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Abstract

In this paper, we investigate a treatment effect model in which individuals interact in a social network
and they may not comply with the assigned treatments. We introduce a new concept of exposure mapping,
which summarizes spillover effects into a fixed dimensional statistic of instrumental variables, and we call this
mapping the instrumental exposure mapping (IEM). We investigate identification conditions for the intention-
to-treat effect and the average causal effect for compliers, while explicitly considering the possibility of
misspecification of [EM. Based on our identification results, we develop nonparametric estimation procedures
for the treatment parameters. Their asymptotic properties, including consistency and asymptotic normality,
are investigated using an approximate neighborhood interference framework by Leung (2021). For an
empirical illustration of our proposed method, we revisit Paluck er al.’s (2016) experimental data on the

anti-conflict intervention school program.
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1 Introduction

In recent years, we have witnessed increasing importance in evaluating causal effects under cross-unit inter-
ference in many fields. When individuals interact with each other, using the conventional potential outcome
framework of Rubin (1980) based on the stable unit treatment value assumption (SUTVA) is inappropriate. To
address the potential interference, there has been a rapidly growing number of studies that attempt to mitigate
SUTVA by replacing it with some weaker restrictions on the interference structure. For comprehensive reviews
of the literature on this issue, see VanderWeele and An (2013), Halloran and Hudgens (2016), and Aronow et al.
(2021).

A common approach to dealing with interference is to assume the existence of a low-dimensional exposure
mapping which serves as a sufficient statistic of spillover effects in that others’ treatments affect one’s outcomes
only through this function (e.g., Hong and Raudenbush, 2006; Hudgens and Halloran, 2008; Manski, 2013;
Aronow and Samii, 2017; Li et al., 2019; Egami, 2021; Forastiere et al., 2021; among others). Some frequently-
used forms of exposure mapping include, for example, simply extracting treatment vectors of disjoint groups,
or calculating the proportion of treated neighbors. The exposure mapping is a useful tool for summarizing
potentially complicated spillover effects, but there is an inherent difficulty in how to choose the “right” functional
form. Thus, some recent studies attempt to uncover under what conditions one can estimate meaningful treatment
parameters even under unknown interference, in which the exposure mapping is misspecified or is not explicitly
specified (Chin, 2018; Leung, 2021; Savje, 2021; Savje et al., 2021).

Including the aforementioned studies, much of the research on causal inference with interference assumes
the availability of experimental data where the individuals fully comply with their assigned treatments. However,
this should be restrictive in many applications (e.g., Miguel and Kremer, 2004; Dupas, 2014; Zelizer, 2019;
among many others). As a real example, consider the experiment on social norms and behavioral patterns
of adolescents conducted by Paluck er al. (2016). They randomly selected students to participate in the anti-
conflict intervention program where the participants were encouraged to take on leadership roles to reduce
conflict behaviors in school. The authors were interested in assessing the effectiveness of the intervention
against one’s own behavior, as well as whether the participants influence their peers through their social
network. Unfortunately, a proportion of the selected students did not join the intervention program, which led
the authors to resort to an intention-to-treat (ITT) analysis that counts non-compliers as directly treated students.

Although the coexistence of spillovers and noncompliance should be prevalent in relevant empirical applica-
tions, only a few studies have explicitly tackled this issue. Sobel (2006) shows that the conventional estimators,
such as the two-stage least squares estimator, do not admit causal interpretations when ignoring spillover effects.
In addition, there are recent studies that develop solutions to this problem based on the instrumental variable
(IV) method by extending the local average treatment effect framework of Imbens and Angrist (1994) and
Angrist et al. (1996) (e.g., Kang and Imbens, 2016; Imai et al., 2021; DiTraglia et al., 2021; Vazquez-Bare,
2021). However, these studies focus only on the situations where spillovers occur within disjoint clusters and,

more importantly, they do not address the issue of potential misspecification of the exposure mapping.

Taking these points into account, it should be of primary importance to understand what treatment parameters
we can identify (if any) and how to make statistical inferences on them under the possibility of noncompliance

and unknown interference structure. This is the objective of this study, that is, to develop a new causal inference



method that allows for noncompliance while retaining robustness to the misspecification of exposure mapping.
We consider a model in which individuals are connected through a social network and they may self-select their
treatment status. To account for the noncompliance issue and network interference, we employ the IV method
and introduce a new concept of exposure mapping, which we call instrumental exposure mapping (IEM). The
IEM is similar to the conventional exposure mapping in that it is a function summarizing the spillover effects
into low-dimensional variables, but it differs in that it is a function of I'Vs.

We first examine the ITT analysis, in which the estimands of interest are the average direct effect (ADE)
and average spillover effect (ASE) of the IV on the outcome and the treatment choice. We show that ADE has
a clear causal interpretation even under the misspecification of IEM, however, the misspecification gives rise
to a difficulty in interpreting ASE. Next, we focus on the identification of the ADE for compliers who comply
with their assigned treatments, which we call the local average direct effect (LADE). Under certain conditions,
LADE captures the ADE of the treatment receipt on the outcome for compilers, and thus LADE should be
more interpretable and policy-relevant than the simple ITT parameter. The technical difficulty in identifying
LADE is that, without imposing any restrictions on the interaction structure, the conventional identification
conditions for models without spillovers do not ensure the identification. To address this problem, we extend the
restricted interference assumption by Imai e al. (2021) to our situation under network interference by restricting
the spillover effects caused by non-compliers in a certain way. It is shown that the LADE parameter can be
identified by a Wald-type estimand under this restricted interference assumption.

Given our identification results, we propose nonparametric estimation procedures for the ITT effect and
LADE. The proposed estimators are easy to implement, although their statistical properties are non-trivial
due to network dependence. We provide a set of sufficient conditions for our estimators to be consistent and
asymptotically normally distributed by utilizing the approximate neighborhood interference (ANI) framework
by Leung (2021). We adopted the ANI framework because (i) ANI is suitable for many empirical situations
where spillovers from distant units are sufficiently small but potentially nonzero, and (ii) ANI is conceptually
similar to the familiar near-epoch dependence condition in networks, making it relatively easy to interpret
and verify. Technically, ANI ensures that the data satisfy the -weak dependence, and we can employ the
limit theorems for 1)-weakly dependent processes (Kojevnikov et al., 2021; Kojevnikov, 2021) to derive the
asymptotic properties of our estimators. We also consider statistical inference methods based on a network
HAC estimation and network-dependent bootstrapping.

As an empirical illustration, we apply our method to Paluck er al.’s (2016) data, the experimental data
on the anti-conflict intervention program for adolescents. The results of the ITT analysis show that receiving
an invitation to the intervention program has a statistically significant positive effect on the students’ own
anti-conflict norms and behaviors. While this finding is consistent with previous studies, the LADE estimates
suggest even larger treatment effects. Thus, the ITT analysis might have underestimated the direct effects of the

intervention program, highlighting the importance of estimating the LADE.

Related literature Our identification results build especially on Imai er a/. (2021) who consider the identifi-
cation of average causal effects for compliers, which they call the complier average direct effect and complier
average spillover effect, in two-stage randomized experiments under noncompliance. An important assumption

underlying their model is that interference is restricted within disjoint groups (such as classrooms or rural



villages), differently from our focus on network interference. More importantly, they require the exposure
mapping to be correctly specified by the stratified interference assumption in which spillovers are determined
only through the number of the assigned treatments within each cluster.

Another study closely related to ours is Leung (2021). The paper proposes an ANI model in experimental
situations with perfect compliance and develops inference methods for average treatment effect parameters while
explicitly allowing for the misspecification of exposure mapping. The major distinction between Leung (2021)
and ours is that not only the spillover effects of treatments on the outcome but also the spillovers of others’ IVs
on own treatment choice are considered in our study. The existence of two interference channels significantly
complicates the identification analysis and statistical inference.

This paper also relates to prior studies that have extended Fisher’s (1935) randomization test to the cases
with interference (e.g., Athey er al., 2018; Basse et al., 2019; Li et al., 2019). Similar to our approach, the
interference structure is generally left unspecified in these studies, and randomization tests can be implemented
without requiring the specification of exposure mapping. However, the main focus of these studies is on
testing some hypotheses regarding the spillover effects, while the primary purpose of this paper is to establish

procedures for the identification and estimation of the treatment parameters.

Paper organization In Section 2, we present basic model assumptions with some examples. Section 3
provides the identification results. We discuss the estimation and inference procedures in Section 4, where their
asymptotic properties are also investigated. Section 5 reports the numerical results including the Monte Carlo
experiments and empirical analysis. Section 6 concludes the paper. Appendix A contains the proofs of all

technical results in the main text. The other supplementary results are relegated to Appendix B.

2 Model

Consider a finite population of n € N units V,, := {1,2,...,n}, where N = {1,2,...}. Suppose that the units
form an undirected and unweighted network. The network is represented by the n x n symmetric adjacency
matrix A = (A;;)i jen,, Where A;; € {0, 1} indicates whether or not 7 and j are adjacent, i.e., A;; = 1 if there
is a link between 4 and j and A;; = 0 otherwise. As usual, we assume that there are no self-links so that A;; = 0
for all ¢ € IV,,. We denote the set of possible adjacency matrices of n units as A,,.

In a later section, we study asymptotic theory under the condition that the network size n grows to infinity.
This means that we consider a sequence of networks {A,,}men, Where A, € A, and m can be any large
number. The observed adjacency matrix A with no subscript is regarded as an n-th element of the sequence,
ie., A = A,. The networks A,,, and A,,, (m1 # mg) can be completely unrelated, but it may be possible
that A,,,, +m, is a union of disjoint A,,, and A,,,. Further, the distributions of variables including potential
outcomes and treatments can be specific to each network in general; that is, they form a triangular array defined
along with the network sequence. However, for notational simplicity, we suppress the dependence of variables
on the network structure.

Let Y; € R be an observed outcome variable and D; € {0, 1} an indicator of the treatment receipt for unit
1 € Ny,. In observational studies or randomized experiments with possible noncompliance, individuals may

self-select their treatment status and the existing methods under perfect compliance are generally not applicable.



To address this problem, suppose that there is a binary IV, Z; € {0, 1}. In an experimental setup, Z; is typically
an indicator of initial treatment recommendation for . Denote the n-dimensional vector of realized treatments
as D = (D;)ien,,, and similarly let Z = (Z;);en, . We write the support of D and that of Z as D,, = {0,1}"
and Z, = {0,1}", respectively. For each d € D,, and z € Z,, we denote Y;(d, z) € R as the potential
outcome of unit ¢ when D = d and Z = z. Similarly, the potential treatment status given Z = z is written as
D;(z) € {0,1}. Let D(z) = (D;(2))ien,, be the n-dimensional vector of potential treatments. By construction,
we have Y; = Y;(D, Z), D; = D;(Z), and D = D(Z). Hence, we can further write y;(z) = Y;(D(z), z) for

some function y; : Z, — R, and we have

Yi=ui(Z) = Y UZ = zhui(2).

2EZ,

Because we can observe only one realization from (y;(z), D;(2)) zez,, for each unit, it is generally impossible
to define identifiable causal estimands without introducing some restrictions. To address this issue, we introduce
the following function: 7" : N,, x Z,, x A,, — T, where T is a pre-specified function, 7 < R4m(T) j5 a set which
does not depend on ¢ and n, and dim(7") is a fixed positive integer.! For each ¢, we denote T; = T'(i, Z, A). We
call the function T’ the instrumental exposure mapping (IEM) and its realization T; the instrumental exposure
of unit 7.

