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Abstract

We consider games where an analyst is not confident about players’

true information structure for payoff-relevant parameters. We define

a robust prediction by a set of action profiles such that, given any

information structure among the players, there is a Bayesian Nash

equilibrium given that information structure whose equilibrium action

profiles are in this set. We then show that, in order to identify a

robust prediction, it is sufficient to focus on the canonical type space,

a Harsanyi type space constructed as an analogy of level-k theory. As

applications of our approach, we derive robust predictions in Cournot

competition, Diamond search games, and auctions.
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1 Introduction

It is often the case that the actual environment analyzed using a game model

is much more complicated than the model itself. For example, to model an

auction, we typically assume some simple information structure for bidders,

even if we are not completely confident about such an assumption. Many

researchers have argued that we should keep in mind that our prediction

based on a simple model/information structure may be fragile because the

actual players may enjoy a different information structure than the one we

assume.

The goal of this paper is to provide a “robust” prediction in such a sit-

uation, in the sense that it provides a reasonable prediction even if the true

information structure differs from the assumed one.

More specifically, we consider a game with uncertain payoff parameters.

A prediction assigns a subset of action profiles for each possible realization

of the payoff parameters, with the interpretation that any action profile in

that subset could occur given that parameter realization. We say that a pre-

diction is robust if for any possible information structure, there exists some

Bayesian Nash equilibrium given each possible information structure that the

equilibrium action profile is in the prediction. Intuitively, if a prediction is

not robust, then it fails to provide a reasonable prediction of the equilibrium

play for some information structure. Hence, we assert that a robust pre-

diction provides a reasonable prediction regardless of the actual information

structure.

To encourage the importance of robust predictions, consider the following

example.

Example 1. Consider a first-price auction with two risk-neutral bidders

and private values: bidder i ∈ {1, 2} has value vi which is independent and

identically determined by a cdf F .
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For simplicity, assume that the analyst is confident that F is common

knowledge (e.g., imagine a lab experiment where the bidders are informed

about F ). A standard “textbook” assumption is that they play a Bayesian

Nash equilibrium, where each i bids:

aBNE
i (vi) = vi −

∫ vi

0

F (x)

F (vi)
dx. (1)

However, as in recent behavioral and experimental studies, some bidders

may be behaving “irrationally”, for example, by systematically bidding their

true valuations.1 If some bidders are such truthful types, or some bidders be-

lieve that others may be truthful, then the bidders no longer behave the same

way as the textbook formula. Thus, if it is concerned that the above textbook

assumption may be wrong, a more robust prediction may be required.

Even if the space of the payoff parameter values is relatively simple, the

space of all possible information structures (formally represented by Harsanyi

type spaces) could be very large, as the players may enjoy nontrivial higher-

order beliefs. It is therefore not straightforward to determine whether a given

prediction is robust or not. The main contribution of this paper is to provide

a condition for a robust prediction (Theorem 1). The condition is simple

in the sense that it comprises two properties: a product structure and a

best-reply property. As demonstrated in the applications in Section 6, these

properties are relatively easy to check. It is also worth noting that our robust

prediction could have some reasonable predictive power in applications, as

it could be strictly smaller than belief-free rationalizability (Bergemann and

Morris, 2017). We discuss the underlying equilibrium selection idea behind

in this paper.

1Truthful bidding is commonly observed in lab experiments. Kagel and Levin (1993),
for example, report that about 11% of subjects bid their own value truthfully in the
first-price auction. Besides, this assumption is often adopted for explaining overbidding
behaviors: see, for example, Crawford and Iriberri (2007).
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The proof of Theorem 1 proceeds roughly as follows. We begin with any

exogenously given type space and a Bayesian Nash equilibrium given that

type space as the “baseline” prediction. As in the above auction example, one

might typically consider a simple type space and a “standard” equilibrium

given that type space (in case there exist multiple Bayesian Nash equilibria).

Based on this baseline type space, we construct a sequence of type spaces,

made increasingly richer, as an analogy to level-k theory (referred to as level-

k type spaces), and construct a Bayesian Nash equilibrium given those type

spaces. Thus, by construction, a collection of the equilibrium action profiles

given those type spaces provides a reasonable prediction if any of those level-k

type spaces is the actual one.

Of course, the true type space could be different from any of them. Nev-

ertheless, we show that this prediction is robust; there is a Bayesian Nash

equilibrium given any possible (not necessarily level-k) type space whose

equilibrium action profile is in the above constructed prediction. In this

sense, we regard the level-k type spaces as canonical ones in identifying the

robust prediction.

Although Theorem 1 only concerns finite games for simplicity, we also

show that our argument can be extended to infinite games with additional

assumptions. This extension is important, as the applications considered in

this paper are all non-finite games.

The rest of the paper is structured as follows. Section 1.1 discusses some

related papers in the literature, after which Section 2 introduces a model and

our notion of a robust prediction. Section 3 provides a necessary condition

for a robust prediction based on level-k type spaces, and we show in Section

4 that the constructed prediction based on the level-k type spaces is robust.

Section 5 extends the result to non-finite games with additional assumptions,

and Section 6 analyzes three applications: Cournot competition, Diamond

search games, and auctions. Finally, Section 7 concludes.
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1.1 Related literature

The literature of robust prediction in games can be roughly divided into

the following two strands depending on the meaning of robustness. In the

first strand, a robust prediction represents a “collection” of possible equi-

librium outcomes under possible information structures, based on the idea

that the analyst has limited knowledge about the true information struc-

ture. Bergemann and Morris (2016) consider an environment in which there

is a common prior over the payoff parameters and show that their robust

prediction is characterized as a set of Bayes correlated equilibria.2 Likewise,

Bergemann and Morris (2017) show that the robust prediction without the

common prior restriction is given by a set of belief-free rationalizable strate-

gies.3 Our paper belongs to this first strand of inquiry. In the sense that

we allow for non-common-prior type spaces, our approach is closer to Berge-

mann and Morris (2017) than to Bergemann and Morris (2016). However,

we obtain sharper predictions than belief-free rationalizability of Bergemann

and Morris (2017), as our robust prediction collects some Bayesian Nash

equilibrium outcome given any possible information structure, while Berge-

mann and Morris (2017) collect all Bayesian Nash equilibrium outcomes.

In other words, Bergemann and Morris (2017) require robustness for both

the players’ information structure and equilibrium selection, while we only

require the former. The difference is stark in some applications such as first-

price auction, where belief-free rationalizability predicts a large set of bidding

2More specifically, Bergemann and Morris (2016) consider the scenario in which there
is a baseline information structure but where each player could face a different information
structure by observing additional private signals. If the private signals are not restricted
to payoff irrelevant ones, the robust prediction is given by the set of Bayes correlated equi-
librium. Otherwise, it ends up with the set of belief-invariant Bayes correlated equilibria à
la Liu (2015). Bergemann and Morris (2013) characterize a Bayes correlated equilibrium
in a game with quadratic payoff functions and normally distributed uncertainties.

3If the private signals are restricted to payoff irrelevant ones, then the robust prediction
is given by a set of interim correlated rationalizable strategies (Dekel, Fudenberg, and
Morris, 2007).
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functions (e.g., Battigalli and Siniscalchi, 2003), while our prediction can be

much sharper. We discuss this point later in more detail.4

Though less related, the second strand of robust predictions concerns “se-

lections” of equilibrium outcomes that are immune to small misspecifications

based on perturbations of the baseline information structure. Weinstein and

Yildiz (2007b) consider perturbations of belief hierarchies up to finite or-

ders and then show that any rationalizable strategy of the baseline case can

be their robust prediction.5 Chen, Takahashi, and Xiong (2014) extend their

notion of robust prediction by incorporating the perturbation of payoff struc-

tures, requiring that a reasonable strategy should be uniquely rationalizable

not only in nearby types but also in nearby games with slightly perturbed

payoff structures. They show that there generically exists no robust pre-

diction due to types exhibiting a payoff tie. Weinstein and Yildiz (2011)

select Bayesian Nash equilibrium outcomes based on the robustness to slight

perturbations of belief hierarchies.6 They call the set of outcomes that are

supported by an equilibrium in all of the nearby games the minimally-robust

prediction. They show that a lower bound of the minimally robust predic-

tion is given by a local version of the interim correlated rationalizability (ICR,

hereafter) of the baseline game with complete information.7

4Miura and Yamashita (2020) characterizes a robust prediction in our sense in a cheap-
talk game à la Crawford and Sobel (1982) where the common knowledge on the players’
behavioral types is relaxed.

5The validity of the conclusion is investigated from several perspectives. See, for exam-
ple, Chen (2012) and Penta (2012) are for dynamic games, and Penta (2013) and Chen,
Takahashi, and Xiong (2021) relax the richness assumption, which is a crucial property
for Weinstein and Yildiz (2007b).

6More specifically, they consider nearby games in which (i) the payoff parameter is
slightly misspecified and (ii) the true parameter is mutually known up to some finite
order.

7While the papers on robust selection adopt perturbations of interim beliefs (or belief
hierarchies), the literature also adopts perturbations of ex ante beliefs (or priors). Kajii
and Morris (1997) fix a complete-information game as a baseline scenario and consider its
nearby incomplete-information games, where the players share a common prior belief such
that the baseline game is played with sufficiently high probability and games with different
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The construction of the canonical type space is based on level-k theory à

la Stahl and Wilson (1994, 1995) and Nagel (1995). The literature adopts the

level-k reasoning for explaining “non-equilibrium behaviors” by not requiring

the correct beliefs about the opponents’ behaviors, as opposed to the notion

of Nash equilibrium. For instance, Crawford and Iriberri (2007) exploit level-

k reasoning to explain overbidding in auctions, Crawford, Kugler, Neeman,

and Pauzner (2009) discuss the optimal auction when bidders have the level-k

thinking and de Clippel, Saran, and Serrano (2019) study mechanism design

with level-k agents.8 It is worthwhile emphasizing that we adopt the level-

k reasoning, not to justify non-equilibrium behaviors but to predict robust

“equilibrium behaviors”, whereas our analysis in Section 6.3 is reminiscent

of Crawford and Iriberri (2007). We revisit this point later.

2 Model

Consider a strategic-form game with I players. Each player i ∈ {1, . . . , I}
is endowed with a payoff parameter θi ∈ Θi and takes an action ai ∈ Ai.

His payoff is ui(a, θ) given action profile a = (ai)
I
i=1 ∈ A =

∏I
i=1 Ai and pa-

rameter profile θ = (θi)
I
i=1 ∈ Θ =

∏I
i=1 Θi. For technical simplicity, assume

that each Ai and Θi is finite, which is relaxed in Section 5. The main-

tained assumption is that each i knows (at least) his true payoff parameter

θi. However, he may not know θ−i, and may have an arbitrary belief (and

higher-order belief) about it. In some applications (See Sections 6.1 and 6.2,

for example), one may want to include an additional parameter, say θ0 ∈ Θ0,

which is unknown to any player. That is straightforwardly possible by adding

payoff structures are played with the remaining probability. They regard an equilibrium
of the baseline game as robust if, for any associated incomplete-information game, there
exists a Bayesian Nash equilibrium that is sufficiently close to the original equilibrium.
See also Ui (2001), Morris and Ui (2005, 2020), and Oyama and Tercieux (2010).

