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Abstract

In this paper, we investigate a treatment effect model in which individuals interact in a social network
and they may not comply with the assigned treatments. We introduce a new concept of exposure mapping,
which summarizes spillover effects into a fixed dimensional statistic of instrumental variables, and we call this
mapping the instrumental exposure mapping (IEM). We investigate identification conditions for the intention-
to-treat effect and the average causal effect for compliers, while explicitly considering the possibility of
misspecification of IEM. Based on our identification results, we develop nonparametric estimation procedures
for the treatment parameters. Their asymptotic properties, including consistency and asymptotic normality,
are investigated using an approximate neighborhood interference framework by Leung (2021). For an
empirical illustration of our proposed method, we revisit Paluck et al.’s (2016) experimental data on the
anti-conflict intervention school program.
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1 Introduction

In recent years, we have witnessed increasing importance in evaluating causal effects under cross-unit inter-
ference in many fields. When individuals interact with each other, using the conventional potential outcome
framework of Rubin (1980) based on the stable unit treatment value assumption (SUTVA) is inappropriate. To
address the potential interference, there has been a rapidly growing number of studies that attempt to mitigate
SUTVA by replacing it with some weaker restrictions on the interference structure. For comprehensive reviews
of the literature on this issue, see VanderWeele and An (2013), Halloran and Hudgens (2016), and Aronow et al.
(2021).

A common approach to dealing with interference is to assume the existence of a low-dimensional exposure
mapping which serves as a sufficient statistic of spillover effects in that others’ treatments affect one’s outcomes
only through this function (e.g., Hong and Raudenbush, 2006; Hudgens and Halloran, 2008; Manski, 2013;
Aronow and Samii, 2017; Li et al., 2019; Egami, 2021; Forastiere et al., 2021; among others). Some frequently-
used forms of exposure mapping include, for example, simply extracting treatment vectors of disjoint groups,
or calculating the proportion of treated neighbors. The exposure mapping is a useful tool for summarizing
potentially complicated spillover effects, but there is an inherent difficulty in how to choose the “right” functional
form. Thus, some recent studies attempt to uncover under what conditions one can estimate meaningful treatment
parameters even under unknown interference, in which the exposure mapping is misspecified or is not explicitly
specified (Chin, 2018; Leung, 2021; Sävje, 2021; Sävje et al., 2021).

Including the aforementioned studies, much of the research on causal inference with interference assumes
the availability of experimental data where the individuals fully comply with their assigned treatments. However,
this should be restrictive in many applications (e.g., Miguel and Kremer, 2004; Dupas, 2014; Zelizer, 2019;
among many others). As a real example, consider the experiment on social norms and behavioral patterns
of adolescents conducted by Paluck et al. (2016). They randomly selected students to participate in the anti-
conflict intervention program where the participants were encouraged to take on leadership roles to reduce
conflict behaviors in school. The authors were interested in assessing the effectiveness of the intervention
against one’s own behavior, as well as whether the participants influence their peers through their social
network. Unfortunately, a proportion of the selected students did not join the intervention program, which led
the authors to resort to an intention-to-treat (ITT) analysis that counts non-compliers as directly treated students.

Although the coexistence of spillovers and noncompliance should be prevalent in relevant empirical applica-
tions, only a few studies have explicitly tackled this issue. Sobel (2006) shows that the conventional estimators,
such as the two-stage least squares estimator, do not admit causal interpretations when ignoring spillover effects.
In addition, there are recent studies that develop solutions to this problem based on the instrumental variable
(IV) method by extending the local average treatment effect framework of Imbens and Angrist (1994) and
Angrist et al. (1996) (e.g., Kang and Imbens, 2016; Imai et al., 2021; DiTraglia et al., 2021; Vazquez-Bare,
2021). However, these studies focus only on the situations where spillovers occur within disjoint clusters and,
more importantly, they do not address the issue of potential misspecification of the exposure mapping.

Taking these points into account, it should be of primary importance to understand what treatment parameters
we can identify (if any) and how to make statistical inferences on them under the possibility of noncompliance
and unknown interference structure. This is the objective of this study, that is, to develop a new causal inference
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method that allows for noncompliance while retaining robustness to the misspecification of exposure mapping.
We consider a model in which individuals are connected through a social network and they may self-select their
treatment status. To account for the noncompliance issue and network interference, we employ the IV method
and introduce a new concept of exposure mapping, which we call instrumental exposure mapping (IEM). The
IEM is similar to the conventional exposure mapping in that it is a function summarizing the spillover effects
into low-dimensional variables, but it differs in that it is a function of IVs.

