise, TFP

is increasing in the correlation of the arguments to the covariance term. Note that the

covariance term is positive if z−1 and V are negatively correlated, or equivalently, if z−1 and

V−1 are positively correlated. In other words, as stated in the proposition, productivity and

information are complements in production, and TFP is increasing in their correlation.
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B.5 Derivations for Identification

We derive our identification argument for Section 3.3.1. For concreteness, we will refer to

the dispersion of a variable as the standard deviation of that variable. TFP shocks and

investment plan deviations follow our model definition, namely log z − E (log z|z−1, s) and

log k′

kp
respectively.

B.5.1 Derivation for Identification 1 (ξ)

Here, it is useful to examine the indifference condition as discussed in Equation 26. Notice

that in this case, the only parameters that affect firm learning are ξ and ζ, since χ = ∞.

Now, consider the case where ζ = ζ̄, such that all firms face the same marginal cost of

information acquisition. As such, the solution to the firm’s information acquisition problem

only depends on the fixed cost ξ. Since the left-hand side term is increasing in ξ, V−1 (which

is homogenous across all firms), is correspondingly weakly decreasing in ζ. Consequently, the

dispersion of TFP shocks is increasing in ζ. For the generic case where ζ 6= ζ̄, the dispersion

of TFP shocks is simply given by

var (log z − E (log z|z−1, s)) = E [V (z−1)] .

Since we have already demonstrated that V (z−1) is increasing in ξ, the dispersion of TFP

shocks is also increasing in ξ.

Effect on identification 2 An obvious issue with this partial identification argument is

that changes in χ, which affects investment flexibility, will also affect the incentives of firms

to acquire information ex-ante. We will turn to jointly discussing this identification issue

when we discuss the identification of χ.

Effect on identification 3 As we can see from the case where ζ = ζ̄, ξ has no direct

effect on the correlation between information acquisition choices and productivity.
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B.5.2 Derivation for Identification 2 (χ)

By combining Equations 22 and 23, we can express investment plan deviations as

log
k′

kp
= φz ε̃− φ2

zV, (27)

where ε̃ ≡ ε− σ2
ε

σ2+σ2
ε
s ∼ N (0,V). The variance of this object for a given z−1 is then

var

(
log

k′

kp
|z−1

)
= φ2

z

(
V (z−1) + φ2

zvar (V (z−1))
)
,

where the covariance term drops out since the TFP shock is uncorrelated with produc-

tivity. Finally, using the law of total variance, we obtain

var

(
log

k′

kp

)
= E

[
var

(
log

k′

kp
|z−1

)]
+ var

(
E
[
log

k′

kp
|z−1

])
= E

[
φ2
z

(
V + φ2

zvar (V)
)]

+ φ2
zE [V]

= 2φ2
zE [V] + φ4

zvar (V)

≈ 2φ2
zE [V] .

where the last approximation is fairly accurate as the dispersion of TFP shocks are typically

orders of magnitude larger than the dispersion of the dispersion itself. As we can see, holding

the optimal learning decision fixed, φz is decreasing in χ and consequently var
(
log k′

kp

)
is

decreasing in χ. This result is intuitive: if investment flexibility is decreasing, naturally the

dispersion of investment plan deviations must decrease.

Effect on identification 1 An obvious issue with the partial identification argument

above is that changes in χ in turn changes the optimal learning decision. In particular, as

demonstrated in the indifference condition, increases in χ will prompt firms to preemptively

acquire more information, since the marginal benefit of information is higher. However,

what this implies is that the average uncertainty E [V] is decreasing in χ. Correspondingly,
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var
(
log k′

kp

)
is monotonically decreasing in χ. The key difference between ξ and χ, therefore,

is simple. ξ affects var
(
log k′

kp

)
only through its effect on E [V]; in contrast, χ has a “direct”

effect by changing φz, and an “indirect effect” from changing E [V]. Importantly, as we

discussed in the main text, the ratio of the two moments of interest can be expressed as

var (log z − E (log z|z−1, s))

var
(
log k′

kp

) = 2φ2
z, (28)

From before, we showed that φz is only a function of χ. In other words, we have “two

equations in two unknowns” that are exactly identified.

Effect on identification 3 Like ξ, as we can see from the case where ζ = ζ̄, χ has no

direct effect on the correlation between information acquisition choices and productivity.