Denote z_; = (2;);»i and z = (z;,2—;). We say that the IEM is correctly specified if for any i € N,
2 €{0,1}, z—;, 2", € {0,1}"" !, and A € A,,>

T(i,z2i,2—i, A) = T(i, 2,2 ;, A) = D;(2;,2—;) = Di(2,2";) and y;(z;,2—;) = yi(zi,2";). (2.1)

Thus, if the IEM is correctly specified, it serves as a fixed dimensional sufficient statistic that summarizes
potentially high-dimensional spillover effects. That is, the potential treatment status and the potential outcome
of unit ¢ can be fully characterized by ¢’s own IV Z; and her instrumental exposure T}, and there exist functions
di : {0,1} x T — {0,1} and ; : {0,1} x T — R satisfying

~

di(zi, T(i, Ziy 24, A)) = Di(ZZ‘, Z_Z') and @Z(zz, T(i, Ziy 24, A)) = yi(zi, Z_i)

for any z; € {0,1} and z_; € {0,1}"" 1. Then, §i(z,¢) and d;(z,t) represent the potential outcome and the
potential treatment status, respectively, given Z; = z and T; = t. In this way, a properly specified IEM alleviates
the complexity of handling general spillover effects and greatly simplifies the estimation of causal parameters

under interference. However, since there is no formal theory or practical guidance as to how to verify the

! In the literature, Forastiere er al. (2021) consider an exposure mapping whose range may be heterogeneous across ¢ and n.
Although our results would hold with minor modifications even in the presence of heterogeneity in exposure mappings, we let this be
beyond the scope of this paper since such a generalization substantially complicates the asymptotic theory. Nevertheless, the common
range assumption should not be too restrictive in practice, given that in our framework researchers can arbitrarily specify the form of
IEM.

2 Note that the definition in (2.1) does not imply the uniqueness of correct IEM. For example, if the neighborhood maximum of Z,
T; = max{Z; : A;; = 1}, is a correct IEM for 4, so is i’s neighborhood average. If there do not exist any spillover effects in the first
place, then any IEM is correct.



specification of IEM, in reality, IEMs are generally misspecified. In this case, g;(z, t) and cZ(z, t) are no longer
well-defined.

Throughout the paper, following the recent literature on causal inference with interference, we focus on a
design-based uncertainty framework where the randomness comes only from Z. That is, Z is the only random
component in the model, and we treat the potential outcomes, the potential treatments, and the adjacency matrix
as non-stochastic components. This design-based approach is suitable for randomized experiments where
researchers can design the random assignment mechanism for treatment eligibility or initial recommendations,
as in the experiments in Dupas (2014) and Paluck er al. (2016). Even in observational studies, the design-based
approach should be relevant when we can observe the entire population or most of the finite population (cf.
Abadie er al., 2020). It is important to note that we can also view our framework as a full random design
conditional on the potential outcomes, the potential treatments, and the adjacency matrix.

Here, as in the standard IV model, we consider the assumption that the IV can affect the outcome only

through the treatment, i.e., the exclusion restriction:
Assumption 2.1 (Exclusion restriction). Y;(d, z) = Y;(d, 2’) foralli € N,,,d € Dy, and z, 2’ € Z,,.

Under Assumption 2.1, we can reduce the potential outcome when D = d to Y;(d) = Yi(d, z), and we
have y;(z) = Y;(D(z)). Note that this assumption is not an essentially necessary condition in terms of ITT

analysis, but it can greatly improve the causal interpretation of the parameters that we are going to estimate.

Finally in this section, for illustrative purposes, we provide three specific examples that can be effectively

analyzed within our model.

Example 2.1. Suppose that the observed outcome is generated by the following linear model:

Y; :60i+61Di+/32‘1{2Aiij >C},
Jj#i
where fy; is an idiosyncratic intercept term, 57 and (o indicate the direct effect and the spillover effect,
respectively, and c is a given threshold. Assume that the treatment status of each unit is determined only by her

own 1V, i.e., D;(z;) = D;(zi, z—;). Then, the potential outcome when Z = z can be written as

Yi(2) = Boi + B1Di(2i) + B2+ 1 {Z AijDj(z5) > C} :
J#i
A correctly specified IEM is, for example, 7'(i, Z, A) = 1{},;; AijD;(Z;) > c} with T = {0,1}. In the
literature, this type of exposure mapping is used, for example, in Hong and Raudenbush (2006) and Leung
(2021). With this IEM, one can easily find that the direct effect can be obtained by a Wald-type estimand:

Dies, BIYi [ Zi = LTy = 1] — Yics, E[Yi | Zi = 0, T; = 1]
Yiies, EIDi | Zi = 1LT; = t] = Yieg, E[Di | Zi = 0,T; = t]’

pr =

3 The IEM is said to be misspecified if there exist some i € N, z; € {0,1}, z—;,2"; € {0,1}"7!, and A € A,, such that

T(i, 2, 2—i, A) = T(i,2;, 2", A) but D;(z;,z—;) # Di(2:,2";) or/and y;(z, z—) # vyi(zi, 24).



where 5, is an appropriately chosen subset of IV,,. We will show in Theorem 4.1 that the terms on the right-hand

side, and hence (31, can be consistently estimated under certain regularity conditions.

Example 2.2. Assume that Assumption 2.1 holds and that no interference exists in the outcome. For the

treatment choice equation, consider the following latent index model:

D=1 {701’ + 7134 + 21 - 1 {Z AijZ; > C} > 0}’

J#i
where ; is the preference heterogeneity for the treatment, and +;; and o; respectively capture the direct and
spillover effect of the IV on the treatment choice. In this situation, the potential outcome when Z = z is given
by yi(z) = Poi + P1:D;(z) without loss of generality. As such, the model is a simple binary treatment model
with potentially many IVs. It is straightforward to find that we can estimate a local average treatment effect
(LATE)-type parameter using the two-stage least squares method under a monotonicity condition between D;

and Z; (e.g., y1; = 0 for all ¢), without considering the spillover effect in the treatment choice model. If we set
T(i,Z,A) = 1{},,; AijZ; > c}, this is clearly a correct [EM.

Example 2.3. The following linear-in-means model has been often used in applied studies of peer effects (cf.
Bramoullé€ ef al., 2009):

2z AijY,

Yi = Boi + b1 5 A~] + B2D;,
jti A

assuming that each unit has at least one link. Letting Y = (Y})ien,, Bo = (Boi)ien,, and G = (Gij)i jen,
with G5 = A;j/ Z#i A;j, we can re-write the model in vector-formas Y = By + 51GY + (o D. If | 51| < 1

holds, I,, — 51 G is nonsingular, where I,, is the identity matrix of dimension n, and we have
Y(Z) = (I, — B1G) " (Bo + B2D(Z)).

This expression clearly shows that in general the potential outcome y; (z) relates to all z;’s in a nontrivial manner.
When D;(z;) = Di(zi, z—;) is true, T'(i, Z, A) = 3., Gijy;(Z) is a correct IEM specification.

3 Identification

This section discusses the identification of treatment parameters with potentially misspecified IEM. We first
study the ITT effects in Section 3.1. We then develop our main identification result for the LADE in Section

3.2. Throughout this section, we assume the following:
Assumption 3.1 (Conditional independence). For all i € N,,, Z; is conditionally independent of Z_; given T;.

This assumption restricts the specification of IEM and the joint distribution of Z = (Z;, Z_;). For example,
suppose that Z;’s are independent and identically distributed (IID) across . Then, Assumption 3.1 would be
satisfied when Z; is not a determinant of 7;. Such examples include the instrumental exposures considered

in Examples 2.1 and 2.2. Because researchers can select the form of IEM to ensure Assumption 3.1, this



assumption may not be too restrictive in practice. Nevertheless, it should be noted that the interpretations of the

causal estimands presented below may differ significantly for different IEM specifications.

3.1 Intention-to-treat analysis

In this subsection, we provide the identification results for the ADE and ASE of the IV on the outcome and
on the treatment choice. Although the results in this subsection are simple corollaries of those in prior studies
(e.g., Aronow and Samii, 2017; Leung, 2021; Sdvje, 2021), we describe them in some detail because they form
the basis for the identification analysis of the LADE parameter.

To proceed, consider a non-random sub-population S,, < N,,. Throughout the paper, we consider estimating
causal parameters specific to this sub-population. For an example of S,,, let S,,(0) be the set of units whose
degrees are d: S, (0) = {1 € Ny, : 3, ,; A;j = 6}. In this case, we can examine whether the causal impacts are
heterogeneous across individuals with different centrality by comparing the parameter estimates obtained from
Sy (0) with different §’s.

Define

pi (z) =E[Y; | Zi=2Ti=t],  u(z1) =E[D;|Zi=2T =4,

for z € {0,1} and t € T. Here, the expectation is taken with respect to the distribution of Z. Since these
quantities may vary with individuals due to heterogeneity in the potential outcome and potential treatment
choice, generally we cannot obtain consistent estimators for them in the design-based approach. Denote their

averages over S, as

1 1
=Y . Y —-D . D
Hs, (th) = 2 g (Z’t)7 :uSn(th) = E 125 (Z’t)’
| S ieS,, Sl i€Sn

where | S, | is the cardinality of S,,. We will show in Section 4 that iy (z,t) and i (z,t) can be consistently
estimated under ANI in our context (see Assumption 4.5) and certain conditions on the network structure.

The ADE of the IV on the outcome and that on the treatment receipt are respectively defined by
ADEYs, (1) := ig, (1,t) — 15, (0,t),  ADEDg, (t) == fig, (1,t) — fig, (0, 1),
for ¢ € 7. Similarly, we define the ASEs by
ASEYs, (2,8,1) == jig, (2,t) — ig, (2,t'),  ASEDg, (2,t,t) == ji§, (2,t) — ii§, (2, 1),

for z € {0,1} and ¢,t' € T. It should be noted that these quantities are well-defined irrespective of whether
the IEM is correctly specified or not. The following proposition presents the causal interpretation of these

estimands.



Proposition 3.1. Let m;(z_;,t) = Pr[Z_; = z_; | T; = t]. Under Assumption 3.1, we have

1
ADEYs, () = = > {ni(lz) — w0, z)}mi(z 4 t),
50| i€Sn z_;€{0,1}7—1
ADEDS, (t) = o~ (Di(L,20) — Di(0, 2—)}mi(z—i. 1),
Sl i€Sn z_;€{0,1}7—1
ASEYs, (2,4,¢) — ‘Sl| yi(2 2 ) {ms(zint) = Tz ),
™M ieSn z_;e{0,1}n—1
ASEDg, (2, 4,t) = |Sl| Di(z, 2 ) {mi(zit) — w20, ).

@
m
n
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Proposition 3.1 shows that the ADEY g, (¢) and ADEDg, (¢) have a causal interpretation as the weighted
average of y;(1, z_;) — 4;(0, z_;) and as that of D;(1, z_;) — D;(0, z_;), respectively, with the weight equal to
mi(z—i,t). If we additionally impose Assumption 2.1, the result for ADEY g, (¢) can be further well interpreted.
To see this, let Dj(Z; = z;, Z_; = z_;) be the potential treatment status of unit j # ¢ when Z; = z; and
Z_; =z, andlet D_j(Z; = z,Z_; = z—;) = (Dj(Z; = zi,Z_; = z_;))j#i. By the definition of
yi(zi, z—;) and Assumption 2.1, we can observe that

.

vi(1,2-3) —4i(0,2—;) = Yi(Di(1,2—),D_i(Z; = 1,Z_; = z—;)) = Yi(D;i(0,2-), D_i(Z; = 1, Z_; = z_;))
direct effect of IV

+ Y;(DZ(O, Z_i), D_,(ZZ =1,Z_;= Z_Z'>) — Y;(DZ(O, Z_i), D—z(Zz =0,Z_; = Z_Z‘)) .

S ~ ~

spillover effect of IV

Thatis, y;(1, z_;) —v:(0, z_;) comprises of the direct effect of changing i’s own treatment status from D; (0, z_;)
to D;(1,z_;) and the spillover effect by changing the others’ treatments from D_;(Z; = 0,Z_; = z_;) to
D_;(Z; =1,Z_; = z_;). Hence, Proposition 3.1 can be read as that ADEY g (t) consists of the sum of the
ADE from own IV and the ASE caused by changing the unit’s own IV.

Given Proposition 3.1, the results for the ASE would be less interpretable than those for the ADE. This
difficulty in interpreting ASEs is mainly due to the possibility of misspecification of the IEM. That said, even
when the IEM is not properly specified, ASE contains beneficial information regarding spillover effects. A
non-zero estimate of ASE indicates the presence of some form of interference.

Proposition 3.1 is also useful for interpreting estimates of ADE or ASE obtained from different forms
of IEM. For example, suppose that two IEMs T and T” generate the same estimates of ADEY at ¢ and ¢/,
respectively:

O = ADEYSn (t) |IEM=T - ADEYSn (t/) |IEM=T’

- |Sln| Z Z {yi(laz—i) - yi(ou'z—’[)} : {m(z_i,t) — 71'1/-(,2;_2-775/)}7

iE€ESh z,i€{071}”71

This is possible for example (i) when the treatment effect y;(1, z_;) — v;(0, z—;) is homogeneous with respect

to z_; for all individuals (i.e., no spillovers), or (ii) when {7; = t} and {T] = t'} are essentially the same



conditions such that 7;(z_;,t) — m.(z_;,t') = 0. Note that (i) is testable since if (i) is true the above equality
must hold for any IEMs.

