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Abstract

Algorithms produce a growing portion of decisions and recommendations both in pol-
icy and business. Such algorithmic decisions are natural experiments (conditionally quasi-
randomly assigned instruments) since the algorithms make decisions based only on observable
input variables. We use this observation to develop a treatment-effect estimator for a class
of stochastic and deterministic decision-making algorithms. Our estimator is shown to be
consistent and asymptotically normal for well-defined causal effects. A key special case of
our estimator is a multidimensional regression discontinuity design. We apply our estimator
to evaluate the effect of the Coronavirus Aid, Relief, and Economic Security (CARES) Act,
where hundreds of billions of dollars worth of relief funding is allocated to hospitals via an
algorithmic rule. Our estimates suggest that the relief funding has little effect on COVID-
19-related hospital activity levels. Naive OLS and IV estimates exhibit substantial selection
bias.
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1 Introduction

Today’s society increasingly resorts to algorithms for decision making and resource allocation.
For example, judges in the US make legal decisions aided by predictions from supervised ma-
chine learning algorithms. Supervised learning is also used by governments to detect potential
criminals and terrorists, and by banks and insurance companies to screen potential customers.
Tech companies like Facebook, Microsoft, and Netflix allocate digital content by reinforcement
learning and bandit algorithms. Retailers and e-commerce platforms engage in algorithmic pric-
ing. Similar algorithms are encroaching on high-stakes settings, such as in education, healthcare,
and the military.

Other types of algorithms also loom large. School districts, college admissions systems,
and labor markets use matching algorithms for position and seat allocations. Objects worth
astronomical sums of money change hands every day in algorithmically run auctions. Many
public policy domains like Medicaid often use algorithmic rules to decide who is eligible.

All of the above, diverse examples share a common trait: a decision-making algorithm makes
decisions based only on its observable input variables. Thus conditional on the observable vari-
ables, algorithmic treatment decisions are (quasi-)randomly assigned. That is, they are indepen-
dent of any potential outcome or unobserved heterogeneity. This property turns algorithm-based
treatment decisions into instrumental variables (IVs) that can be used for measuring the causal
effect of the final treatment assignment. The algorithm-based IV may produce stratified ran-
domization, regression-discontinuity-style local variation, or some combination of the two.

This paper shows how to use data obtained from algorithmic decision making to iden-
tify and estimate causal effects. In our framework, the analyst observes a random sample
{(Yi, Xs, Dy, Z;)}7_, where Yj is the outcome of interest, X; € R? is a vector of pre-treatment co-
variates used as the algorithm’s input variables, D; is the binary treatment assignment, possibly
made by humans, and Z; is the binary treatment recommendation made by a known algorithm.
The algorithm takes X; as input and computes the probability of the treatment recommenda-
tion A(X;) = Pr(Z; = 1|X;). Z; is then randomly determined based on the known probability
A(X;) independently of everything else conditional on X;. The algorithm’s recommendation Z;
may influence the final treatment assignment D;, determined as D; = Z;D;(1) + (1 — Z;)D;(0),
where D;(z) is the potential treatment assignment that would be realized if Z; = z. Finally, the
observed outcome Y; is determined as Y; = D;Y;(1) + (1 — D;)Y;(0), where Y;(1) and ¥;(0) are
potential outcomes that would be realized if the individual were treated and not treated, respec-
tively. This setup is an IV model where the IV satisfies the conditional independence condition
but may not satisfy the overlap (full-support) condition. To our knowledge, there is no standard
estimator for this setup.

Within this framework, we first characterize the sources of causal-effect identification for
a class of data-generating algorithms. This class includes all of the aforementioned examples,
nesting both stochastic and deterministic algorithms. The sources of causal-effect identification
turn out to be summarized by a suitable modification of the Propensity Score (Rosenbaum and
Rubin, 1983). We call it the Approzimate Propensity Score (APS). For each covariate value x,
the Approximate Propensity Score is the average probability of a treatment recommendation in



a shrinking neighborhood around z, defined as

A(x®)dx*
p(z) = lim fB(I’g) (d )* ;
6—0 fB(m,é) x

where B(z,¢) is a p-dimensional ball with radius é centered at z. The Approximate Propensity
Score provides an easy-to-check condition for what causal effects the data from an algorithm
allow us to identify. In particular, we show that the conditional local average treatment effect
(LATE; Imbens and Angrist, 1994) at covariate value z is identified if and only if the Approximate
Propensity Score is nondegenerate, i.e., pA(z) € (0,1).

The identification analysis suggests a way of estimating treatment effects using the algorithm-
produced data. The treatment effects can be estimated by two-stage least squares (2SLS) where
we regress the outcome on the treatment with the algorithm’s recommendation as an IV. To
make the algorithmic recommendation a conditionally independent IV, we propose to control for
the Approximate Propensity Score. A more precise definition of our estimator is as follows.!

1. For small bandwidth § > 0 and a large number of simulation draws S, compute

where X7y, ..., X: g are S independent simulation draws from the uniform distribution on

PH(X;:0) =

03 \

B(X;,8).2 This p*(X;; ) is a simulation-based approximation to the Approximate Propen-
sity Score pA(z).

2. Using the observations with p*(X;;d) € (0,1), run the following 2SLS IV regression:

D; =0 +1Z; +72p°(Xi;0) + v; (First Stage)
Y; = Bo + 1D; + B2p°(Xi;6) + €; (Second Stage).

Let Bf be the estimated coeflicient on D;.