B.5.3 Derivation for Identification 3 (ζ)

In this case, as we already derived, the firm’s choice of information V is the solution to the

indifference condition in Equation 26, where as we already saw, V is a weakly monotone

function of z−1. More formally, the correlation between the two variables can be captured

by the following:

∂V
∂z−1

=
∂V

∂z
ρφz

1−φk
−1

∂z
ζ− ρφz

1−φk
−1

∂z−1

=
∂V

∂z
ζ− ρφz

1−φk
−1

(
ζ − ρφz

1− φk

)
z
ζ− ρφz

1−φk
−1

Using our indifference equation, we see that the term ∂V

∂z
ζ− ρφz

1−φk
−1

does not depend on ζ.

Consequently, holding all else constant, ∂V
∂z−1

is strictly increasing in ζ per the second term.

In turn, the correlation of V (i.e., dispersion of TFP shocks) is increasing in ζ.

Effect on identification 1 and 2 Changes to ζ will affect the average cost of information

acquisition, holding all else constant, and therefore has an indirect effect on the average
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dispersion of TFP shocks (and thus investment plan deviations). However, changes to ζ

do not map in a monotonic way to the dispersion of TFP shocks. This is because for any

increase in ζ, lower productivity firms (specifically, when z < 1) face a lower cost of infor-

mation acqusition, whereas the converse is true for higher productivity firms. This means

that changes to average information acquisition come from weighting increased information

acquisition from low-productivity firm and weighting reduced information acquisition from

high-productivity firms. This non-monotonic effect therefore (loosely speaking) allows us to

use the first two moments to pin down ξ and χ. This can be seen in the “isomoment plots”

in Figure 3 (Panels b, c, e, and f), where we see that multiple values of ζ can be combined

with ξ (or χ) to produce the same two moments. Notice that the connection between TFP

shocks and investment plan deviations are also reflected in how the isomoment plots for the

dispersion of TFP shocks is qualitatively the same as that of the dispersion of investment

plan deviations.

B.6 Derivations for External Validation Exercises

We derive our derivations for the predictions discussed in Section 3.3.2.

B.6.1 Derivation for Prediction 1

Following the earlier proofs, it is straightforward to rewrite the investment Euler equation,

in terms of expected TFP, as

log k′ = log k̄ +

(
φz + φk

ρΘz

1−Θk

)
E [log z|z−1]− φz

σ2
ε

σ2 + σ2
ε

s+
φkφ

2
z

1− φk
V + φzε,

where ε is an i.i.d. TFP shock. Therefore, when we simply run a regression of investment

on expected productivity, we are estimating the combination of parameters φz + φk
ρΘz

1−Θk
.20

In contrast, when we include investment plans as an additional regressor, our estimating

20This discussion assumes that we observe the true expected productivity. As discussed earlier, we do not
directly observe E [log z|z−1], so in general, such a regression will suffer from attenuation bias.
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equation becomes,

log k′ = log k̄ + φzE [log z|z−1] + φk log kp − φz
σ2
ε

σ2 + σ2
ε

s+ φzε.

In other words, the importance of expected TFP is attenuated since we are now just

estimating φz. Noticeably, the degree of attenuation is increasing in φk. In particular, if

investment plans were fully flexible (i.e., φk = 0), we would not see any attenuation in the

importance of expected TFP.

B.6.2 Derivation for Prediction 2

Prediction 2 follows trivially from Equation 27. Squaring both sides of the equation, we can

see that
(
log k′

kp

)2 ∝ φ2
z ε̃

2 where ε̃ is the TFP shock. In other words, the size of investment

plan deviations is increasing in the size of realized TFP shocks so long as φz 6= 0. However,

this does not reject the null that investment plans are fully flexible (χ = 0), for which φz is

a finite-valued parameter.
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Not Intended For Publication

C More Details of the Business Outlook and Financial

Statements Survey

C.1 Details of the Business Outlook Survey

The Ministry of Finance (MoF) and Cabinet Office of Japan conduct the Business Outlook

Survey (BOS) in order to help forecast the economy and inform fiscal planning. The survey

is implemented primarily to evaluate the investment condition of firms and is conducted

separately from other Japanese survey data that have been used by existing researchers such

as the Tankan survey conducted by the Bank of Japan that “aims to provide an accurate

picture of business trends of enterprises in Japan, thereby contributing to the appropriate

implementation of monetary policy”. The MoF uses some information from the BOS in

producing its Monthly Economic Report, which is made publicly available in the form of

aggregated statistics. None of the disaggregated individual firm-level data ever become

public.