We first examine the ITT analysis, in which the estimands of interest are the average direct effect (ADE)
and average spillover effect (ASE) of the IV on the outcome and the treatment choice. We show that ADE has
a clear causal interpretation even under the misspecification of IEM, however, the misspecification gives rise
to a difficulty in interpreting ASE. Next, we focus on the identification of the ADE for compliers who comply
with their assigned treatments, which we call the local average direct effect (LADE). Under certain conditions,
LADE captures the ADE of the treatment receipt on the outcome for compilers, and thus LADE should be
more interpretable and policy-relevant than the simple ITT parameter. The technical difficulty in identifying
LADE is that, without imposing any restrictions on the interaction structure, the conventional identification
conditions for models without spillovers do not ensure the identification. To address this problem, we extend the
restricted interference assumption by Imai et al. (2021) to our situation under network interference by restricting
the spillover effects caused by non-compliers in a certain way. It is shown that the LADE parameter can be
identified by a Wald-type estimand under this restricted interference assumption.

Given our identification results, we propose nonparametric estimation procedures for the ITT effect and
LADE. The proposed estimators are easy to implement, although their statistical properties are non-trivial
due to network dependence. We provide a set of sufficient conditions for our estimators to be consistent and
asymptotically normally distributed by utilizing the approximate neighborhood interference (ANI) framework
by Leung (2021). We adopted the ANI framework because (i) ANI is suitable for many empirical situations
where spillovers from distant units are sufficiently small but potentially nonzero, and (ii) ANI is conceptually
similar to the familiar near-epoch dependence condition in networks, making it relatively easy to interpret
and verify. Technically, ANI ensures that the data satisfy the ψ-weak dependence, and we can employ the
limit theorems for ψ-weakly dependent processes (Kojevnikov et al., 2021; Kojevnikov, 2021) to derive the
asymptotic properties of our estimators. We also consider statistical inference methods based on a network
HAC estimation and network-dependent bootstrapping.

As an empirical illustration, we apply our method to Paluck et al.’s (2016) data, the experimental data
on the anti-conflict intervention program for adolescents. The results of the ITT analysis show that receiving
an invitation to the intervention program has a statistically significant positive effect on the students’ own
anti-conflict norms and behaviors. While this finding is consistent with previous studies, the LADE estimates
suggest even larger treatment effects. Thus, the ITT analysis might have underestimated the direct effects of the
intervention program, highlighting the importance of estimating the LADE.

Related literature Our identification results build especially on Imai et al. (2021) who consider the identifi-
cation of average causal effects for compliers, which they call the complier average direct effect and complier
average spillover effect, in two-stage randomized experiments under noncompliance. An important assumption
underlying their model is that interference is restricted within disjoint groups (such as classrooms or rural
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villages), differently from our focus on network interference. More importantly, they require the exposure
mapping to be correctly specified by the stratified interference assumption in which spillovers are determined
only through the number of the assigned treatments within each cluster.

Another study closely related to ours is Leung (2021). The paper proposes an ANI model in experimental
situations with perfect compliance and develops inference methods for average treatment effect parameters while
explicitly allowing for the misspecification of exposure mapping. The major distinction between Leung (2021)
and ours is that not only the spillover effects of treatments on the outcome but also the spillovers of others’ IVs
on own treatment choice are considered in our study. The existence of two interference channels significantly
complicates the identification analysis and statistical inference.

This paper also relates to prior studies that have extended Fisher’s (1935) randomization test to the cases
with interference (e.g., Athey et al., 2018; Basse et al., 2019; Li et al., 2019). Similar to our approach, the
interference structure is generally left unspecified in these studies, and randomization tests can be implemented
without requiring the specification of exposure mapping. However, the main focus of these studies is on
testing some hypotheses regarding the spillover effects, while the primary purpose of this paper is to establish
procedures for the identification and estimation of the treatment parameters.

Paper organization In Section 2, we present basic model assumptions with some examples. Section 3
provides the identification results. We discuss the estimation and inference procedures in Section 4, where their
asymptotic properties are also investigated. Section 5 reports the numerical results including the Monte Carlo
experiments and empirical analysis. Section 6 concludes the paper. Appendix A contains the proofs of all
technical results in the main text. The other supplementary results are relegated to Appendix B.