Remark 3.1 (Correctly specified IEM). For now, suppose that the IEM T satisfies (2.1). In this situation,
the potential outcome and the potential treatment status given Z; = z and T; = t are y;(z,t) and Jl(z, t),
respectively, and we have p} (2,t) = 9;(2,t) and puP(2,t) = d;i(z,t). Then, it is straightforward to see that
ADEY, (t) = [Snl™ Yics, [B3(1,t) — §i(0,1)], and a similar result applies to the other parameters as well.

Assumption 3.1 is unnecessary for this result to hold.

3.2 Local average direct effect

In this subsection, we present our main identification result for the LADE. Throughout this subsection, we
maintain Assumption 2.1. Firstly, we extend the notion of compliers (Angrist et al., 1996; Imai et al., 2021) to

our setting. Let
Ci(z—i) = 1{D;(1,2—;) = 1,D;(0, z—;) = 0}

be an indicator for being a complier who takes the treatment only when Z; = 1 conditional on Z_; = z_;.
Thus, the compliance status may depend on the assignment of I'Vs to the others. Denote the realized compliance

status of unit 7 as C; := C;(Z_;). The expected compliance status conditional on T; = t is given by

E[C | Ti=t]= >, Ci(z-i)mi(zit).

z_ie{(),l}"*l

The LADE is defined by the weighted average of y;(1, z_;) — y;(0, z_;) over the compliers:

Ci(z—i)mi(z—i,1)
LADEg, (t) == {yi(1,2—;) —4i(0,2;)} 7
Z;ﬂ z_ie{%}nl Dies, 2z_efoyn-1 Ci(z-i)mi(z-i, 1)

provided that the denominator ;s E[C; | T; = t] is non-zero. By the same decomposition as above, for a

complier ¢ such that C;(z_;) = 1,

vi(1,2—5) —4i(0,2) = Y;(1,D_y(Z; = 1,Z_; = z_;)) = Yi(0,D_i(Z; = 1, Z_; = z_;))

<

~~ -

direct effect of treatment

+ K(O,D_Z(ZZ =1,Z_;= Z_i)) — }/Z(O’D—Z(Z’L =0,Z_; = Z_Z')) .

S

~~ -

spillover effect of IV

As such, the LADE parameter captures the sum of the average direct treatment effect and the ASE caused by
changing the unit’s own IV, for the compliers.

In what follows, we introduce a set of sufficient conditions for identifying the LADE. The following two
conditions are analogous to the IV relevance condition and the monotonicity condition for the standard LATE

estimation without interference.
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Assumption 3.2 (Relevance). There exists a constant ¢ > 0 (which may depend on 7" and t) such that
S| ™! Dies, BICi | T = 1] > c.

Assumption 3.3 (Monotonicity). D;(1,z_;) > D;(0,z_;) for all i € S,, and z_; € {0,1}"~! such that
ﬂi(z,i,t) > 0.

Assumption 3.2 states that there is a non-negligible proportion of units among those with 7; = ¢ whose
treatment status is positively affected by their assigned IV. The assumption is necessary to well-define the LADE
parameter. Assumption 3.3 requires that there do not exist defiers, whose treatment status is negatively affected
by the instrument. This assumption limits the heterogeneity in treatment choice in that the response to the IV
must be non-negative for all units. For instance, the treatment choice equation in Example 2.2 satisfies the
monotonicity condition if v;; > 0 for all 7. Under Assumptions 3.2 and 3.3, each individual can be classified
into one of the three latent types: compliers; always takers (those who always take the treatment); never takers
(those who never take the treatment).

Unlike conventional identification results without interference, the set of the exclusion restriction, the
relevance condition, and the monotonicity condition does not suffice to identify the LADE parameter. This is
because we need to account for two potential interference channels at the same time: one is the spillover effect
of the I'V on the treatment receipt, and the other is the spillover effect of the treatment on the outcome. As in the
conventional method, we use the variation in the value of IV to identify the LADE, but in the present situation,
the effect of shifting IV can be amplified in two steps by the two different spillovers. Therefore, to facilitate
the identification of the LADE parameter, some additional restriction on the interference structure is needed.
In this study, similar to Imai er al. (2021), we require the potential outcome y;(z;, z—;) of noncompliers to be

insensitive to their own instrumental value z;.

Assumption 3.4 (Restricted interference). For all i € S, and z_; € {0,1}"! such that m;(z_;,t) > 0,
yi(1,z—;) = v:(0, z_;) holds whenever D;(1, z_;) = D;(0,z_;).

Here, we provide three empirically relevant sufficient conditions for this assumption. The first condition is

no spillovers between IV and the treatment choice:
Di(z,z_;) = Di(2,2;) forany z; € {0,1} and z_;, 2" ; € {0,1}""L. 3.1

This corresponds to the personalized encouragement assumption of Kang and Imbens (2016), which states
that an incentive to take treatment must be personalized to everyone. Under this condition, we can define
the potential treatment status as D;(z;) = D;(z;, z—;). Then, the potential outcome satisfies y;(z;, z—;) =
Yi(Di(z:), (Dj(25));i), implying Assumption 3.4.

The second situation in which Assumption 3.4 holds is when there is no treatment spillover effect on the

outcome; that is,
Y;(ds,d_;) = Yi(d;,d'_;) foranyd; € {0,1} andd_;,d"_; € {0,1}"L. (3.2)

Then, we may write the potential outcome given D; = d; as Yj(d;). It is easy to see that (3.2) implies

Assumption 3.4.
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The third sufficient condition for Assumption 3.4 is that the IV of any noncomplier does not affect the

treatment status of all other units; specifically, for any z_; € {0, 1}~ 1,
D_(Z;=1,Z_;=2z2_;)=D_;(Z;=0,Z_; = z_;) whenever D;(1,z_;) = D;(0,z_;). 3.3)
If this condition holds, the potential outcome of unit ¢ with D;(1, z_;) = D;(0, z_;) satisfies

vi(l,z—) =Yi(Di(1,24),D_i(Z; = 1,Z_; = z_;))
=Yi(D;(0,2-;),D_i(Z; =0, Z_; = z_;)) = yi(0, 2—;),

which implies Assumption 3.4.
As such, the interpretation of the LADE parameter can be different depending on which sufficient condition

the researcher considers for Assumption 3.4 to hold. For example, under (3.1) or (3.2),
Yi(Di(0,2—),D_i(Z; = 1,Z_; = z_;)) — Yi(D§(0,2;), D_(Z; =0, Z_; = z_;)) = 0.

Therefore, the LADE is identical to solely the ADE of the treatment on the outcome for the compliers. On the
contrary, (3.3) does not restrict the interference structure for the compliers so that the IV of a complier may
affect the treatment status of others. In this case, as discussed above, the LADE parameter is considered as the
sum of the direct effect and the spillover effect for the compliers.

The following theorem shows that the LADE parameter can be identified by a Wald-type estimand.

Theorem 3.1. Under Assumptions 3.1 — 3.4, it holds that

ADEYg, ()

34)

Remark 3.2 (Average noncompliance rate). Let
.Ai(z_i) = 1{Di(1,z_i) = Di(O, Z_i) = 1} and /\/;(Z_i) = 1{Di(1,z_i) = Di(O,z_i) = 0}

denote the indicators for being an always taker and a never taker, respectively, conditional on Z_; = z_;. Their
realized states are A; = A;(Z_;) and N; := N;(Z_;). Under Assumptions 3.1 and 3.3, similar arguments to
the proof of Theorem 3.1 can show that

1 1
mZE[D”Z 0,T; = t] S—Z [A;i | T; = t],
"l ieS, €Sn

1 1

mZIE[l—D”Z 1,T; = 1] :TZ [N; | T = t].

nlies, €Sn

Thus, we can measure the average noncompliance status by computing the left-hand sides of these equalities.

Remark 3.3 (Testable implication of (3.1)). Under condition (3.1), Proposition 3.1 implies that ASEDg, (z,¢,t') =
0 forall z € {0,1} and ¢,¢' € T. Thus, if ASEDg, (z,t,t") # 0 is observed, it indicates there is a violation of

condition (3.1); however, the converse is generally not true. Of course, if the specification of IEM is correct,
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we can support (3.1) by confirming ASEDg, (z,t,t') = 0 forall z, ¢, and ¢'.

Remark 3.4 (Testable implication of (3.2)). Denote ml(l)(y,z,t) = E[N{Y; < y}D; | Z; = 2,T; = t]
fory € R, z € {0,1}, and t € 7. Condition (3.2) implies that m-l)(y,z,t) = 2s sefoy— HYi(1) <
y}Di(z,z—;)mi(z—i,t) by Assumption 3.1. As a result, we have m(l)(y,l,t) — mgl)(y,o,t) > 0 un-

i

—

N

der Assumption 3.3. Note that this inequality might not hold without condition (3.2). Similarly, letting
mgo)(y,z,t) = E[1{Y; < y}(1 - D) | Z; = z,T; = t], we can show that mgo)(y, 1,t) — mgo)(y,o,t) < 0.
Note that although these inequalities cannot be directly tested for each ¢, we can check whether they hold or not

on average for some sub-samples.

Remark 3.5 (Testable implication of (3.3)). Let g; : {0,1}"~! — R, be a known non-negative function of

D_;. Then, we can show that

E[Digi(D-i) | Zi =0,Ti=t] = Y. Ai(z-)9i(D-i(Zi = 0,Z_; = z_))mi(zi,1)
2 {01}

by Assumptions 3.1 and 3.3. Similarly,

E[Digi(D-i) | Zi = 1, T =t] = >, {Ci(z-i) + Ai(z-)}gi(D-i(Zi = 1,Z_; = z_3))mi(2i, 1),
Z,,L'E{O,l}"71

Thus, condition (3.3) leads to

E[Digi(D—;) | Zi = 1,T; = t] = E[D;gi(D—;) | Z; = 0, T; = t]

= Z Ci(z_i)gi(D_i(Zi = 1, Z—i = z_z-))m(z_i,t) = 0.
z_ie{O,l}”*l

A similar argument shows that
E[(1 = Di)gi(D—i) | Zi = 0,T; = t] = E[(1 — Dy)gi(D—~i) | Zi = 1,T; = t] > 0.

Then, these inequalities provide testable implications of (3.3).

4 Estimation and Asymptotic Theory

In this section, we discuss the nonparametric estimation of the causal parameters presented in the previous
section. The estimation procedures are discussed in Section 4.1, and Section 4.2 presents their asymptotic
properties. In Section 4.3, we provide statistical inference methods.

4.1 Estimators

We consider the following data generating process (DGP):

Assumption 4.1 (DGP).

(i) {Zi}ien, are mutually independent.
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(i) {(T}, Z;)}ies, are identically distributed across i € S,,.
(iii) 7 is a finite subset of RI™(T).

Assumption 4.1(i) would be reasonable for many empirical situations. For example, the assumption
is relevant to a randomized experiment where the treatment eligibility is assigned to each unit with some
probability ¢ € (0, 1) (i.e., a Bernoulli trial). Another example where the assumption can hold is an observational
study in which the IV of each unit is determined separately from the other units. Assumption 4.1(ii) can be
justified by appropriately choosing IEM 71" and sub-population .S,,. For example, this assumption holds when
T, = 1{>;,;AijZ; > ctand S, = {i € Ny @ >;,; Ajj = 6} for some c and 6, provided that {Z;}en,
are IID. We require this assumption in order to construct a consistent estimator for the generalized propensity
score Pr[Z; = 2,T; =t | i € S,]. Lastly, Assumption 4.1(iii) restricts that the IEM takes finite values, which
facilitates our asymptotic analysis.