8See Crawford, Costa-Gomes, and Iriberri (2013) for a comprehensive survey.
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a dummy player (say player 0, with a trivial action space A0) and set θ0 ∈ Θ0

as his payoff parameter.

Our goal is to provide a “robust prediction”, in the sense that it is a

reasonable prediction given any (admissible) information structure of the

players. For this purpose, we first introduce the notion of a prediction.

Definition 1. A prediction is a correspondence Γ : Θ → 2A.

Our prediction Γ is interpreted as predicting that, if the true parameter

profile is θ, then the players would play some action profile in Γ(θ) (⊆ A).

Even if one prediction is reasonable given some information structure, it may

not be reasonable given another information structure, as in the following

example.

Example 2. We revisit a first-price auction game mentioned in Example 1.

Each bidder is either rational or truthful. While he knows his own behavioral

type, he may be uncertain about the opponent’s behavioral type. Let Θi =

{rat, tru} be the parameter set and bidding function ai : vi 7→ ai(vi) ∈ R+

represent an action.

First, suppose that the rational bidder i certainly believes that the oppo-

nent is also the rational type. A reasonable prediction given this information

structure may be Γ∗(θ) = {γ∗
1(θ1), γ

∗
2(θ2)}, where γ∗

i (tru) is the identity map-

ping and γ∗
i (rat) = aBNE

i specified by (1).

Alternatively, if rational bidder i certainly believes that the opponent

is truthful, then a reasonable prediction given this alternative information

structure may be Γ∗∗(θ) = {γ∗∗
1 (θ1), γ

∗∗
2 (θ2)}, where γ∗∗

i (tru) is the identity

mapping and γ∗∗
i (rat) = a1i (·) with a1i (vi) ∈ argmaxb(vi − b)F (b).

Note that prediction Γ∗ (resp. Γ∗∗) is reasonable under the first (resp.

second) information structure, but it is unreasonable under the other. What

about their “union” Γ∗∗∗ (i.e., Γ∗∗∗(θ) = Γ∗(θ) ∪ Γ∗∗(θ) for each θ)? It pro-

vides a reasonable prediction if one of the above two information structures
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is the true one, but not necessarily with other (possibly more complicated)

information structures. In situations where we have little information about

the players’ information structure, it is important to consider robust predic-

tion, which provides a reasonable prediction given any possible information

structure.

Formally, an information structure is represented by a type space à la

Harsanyi (1967-68).

Definition 2. A (Harsanyi) type space is T = (Ti, θ̂i, β̂i)
I
i=1 where

(i) each Ti is the (finite) set of i’s types;

(ii) θ̂i(ti) ∈ Θi denotes ti’s “payoff-parameter”;

(iii) β̂i(ti) ∈ ∆(T−i) denotes ti’s belief for the others’ types.

A type-space representation is quite general in that many popular in-

formation structures, e.g., complete information and incomplete information

with common/different priors, can be described as special cases. Hereafter,

a type space is simply represented by T = (T, θ̂, β̂) unless there is a fear

of confusion, where T =
∏I

i=1 Ti, θ̂ : T → Θ, and β̂ : T →
∏I

i=1 ∆(T−i).

Once a type space is fixed, then we can define player i’s strategy as mapping

σi : Ti → ∆(Ai), and a Bayesian Nash equilibrium given that type space as

follows.

Definition 3. σ = (σi)
I
i=1 is a Bayesian Nash equilibrium (hereafter, BNE)

given T if for all i, ti, ai, and a′i, σi(ai|ti) > 0 implies that:

Et−i∼β̂i(ti)

∑
a−i

ui

(
(ai, a−i),

(
θ̂i(ti), θ̂−i(t−i)

))
σ−i (a−i|t−i)


≥ Et−i∼β̂i(ti)

∑
a−i

ui

(
(a′i, a−i),

(
θ̂i(ti), θ̂−i(t−i)

))
σ−i(a−i|t−i)

 .
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Now we are ready to formally introduce the concept of robust prediction.

Definition 4. Prediction Γ is robust if for any finite type space T = (T, θ̂, β̂),

there exists a (mixed) BNE σ given T such that supp (σ(t)) ⊆ Γ
(
θ̂(t)

)
for

any t ∈ T .

Put differently, a prediction Γ is not robust if there is some type space

T such that given whatever BNE given T , its equilibrium action profile for

some θ is outside Γ(θ). In this sense, a non-robust prediction has a problem

of “overlooking” possible information structures and the corresponding equi-

librium plays. A robust prediction is so constructed that it contains some

equilibrium action profile for each possible type space and, in this sense, does

not suffer from this overlooking problem.

Remark 1. Notably, our robustness is not necessarily for equilibrium selec-

tion because we do not require that robust prediction contains any equilib-

rium outcomes for each possible type space. It contrasts with Bergemann and

Morris (2017), which require robustness for both the information structure

and equilibrium selection, obtaining belief-free rationalizability.9 An interpre-

tation of our (information-structure-only) robustness is that it provides the

necessary implications of whatever assumptions we impose on the baseline

model.

Our approach would be reasonable if the analyst is not confident about the

players’ information structure but more confident about certain equilibrium

selection. For example, in many applications such as voting and trading,

the game often has a trivial weakly dominated equilibrium, which cannot

be eliminated by (belief-free) rationalizability. In first-price auctions, many

bidding functions are rationalizable (e.g., Battigalli and Siniscalchi, 2003),

which means little predictive power. Our notion of robust prediction is “less

9See Brandenburger and Dekel (1987) and Battigalli, Di Tillio, Grillo, and Penta (2011).
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robust” in equilibrium selection but instead gains more predictive power (see

Section 6.3).

Our approach could also be useful in robust mechanism design, where the

robustness is sometimes for the information structure while the mechanism

designer is allowed to select his most favored equilibrium (e.g., Chung and

Ely, 2007; Bögers and Smith, 2014; Chen and Li, 2018; Yamashita and Zhu,

2021).10

Remark 2. Formally, Γ(·) = A is a trivial robust prediction, but clearly this

would be a useless prediction unless it is the unique robust prediction. What

we are really interested in is the sharpest robust prediction in the sense that

Γ is robust and any sub-correspondence is not robust. The robust prediction

we construct below, Γ∗, satisfies this sharpness requirement as it is originally

constructed by considering the necessary conditions of a robust prediction.

3 Necessary conditions for robust prediction

Typically, we assume a (simple) type space in applications even if we are

not fully confident of its use. Besides, we often make some equilibrium se-

lection. In this sense, a typical prediction in applications is based on a joint

assumption on the information structure and equilibrium play. The concern

is that the actual information structure of the players may differ from what

is assumed. This section aims to obtain implications about the assumption

of the information structure under the standard equilibrium selection.

Let T 0 = (T 0, θ̂0, β̂0) represent such a (simple) baseline type space, called

a level-0 type space.11 Let σ0 denote a BNE given T 0, and let Γ0 denote the

10Contrarily, Brooks and Du (2021) consider a pessimistic mechanism designer con-
cerning both information and equilibrium selection. Brooks and Du (2021) show that, in
certain auction contexts, the same revenue is guaranteed regardless of his attitude toward
equilibrium selection.

11As demonstrated below, this name is based on the analogy of our construction to
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“baseline prediction” based on σ0.12 More specifically, for each θ,

Γ0(θ) =
{
a ∈ A

∣∣∣ ∃t ∈ T 0 such that θ̂0(t) = θ and a ∈ supp
(
σ0(t)

) }
.

The specification of the baseline scenario is highly flexible in the sense that

we can arbitrarily choose a type space and an equilibrium. For example, as

in Section 6, we may regard the level-0 type space as a complete-information

type space such that θ = θ∗ for some θ∗ is common knowledge (i.e., T 0 = {t∗}
and θ̂0(t∗) = θ∗).

We now construct a robust prediction based on this baseline prediction.

In general, the baseline prediction we begin with affects the constructed

robust prediction. In this sense, our robust prediction should be interpreted

as the implication of the assumptions that we (often implicitly) impose on

the baseline information structure and equilibrium play.

With the concern of a wrong assumption in level-0 type space, a natural

candidate for an alternative type space may be one that “includes” the orig-

inal type space T 0. We then consider level-1 type space T 1 = (T 1, θ̂1, β̂1),

which should satisfy the following conditions: for any i,

(i) T 1
i ⊇ T 0

i ;

(ii) If ti ∈ T 0
i (⊆ T 1

i ), then
(
θ̂1i (ti), β̂

1
i (ti)

)
=
(
θ̂0i (ti), β̂

0
i (ti)

)
;

(iii) For all ti ∈ T 1
i , β̂

1
i (ti) ∈ ∆(T 0

−i);

(iv) For each (θi, βi) ∈ Θi×∆(T 0
−i), there exists ti ∈ T 1

i with
(
θ̂1i (ti), β̂

1
i (ti)

)
=

(θi, βi).

level-k theory (e.g., Stahl and Wilson, 1994).
12Although we consider the case where only one equilibrium is selected given T 0, the

analysis does not change even if we consider multiple equilibria as the baseline prediction,
in which case Γ0 is defined as the union of all the considered equilibria.
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(v) If there exists type ti ∈ T 0
i such that supp (σ0

i (ti)) is not a singleton

set, then for any ai ∈ supp (σ0
i (ti)), there exists type ti(ai) ∈ T 1

i such

that θ̂1i (ti(ai)) = θ̂0i (ti) and β̂1
i (ti(ai)) = β̂0

i (ti).

Condition (i) requires that T 0 is a belief-closed subspace of T 1. Intuitively,

T 1
i is constructed by adding “new” types. Condition (ii) imposes consistency

in the sense that type ti ∈ T 0
i should have the same parameter and belief

regardless of the “level”. Condition (iii) is analogous to the standard level-k

idea, requiring that any level-1 type certainly believes that his opponents are

of level-0 types. Condition (iv) requires a sense of richness property, guaran-

teeing the existence of mapping from any pair of parameters and beliefs to an

associated type.13 Condition (v) requires the existence of “copies” of types

who are to play (pure) actions that are supported in σ0. Such copy types can

avoid technical difficulties when the baseline equilibrium is a mixed-strategy

equilibrium. Notice that the copies are added as different types from the

original.

Given type space T 1, define σ1 as follows: for any i,

σ1
i =


σ0
i (ti) if ti ∈ T 0

i ,

ai if ti = ti(ai)

a1i otherwise,

where

a1i ∈ arg max
ai∈Ai

Et−i∼β̂1
i (ti)

∑
a−i

ui

(
(ai, a−i),

(
θ̂1i (ti), θ̂

0
−i(t−i)

))
σ0
−i (a−i|t−i)

 .