As the main theoretical result, we prove the 2SLS estimator Bf is a consistent and asymp-
totically normal estimator of a well-defined causal effect (weighted average of conditional lo-
cal average treatment effects). We also show that inference based on the conventional 2SLS
heteroskedasticity-robust standard errors is asymptotically valid as long as the bandwidth ¢ goes
to zero at an appropriate rate. There appears to be no existing estimator with these properties
even for the multidimensional RDD, a special case of our framework where the decision-making
algorithm is deterministic and uses multiple input (running) variables for assigning treatment
recommendations. Moreover, our result applies to much more general settings with stochastic

!Code implementing this procedure in Python, R, and Stata is available at https://github.com/rfgong/IVaps

2To make common § for all dimensions reasonable, we standardize each characteristic X;; (§ = 1, ...,p) to have
mean zero and variance one, where p is the number of input characteristics. For the bandwidth d, we suggest that
the analyst considers several different values and check if the 2SLS estimates are robust to bandwidth changes,
as we often do in regression discontinuity design (RDD) applications.
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algorithms, deterministic algorithms, and combinations of the two. We prove the asymptotic
properties by exploiting results from differential geometry and geometric measure theory, which
may be of independent interest.

The practical performance of our estimator is demonstrated through simulation and an origi-
nal application. We first conduct a Monte Carlo simulation mimicking real-world decision making
based on machine learning algorithms. We consider a data-generating process combining stochas-
tic and deterministic algorithms. Treatment recommendations are randomly assigned for a small
experimental segment of the population and are determined by a high-dimensional, deterministic
machine learning algorithm for the rest of the population. Our estimator is shown to be feasible
in this high-dimensional setting and have smaller mean squared errors relative to alternative
estimators.

Our empirical application is an analysis of COVID-19 hospital relief funding. The Coronavirus
Aid, Relief, and Economic Security (CARES) Act and Paycheck Protection Program designated
$175 billion for COVID-19 response efforts and reimbursement to health care entities for expenses
or lost revenues (Kakani, Chandra, Mullainathan and Obermeyer, 2020). This policy intended
to help hospitals hit hard by the pandemic, as “financially insecure hospitals may be less capable
of investing in COVID-19 response efforts” (Khullar, Bond and Schpero, 2020). We ask whether
this problem is alleviated by the relief funding to hospitals.

We identify the causal effects of the relief funding by exploiting the funding eligibility rule.
The government runs an algorithmic rule on hospital characteristics to decide which hospitals
are eligible for funding. This fact allows us to apply our method to estimate the effect of relief
funding. Specifically, our 2SLS estimators use funding eligibility status as an IV for funding
amounts, while controlling for the Approximate Propensity Score induced by the eligibility-
determining algorithm. The funding eligibility IV boosts the funding amount by about $14
millions on average.

The resulting 2SLS estimates with Approximate-Propensity-Score controls suggest that COVID-
19 relief funding has little to no effect on outcomes, such as the number of COVID-19 patients
hospitalized at each hospital. The estimated causal effects of relief funding are much smaller and
less significant than the naive ordinary least squares (OLS) (with and without controlling for
hospital characteristics) or 2SLS estimates with no controls. The OLS estimates, for example,
imply that a $1 million increase in funding allows hospitals to accommodate 5.58 more COVID-
19 patients. The uncontrolled 2SLS estimates produce similar, slightly smaller effects (3.25
more patients per $1 million of funding). In contrast, the 2SLS estimates with Approximate-
Propensity-Score controls show no or even negative effects (from 1.03 to 4.08 less patients for
every $1 million of funding).

The null effect of funding also turns out to persist several months after the distribution of
funding. We also find no clear heterogeneity in the null funding effect across different subgroups
of hospitals. Our finding provides causal evidence for the concern that funding in the CARES
Act might not be well targeted to the clinics and hospitals with the greatest needs.?

3See, for example, Kakani et al. (2020) as well as Forbes’s article, “Hospital Giant HCA To Return $6 Billion in
CARES Act Money,” at https://www.forbes.com/sites/brucejapsen/2020/10/08/hospital-giant-hca-to-
return-6-billion-in-cares-act-money.
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Related Literature

Theoretically, our framework integrates the classic propensity-score (selection-on-observables)
scenario with a multidimensional extension of the fuzzy RDD. We analyze this integrated setup
in the IV world with noncompliance. This general setting appears to have no prior established
estimator. Armstrong and Kolesar (2021) provide an estimator for a related setting with perfect
compliance.*

Our estimator is applicable to a class of data-generating algorithms that includes stochastic
and deterministic algorithms used in practice. Our results thus nest existing insights on quasi-
experimental variation in particular algorithms, such as supervised learning (Cowgill, 2018; Bun-
dorf, Polyakova and Tai-Seale, 2019), surge pricing (Cohen, Hahn, Hall, Levitt and Metcalfe,
2016), bandit (Li, Chu, Langford and Schapire, 2010), reinforcement learning (Precup, 2000),
and market-design algorithms (Abdulkadiroglu, Angrist, Narita and Pathak, 2017, Forthcoming;
Abdulkadiroglu, 2013; Kawai, Nakabayashi, Ortner and Chassang, Forthcoming; Narita, 2020,
2021). Our framework also reveals new sources of identification for algorithms that, at first sight,
do not appear to produce a natural experiment.’

When we specialize our estimator to the multidimensional RDD case, our estimator has
three features. First, it is a consistent and asymptotically normal estimator of a well-interpreted
causal effect (average of conditional treatment effects along the RDD boundary) even if treatment
effects are heterogeneous. Second, it uses observations near all the boundary points as opposed
to using only observations near one specific boundary point, thus avoiding variance explosion
even when X; has many elements. Third, it can be easily implemented even in cases with many
covariates and complex algorithms (RDD boundaries). Our method circumvents the difficulty
of identifying the decision boundary from a complicated decision-making algorithm. No prior
estimator appears to have all of these properties (Papay, Willett and Murnane, 2011; Zajonc,
2012; Keele and Titiunik, 2015; Cattaneo, Titiunik, Vazquez-Bare and Keele, 2016; Imbens and
Wager, 2019).