Under Assumption 4.1, we can write pg, (z,t) = Pr[Z; = z,T; = t | i € S,]. In the following, the

condition 7 € S, in the expectation is suppressed for notational simplicity. We estimate pg, (z,t) by

Ps, (2,1) M 1Zi=2T =t}
|S |1€S’

Then, /]gn (z,t) and ﬂgn (z,t) can be estimated respectively by

. 1 Yi1{Z = 2,T; = t R 1 DA{Z; = 2,T; = t
/’Lgn (zy t) = S Z ! { /Z\ z : }7 /"Lgn (27 t) = S Z - { /;L : . }
‘ n| i€Sp pSTL(Z7t) ‘ Tl‘ i€Sn, psn(z,t)

Given these estimators, we compute

ADEYs, (t) = fi% (1,) —fi% (0,¢),  ASEYg, (2.t,t') = i} (2,1) — i} (2,1,
ADEDg, () = 5 (1,t) = 55 (0,t),  ASEDsg, (2,,t') = AR (2,1) — A% (2,1).

The identification result in Theorem 3.1 leads to the following estimator for the LADE:

ADEYg, ()

LADB, (1) = ADEDg, (1)

Remark 4.1 (Unbiased estimation of ADEs and ASEs). The proposed estimators may have finite sample bias
due to the estimation of pg, (z,t). Meanwhile, in an experimental situation where pg, (z,t) can be directly
computed from the known distribution of Z, we can achieve unbiased estimation of ADEs and ASEs. Then, we

can estimate ﬂgn (z,t) and [Lgn (z, 1) respectively by

§:‘Y1{Z 2, Ty =t} D

D;1{Z, = =1t
S Mo AT
1ESh n

fg (z,1)
fis, (51) = 1 = n| e t)
1€Sh

without biases.
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4.2 Asymptotic properties

In this section, we prove the consistency and asymptotic normality of the proposed estimators. In the next
two assumptions, we require the potential outcome y;(z) and the generalized propensity score pg, (z,t) to be

uniformly bounded by some constants.

Assumption 4.2 (Bounded outcome). There exists a constant ¢ such that |y;(z)| < § < oo for all ¢ € S, and
z € Z,.

Assumption 4.3 (Overlap). There exist constants p and p such that pg, (z,t) € [p,p] = (0,1) forall z € {0, 1}
andte T.

These requirements are popular in the literature but restrict the DGP. In particular, Assumption 4.3 depends
on the specification of IEM T, the choice of sub-population .S,,, the distribution of Z, and the structure of
network A. For example, whenT; = 1{>},,; A;;Z; > O} and S, = {i € Ny, : 3]

is violated if every unit in S, has at least one direct neighborhood with Z; = 1.

i Aij = 0}, this assumption

The next assumption calls for some additional notations. Denote the path distance (defined on the whole
population N,,) between units ¢ and j as £4(i,7).* For a non-negative integer s > 0, let Na(i,s) := {j €
Ny, : La(7,7) < s} be the set of units within s distance from unit 7; namely, unit i’s s-neighborhood. Note that
i€ Na(i,s)forall s > 0. We write the sub-vector of z € Z,, restricted on Na (4, 5) as 2, (i.s) = (2j)jeNa(i,s)-
Similarly, let Ay , i s) = (Aki)k,eN4(i,s) denote the sub-matrix of A restricted on N4 (i, s).

Assumption 4.4 (IEM). There exists a known positive integer K € N such that, for all : € S,,, A, A’ € A,,

and z,2' € Z,,
NA(i,K) = NA/(i,K), ANA(i,K) = A’]VA/(i,K)’ and ZNA(i,K) = Z;VA/(LK) — T(i,z,A) = T(i,zl,Al).

The assumption states that the instrumental exposure of each unit depends only on the unit’s own K-
neighborhood. This would be a mild requirement that most IEMs of practical interest should satisfy. For
instance, in our empirical example, we consider T; = 1{};,; A;;Z; > 0} and T; = 1{>},,; A;; D; > 0} for
which K = 1.

Next, we introduce the concept of ANI, which is recently proposed in Leung (2021). Let N§(i,s) =

1

N, \Na(i, s) denote the set of units who are more than distance s away from 7. Writing Z’ as an independent

copy of Z, we define Zi(s) :

Z' on N4 (i, s). Denote

= (ZN4(i,s)> Z;Vf‘(i,s)) by combining the sub-vector of Z on N4 (i, s) and that of

1€SH

f,5 1= max {mng v:(2) ~ yi(Z)], maxE|Dy(2) — Di<Z£S)>|} .
1€EOn

This quantity measures the intensity of interference with distant units that are at least s distance away. Note that

0,5 is bounded uniformly in n and s > 0 by Assumption 4.2.

Assumption 4.5 (ANI). sup,,cy 0n s — 0as s — c0.

4 A path between ¢ and j is a sequence of links Ay, xy = Agoky = -+ = Ak, 1k, = 1, where k1 = ¢ and k,,, = j. The length
of this path is m — 1. The path distance between ¢ and j is the length of the shortest path between them. As convention, we define the
path distance between ¢ and j as c0 when no path exists and 0 if ¢ = j.
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The ANI assumption says that spillover effects from units that are sufficiently far away should be sufficiently
small. In particular, those not connected with unit i (i.e., j’s with £ 4 (7, j) = c0) do not affect the outcome and
treatment response of ¢. Thus, assuming ANI would be reasonable in practical situations where only nearby
people can affect one’s decision-making. Note that ANI is much weaker than the commonly used assumption of
group-wise interference such that 6,, i = 0 for some K, in that it allows interaction with units at any distance
as in Example 2.3.

Let S (i,s) == {j € Sn : £a(i,j) = s} be the subset of S,, that are exactly at distance s from unit
i € Sy. We denote its k-th sample moment as Mgn (s;k) = |Su| 71X 159 (i, 5)|F. When k = 1, we write
Mgn(s) = Mgn(s; 1). Further, define

i€Sn

On.s = 4.2)

)

~ {en,[s/ﬂ for s > 2maX{K, 1}

1 otherwise

where |- | indicates the floor function.

Assumption 4.6 (Weak dependence 1).
(i) maxj<s<ok Mgn(s) = O(1), where K is as given in Assumption 4.4.
(if) [Sal ™" 2571 M§, ()05 = o(1).

Assumption 4.6(i) rules out that there are a non-negligible proportion of units whose 2 K neighborhoods in
Sy, grow to infinite as n increases. For example, this assumption is violated if the network is a complete graph.
Assumption 4.6(ii) is analogous to Assumption 5 of Leung (2021) and Assumption 3.2 of Kojevnikov et al.
(2021). This assumption restricts the rate of convergence of §n7s to zero as s — o0. For example, consider a
ring network where every unit connects only to the two adjacent units. In this case, we can see that M, gn (s) <2
for all s, and Assumption 4.6(ii) is reduced to the condition |S,,|~* 22;11 §n7s = o(1).

The following theorem establishes the consistency of the proposed estimators. We omit its proof because it

is straightforward from Lemma B.2.

Theorem 4.1. Suppose that Assumptions 4.1 — 4.6 hold. Then, if |.S,,| — oo, we have

(i) ADEYg, (t) — ADEYg, (t) 50,

(i) ADEDg, (t) — ADEDg, () 5 0.
Additionally, if Assumptions 3.1-3.4 hold, we have
(i) LADEg, (t) — LADEg, (t) 5 0.

Remark 4.2 (Rate of convergence). In view of the proof of Lemma B.2, we can find that the convergence rates

of the proposed estimators are determined by the convergence rate given in Assumption 4.6(ii). In particular,
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4/ |Sn|-consistency can be achieved if Assumption 4.6(ii) is strengthened to

EMS )0n.s = O(1). (4.3)

Next, we investigate the asymptotic distributions of our estimators. For each ¢ € .5,,, let

e 7Y D =D
VADEY _ Y ps, (1,1) z Msn(ovt)W1—27 VADED _ D Nsn(l’t)wz+ /~‘Sn(0’t)VV1—Z7

VLADE _ 1 ADEY _ ADEYg, (t) 17ADED
ADEDg, (t) [ADEDg, (£)]* ’

where

wY .:Y[l{Zizl,n:t} B 1{Z; = 0,T; = t}
=Y : |

' psn(lat) pSn(Oat
WP . D. [1{ZZ- =1LTi=t} 1Z=0T= t}] (4.4)
! ’ psn(]‘7t) psn(07 t) ’

WZ =12 =1T,=t}, W'Z2:=1{Z =0T, =t}.

)

In the proof of the theorem presented below, we will show that the asymptotic distribution of ADEY s, (1) —
ADEY g, (t) can be obtained by that of |S,,| ™' >},cq (VAPEY _E[VAPEY]) (see (A.2)). Similar results hold

for the other cases. Let

(O’?DEY)2 := Var

Z ADEY] (USADED)2 — Var

\% |S 1€Sh !

2 VLADE

P

Note that to achieve /|.S,, |-consistent estimation, these variances are to be bounded.

\/‘T ) ADED]

(UI“.;ADE)2 := Var

n

To derive the asymptotic distributions, we employ the central limit theorem (CLT) for )-weakly dependent
processes in Kojevnikov er al. (2021) (see Definition B.1 for the notion of i-weak dependence). Under
Assumptions 4.1-4.5, for each V; = VZ-ADEY, ViADED, or ViLADE, we show that {V;}es, is a 1-weakly
dependent process with the dependence coefficients {§n s}s>0. Then, we can apply their CLT to our context if

we introduce additional restrictions on the network structure. Let S (7, s) :== {j € Sp, : £a(4,j) < s} and

Ag, (s,m; k) = > max [Sa(i,m)\Sa(j,s — 1),

IS | &5, 7eSa i)

where we take Sa(j,s — 1) = @ if s = 0. This is the k-th sample moment of the maximum number (over j’s

at distance s from ¢) of units who are within distance m from ¢ but at least distance s apart from j. In general,
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Ag, (s, m; k) increases as m becomes larger, but decreases to zero as s grows. In addition, we define

cs, (s,m; k) = infl[ASn(37m; ka)]é {Mgn (s- o )} .
a>

"a—1

This is a measure of the denseness of the network, which plays an important role in establishing the CLT for

1p-weakly dependent processes.

Assumption 4.7 (Weak dependence 2). Foreach og, = JSADEY, JSAPED, and UlngE, there exist some positive

n

sequence m,, — o0 and a constant 0 < ¢ < 1 such that for each k € {1, 2}

n—1
s 1 N—
O g 2 os s mai L =0
n n s=0
k/2
(i) %93&5” — 0.

USn

This assumption corresponds to Assumption 3.4 of Kojevnikov e al. (2021).> Note that the assumption re-
stricts not only the network structure but also our choice of sub-population S,,. In particular, when o, is bounded
by zero and infinity uniformly in 72, Assumption 4.7 can be reduced to (i) | S| ~*/2 3" cs,, (5, 3 k)é};; —0
and (ii) |S,[*/201 55 — 0.

The following theorem shows that the proposed estimators are asymptotically normal.

Theorem 4.2. Suppose that Assumptions 4.1 — 4.7 hold. Then, if |.S,,| — o0, we have

/190] (A’Dﬁsn (t) — ADEYg, (t))

: d
% Normal(0, 1),
(i) U?EEY ormal(0, 1)
NI (AT)E)Sn (t) — ADEDSn(t)) .
ii — N 1(0,1),
(ii) 7 ADED ormal(0, 1)

provided that (¢5PFY)~1 = O(1) and (a?}?ED)_I = O(1). Additionally, if Assumptions 3.1-3.4 hold, we

n

have

V18] (LADEs, (1) — LADE, (1))

d
(iii) LADE — Normal(0, 1),
Shn
provided that
! APy
O(1), Siog = o) ——— = o(1). 4.5)

|Snlog’ |Sulog:

5 Note that Assumption 4.7 is weaker than Assumption 3.4 of Kojevnikov e al. (2021). This comes from the following two facts.
First, the i)-weak dependent processes considered here are uniformly bounded by Assumptions 4.2 and 4.3, while Kojevnikov er al.
(2021) only assume the existence of 4 + € moments of them. Second, they consider a more general form of i-function than ours. See
Assumption 2.1 of their paper and Lemma B.3.
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The conditions in (4.5) are fairly mild, which are satisfied especially when the estimators are +/|S,|-
consistent. Nonetheless, it should be noted that Theorem 4.2 does not rule out the possibility that the estimators

exhibit slower convergence rates.