The BOS has been conducted from the first quarter of Fiscal Year (FY) 2004 as a General

Statistical Survey under the Statistics Act. The first Statistics Act (Act No. 18 of 1947)

was later revised in Act No. 53, which was passed on May 23, 2007 and implemented in

April 2009. The survey targets are non-financial corporations with paid-in-capital of at least

10 million yen (approx. 100,000 USD) and utilities and financial institutions with paid-in-

capital of at least 100 million yen (approx. 1 million USD). Responses are collected both via

mail and online, and the sampling is based on the corporations covered by quarterly surveys

of Financial Statements Statistics of Corporations by Industry. Industries in the aggregated

survey result are based on Japanese SIC (J-SIC) codes (the 2-digit figure for manufactur-

ing firms and larger “alphabet” group classifications for non-manufacturing industries) and

grouped into 45 MoF industries. This means that some 2-digit J-SIC industries are grouped
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into a larger classification for reporting. In all our analyses, we use these MoF industry

definitions as our definition of industries.

The survey is administered as repeated cross sections with stratified sampling across seven

categories by registered capital and industry to be representative of the Japanese economy.

The seven categories are (1) 0.01 - 0.02 billion, (2) 0.02 - 0.05 billion, (3) 0.05 - 0.1 billion,

(4) 0.1 - 0.5 billion, (5) 0.5 - 1 billion, (6) 1 - 2 billion, (7) over 2 billion. Before FY2010,

the border between (4) and (5) was 0.6 billion yen. In the aggregated results, firms are

grouped by size into three categories: “small-medium” corporations (1, 2, 3), “medium-sized”

corporations (4, 5) and “large” corporations (6, 7). In addition, the Twelfth revision of the

J-SIC (November 2007) was enforced on April 1, 2008, and the stratification by industry

changed from the first quarter (April - June) of FY 2009. Originally, the sampling was

stratified into 43 categories by industry for non-financial corporations.

Table C.1 shows the sampling probabilities for each broad size strata. Due to the high

sampling probability among middle to large firms, we are able to construct a panel. The

overall response rate is nearly 80% on average and nears 90% for large firms. Table C.2 shows

the average annual response rates by year from FY 2005 to FY 2016. Firms are sampled

on an annual basis, aligned with standard fiscal period ends for Japanese firms. Firms that

are sampled are assigned a unique company identifier that is only for use in the MOF. The

disaggregated information and responses at the firm-level do not leave the MoF building and

are stored on air-gapped computers.

The BOS asks both qualitative and quantitative questions quarterly. Surveys start in the

late of first month in each quarter. Firms are required to answer their forecasts and plans

in the middle of the second month in each quarter as a reference date. Qualitative questions

ask about the business condition, domestic economic conditions, employment, and others.

These questions provide options like “up”, “same”, “down”, and “unknown”. For example,

“what is your business condition of the current quarter (the next quarter, the one after next)

compared with the previous one?” Respondents can answer one of the four choices “up, same,
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down and unknown.”

Table C.1: Survey Sampling

The table below shows the sampling procedure for non-financial and financial corporations. Financial corporations include
both banks, insurance companies, and other financial institutions. * means that 60% of overall small corporations selected by
quarterly surveys of Financial Statements Statistics for Corporations by Industry must be sampled and the target number in
the sample is around 6,000 firms. In addition, when the number of total sampled corporations with capital less than 500 million
yen is less than 30 for each stratum, more firms will be additionally sampled to increase the total number in that stratum to
30.

Panel A: Non-Financial Corporations

Corporation Type Size (Yen) Approx. Size (USD) Sample Probability

Large ≥ 2 billion ≥ 18 million 100%

1 - 2 billion 9-18 million 50%

Medium-Sized 0.5 - 1 billion 4.5 - 9 million 50%

0.1 - 0.5 billion 1 - 4.5 million Remaining

Small-Medium 0.01 - 0.1 billion 0.1 - 1 million to hit 6,000 firms*

Panel B: Financial Corporations

Corporation Type Size (Yen) Approx. Size (USD) Sample Probability

Large ≥1 billion 9 million 100%

Medium-Sized 0.5 - 1 billion 4.5 - 9 million 50%

0.1 - 0.5 billion 1 - 4.5 million Remaining

Small-Medium 0.01 - 0.1 billion 0.1 - 1 million 0%

Quantitative questions are about realized and expected values of sales, profits, and invest-

ment spending. A key feature of the survey is that full fiscal year values are always reported

at all horizons. Questions about intra-year forecasts of quantitative items are different ac-

cording to quarter. Regarding sales and current profit, the surveys in the first quarter (April

- June) and second quarter (July - September) asks the first and second half-year forecasts

for the current fiscal year. The survey in the third quarter (October - December) has real-

izations in the first half-year and forecasts for the second half-year for the current fiscal year.

The survey in the fourth quarter (January - March) has realizations in the first half-year and

forecasts for the second half-year for the current fiscal year as well as the first and second

half-year forecasts in the next fiscal year. All surveys ask the semi-annual realizations in the

previous fiscal year.
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Table C.2: Response Rates

The table below shows the average annual response rate of the BOS, which was administered from FY 2005 (April 2005 to
March 2006) to FY 2016 (April 2016 to March 2017).