The Approximate Propensity Score developed in this paper shares its spirit with the local

“Building on their prior work (Armstrong and Kolesar, 2018), Armstrong and Kolesar (2021) consider esti-
mation and inference on average treatment effects under the assumption that the final treatment assignment is
independent of potential outcomes conditional on observables. Their estimator is not applicable to the IV world we
consider. Their method and our method also achieve different goals; their goal lies in finite-sample optimality and
asymptotically valid inference while our goal is to obtain consistency, asymptotic normality, and asymptotically
valid inference.

®A focal group of decision-making algorithms are machine learning algorithms, as illustrated in our machine-
learning simulation in Section 5. While we are interested in machine learning as a data-production tool, the existing
literature (except the above mentioned strand) focuses on machine learning as a data-analysis tool. For example,
a set of predictive studies applies machine learning to make predictions important for policy questions (Kleinberg,
Lakkaraju, Leskovec, Ludwig and Mullainathan, 2017; Einav, Finkelstein, Mullainathan and Obermeyer, 2018).
Another set of causal and structural work repurposes machine learning to aid with causal inference and structural
econometrics (Athey and Imbens, 2017; Belloni, Chernozhukov, Fernandez-Val and Hansen, 2017; Mullainathan
and Spiess, 2017). We supplement these studies by highlighting the role of machine learning as a data-production
tool. This paper also has a conceptual connection to the heated conversation about whether algorithmic decisions
are better than human decisions (Hoffman, Kahn and Li, 2017; Horton, 2017; Kleinberg et al., 2017). In this
study, we take a complementary perspective in that we take a decision algorithm as given, no matter whether it
is good or bad, and study how to use its produced data for impact evaluation.



random assignment interpretation of the RDD, discussed by Cattaneo, Frandsen and Titiunik
(2015), Cattaneo, Titiunik and Vazquez-Bare (2017), Frandsen (2017), Sekhon and Titiunik
(2017), Frolich and Huber (2019), Abdulkadiroglu et al. (Forthcoming) and Eckles, Ignatiadis,
Wager and Wu (2020). These papers consider settings that fit into this paper’s framework.

Our empirical application uses the proposed method to study hospitals receiving CARES
Act relief funding. Our empirical finding contributes to emerging work on how health care
providers respond to financial shocks (Duggan, 2000; Adelino, Lewellen and Sundaram, 2015;
Dranove, Garthwaite and Ody, 2017; Adelino, Lewellen and McCartney, 2021). Our empirical
setting is a healthcare crisis, so our work complements prior work on more normal situations.
Our analysis also exploits rule-based locally random assignment of cash flows to hospitals. This
feature provides our estimates with additional confidence in their causal interpretation.

2 Framework

Our framework is a mix of the conditional independence, multidimensional RDD, and instru-
mental variable scenarios. In the setup in the introduction, we are interested in the effect of
some binary treatment D; € {0,1} on some outcome of interest ¥; € R. As is standard in the
literature, we impose the exclusion restriction that the treatment recommendation Z; € {0, 1}
does not affect the observed outcome other than through the treatment assignment D;. This
allows us to define the potential outcomes indexed against the treatment assignment D; alone.®
We consider algorithms that make treatment recommendations based solely on individual ¢’s
predetermined, observable covariates X; = (Xj1, ..., Xip)" € RP. Let the function A : RP — [0, 1]
represent the decision algorithm, where A(X;) = Pr(Z; = 1|X;) is the probability that the treat-
ment is recommended for individual ¢ with covariates X;. The central assumption is that the
analyst knows function A and is able to simulate it. That is, the analyst is able to compute the
recommendation probability A(x) given any input value z € RP. The treatment recommenda-
tion Z; for individual ¢ is then randomly determined with probability A(X;) independently of
everything else. Consequently, the following conditional independence property holds.

Property 1 (Conditional Independence). Z; L(Y;(1),Y:(0), D;(1), D;(0))|X;.

Note that the codomain of A contains 0 and 1, allowing for deterministic treatment assign-
ments conditional on X;. Our framework therefore nests the RDD as a special case. Another
special case of our framework is the classic conditional independence scenario with the common
support condition (A(X;) € (0,1) almost surely). In addition to these simple settings, this
framework nests many other situations, such as multidimensional RDDs and complex machine
learning and market-design algorithms, as illustrated in Sections 5-7.

In typical machine-learning scenarios, an algorithm first applies machine learning on X; to
make some prediction and then uses the prediction to output the recommendation probability
A(X;), as in the following example.

SFormally, let Yi(d, z) denote the potential outcome that would be realized if i’s treatment assignment and
recommendation were d and z, respectively. The exclusion restriction assumes that Y;(d, 1) = Y;(d,0) for d € {0,1}
(Imbens and Angrist, 1994).



Example. Automated disease detection algorithms use machine learning, in particular deep
learning, to detect various diseases and to identify patients at risk (Gulshan et al., 2016). Using
our framework described above, a detection algorithm predicts whether an individual ¢ has a
certain disease (Z; = 1) or not (Z; = 0) based on a digital image X; € RP of a part of the
individual’s body, where each X;; € R denotes the intensity value of a pixel in the image. The
algorithm uses training data to construct a binary classifier A : RP — {0, 1}. The classifier takes
an image of individual ¢ as input and makes a binary prediction of whether the individual has
the disease:

Z; = A(Xy).

The algorithm’s diagnosis Z; may influence the doctor’s treatment decision for the individual,
denoted by D; € {0,1}. We are interested in how the treatment decision D; affects the individ-
ual’s health outcome Y;.

Let Y,; be defined as Y,; = D;(2)Y;(1) + (1 — D;(2))Y;(0) for z € {0,1}. Y.; is the poten-
tial outcome when the treatment recommendation is Z; = z. It follows from Property 1 that
Z; L(Y14, Yoi)| Xs.