13Because of this property, formally, the level-1 type space is not a finite type space.
However, as in Remark 3, we can find a finite type space that yields the same prediction
as to the (infinite) level-1 type space. Because of this, we treat the level-1 type space as
if it is a finite type space. The same remark applies to any level-k type space constructed
subsequently.
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Conditions (ii) and (iii) imply that σ1 is a BNE given T 1. Because the

consistency condition requires that any level-0 type ti ∈ T 0
i still holds the

same “perspective” in the level-1 type space, it seems reasonable to assume

that he plays according to σ0
i as in the baseline scenario. In contrast, because

any type ti ∈ T 1
i \T 0

i believes that the other players are of level-0 types, he

simply chooses a best response to the opponents’ level-0 strategy σ0
−i, which is

essentially determined (up to indifference).14 It is worth noting that any type

in T 1
i \T 0

i never randomizes under strategy σ1
i . Let Γ

1 denote the prediction

based on the new equilibrium σ1: for each θ,

Γ1(θ) =
{
a ∈ A

∣∣∣ ∃t ∈ T 1 such that θ̂1(t) = θ and a ∈ supp
(
σ1(t)

) }
⊇ Γ0(θ).

Now, we have a (weakly) larger prediction, but there remains the concern

that the actual type space is different both from T 0 and T 1. As a natural

alternative space, we can consider type spaces with higher levels, constructed

as an analogy of level-1 type space. Formally, given level-(k − 1) type space

T k−1 = (T k−1, θ̂k−1, β̂k−1) with k ≥ 2, level-k type space T k = (T k, θ̂k, β̂k) is

inductively constructed, which satisfies the following properties: for any i,

(i) T k
i ⊇ T k−1

i ;

(ii) If ti ∈ T k−1
i (⊆ T k

i ), then
(
θ̂ki (ti), β̂

k
i (ti)

)
=
(
θ̂k−1
i (ti), β̂

k−1
i (ti)

)
;

(iii) For all ti ∈ T k
i , β̂

k
i (ti) ∈ ∆

(
T k−1
−i

)
;

(iv) For each (θi, βi) ∈ Θi×∆
(
T k−1
−i

)
, there exists ti ∈ T k

i with
(
θ̂ki (ti), β̂

k
i (ti)

)
=

(θi, βi).

14If there exist multiple best responses, we arbitrarily choose one of them. While the
selection of a1i could affect the characterization, its qualitative properties do not change.
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Likewise, we can inductively construct a BNE σk given T k and σk−1 as

follows: for any i,

σk
i =

{
σk−1
i (ti) if ti ∈ T k−1

i ,

aki otherwise,

where

aki ∈ arg max
ai∈Ai

Et−i∼β̂k
i (ti)

∑
a−i

ui

(
(ai, a−i),

(
θ̂ki (ti), θ̂

k−1
−i (t−i)

))
σk−1
−i (a−i|t−i)

 .

Finally, prediction Γk based on BNE σk is defined as follows: for any θ,

Γk(θ) =
{
a ∈ A

∣∣∣ ∃t ∈ T k such that θ̂k(t) = θ and a ∈ supp
(
σk(t)

) }
⊇ Γk−1(θ).

We continue such an “expanding” procedure until no action profile is

added. More specifically, owing to the finiteness of A, there exists some

K ∈ N such that ΓK+1 = ΓK , where the procedure terminates. Denote

T ∗ = T K+1, σ∗ = σK+1, and Γ∗ = ΓK+1. We refer to T ∗ and Γ∗ as the

canonical type space and the canonical prediction, respectively.

Remark 3. Formally, the canonical type space T ∗ constructed above is not

a finite type space. However, we can always construct a finite type space T̂ ∗

by selecting finitely many types from T ∗, which are “sufficient” in the sense

that any action profile in the canonical prediction Γ∗ is played by some type

profile in this set of finitely many types.15

15More specifically, we start from a finite level-0 type space, and construct type space
T 1 and the associated prediction Γ1, as mentioned above. Now, for any parameter profile
θ and action profile a ∈ Γ1(θ), we appropriately select a type profile t such that θ̂1(t) = θ
and a ∈ supp

(
σ1(t)

)
. Let T̂ 1 be the set of such type profiles, and define type space

T̂ 1 = (T̂ 1, θ̂1, β̂1) where θ̂1 and β̂1 are restricted on T̂ 1. We then replace T 1 with T̂ 1. By
replacing with T̂ k for any k, we can construct a desired type space.
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Clearly, a robust prediction Γ that contains Γ0 must contain Γ∗, i.e.,

Γ∗(θ) ⊆ Γ(θ) for any θ.

4 Γ∗ as a robust prediction

So far, we only consider a particular class of alternative type spaces. The

constructed canonical prediction Γ∗ provides a reasonable prediction if any

of those level-k type spaces is the actual type space. However, the actual

type space may differ from all of them, and then the concern is that Γ∗ may

not be able to provide a reasonable prediction for those other type spaces.

Fortunately, Γ∗ is a robust prediction, as we show below.16 In other words,

the canonical type space T ∗ is sufficient for identifying a robust prediction

even if it looks artificial when it first appears.

Theorem 1. Γ∗ is a robust prediction.

To prove Theorem 1, we need the following lemma that characterizes

desired properties of canonical prediction Γ∗.

Lemma 1. Γ∗ has the following properties.

(i) Product structure: For any i and θ ∈ Θ, there exists Γ∗
i (θi) ⊆ Ai such

that Γ∗(θ) =
∏I

i=1 Γ
∗
i (θi).

(ii) Best-reply property: For any i, θi, and q ∈ ∆(Θ−i × A−i) such that

q(θ−i, a−i) > 0 implies a−i ∈ Γ∗
−i(θ−i), there exists ai ∈ Γ∗

i (θi) such

that for any a′i ∈ Ai,

E(θ−i,a−i)∼q [ui ((ai, a−i), (θi, θ−i))] ≥ E(θ−i,a−i)∼q [ui ((a
′
i, a−i), (θi, θ−i))]

16All omitted proofs are in the Appendix.
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holds, i.e., action ai is a best response to conjecture q.17

With Lemma 1, the proof of Theorem 1 is straightforward. First, fix an

arbitrary finite type space T = (T, θ̂, β̂), and consider a restricted game,

where player i with type ti can play only within Γ∗
i

(
θ̂i(ti)

)
for any i and

ti ∈ Ti. Because the restricted game is a finite game, the standard argument

guarantees the existence of BNE σ given type space T . To complete the

proof, it is sufficient to show that BNE σ is still a BNE in the original game.

The best-reply property assures that, as long as σ(t) ⊆ Γ∗
(
θ̂(t)

)
holds, no

one has an incentive to deviate from σi(ti) even if the action set expands from

Γ∗
i

(
θ̂i(ti)

)
to Ai, implying that σ is an equilibrium of the original game.

Remark 4. Because of the best-reply property, the canonical prediction

Γ∗ is a variant of a curb set, proposed by Basu and Weibull (1991) in

complete-information games. We say that a set of action profiles X ⊆ A

is a curb set if BR(X) ⊆ X, where BRi(X−i) is the set of player i’s best

responses given that the opponents’ behaviors are restricted to X−i and

BR(X) =
∏I

i=1 BRi(X−i).
18 Furthermore, we say that curb set X is tight

if X = BR(X). Intuitively, a curb set is generalization of rationalizability

(Bernheim, 1984) in the sense that it is a maximal tight curb set.

5 Robust prediction for infinite games

While the characterization of robust prediction so far is for finite games,

many economic applications are described as infinite games (e.g., Θ and A

17In other words, it means that as long as the opponents’ play stays in Γ∗
−i(·), player i

has a best response in Γ∗
i (·), which should be distinct from the best response property by

Pearce (1984).
18The original definition by Basu and Weibull (1991) also requires some technical con-

ditions.
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are infinite), which prevents the direct application of the results to the spe-

cific contexts. As a preliminary of the following section discussing applica-

tions, this section extends the results so far to infinite games with additional

structures.

An extension of the above argument to infinite games is nontrivial. Specif-

ically, the construction process of the canonical type space T ∗ may not stop

within finite steps due to the infiniteness of the action space. Of course, as

a direct analogy of the finite-environment counterpart, we can construct an

infinite sequence of level-k type spaces and define canonical prediction Γ∗ as

the union of possible action profiles given those type spaces. However, as

opposed to the finite case, the constructed infinite type space may not admit

a finite subspace yielding the same Γ∗ as a prediction, which does not achieve

our purpose.

To overcome the above concern, we justify prediction Γ∗ by using a col-

lection of finite type spaces instead of the (infinite version of) canonical type

space T ∗. Specifically, we discretize the sets of parameters and beliefs and

construct a level-k type space in this discretized environment by applying the

previous argument. Importantly, for each level, the associated type space is

finite. We then construct a collection of those finite type spaces for the level

and the degree of discretization. Note that a robust prediction should include

the prediction associated with each such type space in the collection. Fur-

thermore, we show that the associated prediction becomes larger as the level

goes up or the discretization becomes finer, and it converges to the closure

of Γ∗ in the limit. This eliminates the concern by guaranteeing the necessary

property as in the finite environment: a robust prediction must include Γ∗.19

19Conversely, the sufficiency part continues to be similar, as long as only finite type
spaces are considered.
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5.1 Preliminaries

Throughout this section, we impose the following two assumptions.

Assumption 1. (i) For each i, Θi and Ai are compact metric spaces, en-

dowed with their Borel-σ algebra, and ui is continuous in this metric.20

(ii) For each i, θi and qi ∈ ∆(Θ−i × A−i), his best response, denoted by

a∗i (θi, qi), is unique; that is, argmaxai∈Ai

∫
Θ−i×A−i

ui ((ai, a−i), (θi, θ−i)) dqi is

a singleton set.

We also treat ∆(Θ−i × A−i) as a metric space by adopting a Prokhorov

metric, which makes ∆(Θ−i×A−i) a compact metric space.21 Unless confus-

ing, we always use the same symbol d(·, ·) to represent the distance of two

elements in the same metric space, and Bε(·) to represent the open ε-ball

around an element of any of those metric spaces with the representation that

Bε(X) =
⋃

x∈X Bε(x) for set X. A product space is associated with a product

metric.

By the maximum theorem, a∗i (θi, qi) is continuous both in θi and qi. That

is, for each ε > 0 and θi, there exists δ(ε, θi) > 0 such that for any qi and

q′i ∈ ∆(Θ−i×A−i) with d(qi, q
′
i) < δ(ε, θi), we have d (a

∗
i (θi, qi), a

∗
i (θi, q

′
i)) < ε.

In what follows, by normalizing the metric for qi, we set δ(ε, θi) = ε for each

θi without loss of generality.

Finally, it is worthwhile noting that we adopt the same definition for a

robust prediction. That is, we restrict our attention to finite type spaces

20Weinstein and Yildiz (2011) assume a nice structure, which is stronger than our re-
quirement.

21More specifically, the distance between qi, q
′
i ∈ ∆(Θ−i ×A−i) is defined as follows:

d(qi, q
′
i) = inf

 d > 0

∣∣∣∣∣∣
for any measurable X ⊆ Θ−i ×A−i,
(i) qi (Bd(X)) + d ≥ q′i(X) and
(ii) q′i (Bd(X)) + d ≥ qi(X)

 ,

where Bd(X) denotes the open d-ball around X. It is worthwhile to remark that this
metric implies a weak-* topology. As noted later, we may normalize this metric in an
equivalent way to simplify the notation.
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even in infinite games.22

5.2 Infinite level-k construction

The infinite-game version of the canonical type space and the canonical pre-

diction are defined as follows. We begin with a finite T 0
i for each i. This

restriction seems reasonable and is maintained in all the applications in Sec-

tion 6. Then we inductively construct level-k type space T k and the asso-

ciated prediction Γk analogously to those in Section 3 (i.e., those satisfying

the Conditions (i)-(iv)). Note that they may be infinite type spaces at this

point.