Remark 4.3 (Constant IEM). Note that Assumption 4.4 does not exclude the case where the IEM is a constant
function (so that S, = N,,). Therefore, the results in Theorems 4.1 and 4.2 can be applied to this case as well.
This means that, under the assumptions made, if we are interested only in the direct effect of own IV, we can

simply ignore the others IV in the estimation. Similar results can be found in Sévje er al. (2021).
4.3 Statistical inference

4.3.1 Network HAC variance estimator

In this subsection, we develop the network HAC estimator and prove its asymptotic property. Under Assumption

4.5, we can see that

1
(a?DEY) m Z Z Cov VADEY VADEY] 1{la(i,j) <n—1},

i1€Sp, JESH
and analogous equalities hold for (o g“DED) and (o LADE) . Then, the infeasible (oracle) network HAC estimator
of (o ADEY) is given by
1
B =157 2 Z VAPEY — B[VAPEY)(VAPEY — B[VAPEY)1{EA (i ) < bl
1€Sy jESN

where b,, > 0 is a bandwidth parameter that grows as n — 00. This estimator is infeasible because both V;ADEY

and E[VZADEY] are unobservable to us. For constructing feasible variance estimators, we compute

Y ~Y Y ~Y
PADEY wY _ fs,(1L1) 7 MSn(O’t)Wlej {ADED ._ WD /‘Sn<17t)Wz+/‘Sn(0’t)W1fz7

bobs (L) Bs,(0,8) ps.(Lt) " 7 P, (0.8)
[ LADE ._ 1 JADEY _ ADEYs, (1) J/ADED
! ADEDg, (¢) [ADEDg, ()]
where
Wiy — Y, [I{ZZ‘AI 1,7, = t} B I{ZiAZ 0,7; = t}] ’
psn(17t> psn(07t)
WP - D, [I{Z@-j LTi=th 12z =0T = t}] ‘

Note that the sample mean of each of ‘Z-ADEY, XZADED, and TA/iLADE is zero. Then, the feasible network HAC

estimators are given by

G ?DEY o 57 Z Z ViADEYVjADEYl{gA(ZJ) < bp},
S jESn



1
(A?DED) |57 Z Z VADEDVADED]_{E (Z ]) <b }
1€Sn
1
G = o 3 Z VEAPEVEAPEL{L4 (i, /) < b}
1€Sp jeSn

Recall that S4 (i, s) denotes the subset of \S,, composed of units within s distance from unit 7. We write its

k-th sample moment as Mg, (s, k) := |Sn|™' Y,cq [Sa(i, s)|*. Further, define
T (5,00) = 11,4, s 1) € S5 La(i, ) = 5,a(0,k) < oy a4, 1) < bu).

Assumption 4.8 (Weak dependence 3).

(i) There exists some 0 < ¢ < 1 such that 3"} Mgn(s)g,l;; = 0(1) and Y, |an(s,bn)|§,1l:,;E =
o(|Sul?).

(ii) Mg, (b,, k) = o(|Sp|*/?) for each k € {1,2}.

This assumption restricts both the network structure and the rate of divergence of b,, in a similar manner to
Assumption 7 of Leung (2021) and Assumption 4.1 of Kojevnikov er al. (2021). The first part of Assumption
4.8(i) strengthens Assumption 4.6(ii) and ensures \/@ -consistency of our estimators (see Remark 4.2). The
second part of Assumption 4.8(i) corresponds to Assumption 4.1(iii) of Kojevnikov et al. (2021). Assumption
4.8(ii) is the same as Assumption 7(b)—(c) of Leung (2021). Under these conditions, we can derive the

probability limits of the infeasible oracle variance estimators, and evaluate the stochastic errors caused by

replacing unobserved VAPEY VADED and VLADE with their estimators V;APEY, VAPED [apd |V LADE,

Let

Z Z VADEY] [VADEY]]_{EA(Z ]) <b }7
1€Sn jESK

B?EED — SL Z Z VADED] [VADED]].{E (’L ]) by, }
1€Sn j€Sn
2
1€Sn

3 EIVIAPPEVEIAPP LA, ) < b
JESK

Theorem 4.3. Suppose that Assumptions 4.1 — 4.5 and 4.8 hold. Then, if |.S,,| — oo and b,, — o0, we have

@ (657%Y)? = (0g")? + BGTHY +op(1),

@) (GAPPP)R = (4PPP)2 + BYPEP + op(1).
Additionally, if Assumptions 3.1-3.4 hold, we have

(i) (64*PF)?2 = (0§ APE)2 + BEAPE 4 op(1).

20



In the proof, we show that

(BAPPY)? = (FAPPY)? + BAPPY + op(1),

n

is consistent for (UQ?EY)Q

where the infeasible oracle estimator (GSAPEYP . There is an asymptotic bias term

Bg}?EY due to the fact that we cannot estimate the heterogeneous mean E[VZADEY]. It is well known in
the design-based uncertainty framework that heterogeneous means cause standard variance estimators to have

asymptotic biases (cf. Imbens and Rubin, 2015).

4.3.2 Wild bootstrap

Alternatively to the HAC estimator, we can consider using a network-dependent bootstrap method. Here, we
particularly focus on Kojevnikov’s (2021) wild bootstrap approach.
For exposition, we focus only on constructing a confidence interval for ADEY g (¢). The following

procedure can be applied to the other parameters as well. As shown in (A.2) in Appendix A, we have

V/15n] (Aﬁﬁsn(t) — ADEYg (t ) _ F ST VADEY | o (1)

€Sy

(Note that |S,| =12 Y, g E[V;APEY] = 0.) Thus, ifitis possible to simulate the distribution of | S,| /% 3}, g VAPEY,

1€Sn
we can construct an asymptotically valid confidence interval for ADEY g, (¢). To this end, noting that the sample

mean of V-ADEY over S, is zero, we construct a bootstrap counterpart V*’ADEY of VADEY in the following

procedure: V. ADEY VADEYR“ where R; is the i-th element of the |S,,| x 1 vector [Qsg, (b,)]/%Cs,, with

|SA(ia bn) N SA(j, bn)|>
an bn = < )
( ) Msn (bn, 1) jESn

(s, is an |Sy| x 1 vector of random variables drawn from Normal(0, /|s,|) independently of the data, and
by, is a bandwidth parameter. Then, by repeatedly drawing (g, many times, we can obtain the distribution of
|Sn|™ 1/2 Dic s, V* ADEY ¢ onditional on the observed data, which serves as an approximation of the distribution
of |Sn| 2 3cs. VAPEY. An intuition for the (first-order) validity of this bootstrap method is as follows.
#,ADEY

Since the conditional expectation of V™

i€Sn

given the observed data is zero, we have

Z V* LADEY

\% ‘S 1E€SH

Thus, this is a version of the HAC estimator with kernel Qg,, (by,). For more details, see Kojevnikov (2021).

data] = = > Y VAPEYVAPEY[Og (b,)]s

| | €Sy, JESK
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5 Numerical Illustrations

5.1 Monte Carlo simulation

In this subsection, we investigate the finite sample properties of our methods using a set of Monte Carlo

experiments. The following two DGPs are considered:
DGP 1: Y, = By + P1iD;

K
D; =1 {’YOz‘ +MZi + 72 Z AZ(-]- '2; > 0}
J#i
where [y, (14, and 7y; are drawn from Normal(1,1), Normal(1,1), and Normal(—2,1), respectively,
(m,72) = (1.5,0.5), and Z;’s are IID Bernoulli(0.4).

DGP2: Y; = fo; + fuDi+ B2 Y ALVD;
Jj#i
D; = 1{y0i + 11 Z; = 0}

where [oi, [1i, and 7o; are drawn from Normal(1,1), Normal(1, 1), and Normal(—1.5,1), respectively,

(B2,71) = (0.5,1.5), and Z;’s are IID Bernoulli(0.4). The individual-specific coefficients are drawn only
(K)

once, and they are fixed throughout the simulations. Here, A; ;  is a ring-shape network where individuals

interact with their K -nearest neighbors:

A(.K): 1 if min{li —j|,li—j+n|,li—j—n|} <K
.
! 0 otherwise

For both DGPs, we consider two cases K € {2, 3}. For the specification of the IEM, we consider two versions

for each DGP in which the one is a correctly specified IEM and the other is misspeficied:

DGP1: CorrectIEM T; =3 ., Az(]K ) Z;
Incorrect IEM T} = 3 ., AS’) Z

DGP2: CorrectIEM T, =3, AEJK) Dj =Y., Aﬁf)l (0 + 12 > 0)
Incorrect IEM T = 3. ; AS’)DJ' - AE;)l )

The forms of 1P (z,t) and p) (2,t) under correct IEMs are straightforward. For DGP 1, when the IEM is
) AZ(;-()Z]- =T+ Z#i(A(K) - A(D)Zj and the second term on the right-hand

misspecified, noting that ) ij ij
side is distributed as Binomial(2K — 2,0.4), we have

pi (2,t) = Boi + i Pr (E(K) > —(y0i + 112 + 7215)/72) ,
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where Z() ~ Binomial(2K — 2,0.4). Similarly, for DGP 2, we have under the incorrect IEM that

pi (2,t) = Boi + Bl {n0i + 1z = 0} + Pat + B Z(Af-f) - AS)) Pr(Z = —v;/m),
J#i
where Pr (Z > —0j/m) = H{—0;/m < 0} + 0.4 1{0 < —y0;/71 < 1}.

The data are generated for two sample sizes n € {500, 1000}. Note that in our DGPs, all individuals have
the same network structure and the same distribution of 7;. Thus, we use the whole sample V,, as .5,,. For each
setup, we estimate (ADEY y, (2),LADEy, (2)) in DGP 1 and (ADEY y, (1), LADEy;, (1)) in DGP 2 using the
estimators introduced in Section 4. The performance of the estimators is measured in terms of the bias and the
root mean squared error (RMSE) based on 1,000 Monte Carlo repetitions.

The results are summarized in Table 1. We can find that our estimators work satisfactorily well overall
irrespective of whether the IEM is correctly- or mis-specified. Although our estimators are not unbiased for
the finite sample as we have stated in Remark 4.1, the biases are sufficiently small in all setups. The RMSE
values for the LADE parameter are larger than that of ADEY. This is because the estimation of LADE involves
the estimation of ADED (i.e., the average probability of compliance conditional on 7; = ¢). Note that the
estimation accuracy of ADED and the size of the compliers depend largely on the specification of the IEM T°
and the choice of value ¢. Depending on these factors, especially for small n, ADED may be estimated to be

zero, resulting in the failure of LADE estimation.

Table 1: Bias and RMSE

Correct IEM Incorrect IEM
ADEY LADE ADEY LADE
DGP K n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 2 500 | -0.0008 0.1995 -0.0034 0.3410 | -0.0103 0.3184 -0.0252 0.6099
1000 | 0.0021 0.1456 -0.0005 0.2554 | 0.0046 0.2165 0.0054 0.3892
3 500 | -0.0034 0.2002 -0.0080 0.3460 | -0.0118 0.3212 -0.0420 0.8275
1000 | -0.0044 0.1511 -0.0107 0.2694 | 0.0028 0.2227 0.0076 0.4697
2 2 500 | 0.0055 0.1699 0.0071 0.3528 | 0.0001 0.1672 -0.0052 0.3449
1000 | -0.0065 0.1212 -0.0221 0.2754 | -0.0008 0.1208 -0.0031 0.2709
3 500 | 0.0106 0.1785 0.0307 0.3742 | -0.0010 0.1708 -0.0078 0.3524
1000 | 0.0059 0.1378 -0.0045 0.3000 | -0.0021 0.1230 -0.0060 0.2768

We next examine the performance of the HAC estimator and the wild bootstrap approach introduced in
subsections 4.3.1 and 4.3.2, respectively. The DGPs and the target parameters considered are the same as above.
For the ADEY and LADE parameters in each setup, we compute the coverage rate of the 95% confidence interval
obtained based on these two approaches. The bandwidth is chosen from b,, € { K, 2K} for both approaches.