We put a few assumptions on the covariates X; and the algorithm A. To simplify the
exposition, the main text assumes that the distribution of X; is absolutely continuous with respect
to the Lebesgue measure. Appendix A.2 extends the analysis to the case where some covariates in
X; are discrete. Let X be the support of X;, Xp ={z € X : A(z) =0}, X1 = {r € X : A(x) =1},
LP be the Lebesgue measure on RP, and int(S) denote the interior of a set S C RP.

Assumption 1.

(a) (Almost Everywhere Continuity of A) A is continuous almost everywhere with respect to
the Lebesgue measure.

(b) (Measure Zero Boundaries of Xy and X7) LP(Xy) = LP(int(X))) for k=0, 1.

Assumption 1 (a) allows the function A to be discontinuous on a set of points with the
Lebesgue measure zero. For example, A is allowed to be a discontinuous step function as long
as it is continuous almost everywhere. Assumption 1 (b) holds if the Lebesgue measures of the
boundaries of X and X are zero.

3 Identification

What causal effects can be learned from data (Y;, X;, D;, Z;) generated by the algorithm A? A
key step toward answering this question is what we call the Approzimate Propensity Score (APS).
To define it, we first define the fized-bandwidth Approximate Propensity Score as follows:

fB(x,zS) A(z*)dx*

A _
pi(x;0) = -
fB(x,(S) dzx

)



where B(x,8) = {z* € RP : ||z — 2*|| < &} is the (open) d-ball around = € X.7 Here, || - || denotes
the FEuclidean norm on RP. To make a common bandwidth § for all dimensions reasonable, we
normalize X;; to have mean zero and variance one for each j =1, ..., p.8 We assume that A is a
LP-measurable function so that the integrals exist. We then define APS as follows:

pA(z) = lim p? (3 0).
0—0

APS at z is the average probability of a treatment recommendation in a shrinking ball around =x.
We call this the Approzimate Propensity Score, since this score modifies the standard propensity
score A(Xj;) to incorporate local variation in the score. APS exists for most covariate points and
algorithms (see Appendix A.1).

Figure 1 illustrates APS. In the example, X; is two dimensional, and the support of X; is
divided into three sets depending on the value of A. For the interior points of each set, APS is
equal to A. On the border of any two sets, APS is the average of the A values in the two sets.
Thus, p?(z) = £(0+0.5) = 0.25 for any z in the open line segment AB, p*(z) = 5(0.5+1) = 0.75
for any x in the open line segment BC, and p?(z) = $(0+ 1) = 0.5 for any z in the open line
segment BD.

We say that a causal effect is identified if it is uniquely determined by the joint distribution
of (Yi, X;, D;, Z;). Our identification analysis uses the following continuity condition.

Assumption 2 (Local Mean Continuity). For z € {0,1}, the conditional expectation functions
E[Y.i|X;] and E[D;(2)|X;] are continuous at any point x € X such that pA(x) € (0,1) and
A(z) € {0,1}.

Assumption 2 is a multivariate extension of the local mean continuity condition frequently
assumed in the RDD; in the RDD with a single running variable, the point z for which p?(z) €
(0,1) and A(x) € {0,1} is the cutoff point at which the treatment probability discontinuously
changes. A(x) € {0,1} means that the treatment recommendation Z; is deterministic conditional
on X; = z. If APS at the point x is nondegenerate (p”(z) € (0, 1)), however, there exists a point
close to z that has a different value of A from x’s, which creates variation in the treatment
recommendation near x. For any such point z, Assumption 2 requires that the points close to x
have similar conditional means of the outcome Y,; and treatment assignment Di(z).g Note that
Assumption 2 does not require continuity of the conditional means at = for which A(z) € (0,1),

"Whether we use an open ball or closed ball does not affect p* (z;9). We use a ball for simplicity. When
we instead use a rectangle, ellipsoid, or any standard kernel function to define p* (x; d), the limit lims_,o p?(z;9)
may be different at some points (e.g., at discontinuity points of A), but the same identification results hold under
suitable conditions.

8This normalization is without loss of generality in the following sense. Take a vector X; of any continuous
random variables and A* : R — [0,1]. The normalization induces the random vector X; = T(X] — E[X[]),
where T is a diagonal matrix with diagonal entries Var(X1;‘1>1/2 s Var(lep)l/Q' Let A(z) = A*(T 'z + E[X]]).
Then (X, A*) is equivalent to (X;, A) in the sense that A(X;) = A*(X]) for any individual s.

°In the context of the RDD with a single running variable, one sufficient condition for continuity of E[Ys;|X;] is
a local independence condition in the spirit of Hahn, Todd and van der Klaauw (2001): (Yi(1),Y:(0), D;(1), D;(0))
is independent of X; near x. A weaker sufficient condition, which allows such dependence, is that E[Y;(d)|D;(1) =
d1,D;i(0) = do, X;] and Pr(D;(1) = di,D;(0) = do|X;) are continuous at x for every d € {0,1} and (di,do) €
{0,1}* (Dong, 2018). This assumes that the conditional means of the potential outcomes for each of the four

7



since the identification of the conditional means at such points follows from Property 1 without
continuity.

Under the above assumptions, APS provides an easy-to-check condition for whether an algo-
rithm allows us to identify causal effects.

Proposition 1 (Identification). Under Assumptions 1 and 2:

(a) E[Y1; — Yoi|Xi = x| and E[D;(1) — D;(0)|X; = x| are identified for every x € int(X) such
that pA(z) € (0,1).1°

(b) Let S be any open subset of X such that p?(x) exists for all x € S. Then either E[Yy; —
Yoi|X; € S] or E[D;(1) — D;(0)|X; € S] or both are identified only if p*(x) € (0,1) for
almost every x € S (with respect to the Lebesgue measure).!t

Proof. See Appendix C.1. 0

Proposition 1 characterizes a necessary and sufficient condition for identification. Part (a)
says that the average effects of the treatment recommendation Z; on the outcome Y; and on
the treatment assignment D; for the individuals with X; = x are both identified if APS at z is
neither 0 nor 1. Non-degeneracy of APS at z implies that there are both types of individuals
who receive Z; = 1 and Z; = 0 among those whose X; is close to x. Assumption 2 ensures that
these individuals are similar in terms of average potential outcomes and treatment assignments.
We can therefore identify the average effects conditional on X; = z. In Figure 1, p?(z) € (0,1)
holds for any z in the shaded region (the union of the minor circular segment made by the chord
AC and the line segment BD).