As mentioned above, the construction process may not stop within finite

steps. Hence, the canonical type space and the associated prediction are

defined as the limits of sequences:
{
T k
}∞
k=0

and
{
Γk
}∞
k=0

, respectively. More

precisely, given sequence
{
T k
}∞
k=0

, the infinite canonical type space T ∗∗ =

(T ∗∗, θ̂∗∗, β̂∗∗) is defined as follows: for each i,

(i) T ∗∗
i =

⋃∞
k=0 T

k
i = limk→∞ T k

i ;

(ii)-(a) θ̂∗∗ : T ∗∗
i → Θi is a function such that if ti ∈ T k

i , then θ̂∗∗i (ti) = θ̂ki (ti);

(ii)-(b) β̂∗∗
i : T ∗∗

i → ∆
(
T ∗∗
−i

)
is a function such that if ti ∈ T k

i , then β̂∗∗
i (ti) =

β̂k
i (ti).

Note that, by the properties imposed during the construction process of level-

k type space T k, the above is well defined. Furthermore, as an implication of

the modified definition, type space T ∗∗ also satisfies the following properties:

for each i,

(iii) For all ti ∈ T ∗∗
i , β̂∗∗

i (ti) ∈ ∆
(
T ∗∗
−i

)
;

22Weinstein and Yildiz (2011) also adopts the similar restriction.
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(iv) For each (θi, βi) ∈ Θi×∆
(
T ∗∗
−i

)
, there exists ti ∈ T ∗∗

i with
(
θ̂∗∗i (ti), β̂

∗∗
i (ti)

)
=

(θi, βi).

Hence, infinite canonical type space T ∗∗ has the same properties as its finite

counterpart.

Likewise, given sequence
{
Γk
}∞
k=0

, the infinite canonical prediction Γ∗∗ is

defined as follows: for each θ,

Γ∗∗(θ) = cl

(
∞⋃
k=0

Γk(θ)

)
= cl

(
lim
k→∞

Γk(θ)
)
,

where cl(·) denotes the closure operator. Taking the closure makes Γ∗∗(θ)

compact, and it is another modification from the finite counterpart. This

modification is essential for the following theorem, which is a counterpart of

Theorem 1.

Theorem 2. Γ∗∗ is a robust prediction.

The proof is analogous to the finite case: we first guarantee the existence

of BNE σ∗ in the restricted game, where the available action set is restricted

to Γ∗∗
(
θ̂(ti)

)
for each i and ti, and then show that σ∗ continues to be a BNE

in the unrestricted game. Owing to the compactness of Γ∗∗, the existence

of a BNE is assured by the Kakutani-Glicksberg-Fan fixed-point theorem.

Furthermore, Γ∗∗ still has the product structure and satisfies the best-reply

property. Note that taking the closure does not affect these nice properties

of Γ∗∗ thanks to the continuity. As a result, the same argument used above

is still valid here.

Contrary to the previous section, showing that T ∗∗ yields Γ∗∗ as a pre-

diction is not satisfactory because the corresponding type space T ∗∗ may not

admit an equivalent finite type space that yields Γ∗∗ as a prediction. Poten-

tially, Γ∗∗ might admit a proper sub-correspondence that itself is a robust
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prediction. In order to show that such a concern is not real, we identify a

collection of finite type spaces such that (the closure of) the union of the

predictions given those finite type spaces yields Γ∗∗. A detailed discussion is

found in Appendix B.

6 Applications

This section derives a robust prediction in the following well-known envi-

ronments and discusses its implications. Cournot competition, a Diamond

search game, and a first-price auction are studied in Sections 6.1, 6.2, and 6.3,

respectively. More specifically, we characterize infinite canonical prediction

Γ∗∗ in each scenario based on the discussion in Section 5.

6.1 Cournot competition

We consider the Cournot competition with I firms. Each firm simultaneously

chooses nonnegative quantity ai ∈ Ai = R+ with zero marginal costs of

production. The inverse demand function of the good is given by P (a, θ) =

max
{
θ −

∑I
i=1 ai, 0

}
. It is common knowledge that θ is included in interval

[θ, θ̄], but there is no common prior governing the distribution. That is,

θ = θ0 ∈ Θ0 = [θ, θ̄] and θi ∈ Θi = ∅ for any i ∈ {1, 2, . . . , I}.23 Hence, with

abuse of some notation, the set of parameter profiles is simply represented

by Θ = [θ, θ̄]. The firm i’s payoff function is given by ui((ai, a−i), θ) =

max {(θ − ai − a−i)ai, 0}, where, with some abuse of notation, a−i =
∑

j ̸=i aj

throughout this subsection.

To guarantee interior solutions, we impose the following. Intuitively, it

requires that the uncertainty over the parameter is sufficiently small.

23Recall that θ0 refers to the parameter that no player knows. Formally, imagine a
“dummy player” 0 whose action space is trivial.
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Assumption 2. 2θ − θ̄ ≥ 0.

Let us take a complete-information environment of some θ̃ and its Nash

equilibrium as the baseline scenario. Specifically, the type set and the belief

function are defined as follows: for each i,

� T 0
i = {t0};

� β̂0
i

(
{θ̃} × T 0

−i

∣∣∣ t0) = 1, where θ̃ ∈ (θ, θ̄).

That is, under type space T 0 =
(
T 0, β̂0

)
, each firm certainly believes

that (i) the demand parameter is θ̃, and (ii) the opponents also have the

same beliefs.24 Note that the specification of parameter θ̃ is highly flexible.

Now, we construct the robust prediction Γ∗∗ based on infinite canonical

type space T ∗∗, exactly as in Section 5 (and hence it is omitted).25

First, we consider a duopoly model (i.e., I = 2).

Proposition 1. Consider the Cournot duopoly with Assumption 2. Then,

Γ∗∗(θ) =
[
(2θ − θ̄)/3, (2θ̄ − θ)/3

]2
holds for each θ ∈ [θ, θ̄].

We have the following remarks. First, the infinite canonical prediction

does not depend on θ̃; that is, it is irrelevant to the specification of the level-0

scenario. Intuitively, the irrelevance comes from the fact that the specifica-

tion of the level-0 scenario only influences the firm’s best response through

the conjecture of the opponents’ behaviors, which becomes less influential

as the level goes up and vanishes in the limit. Suppose, for example, that

ti ∈ T 1
i , and consider his best response. Type ti’s best response is given

by ai(ti) = Ei[θ]/2 − Ei[aj]/2, where Ei[·] = E(θ,tj)∼β̂i(ti)
[·]. As type ti cer-

tainly believes that the opponent’s type is tj = t0, his conjecture about aj is

Ei[aj] = σ0(t0) = θ̃/3, which is highly sensitive to the specification of θ̃. The

24For simplification, parameter function θ̂(·) is omitted from the definition of the type
space.

25See Appendix A.4.1 for the detail.
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impact of the specification of the level-0 scenario only influences the level-1

behavior through this channel. Furthermore, as the absolute value of the

slope of the best-response function with respect to the opponent’s behavior

is 1/2, the marginal effect of the opponent’s behavior to ti’s best response

is less than 1.26 The same arguments hold for any subsequent levels. More

specifically, k times iteration implies that the best response of type ti ∈ T k
i

is as follows:

ai(ti) =
1

2
Ei[θ]−

1

4
EiEj[θ] + · · ·+ 1

2k
EiEjEi · · ·Ei[θ]−

1

2k
EiEjEi · · ·Ei[aj].

(2)

While the impact of the specification of θ̃ remains in the last term of (2),

it is less influential than the previous levels and vanishes in the limit. As a

result, the canonical prediction becomes independent of the specification of

the level-0 behavior.

Second, as θ̄−θ → 0, the canonical prediction converges to a singleton set

consisting of the associated Nash equilibrium (hereafter, NE). The difference

θ̄− θ measures the degree of misspecification of the true demand parameter.

Hence, our characterization suggests that the prediction also becomes more

precise as the precision of the model specification improves, which would be

an attractive property of predictions.

Next, we consider an oligopoly model with I = 3 and derive infinite

canonical prediction Γ∗∗, likewise. Although we adopt the same type space

constructed above, the characterization is quite different from that of the

duopoly case, as demonstrated in the following.

Proposition 2. Consider the Cournot oligopoly with I = 3. Then, Γ∗∗(θ) =

[0, θ̄/2]3 holds for each θ ∈ [θ, θ̄].

26This property of the best-response function implies the global stability by Weinstein
and Yildiz (2007a).
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While the canonical prediction is irrelevant to the specification of the

level-0 scenario as in the duopoly, the underlying mechanism is different. As

in the duopoly model, the specification of θ̃ only affects firm i’s best response

through the conjecture of the opponents’ behaviors with the coefficient being

less than 1. However, the impact never disappears even at higher levels

because there is more than one opponent. Specifically, type ti’s best response

is given by ai(ti) = Ei[θ]/2−Ei[aj]/2−Ei[ah]/2. Because the specification of

θ̃ affects both actions aj and ah, its marginal effect to type ti’s best response

is not less than 1 even though the marginal effect from each opponent is 1/2.

As a result, the “expansion rate” of level-k prediction Γk is not discounted at

higher levels, and then its lower bound reaches 0 (i.e., the lower bound of Ai)

at some level. Because the lower bound of Γk is given by 0 independent of

the specification of θ̃ after it reaches 0, the upper bound of Γk also becomes

independent from the specification of θ̃. Furthermore, prediction Γ∗∗ no

longer converges to a singleton set as θ̄ − θ → 0, which is another contrast

to the duopoly.

Remark 5. Propositions 1 and 2 clarify the relationship with the existing

works. First, Weinstein and Yildiz (2007a) show that the Cournot duopoly is

dominance solvable as in the complete-information games (Bernheim, 1984) if

the possible belief hierarchies are restricted to those in the class of the “finite-

order perturbation” à la Weinstein and Yildiz (2007b). That is, the robust

prediction (in the sense of Weinstein and Yildiz (2007b)) of the Cournot

duopoly specifies a unique outcome, which is a sharp contrast to our result.

The difference lies in the definition of the robust prediction: we do not restrict

our attention to the nearby types in the sense of the finite-order perturbation.

As a result, there remain disagreements over the first-order and second-order

beliefs (and higher-order beliefs), which makes prediction Γ∗∗ non-singleton.

Second, contrary to the duopoly, the difference in the definition of robust

prediction does not appear in the oligopoly model. Proposition 2 is reminis-
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cent of Basu (1992), characterizing rationalizability in complete-information

Cournot oligopoly. Weinstein and Yildiz (2011) and Chen, Takahashi, and

Xiong (2021) obtain analogous characterizations of incomplete-information

Cournot oligopoly based on their versions of robust predictions.