2 Model

Consider a finite population of n P N units Nn :“ t1, 2, . . . , nu, where N “ t1, 2, . . . u. Suppose that the units
form an undirected and unweighted network. The network is represented by the n ˆ n symmetric adjacency
matrix A “ pAijqi,jPNn , where Aij P t0, 1u indicates whether or not i and j are adjacent, i.e., Aij “ 1 if there
is a link between i and j andAij “ 0 otherwise. As usual, we assume that there are no self-links so thatAii “ 0

for all i P Nn. We denote the set of possible adjacency matrices of n units as An.
In a later section, we study asymptotic theory under the condition that the network size n grows to infinity.

This means that we consider a sequence of networks tAmumPN, where Am P Am and m can be any large
number. The observed adjacency matrix A with no subscript is regarded as an n-th element of the sequence,
i.e., A “ An. The networks Am1 and Am2 (m1 ‰ m2) can be completely unrelated, but it may be possible
that Am1`m2 is a union of disjoint Am1 and Am2 . Further, the distributions of variables including potential
outcomes and treatments can be specific to each network in general; that is, they form a triangular array defined
along with the network sequence. However, for notational simplicity, we suppress the dependence of variables
on the network structure.

Let Yi P R be an observed outcome variable and Di P t0, 1u an indicator of the treatment receipt for unit
i P Nn. In observational studies or randomized experiments with possible noncompliance, individuals may
self-select their treatment status and the existing methods under perfect compliance are generally not applicable.

4



To address this problem, suppose that there is a binary IV, Zi P t0, 1u. In an experimental setup, Zi is typically
an indicator of initial treatment recommendation for i. Denote the n-dimensional vector of realized treatments
as D “ pDiqiPNn , and similarly let Z “ pZiqiPNn . We write the support of D and that of Z as Dn “ t0, 1un

and Zn “ t0, 1un, respectively. For each d P Dn and z P Zn, we denote Yipd, zq P R as the potential
outcome of unit i when D “ d and Z “ z. Similarly, the potential treatment status given Z “ z is written as
Dipzq P t0, 1u. LetDpzq “ pDipzqqiPNn be the n-dimensional vector of potential treatments. By construction,
we have Yi “ YipD,Zq, Di “ DipZq, and D “ DpZq. Hence, we can further write yipzq “ YipDpzq, zq for
some function yi : Zn Ñ R, and we have

Yi “ yipZq “
ÿ

zPZn

1tZ “ zuyipzq.

Because we can observe only one realization from pyipzq, DipzqqzPZn for each unit, it is generally impossible
to define identifiable causal estimands without introducing some restrictions. To address this issue, we introduce
the following function: T : NnˆZnˆAn Ñ T , where T is a pre-specified function, T Ă RdimpT q is a set which
does not depend on i and n, and dimpT q is a fixed positive integer.1 For each i, we denote Ti “ T pi,Z,Aq. We
call the function T the instrumental exposure mapping (IEM) and its realization Ti the instrumental exposure
of unit i.

Denote z´i “ pzjqj‰i and z “ pzi, z´iq. We say that the IEM is correctly specified if for any i P Nn,
zi P t0, 1u, z´i, z

1
´i P t0, 1un´1, and A P An,2

T pi, zi, z´i,Aq “ T pi, zi, z
1
´i,Aq ùñ Dipzi, z´iq “ Dipzi, z

1
´iq and yipzi, z´iq “ yipzi, z

1
´iq. (2.1)

Thus, if the IEM is correctly specified, it serves as a fixed dimensional sufficient statistic that summarizes
potentially high-dimensional spillover effects. That is, the potential treatment status and the potential outcome
of unit i can be fully characterized by i’s own IV Zi and her instrumental exposure Ti, and there exist functions
rdi : t0, 1u ˆ T Ñ t0, 1u and ryi : t0, 1u ˆ T Ñ R satisfying

rdipzi, T pi, zi, z´i,Aqq “ Dipzi, z´iq and ryipzi, T pi, zi, z´i,Aqq “ yipzi, z´iq

for any zi P t0, 1u and z´i P t0, 1un´1. Then, ryipz, tq and rdipz, tq represent the potential outcome and the
potential treatment status, respectively, givenZi “ z and Ti “ t. In this way, a properly specified IEM alleviates
the complexity of handling general spillover effects and greatly simplifies the estimation of causal parameters
under interference. However, since there is no formal theory or practical guidance as to how to verify the

1 In the literature, Forastiere et al. (2021) consider an exposure mapping whose range may be heterogeneous across i and n.
Although our results would hold with minor modifications even in the presence of heterogeneity in exposure mappings, we let this be
beyond the scope of this paper since such a generalization substantially complicates the asymptotic theory. Nevertheless, the common
range assumption should not be too restrictive in practice, given that in our framework researchers can arbitrarily specify the form of
IEM.