Part (b) provides a necessary condition for identification. It says that if the average effect
of the treatment recommendation conditional on X; being in some open set S is identified, then
we must have pA(a:) € (0,1) for almost every x € S. If, to the contrary, there is a subset of S
of nonzero measure for which pA(z) = 1 (or p*(x) = 0), then Z; has no variation in the subset,
which makes it impossible to identify the average effect for the subset.

Proposition 1 concerns causal effects of treatment recommendation, not of treatment assign-
ment. The proposition implies that the conditional average treatment effects and the conditional
local average treatment effects (LATESs) are identified under additional assumptions.

Corollary 1 (Perfect and Imperfect Compliance). Under Assumptions 1 and 2:

(a) The average treatment effect conditional on X; = x, E[Y;(1) — Y;(0)|X; = x|, is identified
for every o € int(X) such that p*(z) € (0,1) and Pr(D;(1) > D;(0)|X; = z) = 1 (perfect
compliance).

types determined based on the potential treatment assignment D;(z) and the conditional probabilities of those
types are continuous at the cutoff. These two sets of conditions are sufficient for continuity of E[Y>;|X;] regardless
of the dimension of X;, accommodating multidimensional RDDs.

0The causal effects may not be identified at a boundary point  of X for which p* (z) € (0,1). For example,
if A(z*) =1 for all z* € B(z,0) N X and A(z") = 0 for all z* € B(z,d) \ X for any sufficiently small § > 0,
p™(x) € (0,1) but the causal effects are not identified at = since Pr(Z; = 0|X; € B(x,d)) = 0.

We assume that p? is a LP-measurable function so that {z € S : p*(x) = 0} and {z € S : p*(z) = 1} are
LP-measurable.



(b) The local average treatment effect conditional on X; = z, E[Y;(1)—Y;(0)|D;(1) # D;(0), X; =
x], is identified for every x € int(X) such that p(z) € (0,1), Pr(D;(1) > D;(0)|X; = ) =
1 (monotonicity), and Pr(D;(1) # D;(0)|X; = x) > 0 (existence of compliers).

Proof. See Appendix C.2. O

Non-degeneracy of APS pA(x) therefore summarizes what causal effects the data from A
identify. Note that the key condition (p*(x) € (0,1)) holds for some points x for every standard
algorithm except trivial algorithms that always recommend a treatment with probability 0 or 1.
Therefore, the data from almost every algorithm identify some causal effect.

4 Estimation

The sources of quasi-random assignment characterized in Proposition 1 suggest a way of estimat-
ing causal effects of the treatment. In view of Proposition 1, it is possible to nonparametrically
estimate conditional average causal effects E[Y1; — Yo;|X; = z] and E[D;(1) — D;(0)|X; = z] for
points x such that p?(x) € (0,1). This approach is hard to use in practice, however, when X;
has many elements.

We instead seek an estimator that aggregates conditional effects at different points into a sin-
gle average causal effect. Proposition 1 suggests that conditioning on APS makes algorithm-based
treatment recommendation quasi-randomly assigned. This motivates the use of an algorithm’s
recommendation as an instrument conditional on APS, which we operationalize as follows.

4.1 Two-Stage Least Squares Meets APS

Suppose that we observe a random sample {(Y;, X;, D;, Z;)}!'; of size n from the population
whose data-generating process is as described in the introduction and Section 2. Consider the
following 2SLS regression using the observations with pA(X;;6,) € (0,1):

Di = 7o + 11 Zi + 720 (Xi;00) + vs (1)
Y; = Bo + B1D; + Bop™ (Xy; 6,) + €, (2)

where bandwidth d,, shrinks toward zero as the sample size n increases. Let [; , = H{pA(Xi;6n) €
(0,1)}, Dy = (1, Di, pA(X4;6,))', and Zip, = (1, Zi, p?(X;;6,))". The 2SLS estimator B is then
given by

n n
B=02inDj, Lin)" Y ZinYilin.
=1

=1

Let ﬁl denote the 2SLS estimator of 31 in the above regression.'?

2For the standard RDD with a single running variable X; € R and cutoff ¢, p?(Xi;d,) = X;(S;C + % if

X; € [¢ = 0n,¢+ 6,] and p?(X,;6,) € {0,1} otherwise. In this special case, the estimator $; from the 2SLS
regression (1) and (2) is numerically equivalent to a version of the RD local linear estimator (Hahn et al., 2001)

that uses a box kernel and places the same slope coefficient of X; on both sides of the cutoff. It is possible to allow



The above regression uses true fixed-bandwidth APS p4(X;;d,), but it may be difficult to
analytically compute if A is complex. In such a case, we propose to approximate pA(Xi; on)
using brute force simulation. We draw a value of z from the uniform distribution on B(Xj,d,)
a number of times, compute A(z) for each draw, and take the average of A(z) over the draws.
Formally, let X[y, ..., X7 be S, independent draws from the uniform distribution on B (X, 6n),
and calculate

Sn

1
(X 0p) = — A(XT).
p°(Xi;6n) Sn;_l (Xis)

We compute p*(X;; 6, ) for each i = 1, ..., n independently across i so that p*(X1;0y), ..., p*(Xn; 6n)
are independent of each other. For fixed n and X;, the approximation error relative to true
pA(Xi;6,) has a 1/4/S,, rate of convergence.'®> This rate does not depend on the dimension of
X, so the simulation error can be made negligible even when X; has many elements.