The results are summarized in Table 2. Overall, we can see that the empirical coverage ratios are reasonably
close to the nominal 95% level for both estimators. Given that the estimators have non-negligible biases, the
above results indicate that the magnitude of the bias is not severe. For some specific designs and parameters
(such as ADEY in DGP 1 under the incorrect IEM), the confidence intervals tend to be narrower than the

nominal level, but it seems possible to correct the size distortion by increasing the sample size.
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Table 2: Coverage ratio of the 95% CI

Correct IEM Incorrect IEM
ADEY LADE ADEY LADE
DGP K n b, | HAC Bootstrap HAC Bootstrap | HAC Bootstrap HAC Bootstrap
1 2 500 20939 0.935 0.943 0.939 0.922 0.921 0.950 0.950
4 10.936 0.926 0.931 0.932 0.909 0.916 0.945 0.946
1000 2 | 0.945 0.946 0.954 0.950 0.952 0.951 0.952 0.948
4 10941 0.942 0.944 0.950 0.944 0.942 0.945 0.943
3 500 30935 0.938 0.942 0.945 0.916 0.912 0.940 0.939
6 | 0915 0.919 0.934 0.933 0.898 0.902 0.918 0.926
1000 3 | 0.945 0.936 0.943 0.932 0.934 0.934 0.950 0.951
6 | 0.932 0.925 0.934 0.922 0.937 0.931 0.945 0.943
2 2 500 2 |0.954 0.955 0.951 0.949 0.947 0.940 0.946 0.945
4 | 0951 0.953 0.947 0.941 0.931 0.937 0.936 0.933
1000 2 | 0.953 0.949 0.952 0.951 0.954 0.948 0.956 0.951
4 10949 0.949 0.950 0.946 0.946 0.943 0.951 0.949
3 500 3 ]0.938 0.935 0.940 0.933 0.946 0.946 0.942 0.941
6 | 0918 0.926 0.912 0.920 0.933 0.937 0.930 0.939
1000 3 | 0.929 0.933 0.935 0.936 0.946 0.942 0.955 0.959
6 | 0.929 0.924 0.932 0.932 0.942 0.940 0.956 0.944

5.2 Empirical application

We apply the proposed methods to the data from Paluck er al.’s (2016) field experiment on anti-conflict
intervention programs at American middle schools. During the 2012-2013 school year, the research team
organized intervention meetings to help students identify common conflict behaviors in their schools and
instruct them on behavioral strategies to mitigate conflicts. The purpose of the experiment was to examine how
the intervention program affects participants’ behavior and whether the students’ social networks influence the
climate of conflict in schools.

The data include n = 24,471 students in 56 public middle schools in the state of New Jersey. Half of these
schools were randomly selected to host the anti-conflict intervention program. Within each selected school, a
group of students (called seed-eligible students) were non-randomly selected by the research team, and half of
these students (called seed students or treatment-eligible students) were randomly invited to join the program.
The experimental design was one-sided noncompliance where meeting attendance was not compulsory and the
students without an invitation were not able to attend. Thus, there are only compliers and never-takers in this
empirical analysis, and joining in the intervention program means that the student is a complier.

Before starting the intervention program, the research team measured the students’ social networks by asking
them to nominate up to 10 students in their school with whom they had spent time in person or online in the past
few weeks. We construct a symmetric adjacency matrix A by treating the pair of students as friends if either
student nominated the other, as in Aronow and Samii (2017).

In our analysis, Z; € {0, 1} indicates whether student i received an invitation to the intervention program (i.e.,
whether student i was a seed student), and D; € {0, 1} represents the participation in the intervention program

(i.e., whether student ¢ attended at least one intervention meeting). Let Y; € {0, 1} be a (self-reported) indicator
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Table 3: Descriptive statistics for seed-eligible students

Treatment eligibility
Overall Z; =0 Z; =1

Treatment

D;=0 27357(79%) 1,491 (100%) 866 (58%)

D; =1 626 (21%) 0 (0%) 626 (42%)
Outcome

Y, =0 2,684 (90%) 1,392 (93%) 1,292 (87%)

Yi=1 299 (10%) 99 (7%) 200 (13%)
IEM1

T1; =0 1,435 (48%) 716 (48%) 719 (48%)

Ty, =1 1,548 (52%) 775 (52%) 773 (52%)
IEM2

Ty, =0 2,277 (76%) 1,144 (77%) 1,133 (76%)

Ty =1 706 (24%) 347 (23%) 359 (24%)

for the wearing of a program wristband given by the treated students as a reward to students for engaging in
friendly or conflict-mitigating behaviors. This is regarded as a proxy variable of student’s willingness to endorse
anti-conflict norms and behaviors, and the same outcome variable is used in Aronow and Samii (2017) and Leung
(2021). We consider the following two IEMs: Ty; = 1{};,; A;;Z; > 0} and Ty; = 1{>};; A;;D; > 0},
respectively labeled as “IEM1” and “IEM2”. In other words, 7%; and T5; indicate whether student ¢ has at
least one treated and treatment-eligible friend, respectively. In line with Assumption 4.1(ii), we focus on the

following sub-populations:
Sn(0) = {i € Ny, : i is a seed-eligible student who has J seed-eligible friend(s)} for d € {1,2,3}.

The descriptive statistics for the seed-eligible students are summarized in Table 3. We can see that all
students without invitation did not actually join the intervention program, implying that the monotonicity
condition in Assumption 3.3 holds. It is also interesting that not just IEM1 but the distribution of IEM2 is also
insensitive to the student’s own invitation status. This would suggest that one’s treatment eligibility does not
have substantial impacts on the others’ treatment choices. Indeed, we found that the conditional distribution of
> ot A;;Dj given Z; = 1 is almost identical to that given Z; = 0.

For each realization of both IEMs, Tables 4 and 5 present the ITT estimates with the standard errors
based on the network HAC estimation using bandwidth b,, € {0, 1,2, 3}.¢ Overall, receiving an invitation has
a statistically significant positive effect on the probability of wearing a wristband, which is consistent with
previous findings (e.g., Aronow and Samii, 2017; Leung, 2021). For example, the estimate of ADEY g, (1)(0)
for IEM1 indicates that receiving an invitation leads to about a six percentage point increase in the probability of
wearing a wristband for the seed-eligible students whose seed-eligible friend is not treatment-eligible. Similarly,

the ADED estimates indicate positive effects of receiving an invitation on the probability of participation, which

6 The wild bootstrap produced similar standard errors to those reported here. To save space, we omit the results from the wild
bootstrap.

25



supports the IV relevance condition in Assumption 3.2. Remarkably, ADEY g, (5)(1) is substantially larger
than ADEY g, (5)(0) for IEM2, implying that having at least one treated friend boosts the direct effect. This is
reasonable because the wristband is given by the program participants.

The estimates of LADE and their standard errors based on the HAC estimation are also reported in Tables
4 and 5. For example, the estimate of LADEg, (1) (1) based on IEMI1 indicates a twenty-four percentage point
increase in the probability of wearing a wristband for the seed-eligible students who have a treatment-eligible
friend. Interestingly, the LADE estimates tend to be larger than the corresponding ITT estimates, implying that
the ITT analysis might underestimate the effect of the anti-conflict intervention program.

Nonetheless, we should be cautious in interpreting the LADE estimates because the interpretation of LADE
crucially depends on which sufficient condition we consider for Assumption 3.4. Due to the nature of the
anti-conflict intervention program, it is plausible to imagine that the never-takers (i.e., those who never join
the intervention program irrespective of their invitation status) were unable to affect the participation of others.
Thus, the third sufficient condition (3.3) for Assumption 3.4 is plausible here, and LADE aggregates the ADE
of participation in the intervention program and the ASE caused by changing the student’s own treatment
eligibility. However, since one’s treatment eligibility seems to have little impact on the others’ treatment choice

as observed above, LADE should mainly account for the ADE of the intervention program.

6 Conclusion

In this study, we developed a causal inference method that simultaneously addresses cross-unit interference
within a social network and the issue of noncompliance with the assigned treatment. The key feature of
our approach is to admit the possibility of misspecification of IEM, which is a function of IVs that enables
summarizing the spillover effects into a low-dimensional variable. We conducted the identification analysis
for the ITT effect and the ADE for compliers. Here, we mainly discussed a causal interpretation for the ADE
parameter and the identification result for the LADE parameter. Based on the identification results, we proposed
nonparametric procedures for estimating the treatment parameters and investigated their asymptotic properties
based on the ANI framework originally introduced by Leung (2021). We also considered the statistical inference
methods based on the network HAC estimation and the wild bootstrap. The empirical application to the data of
Paluck er al. (2016) highlighted the usefulness of our method.

Several important research topics related to our study remain to be investigated. First, it would be of interest
to examine whether some treatment parameters can be recovered in the case where some of our identification
conditions are violated. In that case, it would be difficult to achieve point identification of the treatment
parameters, and a promising approach in this direction would be to pursue a partial identification strategy (cf.
Manski, 2013). Second, we could extend our analysis to the situation in which the treatment and/or IV take
non-binary values. It is known in the absence of interference that the standard monotonicity condition does
not apply to a case with a discrete treatment or IV, and a careful analysis would be required for handling this
issue (cf. Heckman and Pinto, 2018). Finally, our asymptotic theory depends somewhat on the sparsity of the
network, and it may be worthwhile to investigate under what conditions it is possible (or impossible) to derive

similar results for dense networks.
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Table 4: Direct effects conditional on T7; = O or To; = 0

ADEYg, (0) ADEDg, (0) LADEg(0)
Shn |Sn|  bn Estimate  SE Estimate  SE Estimate ~ SE
(A) IEM1
Sp(1) 1006 0 0.063 0.027 0.423 0.031 0.150 0.060
1 0.027 0.031 0.060
2 0.028 0.041 0.064
3 0.030 0.062 0.063
Sp(2) 660 0 0.101 0.044 0.365 0.052 0.277 0.108
1 0.044 0.052 0.109
2 0.039 0.065 0.092
3 0.045 0.076 0.104
Sp(3) 341 0 —0.034 0.103 0.500 0.107 —0.068 0.209
1 0.104 0.107 0.211
2 0.106 0.116 0.215
3 0.106 0.124 0.215
(B) IEM2
Sp(1) 1006 0 0.039 0.019 0.299 0.023 0.131 0.060
1 0.019 0.024 0.060
2 0.020 0.034 0.062
3 0.022 0.054 0.067
Sp(2) 660 0 0.043 0.020 0.198 0.028 0.219 0.093
1 0.021 0.028 0.093
2 0.019 0.035 0.085
3 0.020 0.044 0.088
Sn(3) 341 0 —-0.012 0.025 0.130 0.032 —0.094 0.202
1 0.025 0.033 0.202
2 0.025 0.037 0.202
3 0.022 0.040 0.172
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Table 5: Direct effects conditional on T7; = 1 or Ty, = 1

ADEYg, (1) ADEDg_ (1) LADEg, (1)
Sh |Sh|  bn Estimate  SE Estimate ~ SE Estimate ~ SE
(A) IEM1
Sp(1) 1006 0O 0.102 0.028 0.423 0.031 0.240 0.062
1 0.029 0.034 0.061
2 0.028 0.045 0.060
3 0.028 0.061 0.052
Sp(2) 660 0 0.098 0.029 0.496 0.032 0.198 0.056
1 0.030 0.035 0.056
2 0.035 0.047 0.064
3 0.033 0.063 0.059
Sp(3) 341 0 0.022 0.034 0.400 0.040 0.054 0.083
1 0.035 0.047 0.085
2 0.038 0.057 0.093
3 0.037 0.070 0.091
(B) [EM2
Sp(1) 1006 0O 0.235 0.054 0.864 0.033 0.273 0.062
1 0.054 0.033 0.061
2 0.056 0.035 0.065
3 0.052 0.044 0.058
Sp(2) 660 0O 0.185 0.052 0.897 0.027 0.206 0.058
1 0.052 0.027 0.057
2 0.058 0.028 0.064
3 0.052 0.028 0.057
Sp(3) 341 0 0.075 0.069 0.891 0.039 0.084 0.077
1 0.071 0.039 0.079
2 0.081 0.038 0.091
3 0.081 0.041 0.091
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A Appendix: Proofs

A.1 Proof of Proposition 3.1

We prove only the results for the outcome variable, and those for the treatment receipt can be shown in the same

manner. We first note that the observed outcome can be written as
1
Y; = Z Z WZi=2,Z_; = z_i}yi(zi, z_;).
z;=02z_,e{0,1}n—1

We then observe that
p (z,t) = Z yi(z,z_)Pr[Z_; = z_; | Z; = 2,T; = t]
Z_,L'E{O,l}"71

= Z yi(z,z_i)m(z—i,t)7

z,ie{O,l}"—l

(A.1)
where the second line follows from Assumption 3.1. This equality implies the results for ADEY g, (¢) and
ASEYg, (2,t,t'). ]

A.2 Proof of Theorem 3.1

Observe that D; = Zz —0 20z sefonyn— WZi = 2, Z_; = z_;}D;(z;, 2—;). By Assumption 3.1, it holds that

:uiD(Zat) = Z DZ(Zv z—i)wi(z—iat)
Z_iE{O,l}"71
= > UDi(l,2-) # Di(0,2-3)}Di(z, z—i)mi(z-i, 1)
Z,,L'E{O,l}"71
+ Z U{D;i(1,2—;) = Di(0,2-)} Di(z, 2—;)mi(z—i, 1).
z,iE{O,l}"_l

Thus, Assumption 3.3 implies that

ADEDS;, (1) = o= 33 [1P(1.1) = (0.
nlies,
;L Z Z l{Di(l,Zfi) #* Di(O,Z,i)}{Di(l,Zfi) - Di(oaz*l’)}ﬂ-i(zfi’t)

ESnZ ZE{O 1}” 1

+ — Z 2 1{Di(1,z_i) = Di(O,Z_i)}{Di(l,z_i) - Di(O,z_Z-)}m(z_i,t)

n 1€Sn z_ ZG{O 1}"’ 1

Z Z Ci(z,i)m(z,i,t).