6.2 Diamond search

Next, we consider a Diamond search model with two players. Each player

simultaneously chooses his search intensity ai ∈ Ai = [0, 2] with search cost

ci(ai) = a3i /3. The gain from finding a trading partner depends on the

players’ search intensities and parameter θ characterizing the search envi-

ronment. Specifically, player i’s payoff function is given by ui((ai, a−i), θ) =

θaia−i − a3i /3, where −i represents player i’s opponent. We assume that

nobody knows the true parameter θ, but it is common knowledge that the

true parameter is included in interval [1, 1 + ε] with ε > 0. Hence, as in

the Cournot competition, θ = θ0 ∈ Θ0 = [1, 1 + ε] and θi ∈ Θi = ∅ for

each i. For the simplification, the set of parameter profiles is represented by

Θ = [1, 1 + ε].27

Let us take the complete-information situation with θ = 1 as the level-0

type space. Contrary to the previous application, there exist multiple NEs

even though there is no uncertainty over θ: both action profiles (0, 0) and

(1, 1) are NEs. In what follows, we assume that action profile (1, 1) is played

under the level-0 type space and construct the robust prediction given that

level-0 equilibrium selection.28 Applying the level-k construction in Section

5, we obtain the robust prediction Γ∗∗ as follows.

Proposition 3. Γ∗∗(θ) = [1, 1 + ε]2 holds for each θ ∈ [1, 1 + ε].

27This setup is associated with Example 1 of Weinstein and Yildiz (2011).
28Selecting payoff-dominating equilibrium (if it exists) is common in the applied litera-

ture.
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We have the following two implications. First, contrary to the Cournot

competition, the infinite canonical prediction of the Diamond search depends

on the baseline scenario. For example, if we select the other equilibrium (0, 0)

as the level-0 equilibrium, then the corresponding robust prediction satisfies

Γ∗∗(θ) = { (0, 0) } for each θ.

Second, our result may be interpreted as a version of monotone com-

parative statics with respect to the change in the payoff parameter. In the

baseline, level-0 information structure, it is common knowledge that θ = 1,

and we assume that the players play (1, 1). In case Θ = [1, 1 + ε], which

is “higher” than Θ = {1} in the strong set-order sense, we predict that the

players must play an action profile in [1, 1+ε]2, which is “higher” than (1, 1).

Notably, this comparative statics does not depend on the players’ information

structure, and in this sense, it is a “robust” monotone comparative statics

with respect to the information structure.

This property is based on each level-k type’s comparative statics in his

best response. Note that the equilibrium strategy of type ti ∈ T k
i is given by

σ∗
i (ti) = σk

i (ti) =
√
Ei

[
θσk−1

−i (t−i)
]
.

Hence, monotone comparative statics holds in the sense that if the expecta-

tion of the parameter θ monotonically changes, then the equilibrium behavior

also changes monotonically.29

Interestingly, this “robust” monotone comparative statics holds not only

for stable equilibria but also for unstable equilibria, in contrast to the stan-

dard “complete-information” monotone comparative statics. For instance,

consider a slightly different payoff function given by ui((ai, a−i), θ) = θaia−i−
(ai/2+a3i /3), and let θ = 3/2 be common knowledge in the level-0 type space.

There are three NEs: stable equilibria (0, 0) and (1, 1) and an unstable equi-

29This observation is related to the Van Zandt-Vives order on type spaces. See
Van Zandt and Vives (2007) and Kunimoto and Yamashita (2020) for more details.
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librium (1/2, 1/2). Note that, independent of the specification of σ0, the

equilibrium strategy of type ti ∈ T k
i in the modified setup is given by

σk
i (ti) =


√

Ei[θσ
k−1
−i (t−i)]− 1

2
if Ei[θσ

k−1
−i (t−i)] ≥ 1

2
,

0 otherwise.

Hence, even if we construct the level-k type space in which the unstable

equilibrium is played in the baseline scenario, our “robust” monotone com-

parative statics still holds, which is a contrast to the standard monotone

comparative statics that may not be valid for unstable equilibria.30

Remark 6. Weinstein and Yildiz (2011) study their version of robust predic-

tion in Diamond search games. Their robust prediction concerns a selection

of equilibrium outcomes robust to small (finite-order) perturbations of be-

lief hierarchies. In this sense, their notion is quite different from our robust

prediction concept, which concerns a collection of possible outcomes across

all possible information structures. More specifically, they fix a complete-

information game as a baseline scenario, a sufficiently large type space T u

containing the baseline scenario, and BNE σWY given T u. They focus on sub-

sets of action profiles under σWY induced by types whose belief hierarchies

are slightly different from those of the baseline scenario, which is referred

to as minimally-robust prediction (hereafter, MRP) of σWY . Weinstein and

Yildiz (2011) show that a locally rationalizable set (hereafter, LRS), a local

version of ICR, is a lower bound of the MRP. In the above Diamond search

context, LRS and MRP of BNE σWY such that (1, 1) is played in the baseline

scenario and (0, 0) is played in all nearby types are given by { (1, 1) } and

{ (0, 0), (1, 1) }, respectively, which is a contrast to Proposition 3.

30The characterization of this alternative setup is available from the authors upon re-
quest.
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6.3 First-price auctions

As the third application, we consider a first-price auction with two bidders

who might be irrational in the sense of Examples 1 and 2. Each bidder i

has private value vi ∈ [0, 1] for the good. As in the standard formulation,

we assume that value vi is bidder i’s private information, and it is common

knowledge that each vi is independently and identically distributed according

to a uniform distribution F (v) = v. To keep consistency in terminology,

bidding function ai : vi 7→ ai(vi) ∈ R+ is regarded as “action ai”. There

are two types of bidders: truthful and rational bidders. Let θi ∈ Θi = {0, 1}
represent bidder i’s behavioral type: θi = 0 (resp. θi = 1) means that bidder

i is a truthful bidder (resp. rational bidder). We assume that there is no

common prior over parameter set Θ =
∏2

i=1 Θi although parameter θi is also

bidder i’s private information.31 If bidder i is truthful, then he always bids

his value vi; otherwise, he behaves as in the standard manner. Specifically,

the payoff function is given by the following:

ui((ai, a−i), θi) =


Ev∼F 2 [(vi − ai(vi)) Prob (a−i(v−i) ≤ ai(vi))] if θi = 1,

0 if θi = 0 and ai(vi) = vi,

−∞ otherwise.

Let us consider the complete-information situation of θ = (0, 0) and the

truthful bidding equilibrium as the baseline, level-0 prediction. The result

does not change at all even if we begin with θ = (1, 1) and the associated

symmetric, monotone equilibrium as the baseline prediction.

It is worthwhile to remark on the following. First, at any level, truthful

31Another possible formulation is regarding private value vi as a part of parameter θi
in our original framework. Although such an alternative can be considered, it appears too
different from the standard formulation of first-price auctions, where the value distribution
is common knowledge. To clarify the impact of the minimal departure from the standard
environment, we adopt the current formulation.
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bidding is always the best action for the truthful bidder, and hence, we

can essentially focus on the rational bidder’s behavior. Second, in terms of

notation, let Γ∗∗(θ, v) =
∏

i Γ
∗∗
i (θi, vi) denote the predicted set of bid profiles

in case θ is the profile of the bidders’ behavioral types and v is the profile of

their private values.

Proposition 4. Consider the first-price auction with uniform distribution

F . Then, for each i, Γ∗∗
i (θi, vi) = {vi} if θi = 0 and {vi/2} otherwise.

It is worthwhile to remark that the rational bidder’s equilibrium strategy

is also uniquely determined irrelevant to his belief about the opponent; that

is, any type of the rational bidder adopts bidding strategy ai(vi) = vi/2. It

comes from the uniform distribution of private values. Specifically, for any

type of the rational bidder in the level-k construction, his expected payoff by

bidding b is given by

(1 + µ) ((vi − b)b) ,

where µ is the probability that the opponent is also the rational bidder de-

rived from his belief. Therefore, its maximizer is identical whatever the level

is. As long as the private value is governed by a power distribution F (x) = xc

with c > 0 (the uniform distribution is a special case with c = 1), we have

qualitatively the same conclusion.32

This observation provides an implication for revenue comparisons. Con-

sider the second-price auction with the same environment (SPA, hereafter)

and focus on a BNE where the rational bidder also bids truthfully. The

revenue of SPA is equivalent to that under the second-price auction without

the truthful bidder (SPA*, hereafter). By the revenue equivalence theorem,

the revenue of the SPA* is equivalent to that under the first-price auction

without the truthful bidder (FPA*, hereafter). Furthermore, the standard

32The detail is available from the authors upon request.
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argument implies that the symmetric and monotone BNE of FPA* is given

by aBNE
i (vi) = vi/2, which is identical to the equilibrium strategy of the ra-

tional bidder in the original first-price auction (FPA, hereafter) as specified

in Proposition 4. Because the truthful bidder in FPA bids more aggressively

than the rational bidder, the revenue of FPA is weakly higher than that of

SPA. Therefore, we conclude that, if some bidders might be truthful, even if

there is no consensus as to how likely they are truthful types, the first-price

auction is weakly better for the seller than the second-price auction.

Remark 7. Proposition 4 is reminiscent of Crawford and Iriberri (2007).

They show that, as long as bidders’ valuations are drawn from a uniform dis-

tribution, the level-k and the equilibrium predictions coincide in independent

private-value first-price auctions. While they consider the bidders’ level-k

reasoning as a potentially useful way to understand their non-equilibrium

behaviors, we show that this level-k idea is relevant not only when the bid-

ders are truly level-k minded but also as a canonical way to obtain a robust

prediction.33

7 Conclusion

This paper introduces a concept of robust prediction when the analyst does

not know the true information structure about the uncertain payoff-relevant

parameters. In particular, we focus on a set of action profiles that contains

some Bayesian Nash equilibrium for any information structures. We show

that the canonical type space, constructed as an analogy of level-k theory,

is sufficient for finding the robust prediction in the sense that, as long as

we focus on the prediction under the canonical type space, there should be

no concern about the ignorance of possible outcomes caused by the misspec-

33Because of this motivation, they focus on investigating the finite-level types instead
of the limit/infinite level as in this paper based on the equilibrium reasoning.
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ification of the true information structure. Our approach is applicable to

both finite and infinite games. We also characterize the robust predictions

in several economic applications, clarifying the relationship with the related

notions. Our robust prediction is often easy to find thanks to its iterative

definition but provides a sharp prediction compared with the existing no-

tions related to rationalizability. Therefore, our approach offers new insights

in several contexts (e.g., robust mechanism design, strategic communication,

etc.), which we leave for future research.

A Appendix: proofs

A.1 Proof of Lemma 1

Let Γ∗ be the canonical prediction based on BNE σ∗ given canonical type

space T ∗ = (T ∗, θ̂∗, β̂∗).

(i) Fix i and θi ∈ Θi, arbitrarily, and let Γ∗
i (θi) be the set of all actions

that player i with θi may play in σ∗, defined by

Γ∗
i (θi) =

{
ai ∈ Ai

∣∣∣ ∃ti ∈ T ∗
i such that θ̂∗i (ti) = θi and ai ∈ supp(σ∗

i )
}
.

By construction of Γ∗, for each θ ∈ Θ, a ∈ Γ∗(θ) is equivalent to that

there exists type profile t ∈ T ∗ such that θ̂∗(t) = θ and a ∈ supp(σ∗(t)).

Furthermore, by definition of Γ∗
i (θi), it is obviously equivalent to that

ai ∈ Γ∗
i (θi) for any i, which implies the first statement.