Now consider the following simulation version of the 2S5LS regression using the observations
with p*(X;;0,,) € (0,1):

D =~ +7Zi + vp®(Xi;0n) + v (3)
Y = Bo + B1D; + Bap®(Xi; 6n) + €. (4)

Let 3f denote the 2SLS estimator of 81 in the simulation-based regression. This regression is the
same as the 2SLS regression (1) and (2) except that it uses the simulated fixed-bandwidth APS
p*(X4;0,) in place of p*(X;; 6,).1

4.2 Consistency and Asymptotic Normality

We establish the consistency and asymptotic normality of the 2SLS estimators 81 and B{ Our
consistency and asymptotic normality result uses the following assumptions.

Assumption 3.

(a) (Finite Moment) E[Y;}] < oco.

for slope changes at the cutoff by viewing p(X;;4,) as a running variable with cutoff % and applying standard
RD local linear estimators (i.e., adding interaction terms D;(p™(X;;6n) — 1) and Z;(p” (Xi;6,) — ) to (1) and
(2), respectively). However, it is not straightforward to extend this approach to the multidimensional RDD, since
the value of pA(Xi; 0n) no longer determines whether Z; = 1 or Z; = 0 unless the RD boundary is linear, which
may invalidate the use of pA(Xi; dr) as a single running variable. We leave to future research how to allow for
more flexible 2SLS specifications in the general multidimensional setting.

3 More precisely, we have |p®(Xi;6n) — p™ (Xi;0n)| = Ops(1//Sn), where O, indicates the stochastic bound-
edness in terms of the probability distribution of the .S,, simulation draws.

14Tn many industry and policy applications, the analyst is only able to change the algorithm’s recommendation
Z; by redesigning the algorithm. In this case, the effect of recommendation Z; on outcome Y; may also be of
interest. We can estimate the effect of recommendation by running the following ordinary least squares (OLS)
regression using the observations with p°(X;;4d) € (0,1):

Y = a0 + a1 Z; + aop®(Xi; 0n) + wi.

The estimated coefficient on Z;, &3, is our preferred estimator of the recommendation effect.
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(b) (Nonzero First Stage) There exists a constant ¢ > 0 such that E[D;(1) — D;(0)|X; = x] > ¢
for every x € X such that p*(z) € (0,1).

(c) (Nonzero Conditional Variance) If Pr(A(X;) € (0,1)) > 0, then Var(A(X;)|A(X;) €
(0,1)) > 0.

If Pr(A(X;) € (0,1)) = 0, then the following conditions (d)—(g) hold.
(d) (Nonzero Variance) Var(A(X;)) > 0.

For a set S C RP, let cl(S) denote the closure of S and let OS denote the boundary of S,
i.e., 08 = cl(S) \ int(S5).

(e) (C? Boundary of Q*) There ezists a partition {QF,...,Q%} of O = {x € RP : A(x) = 1}
(the set of the covariate points whose A value is one) such that

(i) dist($,, 25 ,) > 0 for any m,m’ € {1,..., M} such that m # m'. Here dist(S,T) =
infresyer ||x — yl| is the distance between two sets S and T C RP;

(i) €, is nonempty, bounded, open, connected and twice continuously differentiable for
eachm € {1,..., M}. Here we say that a bounded open set S C RP is twice continuously
differentiable if for every x € S, there exists a ball B(x,€) and a one-to-one mapping
Y from B(x,€) onto an open set D C RP such that 1 and 1~ are twice continuously
differentiable, (B(z,e) N S) C {(z1,....,zp) € RP : 2, > 0} and Y(B(z,e) N 0S) C
{(z1,...,zp) € RP : z, = 0}.

Let fx denote the probability density function of X; and let HF denote the k-dimensional
Hausdorff measure on RP.15

(f) (Regularity of Deterministic A)

(i) HP~1(0Q) < oo, and [y fx(x)dHP~ () > 0.
(i) There exists § > 0 such that A(x) = 0 for almost every x € N(X,d) \ QF, where
N(S,0)={x e RP: |z —y| < for somey € S} for a set S CRP and § > 0.
(9) (Conditional Moments and Density near 9Q*) There exists § > 0 such that
(i) E[Y1:|Xi], E[Yo|Xi], E[Di(1)|X;], E[D;(0)|X;] and fx are continuously differentiable
and have bounded partial derivatives on N (0Q*,0);
(ii) E[Y32|X:], ElYE|Xi], E[Y1:Di(1)|X;] and E[Y0; D;(0)|X;] are continuous on N(9*,6);
(i4i) E[Y|X;] is bounded on N(99*,6).

15The k-dimensional Hausdorff measure on R” is defined as follows. Let ¥ be the Lebesgue o-algebra on R?
(the set of all Lebesgue measurable sets on R?). For S € ¥ and 6 > 0, let H5(S) = inf{3°72, d(E;)* S C
U521 Ej,d(E;) < 6,E; C RP for all j}, where d(E) = sup{||z — y|| : #,y € E}. The k-dimensional Hausdorff
measure of S on R? is H*(S) = lims_,o HE(S).
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Assumption 3 is a set of conditions for establishing consistency. Assumption 3 (b) assumes
that, conditional on each value of X; for which APS is nondegenerate, more individuals would
change their treatment assignment status from 0 to 1 in response to treatment recommendation
than would change it from 1 to 0.6 Under this assumption, the estimated first-stage coefficient on
Z; converges to a positive quantity. Note that, if there exists ¢ < 0 such that E[D;(1)—D;(0)|X; =
x] < ¢ for every x € X with pA(x) € (0,1), changing the labels of treatment recommendation
makes Assumption 3 (b) hold.