Snl i€Sn z_;€{0,1}7—1
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In the same manner, we can show that

‘ -

ADEYg, (t) = DUl (1) = pd (0,1)]

| €Sy

o Z D il z) = pi0, 2 )} 1{Di(1, 2) # Di(0,z_)}mi(z—i, )

n ZESnZ ZG{O 1}"’ 1

Z Z {yi(1,2—i) = 4i(0, z—) }1{D;(1, 2—;) = D;i(0, z—;) }mi(2—i, )

1€Sh z_ ZE{O 1}n—1

|S | DD {wilzm) = wi0, 2-0))Ci(z)mi(zi, 1),

1€Sn z_ ZG{O 1}”71

@

CQ

\n\

where the last line follows from Assumptions 3.3 and 3.4. Combining these equalities with Assumption 3.2, we

obtain the desired result. O

A.3 Proof of Theorem 4.2

Proof of result (i). Observe that

~Y 2,
% (z,t) = ;%psn (2,1)
vY z’ ~
= Ji% (2,t) — gjn((z 2 [Ps, (2,t) — ps,, (2,1)]
=Y 2, R ~Y 2, _ =Y 2, R
~ ) = S s, (o) — s, (]~ P PR oy g et
oy ! — 1 ps, (z,t) — z
#1550 (s — iy ) s eot) — s, 0]
_ s, (2,t) 1
= Ji% (2,t) — m[psn(zaf) —ps,(z,0)] +op (M) ;

where the last equality holds from Lemmas B.1 and B.2 and Assumption 4.3. Using this, we have

ADEYg, (t) — ADEYg, (t)
= 7%, (1,t) — fig, (0,1) — 1§, (1, 1) + g, (0, 1)

-Y -Y
-y fg (1,t) i (0,t)
= ik, (1,t) — Ji§, (0,1) — M[psnu’t) —ps, (1,1)] + pj“éOt;[psnm,w — s, (0,1)]
1

—uﬁn(l,t>+u§n(0,t>+0p< 3 ‘>
_ 1 S —Ew] —L"(l’t)[W.Z—EWZ] + 75,(0:1) )[Wl Z_EWM?]| +op L

S &\ T ps, Lt T ps, (0.8) : 15,

1 1
- V;ADEY . ‘/;ADEY + - )
(A.2)
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By Lemma B 4, { VADEY},GS” is 1)-weakly dependent with the dependence coefficients {5ns} s>0. Then, letting
GADEY |Sn |72 3 s, (VADEY _ E[VADEYY]) /a?j?EY, the same arguments as in the proofs of Lemmas

A.2 and A.3 of Kojevnikov er al. (2021) show that there exists a positive constant C' > 0 such that

1 = CHLEI.

ADEY _ Pl 1
sup |Pr (G ) ‘ <C Z S, [F/2( ADEY )24k 2 €5, (5, K)OS + (o ADEY)ken i
aeR k=1 s=0 TSn

where ® denotes the cumulative distribution function of Normal(0, 1), and m,, and ¢ are as given in Assumption
4.7. The right-hand side converges to zero by Assumption 4.7, implying that C??T]?EY A Normal(0,1). Thus,

we have

V]S (ADEYg, (t) — ADEYg, (t)) 1
( ADEY ) = Gé,? Y+ op —ADEY 4, Normal(0, 1),
O-Sn O-Sn

under the condition (o5PFY) 1 = O(1).
Proof of result (ii). Result (ii) can be shown in the same manner as in result (i).

Proof of result (iii). We can observe that

LADEg, (t) — LADEg, ()

1 e B B ADEY, (t) — B
= ADEDs, (i) [ADEYg, (t) — ADEYg, (¢)] @)Sn ({)ADEDs, (1) [ADEDg, (t) — ADEDg, (t)]
- mgm[msn () — ADEY, ()] - m[msn (t) — ADEDg, ()]
B ADEY, (t) ADEYs, () \ e
(AfE\DS ()ADEDg, (t) [ADEDg, (t)]2> [ADEDs, (t) — ADEDs, (¢)]

1 ADEY ADEY ADEYS (t) ADED ADED
—E S —E
|S B Z <ADEDS ()[V Vil = [ADEDg (¢)] 2LVi il

O_ADEY O.ADED ADED)
+0P<Sn |S'|Sn )-I-Op(( js‘ + op
1 LADE _ LADE ?DEY ADED ADED) 1
Sl & R o | P e Jror (s ) e\ i)

where the third line follows from Assumption 3.2 and results (i)—(ii). Here, ViLADE is uniformly bounded by
Assumptions 3.2, 4.2, and 4.3, and Lemma B.4 implies that {ViLADE}iesn is 1-weakly dependent with the
dependence coefficients {0, }s>0. Then, letting CNJIngE = |Sn| 72 Y, (VEAPE — E[VLADE]) /g LADE,

the same arguments as in the proof of result (i) show that LA Normal(0, 1). Thus, in conjunction with
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(4.5), we obtain

V18] (LADEs, (1) ~ LADE, (1)) N e A W R L A 1
af;ﬁDE — o P \/W LADE P \/m LADE op o—gﬁDE

4 Normal(0, 1).

A.4 Proof of Theorem 4.3

ADEY (those for O.ADED LADE

To save space, we prove only the result for o and og can be shown in the same

manner). It is easy to see that
~ADEY 2 ~ADEY 2 ADEY
(05, )" = (s, )"+ Bs

RS Z Z (VADEYVADEY VADEYVADEY> 1{la(i,7) < bp}

| "l eS8, jeSn (A3)
e Z D (VAPEY —B[VAPEY ) R[VAPEY|1{04 (i, j) < bn},
"l ieS, jeSn
where (o ?DEY) is the infeasible oracle estimator defined as

iE€Sh 36577

By Lemma B.4 and Assumptions 4.2, 4.3, and 4.8(i), Proposition 4.1 of Kojevnikov ef al. (2021) implies that
(5§?EY)2 = (aé‘?EY)Q + op(1). Thus, we obtain the desired result if the second and third lines of (A.3) are
asymptotically negligible.

For the second line of (A.3), observe that

Z Z (VADEYVADEY VADEYVADEY> 1{lA(i,j) < by}

|S |z€S JESH
\S | Z Z (VADEY VADEY) VADEYl{gA(Z ) < bn) (Ad)
€Sy, JESK
+’7 2 2 (VADEY VADEY) VADEYl{E (i,7) < bn}.
Sn i€Sn j€Sn

Since maxjeg, |17jADEY| = Op(1) and max;eg,, |1A/1-ADEY — VAPEY| = Op(|S,|~?) by Assumptions 4.2,
4.3, and 4.8(i) and Lemmas B.1 and B.2, we have

Z Z (VADEY VADEY) VADEYl{E (4,5) < bn)

1€Sy, JESH

Inl
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< O-ADEY >ADEY _ {,/ADEY
(im0 ) (e AP VAPV ) 2 37 3 100 ) < )

€Sy JESH
1

which is op(1) under Assumption 4.8(ii). Similarly, we can show that the second term of (A.4) is op(1). Thus
the second line of (A.3)is op(1).

To evaluate the third line of (A.3), let K, :

= ZjeSn ]E[V;‘ADEY] 1{£A (Za ])
inequality, we have

< b,}. Using the norm

Si Z VADEY _ p[ADEY]).
€Sy,
5T\ 1/2
< Si (‘/iADEY _E ViADEY)Enﬂ)
1/2
| g 2 Vel b g X CovlVATY VA
1€Sn | n| i€Sn jeSK\{i}

Noting that VAPEY is bounded by Assumptions 4.2 and 4.3, we have |S,,|~2 Dics, Var[VAPEY ]2

Ko . <
C|S,|~tMs, (bn,2) = o(1) by Assumption 4.8(ii). Further, we can see that

n,t

Z Z Cov VADEY VADEY]K,n iFonj

2
| €S J€Sn\{l}

S

1

! nl

Z D7) 1{ea(i,5) = s} Cov[VAPEY, VAPEY] | e, ] - | 5]
zeSn JESH

5 DTN D1l ) = s}{la(i k) < ba}1{La(5.1) < bn}

€Sy, JESH kESH IESH

2 |75, (5, bn) |0« = o(1),

where the second inequality follows from the fact that {V;APEY},_q is 1)-weakly dependent by Lemma B.4 and

the last line follows from the second part of Assumption 4.8(i). Thus, the third line of (A.3) is op(1) L]
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B Appendix: Lemmas

B.1 Lemmas for Theorem 4.1

Lemma B.1. Suppose that Assumptions 4.1, 4.4, and 4.6(i) hold. Then, we have

i)\Sn (Zat) —psn(Z,t) =Op (\/|157|>

forall z € {0,1} andt € T.
Proof. By Assumption 4.1(ii), E[pg, (z,t)] = ps, (z,t), and thus it suffices to show that Var[pg, (z,t)] =
O(]S,|1). Observe that

Var[ps, (z,t)] = Z Var[1{Z; = 2, T; = t}] +

1€Sh

DY Cov[l{Zi= 2Ty = t},1{Z; = 2,T; = t}]

i€Sn jeSn\{i}

—o(@) |22221{€A2j—s}Cov[l{Z—zT—t}l{Zszft}]

1€Sy JESH s=1

\5 S | nl2

O<|S |) | n|2 Z Z Zl{EA (4,7) —S}COV[l{Z i:t}al{ZjZZ,szt}L

1ESy JESH s=1

where the last equality follows from the fact that, for any i,j € S, such that £4(¢,7) > 2K, (Z;,T;) is
independent of (Z;,7T;) by Assumptions 4.1(i) and 4.4. By the Cauchy-Schwarz inequality, the second term
of the last line is bounded above by [S,,| ™' 2%, Mg (s) which is O(|S,|™!) by Assumption 4.6(i). This
completes the proof. 0

Lemma B.2. Suppose that Assumptions 4.1 — 4.6 hold. Then, we have

(1) /’Z}S'/n(za t) - ﬂ%’fn(zat) = OP(1)7
i) DE.(1) — B2 (2:1) = op(1),

as |S,| — oo, for all z € {0,1} and ¢t € T. Further, 4/|S,|-consistency is achieved if Assumption 4.6(ii) is
strengthened to (4.3).