(ii) Fix i, θi ∈ Θi, and qi ∈ ∆(Θ−i × A−i) such that qi(θ−i, a−i) > 0

implies that a−i ∈ Γ∗
−i(θ−i), arbitrarily. It is worthwhile to notice

that in the level-k construction, we add actions at each level, and the

process terminates at level K ≥ 1. Thus, for each j, θj ∈ Θj, and

aj ∈ Γ∗
j(θj), there exists type tj ∈ TK

j such that θ̂K(tj) = θ̂∗(tj) = θj
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and σK
j (tj) = σ∗

j (tj) = aj.
34 Denote that type by t

(θj ,aj)
j ∈ TK

j . Now,

we observe that there exists type ti ∈ TK+1
i who “essentially has belief

q” and θ̂K+1
i (ti) = θi. More specifically, consider belief βi ∈ ∆

(
TK
−i

)
defined by:

βi(t−i) =

{
q(θ−i, a−i) if t−i = t

(θ−i,a−i)
−i for any θ−i ∈ Θ−i and a−i ∈ Γ∗

−i(θ−i),

0 otherwise.

By the richness property that level-k type spaces should satisfy, there

exists type ti ∈ TK+1
i such that θ̂K+1

i (ti) = θ̂∗i (ti) = θi and β̂K+1
i (ti) =

β̂∗
i (ti) = βi. Note that action σK+1

i (ti) is a best response to belief βi.

Because σk+1
i (ti) = σ∗

i (ti) ∈ Γ∗
i (θi), we conclude that Γ

∗ has a best-reply

property. □

A.2 Proof of Theorem 1

Fix a finite type space T = (T, θ̂.β̂), arbitrarily. First, we consider a re-

stricted game, where for any i and ti ∈ Ti, available actions to player i with

type ti is restricted to Γ∗
i

(
θ̂i(ti)

)
⊆ Ai. Because the restricted game is a

finite game, there exists a (mixed) BNE σ given T . By construction, it is

obvious that supp(σ(t)) ⊆ Γ∗
(
θ̂(t)

)
holds for any t ∈ T . We then consider

the original game, where the players’ action sets are no longer restricted.

By Lemma 1-(ii), canonical prediction Γ∗ has a best-reply property, imply-

ing that BNE σ constructed above is still a BNE given T in the original

game. Therefore, because type space T is arbitrarily chosen, we conclude

that canonical prediction Γ∗ is robust. □

34If aj ∈ Γ∗
j (θj)\Γ0

j (θj), then the existence of type tj is obvious from the definition of

strategy σk
j . Otherwise, the existence of such a type is also guaranteed with Condition (v)

of level-1 type space T 1should satisfy.
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A.3 Proof of Theorem 2

First, it is worthwhile to note that the infinite-counterpart of Lemma 1

holds. That is, infinite canonical prediction Γ∗∗ has the product structure

and satisfies the best-reply property. Now, arbitrarily fix a finite type space

T = (T, θ̂, β̂), and consider a restricted game, where the available action is

restricted to Γ∗∗
i

(
θ̂i(ti)

)
for each i and ti ∈ Ti. By the Kakutani-Glicksberg-

Fan fixed-point theorem, there exists a BNE σ∗ in the restricted game.35

Owing to the best-reply property, we say that σ∗ is still a BNE in the origi-

nal game. Therefore, we conclude that Γ∗∗ is a robust prediction. □

A.4 Proof of Proposition 1

A.4.1 Construction of the infinite canonical type space

Now, we construct infinite canonical type space T ∗∗ =
(
T ∗∗, β̂∗∗

)
as follows.36

As mentioned in the body of the paper, the level-0 type space T 0 =
(
T 0, β̂0

)
is defined as follows: for each i,

� T 0
i = {t0};

� β̂0
i

(
{θ̃} × T 0

−i

∣∣∣ t0) = 1, where θ̃ ∈ (θ, θ̄).

Given level-0 type space T 0, type space T 1 =
(
T 1, β̂1

)
is defined as follows:

for each i,

� T 1
i = { t1i (θ′) | θ′ ∈ Θ };

� β̂1
i

(
{θ′} × T 0

−i

∣∣∣ t1i (θ′)) = 1 for any θ′ ∈ Θ.

35See Fudenberg and Tirole (1991) for the detail.
36For the sake of exposition, the domain of belief function β̂i is represented by Θ× T−i

for each i given type space T = (T, β̂), where T−i = T\Ti.
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That is, type t1i (θ
′) certainly believes that (i) the demand parameter is θ = θ′,

and (ii) opponent j’s type is tj = t0 for any j 6= i. Note that type space T 1

satisfies Conditions (i) to (v) in Section 3.

For any k ≥ 2, given type space T k−1, type space T k =
(
T k, β̂k

)
is

recursively defined as follows: for any i,

� T k
i =

{
tki (θ

′, βi)
∣∣ θ′ ∈ Θ and βi ∈ ∆

(
T k−1
−i

) }
;

� For any θ′ ∈ Θ and βi ∈ ∆
(
T k−1
−i

)
, margΘβ̂

k
i

(
{θ′}

∣∣∣ tki (θ′, βi)
)
= 1 and

margTk−1
−i

β̂k
i

(
tki (θ

′, βi)
)
= βi.

As in the previous levels, type ti(θ
′, βi) (i) certainly believes that the demand

parameter is θ = θ′, and (ii) his belief about the opponents is βi. Note that

type space T k also satisfies Condition (i) to (iv) in Section 3. Given sequence{
T k
}∞
k=0

, type space T ∗∗ is defined as the limit of the sequence.

A.4.2 Proof of Proposition 1

Once type space T is fixed, each firm’s best response is given by the standard

arguments. As the expected payoff of type ti ∈ Ti is

E(θ,t−i)∼β̂i(ti)
[ui(ai, a−i, θ)] =


(
E(θ,t−i)∼β̂i(ti)

[θ − a−i]− ai

)
ai if 0 ≤ ai ≤ E(θ,t−i)∼β̂i(ti)

[θ − a−i],

0 otherwise,

the first-order condition implies that the best response of type ti is

ai(ti) =

{
E(θ,t−i)∼β̂i(ti)

[θ − a−i]/2 if E(θ,t−i)∼β̂i(ti)
[θ − a−i] ≥ 0,

0 otherwise.
(3)

As type space T 0 represents a complete-information game with demand

parameter θ = θ̃, (3) implies that BNE σ0 given T 0 is characterized by
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σ0
i (t

0) = θ̃/3 for each i. Hence, level-0 prediction Γ0 is given by

Γ0(θ) =


{(

1
3
θ̃, 1

3
θ̃
)}

if θ = θ̃,

∅ otherwise.

For type space T 1, BNE σ1 given T 1 is defined as in Section 3. By (3)

and the construction of T 1, the type t1i (θ
′)’s behavior is

σ1
i

(
t1i (θ

′)
)
=

1

2

(
Eθ∼margΘβ̂1

i (t1i (θ′))
[θ]− σ0

j

(
t0
))

=
1

6

(
3θ′ − θ̃

)
.

Hence, level-1 prediction Γ1 is characterized as follows: for each θ,

Γ1(θ) =

[
1

6

(
3θ − θ̃

)
,
1

6

(
3θ̄ − θ̃

)]2
,

which is well defined under Assumption 2. Note that Γ1 is constant in θ.

Consider level-k prediction Γk for k ≥ 2. As the induction hypothesis, we

assume that level-(k − 1) prediction Γk−1(θ) =
[
ak−1, āk−1

]2
holds for any θ.

Fix θ ∈ Θ, arbitrarily. By (3) and the construction of type space T k, type

ti (θ
′, βi) (∈ T k

i )’s behavior is

σk
i

(
tki (θ

′, βi)
)

=
1

2

(
Eθ∼margΘβ̂k

i (tki (θ′,βi))[θ]− Etj∼marg
Tk−1
j

β̂k
i (tki (θ′,βi))

[
σk−1
j (tj)

])
=

1

2

(
θ′ − Etj∼marg

Tk−1
j

β̂k
i (tki (θ′,βi))

[
σk−1
j (tj)

])
.

Let ak ≤ σk
i

(
tki (θ

′, βi)
)
≤ āk. Specifically,

ak =
1

2

(
θ − āk−1

)
,

āk =
1

2

(
θ̄ − ak−1

)
.
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Letting αk = ak + āk implies that

αk =
1

2

(
θ + θ̄ − αk−1

)
⇐⇒ αk − 1

3

(
θ + θ̄

)
= −1

2

(
αk−1 − 1

3

(
θ + θ̄

))
.

Because α1 −
(
θ + θ̄

)
/3 =

(
θ + θ̄ − 2θ̃

)
/6,

αk =
1

3

(
θ + θ̄

)
+

1

6

(
θ + θ̄ − 2θ̃

)(
−1

2

)k−1

. (4)

Likewise, letting γk = āk − ak implies that

γk =
1

2

(
θ̄ − θ + γk−1

)
⇐⇒ γk −

(
θ̄ − θ

)
=

1

2

(
γk−1 −

(
θ̄ − θ

))
.

Because γ1 −
(
θ̄ − θ

)
= −

(
θ̄ − θ

)
/2,

γk =
(
θ̄ − θ

)
− 1

2

(
θ̄ − θ

)(1

2

)k−1

. (5)

By (4) and (5), we have

ak =
1

3

(
2θ − θ̄

)
+

1

6

(
θ + θ̄ − 2θ̃

)(1

2

)k

(−1)k−1 +
1

2

(
θ̄ − θ

)(1

2

)k

, (6)

āk =
1

3

(
2θ̄ − θ

)
+

1

6

(
θ + θ̄ − 2θ̃

)(1

2

)k

(−1)k−1 − 1

2

(
θ̄ − θ

)(1

2

)k

. (7)

Because θ is arbitrarily chosen, we conclude that Γk(θ) =
[
ak, āk

]2
holds for

any θ, as specified above.

As the bounds of prediction Γk is characterized by (6) and (7), we have

Γk(θ) ⊆ Γk+1(θ) for any θ and k ≥ 0. Therefore,

Γ∗∗(θ) = cl
(
lim
k→∞

Γk(θ)
)
=

[
1

3

(
2θ − θ̄

)
,
1

3

(
2θ̄ − θ

)]2
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holds for any θ. □

A.5 Proof of Proposition 2

Note that, as in the duopoly model, we adopt the infinite canonical type space

T ∗∗ constructed in Appendix A.4.1, and each type’s best response is given

by (3) once type space T is fixed. Because level-0 type space T 0 represents

a complete-information game with demand parameter θ̃, BNE σ0 given T 0

is uniquely determined by σi (t
0) = θ̃/4. Hence, level-0 prediction Γ0 is given

by

Γ0(θ) =


{(

1
4
θ̃, 1

4
θ̃, 1

4
θ̃
)}

if θ = θ̃,

∅ otherwise.

Given level-1 type space T 1, (3) implies that the best response of type

t1i (θ
′) ∈ T 1

i is

σ1
i

(
t1i (θ

′)
)
=

1

2

(
Eθ∼margΘβ̂1

i (t1i (θ′))
[θ]− σ0

−i(t
0)
)
=

1

4

(
2θ′ − θ̃

)
.