Assumption 3 (c) rules out potential multicollinearity. If the support of A(X;) contains only
one value in (0,1), p?(X;;6,) is asymptotically constant and equal to A(X;) conditional on
pA(Xi;6,) € (0,1), resulting in the multicollinearity between p(X;;d,) and the constant term.
Although dropping the constant term from the 2SLS regression solves this issue, Assumption 3
(c) allows us to only consider the regression with a constant for the purpose of simplifying the pre-
sentation. In Appendix C.3, we provide 2SLS estimators that are consistent and asymptotically
normal even if we do not know whether Assumption 3 (c) holds.

Assumption 3 (d)—(g) are a set of conditions we require for proving consistency and asymptotic
normality of 31 when A is deterministic and produces only multidimensional RD variation.
Assumption 3 (d) says that A produces variation in the treatment recommendation.

Assumption 3 (e) imposes the differentiability of the boundary of Q* = {x € RP : A(x) =
1}. The conditions are satisfied if, for example, Q* = {z € RP : f(z) > 0} for some twice
continuously differentiable function f : R? — R such that Vf(z) = (%(f), ceey %(I))’ = 0 for all
x € RP with f(x) = 0. Q* takes this form, for example, when the conditional treatment effect
E[Y;(1) —Y;(0)|X] is predicted by supervised learning based on smooth models such as lasso and
ridge regressions, and treatment is recommended to individuals who are estimated to experience
nonnegative treatment effects.

In general, the differentiability of Q* may not hold. For example, if tree-based algorithms
such as Classification And Regression Tree (CART) and random forests are used to predict the
conditional treatment effect, the predicted conditional treatment effect function is not differen-
tiable at some points. Although the resulting Q* does not exactly satisfy Assumption 3 (e), the
assumptions approximately hold in that Q* is arbitrarily well approximated by a set that satisfies
the differentiability condition.!”

Part (i) of Assumption 3 (f) says that the boundary of Q* is (p — 1) dimensional and that
the boundary has nonzero density.'® Part (i) puts a weak restriction on the values A takes on
outside the support of X;. It requires that A(x) = 0 for almost every x ¢ Q* that is outside

16 At the cost of making the presentation more complex, the assumption can be relaxed so that the sign of
E[D;(1) — D;(0)|X; = x] is allowed to vary over = with p®(z) € (0, 1).

"For example, suppose that p = 2, A(z) = 1 if 21 > 0 and 22 > 0, and A(z) = 0 otherwise. In this case,
Q" ={z € R?: 21 > 0,22 > 0}. Let {Qx}72, be a sequence of subsets of R2, where Q) = {z € R2? : 2o >
i, x1 > 0} for each k. €y is twice continuously differentiable for all k and well approximates Q* for a large k
in that du (2", Q) — 0 as k — oo, where dy(S,T) = max{sup,g infyer ||z — yl|,sup,cr infzes ||z — yl|} is the
Hausdorff distance between two sets S and T' C RP.

8The boundary of Q* may fail to be (p — 1) dimensional in trivial cases where the Lebesgue measure of Q*
is zero and hence A(X;) = 0 with probability one. For example, when the covariate space is three dimensional
(p = 3) and Q~ is a straight line, not a set with nonzero volume nor even a plane, the boundary of Q* is the same
as %, and its two-dimensional Hausdorfl measure is zero.
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X but is in the neighborhood of X. A(x) may take on any value if = is not close to X. These
conditions hold in practice. Assumption 3 (g) imposes continuity, continuous differentiability
and boundedness on the conditional moments of potential outcomes and the probability density
near the boundary of Q*.

When A is stochastic, asymptotic normality requires additional assumptions. Let

C* = {z € RP: A is continuously differentiable at x},

and let D* = RP \ C* be the set of points at which A is not continuously differentiable.
Assumption 4. If Pr(A(X;) € (0,1)) > 0, then the following conditions (a)-(c) hold.
(a) (Probability of Neighborhood of D*) Pr(X; € N(D*,d)) = O(09).
(b) (Bounded Partial Derivatives of A) The partial derivatives of A are bounded on C*.
(¢) (Bounded Conditional Mean) E[Y;|X;] is bounded on X.

Assumption 4 is required for proving asymptotic normality of Bl when A is stochastic. To
explain the role of Assumption 4 (a), consider a path of covariate points xs € N(D* J) N
C* indexed by 6 > 0. Since A is continuous at x5, p(x5) = A(zs) (as formally implied by
Proposition A.2 in Appendix A.1). However, pA(x(;; 9) does not necessarily get sufficiently close
to A(xs) even as § — 0, since x4 is in the d-neighborhood of D* and hence A may discontinuously
change within the 0-ball B(xs,d). Assumption 4 (a) requires that the probability of X; being
in the é-neighborhood of D* shrink to zero at the rate of §, which makes the points in the
neighborhood negligible.

Assumption 4 (a) often holds in practice. If A is continuously differentiable on X, then
D*NX = (), so this condition holds. If, for example, the treatment recommendation is randomly
assigned based on a stratified randomized experiment or on the e-Greedy algorithm, D* is the
boundary at which the recommendation probability changes discontinuously. For any boundary
of standard shape, the probability of X; being in the d-neighborhood of the boundary vanishes
at the rate of 4, and the required condition is satisfied. We provide a sufficient condition for this
condition in Appendix A.3. Assumption 4 (b) and (c) are regularity conditions, imposing the
boundedness of the partial derivatives of A and of the conditional mean of the outcome.

The following assumption is the key to proving asymptotic normality of the simulation-based
estimator Bf

Assumption 5 (The Number of Simulation Draws). n=/2S, — oo, and Pr(pA(X;;0,) €

(0,71‘?””) u(l- ’ylggn”, 1)) = o(n*1/2(5711/2) for some v > 1.