Proof. We prove only the first result since the second one can be shown in the same way. Observe that

A% (z,t) = iy, (2,1) — [Bs, (2,t) = ps, (2,1)]

”3) ‘:(

fig, (2:1)
(

Sn Z’)

Ly 1
e+ 0n (),
V/ [5n]

by Lemma B.1 and Assumptions 4.2 and 4.3. Here, it is easy to see that E[ﬁgﬂ (z,t)] = ﬂgn (z,t). Further,
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letting QY = Y;1{Z; = 2,T; = t}/ps, (2,t), we can see that

Var [uSn(z t)] = | Z Var[QY] + |2 Z Z Cov[QY, ]
i€Sh Sul” 25, 7€Sn\{i}
—0<|51|> ZZS 23 1italid) = s} o) )

Using Assumptions 4.1-4.5, similar arguments to the proof of Theorem 2 of Leung (2021) can show that the
second term in the last line is bounded above by C|S,,| ! Z?;ll M gn (s)gn s for some positive constant C. Thus,
we obtain the desired result by Assumption 4.6(ii) or (4.3) and Chebyshev’s inequality. O

B.2 Lemmas for Theorem 4.2

For completeness, we define ¢-dependence in line with Definition 2.2 of Kojevnikov er al. (2021). For d € N,

let £, be the set of real-valued bounded Lipschitz functions on R¢:
={f R > R: |flo <0, Lip(f) < 0},

where | f| o = sup,era | f(z)| and Lip(f) indicates the Lipschitz constant of f (with respect to the Euclidean
norm). We write the distance between subsets H, H' < S, by {a(H, H') := min{la(i,j) : i € H,j € H'}.
For h,h' € N, denote the collection of pairs (H, H') whose sizes are h and h’', respectively, with distance at

least s as
Ps, (b}, s) = {(H,H') : H.H' < S, |H| = h,|H'| = I, La(H, H) > s).

For a generic random vector W, ; € RV, let W, p = (W, i)ier and W, gy = (W, )ichr.

Definition B.1 (¢-dependence). A triangular array {W), ;}ics,, is called ¢)-dependent, if for each n € N, there
exist a sequence of uniformly bounded constants {5n5} s>0 Wwith 5,170 = 1 and a collection of nonrandom
functions {1y, b} nren, Where ¥y, pr + Liy X Ly, — [0, 00), such that for all s > 0, (H, H') € Pg, (h, k', s),
f € Ly, and f" € Ly,

| CovLf (Wait)s £ (W, m)]| < n g (f 1)ns

The sequence {5,“5}3;0 is called the dependence coefficients of {W), ;}ics, . Further, if sup,,cy 5“ — 0 as
s — oo, we say that {W), ;}ics,, is ¥-weakly dependent.

Denote W; := (W)Y, WP W# W}~%), whose elements are as defined in (4.4). For a subset H — S,, with
|H| = h, we write W = (W,)ep.

Lemma B.3. Under Assumptions 4.1 — 4.5, the triangular array {W,};cs, is 1-weakly dependent with the
dependence coefficients {gn s}s=>0 defined by (4.2) and

Unae (F ') = Cllflaol oo + B oo Lin(f) + 2 flloo Lip(f)], VA €N, f € Lan, [ € Law,
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with some positive constant C.

Proof. Consider arbitrary n,h,h' € N, s > 0, (H,H') € Pg, (h,h';s), f € Lap, and [ € Lyp. Let
¢ = f(Wpg) and ¢ := f'(Wpy). Consider two independent copies of Z, say Z’ and Z”. For i € H and

j € H', define Z( ) = (ZNais)> vag(i,s))7 Z]('&C) = (ZNaGs): ZXCCA(]',S)% and

WYEO 760 ll{Zi — 1,736,259, 4) =} 1{Zi =0 T(z z9 A) - t}] |

. s, . 5,C
We similarly define WiD’(S’g), WjD’(S’O, WZ-Z’(S’S), WJZ’(S’C), Wilfz’(s’g) nd W1 2,(s,€) , and let

W/L'(Svg) = (WY?(Svg)’WiDV(Svg)’ Wizv(svg)’ Wil_Zv(Svs))’ W](—I'Svg) = (W'(Syg))ieHa 5(5) = f(WI(_;vg))’

(3 (2

WJ'(‘S?C) = (WJY7(S7C)’ WjDv(SvC)’ Wij(87<)’ le_Zv(&C))’ W](_IS/C) = (W'(&C))jEH'y C(S) = f/(WI(_IS;C))

Since f and f’ are bounded functions,

| Cov(&, Q)] = |Cov(, Q)| 1{s < 2max{K,1}} + | Cov(&, ()| - 1{s > 2max{K,1}}
< 2| floolf oo - 1{s < 2max{K,1}} + | Cov(&,¢)] - 1{s > 2max{K, 1}}.

For the second term, recall that £ 4 (H, H') > 2max{K, 1} when s > 2max{K, 1}. Then, denoting s’ = |s/2|,
Assumptions 4.1(i) and 4.4 imply that WJEIS %) s independent of WI({S,,’C). From this, we have

| Cov(£, Q) <[ Cov(§ — €, Q) +] Cov(£®), ¢ = ¢ + | Cov(¢), ¢
= | Cov(£ — £, Q) + | Cov(£H),¢ = ()|
<2 f |0 ElE — ] + 2 floE[¢ — ¢
< 2| Lip(f) E [Wi = W] + 2] fllo Lip(f) E [War — Wi 9

where || - | denotes the Euclidean norm. Here, by Assumption 4.4,

Z = 1,T(,Z,A) =t} 1{Z = 0,T(i,Z, A) = t})
s, (1,1) s, (0,1)

W =W = (yi(2) — (2] (
and

wP - wPE _py(z) - Dz

(2

UZ = 1L,T(,2,4) =t} 1{Z = 0,T(,Z,A) -t}
) ( ps,(L0) ps.(0.0) )

Further, it is easy to see that WZ-Z — WiZ’(SI’g) = 0and Wil_z — Wl.l_Z’(sl’f) = 0 by Assumption 4.4. Thus, by
Assumptions 4.2 and 4.3, E | Wy — (S/’g) | < Ch#,, ¢ for some positive constant C'. In the same way, we can

see that E [Wy — W(S ©) | < CWO,, ¢. In conjunction with Assumption 4.5, this completes the proof. O
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The next lemma is immediate from Lemma B.3 (cf. Lemma 2.1 of Kojevnikov er al., 2021). Let {¢;.i }ies,,

be a sequence of uniformly bounded nonrandom vectors in R*.

Lemma B.4. Under Assumptions 4.1 — 4.5, the triangular array {c,TmVVi}iesn is 1)-weakly dependent with the
dependence coefficients {gn’s}sgo defined by (4.2) and

Unge (f, 1) = Cllflol fllo + 21 f oo Lin(f) + W[ flo Lin(f)], VAW €N, f €L, f € Ly,

with some positive constant C'.

37



References

Abadie, A., Athey, S., Imbens, G.W., and Wooldridge, J.M., 2020. Sampling-based versus design-based
uncertainty in regression analysis, Econometrica, 88 (1), 265-296.

Angrist, J.D., Imbens, G.W., and Rubin, D.B., 1996. Identification of causal effects using instrumental variables,
Journal of the American Statistical Association, 91 (434), 444-455.

Aronow, P.M., Eckles, D., Samii, C., and Zonszein, S., 2021. Spillover effects in experimental data, Advances

in Experimental Political Science, 289-319.

Aronow, P.M. and Samii, C., 2017. Estimating average causal effects under general interference, with application

to a social network experiment, The Annals of Applied Statistics, 11 (4), 1912-1947.

Athey, S., Eckles, D., and Imbens, G.W., 2018. Exact p-values for network interference, Journal of the American
Statistical Association, 113 (521), 230-240.

Basse, G., Feller, A., and Toulis, P., 2019. Randomization tests of causal effects under interference, Biometrika,
106 (2), 487-494.

Bramoullé, Y., Djebbari, H., and Fortin, B., 2009. Identification of peer effects through social networks, Journal
of Econometrics, 150 (1), 41-55.

Chin, A., 2018. Central limit theorems via stein’s method for randomized experiments under interference, arXiv
preprint arXiv:1804.03105.

DiTraglia, F.J., Garcia-Jimeno, C., O’Keeffe-O’Donovan, R., and Sdnchez-Becerra, A., 2021. Identifying causal

effects in experiments with spillovers and non-compliance, arXiv preprint arXiv:2011.07051.

Dupas, P., 2014. Short-run subsidies and long-run adoption of new health products: Evidence from a field

experiment, Econometrica, 82 (1), 197-228.
Egami, N., 2021. Spillover effects in the presence of unobserved networks, Political Analysis, 29 (3), 287-316.
Fisher, R.A., 1935. The design of experiments, London: Oliver & Boyd.

Forastiere, L., Airoldi, E.M., and Mealli, F., 2021. Identification and estimation of treatment and interference
effects in observational studies on networks, Journal of the American Statistical Association, 116 (534),
901-918.

Halloran, M.E. and Hudgens, M.G., 2016. Dependent happenings: a recent methodological review, Current
Epidemiology Reports, 3 (4), 297-305.

Heckman, J.J. and Pinto, R., 2018. Unordered monotonicity, Econometrica, 86 (1), 1-35.

Hong, G. and Raudenbush, S.W., 2006. Evaluating kindergarten retention policy: A case study of causal
inference for multilevel observational data, Journal of the American Statistical Association, 101 (475),
901-910.

38



Hudgens, M.G. and Halloran, M.E., 2008. Toward causal inference with interference, Journal of the American
Statistical Association, 103 (482), 832-842.

Imai, K., Jiang, Z., and Malani, A., 2021. Causal inference with interference and noncompliance in two-stage

randomized experiments, Journal of the American Statistical Association, 116 (534), 632-644.

Imbens, G.W. and Angrist, J.D., 1994. Identification and estimation of local average treatment effects, Econo-
metrica, 62 (2), 467-475.

Imbens, G.W. and Rubin, D.B., 2015. Causal inference in statistics, social, and biomedical sciences, Cambridge

University Press.

Kang, H. and Imbens, G., 2016. Peer encouragement designs in causal inference with partial interference and
identification of local average network effects, arXiv preprint arXiv:1609.04464.

Kojevnikov, D., 2021. The bootstrap for network dependent processes, arXiv preprint arXiv:2101.12312.

Kojevnikov, D., Marmer, V., and Song, K., 2021. Limit theorems for network dependent random variables,
Journal of Econometrics, 222 (2), 882-908.

Leung, M.P., 2021. Causal inference under approximate neighborhood interference, Econometrica, forthcoming.

Li, X., Ding, P,, Lin, Q., Yang, D., and Liu, J.S., 2019. Randomization inference for peer effects, Journal of the
American Statistical Association, 114 (528), 1651-1664.

Manski, C.F., 2013. Identification of treatment response with social interactions, The Econometrics Journal,
16 (1), S1-S23.

Miguel, E. and Kremer, M., 2004. Worms: identifying impacts on education and health in the presence of

treatment externalities, Econometrica, 72 (1), 159-217.

Paluck, E.L., Shepherd, H., and Aronow, P.M., 2016. Changing climates of conflict: A social network experiment
in 56 schools, Proceedings of the National Academy of Sciences, 113 (3), 566-571.

Paluck, E.L., Shepherd, H.R., and Aronow, P., 2020. Changing climates of conflict: A social network exper-
iment in 56 schools, New Jersey, 2012-2013, Inter-university Consortium for Political and Social Research
[distributor], 2020-09-14. https://doi.org/10.3886/ICPSR37070.v2.

Rubin, D.B., 1980. Discussion of “randomization analysis of experimental data in the fisher randomization test”
by D. Basu, Journal of the American Statistical Association, 75, 591-593.

Sédvje, F., 2021. Causal inference with misspecified exposure mappings, arXiv preprint arXiv:2103.06471.

Savje, F., Aronow, PM., and Hudgens, M.G., 2021. Average treatment effects in the presence of unknown
interference, The Annals of Statistics, 49 (2), 673-701.

Sobel, M.E., 2006. What do randomized studies of housing mobility demonstrate? causal inference in the face

of interference, Journal of the American Statistical Association, 101 (476), 1398-1407.

39



VanderWeele, T.J. and An, W., 2013. Social networks and causal inference, Handbook of Causal Analysis for
Social Research, 353-374.

Vazquez-Bare, G., 2021. Causal spillover effects using instrumental variables, arXiv preprint arXiv:2003.06023.

Zelizer, A., 2019. Is position-taking contagious? evidence of cue-taking from two field experiments in a state
legislature, American Political Science Review, 113 (2), 340-352.

40



	Introduction
	Model
	Identification
	Intention-to-treat analysis
	Local average direct effect

	Estimation and Asymptotic Theory
	Estimators
	Asymptotic properties
	Statistical inference
	Network HAC variance estimator
	Wild bootstrap


	Numerical Illustrations
	Monte Carlo simulation
	Empirical application

	Conclusion
	Appendix: Proofs
	Proof of Proposition 3.1
	Proof of Theorem 3.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Appendix: Lemmas
	Lemmas for Theorem 4.1
	Lemmas for Theorem 4.2