Fiscal Year Response Rate (%) Response Rate (%) Fiscal Year Response Rate (%) Response Rate (%)

(All Firms) (Large Firms) (All Firms) (Large Firms)

2005 78.9 88.8 2011 78.6 87

2006 78.7 88.1 2012 79.2 88.1

2007 78.6 86.8 2013 80.2 88.4

2008 79.2 87.3 2014 81.0 88.1

2009 79.4 87.2 2015 80.9 88.6

2010 79.0 87.1 2016 80.9 88.1

C.2 Additional Detailed Summary Statistics

We report additional detailed summary statistics here in the interest of providing more

detailed information on the Business Outlook Survey and the Financial Statements survey.

These statistics are not used at any point in the paper.

Table C.3: Additional Summary Statistics

The table below reports additional summary statistics of our firm-year panel. Here, we report statistics for the remaining set
of investment types reported in the BOS: Land and Software. To reduce the influence of outliers on these summary statistics,
we winsorize variables at the 1% level. All numbers are rounded to three significant digits or three decimal points, whichever
results in fewer decimal points.

Panel A: Firm Fundamentals

Percentile

Variable Mean SD Skew 25th 50th 75th

Land Investment (mn) 135 583 5.88 0.000 0.000 0.000

Land Investment Plan (mn) 59.7 308 6.34 0.000 0.000 0.000

Software Spending (mn) 190 562 4.89 0.000 15 100

Software Spending Plan (mn) 191 580 4.99 0.000 9 100

Panel B: Constructed Variables

Land Purchasing Plan (% of Assets) 0.127 0.631 6.05 0.000 0.000 0.000

Land Purchasing Plan Deviations (% of Assets) 0.187 0.964 5.38 0.000 0.000 0.000

Software Spending Plan (% of Assets) 0.867 2.650 5.64 0.000 0.0690 0.557

Software Spending Plan Deviations (% of Assets) 0.003 1.160 0.725 -0.080 0.000 0.083
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Table C.4: Additional Summary Statistics on Gross Investment Rates From Financial Statements

The table below reports the summary statistics for investment derived from the Financial Statements (not BOS) of our firm-year panel. The total number of firms in our sample
is 5,989, of which 2,273 are publicly listed and the rest are private companies. To calculate gross investment rates from financial statements (which are reported annually), we
assume a capital depreciation rate of 6%. All numbers are rounded to three decimal points when in percentages and four decimal points in probabilities.

Panel A: Across Years

(%) (%) Capital Sales Inaction Region From BOS

Fiscal Year E
[
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k

]
E
[
i
k
| i
k
< 0
]

P
(
i
k
< 0
)

P
(
i
k
< −1%

)
P
(
i
k
< −5%

)
P
(
|i|
k
< 1%

)
P
(
|i|
k
< 5%

)
P
(
i
k
< 1%

)
P
(
i
k
< 5%

)
2005 4.655 -4.261 0.181 0.106 0.040 0.168 0.4801 0.207 0.525

2006 4.491 -3.428 0.196 0.122 0.032 0.166 0.496 0.193 0.504

2007 5.697 -2.771 0.144 0.076 0.021 0.148 0.449 0.192 0.503

2008 5.901 -5.400 0.130 0.072 0.024 0.131 0.430 0.178 0.504

2009 3.970 -3.493 0.160 0.083 0.030 0.191 0.527 0.250 0.608

2010 2.947 -2.794 0.235 0.131 0.029 0.225 0.600 0.224 0.587

2011 3.631 -2.277 0.176 0.084 0.014 0.214 0.565 0.220 0.575

2012 3.885 -3.612 0.187 0.101 0.027 0.193 0.536 0.197 0.537

2013 5.359 -4.079 0.136 0.077 0.024 0.152 0.462 0.182 0.518

2014 5.196 -3.693 0.129 0.069 0.023 0.154 0.466 0.193 0.518

2015 5.414 -4.333 0.123 0.074 0.026 0.133 0.450 0.182 0.503

2016 4.406 -3.508 0.162 0.095 0.029 0.169 0.502 0.183 0.509

Total 4.591 -3.579 0.163 0.091 0.027 0.170 0.496 0.200 0.531

Panel B: Public versus Private Companies

(%) (%) Capital Sales Inaction Region From BOS
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)
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)
Publicly-Listed 4.916 -3.265 0.133 0.079 0.022 0.132 0.484 0.153 0.541

Private Companies 4.232 -3.767 0.189 0.101 0.031 0.202 0.506 0.240 0.523
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