Assumption 5 says that we need to choose the number of simulation draws S, so that it
grows to infinity faster than n'/2 and the probability that p?(X;;d,) lies on the tails (0, vlosgnn) U

(1-— 'ylosgib”, 1) vanishes faster than n=/ 2512 This condition makes the bias caused by using
p*(Xi;6,) instead of pA(X;;d,) asymptotically negligible. To illustrate how the second part
of this assumption restricts the rate at which S,, goes to infinity, consider an example where

Pr(pA(X;;0,) € (0,1)) = O(d,), and p?(X;;6,) is approximately uniformly distributed on the
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tails (0,71‘?””) Ul - 71(39‘%1”’ 1). In this case, Pr(p?(X;;6,) € (O,’ykfggn") Ul - 71(:%”, 1) =

O (0, l(zcin), and the second part of Assumption 5 requires that S, grow sufficiently fast so that

1/251/2 . . . .. 1/2
%ﬂbg" = 0(1). One choice of S,, satisfying this is S, = an”én/ for some o > 0 and k > %,
in which case "0 logn _ logn o(1)
S’n - anmfl/Q - .

Under the above conditions, the 2SLS estimators 31 and Bf are consistent and asymptotically
normal estimators of a weighted average treatment effect.

Theorem 1 (Consistency and Asymptotic Normality). Suppose that Assumptions 1 and 3 hold
and 8, — 0, nd, — 0o and S, — 00 as n — co. Then the 2SLS estimators B and Bf converge
wn probability to
A1 = lim Elw;(6)(Yi(1) = Y3(0))],
0—0
where " A
P (X5 0)(1 — p?(Xi; 6))(Di(1) — Di(0))

w;(0) = EpA(Xi;6)(1 — pA(Xi;6))(Di(1) — Ds(0))]

Suppose, in addition, that Assumptions 4 and 5 hold and nd? — 0 as n — oo. Then

67 B — ) B N
(62)71 (B — 1) -5 N(0, 1),

where we define 6,1 and (65)~" as follows. Let

n

n n
30 = O ZinDiLin) O ZinZh 1) (O Dy Lin)
=1 i=1 =1

where
N / 5
ei,n = }/; - Dz’nﬁ

3, 1s the conventional heteroskedasticity-robust estimator for the variance of the 25LS estimator.

2
n

variance of B from the simulation-based regression.

S

62 1s the second diagonal element of 3, (62)?% is the analogously-defined estimator for the

Proof. See Appendix C.3. O

Theorem 1 says that the 2SLS estimators converge to the limit of a weighted average of causal
effects for the subpopulation whose fixed-bandwidth APS is nondegenerate (p“(X;;d) € (0,1))
and who would switch their treatment status in response to the treatment recommendation
(D;(1) # D;(0)).* The limit lims_o Efw;(6)(Yi(1) — Y;(0))] always exists under the assump-
tions of Theorem 1. Theorem 1 also shows that inference based on the conventional 2SLS

197t is possible to estimate other weighted averages and the unweighted average by reweighting different ob-
servations appropriately. For example, we can estimate the unweighted average treatment effect by weighting
observations by the inverse of fixed-bandwidth APS. Under monotonicity (Pr(D;(1) > D;(0)|X;) = 1), we could
also apply Abadie (2003)’s Kappa weighting method using fixed-bandwidth APS instead of the standard propen-
sity score to estimate other weighted averages of treatment effects for compliers.
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heteroskedasticity-robust standard errors is asymptotically valid if §,, goes to zero at an appro-
priate rate. The convergence rate of 5 is Op(1/y/n) if Pr(A(X;) € (0,1)) > 0 and is O,(1/v/nd,,)
if Pr(A(X;) € (0,1)) =0.

Our consistency result requires that &, go to zero slower than n~!. The rate condition
ensures that, when Pr(A(X;) € (0,1)) = 0, we have sufficiently many observations in the d,-
neighborhood of the boundary of Q*. Importantly, the rate condition does not depend on the
dimension of X;, unlike other bandwidth-based estimation methods such as kernel methods. This
is because we use all the observations in the d,-neighborhood of the boundary, and the number
of those observations is of order nd, regardless of the dimension of X; if the dimension of the
boundary is one less than the dimension of Xj, i.e., (p — 1).

The asymptotic normality result requires that J, go to zero sufficiently quickly so that
nd2 — 0. When Pr(A(X;) € (0,1)) > 0, we need to use a small enough 6, so that p?(X;;,)
converges to p?(X;) fast enough and §&,-neighborhood of D* is asymptotically small enough.
When Pr(A(X;) € (0,1)) = 0, the asymptotic normality is based on undersmoothing, which
eliminates the asymptotic bias by using the observations sufficiently close to the boundary of
Q*. In both cases, the bias of our estimator is O(d,). The standard deviation is O(1/y/n) when
Pr(A(X;) € (0,1)) > 0 and is O(1/y/nd,) when Pr(A(X;) € (0,1)) = 0. The condition that
né2 — 0 ensures that the bias converges to zero faster than the standard deviation in either

case.20

Whether or not Pr(A(X;) € (0,1)) = 0, when we use simulated fixed-bandwidth APS, the
consistency result requires that the number of simulation draws S, go to infinity as n increases.
The asymptotic normality result requires a sufficiently fast growth rate of .S, given by Assumption
5 to make the bias caused by using p*(X;;6,) negligible.?!

Finally, note that the weight w;(d) given in Theorem 1 is negative if D;(1) < D;(0), so
Elw;(0)(Yi(1) — Y;(0))] may not be a causally interpretable convex combination of treatment
effects Y;(1) — Y;(0). This can happen because the treatment effect of those whose treatment
assignment switches from 1 to 0 in response to the treatment recommendation (i.e., defiers)
negatively contributes to E[w;(6)(Y;(1) — Y;(0))]. Additional assumptions prevent this problem