Hence, level-1 prediction Γ1 is characterized as follows: for each θ,

Γ1(θ) =

[
1

4

(
2θ − θ̃

)
,
1

4

(
2θ̄ − θ̃

)]3
,

where we assume that 2θ − θ̃ ≥ 0 without loss of generality.37

We then consider level-k prediction Γk for k ≥ 2. As an induction hy-

pothesis, we assume that Γk−1(θ) =
[
ak−1, āk−1

]
for each θ, and arbitrarily

37If 2θ− θ̃ < 0, then we directly jump to the case where the lower bound is characterize
as a corner solution, which is discussed below.
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fix θ ∈ Θ. (3) implies that the best response of type ti (θ
′, βi) ∈ T k

i is

σk
i

(
tki (θ

′, βi)
)

=
1

2

(
Eθ∼margΘβ̂k

i (tki (θ′,βi))[θ]− Et−i∼marg
Tk−1
−i

β̂k
i (tki (θ′,βi))

[
σk−1
−i (t−i)

])
=

1

2

(
θ′ − Et−i∼marg

Tk−1
−i

β̂k
i (tki (θ′,βi))

[
σk−1
−i (t−i)

])
.

Let ak ≤ σk
i

(
tki (θ

′, βi)
)
≤ āk. Specifically,

ak =
1

2
θ − āk−1,

āk =
1

2
θ̄ − ak−1.

Letting αk = ak + āk implies that

αk =
1

2

(
θ + θ̄

)
− αk−1 ⇐⇒ αk − 1

4

(
θ + θ̄

)
= −

(
αk−1 − 1

4

(
θ + θ̄

))
.

Because α1 −
(
θ + θ̄

)
/4 =

(
θ + θ̄ − 2θ̃

)
/4,

αk =
1

4

(
θ + θ̄

)
+

1

4

(
θ + θ̄ − 2θ̃

)
(−1)k−1. (8)

Likewise, letting γk = āk − ak implies that

γk =
1

2

(
θ̄ − θ

)
+ γk−1 ⇐⇒ γk − γk−1 =

1

2

(
θ̄ − θ

)
.

Because γ1 =
(
θ̄ − θ

)
/2, we have

γk =
1

2
k
(
θ̄ − θ

)
. (9)
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By (8) and (9), we have

ak =
1

8

(
θ + θ̄

)
− 1

4
k
(
θ̄ − θ

)
+

1

8

(
θ + θ̄ − 2θ̃

)
(−1)k−1, (10)

āk =
1

8

(
θ + θ̄

)
+

1

4
k
(
θ̄ − θ

)
+

1

8

(
θ + θ̄ − 2θ̃

)
(−1)k−1. (11)

Notice that for any k ≥ 2, ak < ak−1 and āk > āk−1 hold because of θ̃ ∈ (θ, θ̄).

Contrary to the duopoly, (10) implies that there exists k∗ ∈ N such that

ak
∗+1 < 0 ≤ ak

∗
. Hence, for any 2 ≤ k ≤ k∗, prediction Γk is given by

Γk(θ) =
[
ak, āk

]3
as an analogy of the duopoly. For the characterization

of Γk with k > k∗, consider level-(k∗ + 1). Because ak
∗+1 < 0 ≤ ak

∗
and

Ai = R+, the lower bound of σk∗+1
i

(
tk

∗+1
i (θ′, βj)

)
should be 0, whereas its

upper bound is given as in the previous levels. Hence, we have

Γk∗+1(θ) =

[
0,

1

8

(
θ + θ̄

)
+

1

4
(k∗ + 1)

(
θ̄ − θ

)
+

1

8

(
θ + θ̄ − 2θ̃

)
(−1)k

∗
]3

.

For level-(k∗ + 2), as āk
∗+1 > āk

∗
, it also holds that ak

∗+2 < 0, implying

that the lower bound of σk∗+2
i

(
tk

∗+2
i (θ′, βj)

)
should be 0. Because the min-

imum quantity that level-(k∗ + 1) types choose is 0, the upper bound of

σk∗+2
i

(
tk

∗+2
i (θ′, βj)

)
is given by θ̄/2. The similar arguments hold for any

level k > k∗ + 2. Hence, for k ≥ k∗ + 2, level-k prediction is given by

Γk(θ) = [0, θ̄/2]3. Because θ is arbitrarily chosen, we conclude that Γk is

independent of θ.

The arguments so far imply that Γk(θ) ⊆ Γk+1(θ) holds for each θ and

k ≥ 0. Therefore,

Γ∗∗(θ) = cl
(
lim
k→∞

Γk(θ)
)
=

[
0,

1

2
θ̄

]3
holds for each θ. □
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A.6 Proof of Proposition 3

Note that player i’s expected payoff under type space T is given by E(θ,t−i)∼β̂i(ti)
[ui(ai, a−i, θ)] =

E(θ,t−i)∼β̂i(ti)
[θaj]ai − a3i /3. Hence, the first-order condition implies that type

ti’s best response is

ai(ti) =
√

E(θ,t−i)∼β̂i(ti)
[θa−i]. (12)

We adopt infinite canonical type space T ∗∗ that is identical to that con-

structed in Appendix A.4.1 except that θ = 1 is common knowledge among

level-0 types. Furthermore, as mentioned in the body of the paper, we as-

sume that the level-0 types play the payoff-dominating equilibrium: ai = 1

for each i. Specifically, because type t0 certainly believes that (i) θ = 1 and

(ii) the opponent chooses action a = 1. Hence, level-0 prediction Γ0 is given

by

Γ0(θ) =

{
{ (1, 1) } if θ = 1,

∅ otherwise.

Likewise, (12) implies that BNE σ1 given T 1 is characterized as follows: for

each i and type ti (θ
′, βi),

σ1
i

(
t1i (θ

′, βi)
)
=
√

θ′Et−i∼marg
T0
−i

β̂1
i (t1i (θ′,βi))

[
σ0
−i(t−i)

]
.

Hence, we have Γ1(θ) = [1, (1 + ε)1/2]2 for each θ.

Now, consider level-k prediction Γk with k ≥ 2. As an induction hypoth-

esis, we assume that Γk−1(θ) = [1, āk−1]2 for each θ. Under arbitrarily fixed

θ, (12) implies that BNE σk given T k is characterized as follows: for each i
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and tki (θ
′, βi),

σk
i

(
tki (θ

′, βi)
)
=
√

θ′Et−i∼marg
Tk−1
−i

β̂k
i (tki (θ′,βi))

[
σk−1
−i (t−i)

]
.

Let ak and āk be the upper and lower bounds of σk
i . Specifically, a

k = 1 and

āk =
√

(1 + ε)āk−1. Note that

āk =
(
(1 + ε)āk−1

)1/2 ⇐⇒ αk − 1 =
1

2

(
αk−1 − 1

)
,

where αk = log1+ε ā
k. Because α1 − 1 = −1/2, we have

αk = 1− 1

2k
⇐⇒ āk = (1 + ε)1−1/2k .

Hence, as θ is arbitrarily chosen, we conclude that Γk(θ) =
[
1, (1 + ε)1−1/2k

]
holds for each θ. Furthermore, because Γk(θ) ⊆ Γk+1(θ) holds for any θ and

k ≥ 0, we have

Γ∗∗(θ) = cl
(
lim
k→∞

Γk(θ)
)
= [1, 1 + ε]2

holds for any θ. □

A.7 Proof of Proposition 4

First, we construct infinite canonical type space T ∗∗ as follows. We as-

sume that the bidders are certainly the truthful type under level-0 type

space T 0 =
(
T 0, θ̂0, β̂0

)
. Specifically, for each i, (i) T 0

i = {t0}, and (ii)

θ̂0i (t
0) = 0 and β̂0

i

(
T 0
−i | t0

)
= 1. In the subsequent levels, the bidders

would be the rational type, and they have subjective beliefs over the op-

ponent’s type. That is, level-1 type space T 1 =
(
T 1, θ̂1, β̂1

)
is defined as

follows: for each i, (i) T 1
i = { t1i (θi) | θi ∈ Θi }, and (ii) θ̂1i (t

1
i (θi)) = θi
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and β̂1
i

(
T 0
−i | t1i (θi)

)
= 1 for each θi. Likewise, level-k type space T k =(

T k, θ̂k, β̂k
)

for k ≥ 2 is recursively defined as follows: for each i, (i)

T k
i =

{
tki (θi, βi)

∣∣ θi ∈ Θi and βi ∈ ∆
(
T k−1
−i

) }
, and (ii) θ̂ki

(
tki (θi, βi)

)
= θi

and β̂k
i

(
tki (θi, βi)

)
= βi for each θi and βi. Infinite canonical type space

T ∗∗ =
(
T ∗∗, θ̂∗∗, β̂∗∗

)
is then defined as the limit of sequence

{
T k
}∞
k=0

.

Next, we derive infinite canonical prediction Γ∗∗ given infinite canonical

type space T ∗∗. As mentioned in the body of the paper, the best response

of the truthful bidder is uniquely determined independent of his subjective

belief: for each i, k, and βi, σ
k
i

(
tki (0, βi)

)
= aI , where aI(vi) = vi for each vi.

Hence, it is straightforward that the unique BNE σ0 given T 0 is characterized

by σ0
i (t

0) = aI for each i, implying that

Γ0
i (θi, vi) =

{
{ vi } if θi = 0,

∅ otherwise

holds for each vi.

Now, we consider the optimal behavior of type t1i (1). Because he certainly

believes that his opponent is the truthful type, his expected payoff from bid

b is given by (vi − b)b. By the first-order condition, the best response is

a1i (vi) = vi/2. Hence, level-1 prediction Γ1
i is characterized as follows:

Γ1
i (θi, vi) =

{
{ vi } if θi = 0,{
1
2
vi
}

otherwise.

Given the behavior characterized so far, type t2i (1, βi)’s expected payoff

from bid b is (vi−b) (b(1 + µ)), where µ = βi

(
{t1−i | θ̂1−i(t

1
−i) = 1}

)
represents

type t2i (1, βi)’s belief that his opponent is the rational bidder. By the first-

order condition, his best response is a2i (vi) = vi/2. Hence, level-2 prediction
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Γ2
i is characterized as follows:

Γ2
i (θi, vi) =

{
{ vi } if θi = 0,{
1
2
vi
}

otherwise.

Because Γ1 = Γ2, we have the same characterization for the higher levels;

that is, Γk = Γ1 for any k ≥ 2. Thus, we conclude that Γ∗∗ = Γ1. □

B Appendix: Supplementary materials

B.1 Finite discretization

This section challenges the concern by considering a finitely discretized en-

vironment. Our stance is to define a robust prediction as the one providing

a reasonable prediction in any given finite type space. In the finite envi-

ronment, focusing on a single type space, i.e., (finite) canonical type space

T ∗, is sufficient in the sense that Γ∗ is attained as a prediction given that

type space. Here, we show an analogous necessity result but based on a col-

lection of finite type spaces constructed by the level-k argument in finitely

discretized environments. Hereafter, such a finite type space is referred to as

anm-discretized level-k type space withm ∈ N. Intuitively, the m-discretized

level-k type space is the level-k type space in the environment where the pos-

sible payoff parameters and beliefs about the opponents’ types are finite, and

the distance between two distinct elements in each set is at least 1/m. In the

following, we will show that the prediction generated from the collection of

m-discretized level-k type spaces approximate infinite canonical prediction

Γ∗∗.

We inductively construct m-discretized level-k type spaces analogously to

the infinite level-k type spaces with the modification that the sets of possi-

ble payoff parameters and beliefs are finite. More specifically, as a starting

44



point, m-discretized level-0 type space T m,0 = (Tm,0, θ̂m,0, β̂m,0) is defined

by T m,0 = T 0 for each m. That is, we adopt the baseline scenario that is

identical to that of the infinite level-k construction. Note that type space

T m,0 is finite by assumption.

Given type space T m,0,m-discretized level-1 type space T m,1 = (Tm,1, θ̂m,1, β̂m,1)

is constructed as follows. Let Θ̂i =
{
θi ∈ Θi

∣∣∣ ∃ti ∈ Tm,0
i such that θ̂m,0

i (ti) = θi

}
denote the set of player i’s payoff parameters when his type is inm-discretized

level-0. Because Tm,0
i is finite for each i, so is Θ̂i. Now, we fix θ∗ ∈ Θ, ar-

bitrarily. For each i and m, we take a finite subset Θm
i ⊆ Θi such that

(i) θ∗ ∈ Θm
i , (ii) Θ̂i ⊆ Θm

i ⊆ Θm+1
i , and (iii) Θi ⊆ B1/m(Θ

m
i ). Likewise,

let Bm,0
i ⊆ ∆(Tm,0

−i ) be a finite subset of beliefs that player i may have

about the opponents’ level-0 types, such that (i) Bm,0
i ⊆ Bm+1,0

i and (ii)

∆
(
Tm,0
−i

)
⊆ B1/m

(
Bm,0

i

)
. Note that Θm

i and Bm,0
i are the index sets of finite

subcovers of Θi and ∆
(
Tm,0
−i

)
, respectively.38 In the m-discretized level-1

type space, the possible payoff parameters and beliefs are restricted to finite

sets Θm
i and Bm,0

i for each i, respectively. Given the finite restriction, type

space T m,1 is constructed to satisfy the properties that are analogous to the

finite counterpart. That is, for each i,

(i) Tm,1
i is finite and Tm,1

i ⊇ Tm,0
i = T 0

i ;

(ii) θ̂m,1
i (ti) ∈ Θm

i and β̂m,1
i (ti) ∈ Bm,0

i for each ti ∈ Tm,1
i ;

(iii) If ti ∈ Tm,0
i , then

(
θ̂m,1
i (ti), β̂

m,1
i (ti)

)
=
(
θ̂m,0
i (ti), β̂

m,0
i (ti)

)
;

(iv) For each (θi, βi) ∈ Θm
i ×Bm,0

i , there exists ti ∈ Tm,1
i with

(
θ̂m,1
i (ti), β̂

m,1
i (ti)

)
=

(θi, βi).
39

38The existence of Θm
i and Bm,0

i is guaranteed because of the compactness of Θi and

∆
(
Tm,0
−i

)
.

39The counterpart of Condition (v) imposed in finite games is unnecessary here. The
condition is used for showing the best-reply property, which is an essential property for
the sufficiency part. However, because we show the sufficiency part by directly focusing
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Given type space T m,k−1 with k ≥ 2, we can analogously define type space

T m,k. As in the m-discretized level-1 type space, player i’s possible payoff

parameters are restricted to Θm
i at any level. The possible beliefs in type

space T m,k are restricted to finite set Bm,k−1
i ⊆ ∆

(
Tm,k−1
−i

)
such that (i)

Bm,k−2
i ⊆ Bm,k−1

i ⊆ Bm+1,k−1
i and (ii) ∆

(
Tm,k−1
−i

)
⊆ B1/m

(
Bm,k−1

i

)
. Given

finite sets Θm
i and Bm,k−1

i , type space T m,k is constructed with satisfying the

analogous properties required in the level-1.

As an analogy of the finite counterpart, we construct a BNE σm,k given

type space T m,k for each k, which implies prediction Γm,k. Especially, BNE

σm,0 is fixed to that focused in the infinite level-k construction for each m.

Because we share the same baseline scenario, we have that Γm,0 = Γ0 for each

m. We then define Γm =
⋃

k∈N Γ
m,k. It is worthwhile to remark the following.

Because type space T m,k is finite for each m and k, prediction Γm,k should be

included in a robust prediction. However, as mentioned above, this process

may not stop at any finite level, as opposed to the finite environment. In

this case, the union of all these m-discretized level-k type spaces may not be

a finite space as itself. Therefore, in what follows, instead of considering a

single type space that has countably many levels, we interpret this construct

as a collection of countably many finite type spaces. That is, mathematically,

we continue to use Γm as the union given as above, but with the interpretation

that it is literally the union of the predictions in the above constructed m-

discretized level-k type spaces, instead of regarding it as a prediction of a

single infinite type space. Now, we have the following theorem.

Theorem 3. For each infinite canonical prediction Γ∗∗ and θ ∈ Θ, there

exists a collection of m-discretized level-k type spaces {T m,k}m,k∈N such that

cl
(⋃

m∈N Γ
m(θ)

)
= Γ∗∗(θ).

This relationship comes from the fact that Γm(θ) ⊆ Γm+1(θ) ⊆ Γ∗∗(θ) ⊆
on the infinite canonical type space, it is unnecessary to guarantee the best-reply property
in m-discretized type spaces.
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B1/m (Γm(θ)) for eachm and θ ∈ Θm. Intuitively, as the grid of the discretized

environment becomes finer, the prediction in the discretized environment

becomes expands whereas its open ball shrinks more. As a result, both sets

coincide in the limit. In this sense, we say that Γm approximates infinite

canonical prediction Γ∗∗ by considering a discretized environment with a

sufficiently fine but finite grid. As a final remark, the adopted collection of

m-discretized level-k type spaces depends on θ. That is, to show the above

relationship, we might use different collections for distinct parameters. Thus,

by collecting all of these discretized level-k type spaces, we conclude that:

for any θ ∈ Θ and a ∈ Γ∗∗(θ), there exists a finite type space in which θ plays

a, and vice versa. This is precisely the desired necessity property of Γ∗∗.

B.2 Proof of Theorem 3

B.2.1 Preliminaries

First, we show the following key lemma.

Lemma 2. For each m ∈ N and θ ∈ Θm, prediction Γm(θ) satisfies the

following: Γm(θ) ⊆ Γm+1(θ) ⊆ Γ∗∗(θ) ⊆ B1/m (Γm(θ)).

Proof of Lemma 2. The first inclusion is obvious from the fact that (i)

σm,0 = σ0, (ii) Θm
i ⊆ Θm+1

i , and (iii) Bm,k
i ⊆ Bm+1,k

i for each i, m, and k.

The second inclusion is because the m-discretized level-k type spaces (that

induce Γm) and the infinite canonical type space (that induce Γ∗∗) (i) have

the same level-0 type space (and the same equilibrium behavior for the level-

0 types), but (ii) at each k ≥ 1, the latter essentially allows for more types

than the former. Therefore, Γ∗∗(θ) contains more elements.

To show the third inclusion, take m, θ ∈ Θm and a ∈ Γ∗∗(θ). The

proof goes by induction. First, suppose that level-0 types have θ as their

payoff parameters. That is, we say that a ∈ Γ0(θ). Because of the con-

struction of type space T m,0, we have that Γm,0(θ) = Γ0(θ), implying that
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a ∈ Γm,0(θ) ⊆ Γm(θ) ⊆ B1/m (Γm(θ)). We suppose, as an induction hy-

pothesis, that if level-(k − 1) types have θ as their payoff parameters, then

we have a ∈ Γk−1(θ) ⊆ B1/m

(
Γm,(k−1)(θ)

)
. We now consider the level k,

and suppose that level-k types in T k have θ as their payoff parameters.

Because a ∈ Γ∗∗(θ), for each i, there exists ti ∈ T k
i ⊆ T ∗∗

i such that

(i) θ̂ki (ti) = θi, (ii) qi is a conjecture about (θ−i, a−i) induced by β̂k
i (ti),

and (iii) ai = a∗i (θi, qi) ∈ Γk
i (θi). Note that, by the induction hypothe-

sis, we have supp (qi(θ−i, ·)) ⊆ Γk−1
−i (θ−i) ⊆ B1/m

(
Γ
m,(k−1)
−i (θ−i)

)
for each

θ−i ∈ Θ−i. Hence, there exists conjecture q′i ∈ ∆
(
Θm

−i × A−i

)
such that (i)

d(qi, q
′
i) < 1/m and (ii) supp (q′i(θ−i, ·)) ⊆ Γ

m,(k−1)
−i (θ−i) for each θ−i ∈ Θm

−i.

Because of Property (ii) of conjecture q′ and the construction of m-discretized

level-k type spaces, there exists type t′′i ∈ T k
i such that belief β̂m,k

i (t′′i ) im-

plies conjecture q′′i ∈ ∆
(
Θm

−i × A−i

)
that is sufficiently close to conjecture

q′i. Hence, without loss of generality, we assume that q′′i = qi for simplicity.

Therefore, Property (i) of conjecture q′i implies that

ai = a∗i (θi, qi) ∈ B1/m (a∗i (θi, q
′
i)) ⊆ B1/m

(
Γm,k
i (θi)

)
⊆ B1/m (Γm

i (θi)) .

That is, Γk
i (θi) ⊆ B1/m

(
Γm,k
i (θi)

)
holds, implying the third inclusion. □

B.2.2 Proof of Theorem 3.

First, we show that cl
(⋃

m∈N Γ
m(θ)

)
⊆ Γ∗∗(θ). For each θ ∈ Θ, there exists a

collection of m-discretized level-k type spaces {T m,k}m,k∈N such that θ ∈ Θm

for some m. Then, the first and second inclusions of Lemma 2 implies that

cl

(⋃
m∈N

Γm(θ)

)
⊆ cl (Γ∗∗(θ)) = Γ∗∗(θ),

where the last equality comes from the definition of Γ∗∗.

Next, we show that Γ∗∗(θ) ⊆ cl
(⋃

m∈N Γ
m(θ)

)
. Fix θ ∈ Θ and a ∈
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Γ∗∗(θ), arbitrarily. Again, there exists a collection of m-discretized level-k

type spaces {T m,k}m,k∈N such that θ ∈ Θm for some m. Let m represent the

first integer such that θ ∈ Θm. Then, by the third inclusion of Lemma 2,

a ∈ Γ∗∗(θ) ⊆ B 1
m
(Γm(θ)) ⊆ B 1

m

(⋃
m̃∈N

Γm̃(θ)

)
.

Because of the monotonicity of Θm, θ ∈ Θm′
holds for any m′ ≥ m. Hence:

a ∈ Γ∗∗(θ) ⊆ B 1
m′

(
Γm′

(θ)
)
⊆ B 1

m′

(⋃
m̃∈N

Γm̃(θ)

)
.

Therefore, we have that

a ∈
⋂

m′≥m

B 1
m′

(⋃
m̃∈N

Γm̃(θ)

)
= cl

(⋃
m̃∈N

Γm̃(θ)

)
. □
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