2 Note that the definition in (2.1) does not imply the uniqueness of correct IEM. For example, if the neighborhood maximum of Z,
Ti “ maxtZj : Aij “ 1u, is a correct IEM for i, so is i’s neighborhood average. If there do not exist any spillover effects in the first
place, then any IEM is correct.
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specification of IEM, in reality, IEMs are generally misspecified.3 In this case, ryipz, tq and rdipz, tq are no longer
well-defined.

Throughout the paper, following the recent literature on causal inference with interference, we focus on a
design-based uncertainty framework where the randomness comes only from Z. That is, Z is the only random
component in the model, and we treat the potential outcomes, the potential treatments, and the adjacency matrix
as non-stochastic components. This design-based approach is suitable for randomized experiments where
researchers can design the random assignment mechanism for treatment eligibility or initial recommendations,
as in the experiments in Dupas (2014) and Paluck et al. (2016). Even in observational studies, the design-based
approach should be relevant when we can observe the entire population or most of the finite population (cf.
Abadie et al., 2020). It is important to note that we can also view our framework as a full random design
conditional on the potential outcomes, the potential treatments, and the adjacency matrix.

Here, as in the standard IV model, we consider the assumption that the IV can affect the outcome only
through the treatment, i.e., the exclusion restriction:

Assumption 2.1 (Exclusion restriction). Yipd, zq “ Yipd, z
1q for all i P Nn, d P Dn, and z, z1 P Zn.

Under Assumption 2.1, we can reduce the potential outcome when D “ d to Yipdq “ Yipd, zq, and we
have yipzq “ YipDpzqq. Note that this assumption is not an essentially necessary condition in terms of ITT
analysis, but it can greatly improve the causal interpretation of the parameters that we are going to estimate.

Finally in this section, for illustrative purposes, we provide three specific examples that can be effectively
analyzed within our model.

Example 2.1. Suppose that the observed outcome is generated by the following linear model:

Yi “ β0i ` β1Di ` β2 ¨ 1

#

ÿ

j‰i

AijDj ą c

+

,

where β0i is an idiosyncratic intercept term, β1 and β2 indicate the direct effect and the spillover effect,
respectively, and c is a given threshold. Assume that the treatment status of each unit is determined only by her
own IV, i.e., Dipziq “ Dipzi, z´iq. Then, the potential outcome when Z “ z can be written as

yipzq “ β0i ` β1Dipziq ` β2 ¨ 1

#

ÿ

j‰i

AijDjpzjq ą c

+

.

A correctly specified IEM is, for example, T pi,Z,Aq “ 1t
ř

j‰iAijDjpZjq ą cu with T “ t0, 1u. In the
literature, this type of exposure mapping is used, for example, in Hong and Raudenbush (2006) and Leung
(2021). With this IEM, one can easily find that the direct effect can be obtained by a Wald-type estimand:

β1 “

ř

iPSn
ErYi | Zi “ 1, Ti “ ts ´

ř

iPSn
ErYi | Zi “ 0, Ti “ ts

ř

iPSn
ErDi | Zi “ 1, Ti “ ts ´

ř

iPSn
ErDi | Zi “ 0, Ti “ ts

,

3 The IEM is said to be misspecified if there exist some i P Nn, zi P t0, 1u, z´i,z
1
´i P t0, 1un´1, and A P An such that

T pi, zi,z´i,Aq “ T pi, zi,z
1
´i,Aq but Dipzi,z´iq ‰ Dipzi,z

1
´iq or/and yipzi,z´iq ‰ yipzi,z

1
´iq.
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where Sn is an appropriately chosen subset ofNn. We will show in Theorem 4.1 that the terms on the right-hand
side, and hence β1, can be consistently estimated under certain regularity conditions.

Example 2.2. Assume that Assumption 2.1 holds and that no interference exists in the outcome. For the
treatment choice equation, consider the following latent index model:

Di “ 1

#

γ0i ` γ1iZi ` γ2i ¨ 1

#

ÿ

j‰i

AijZj ą c

+

ą 0

+

,

where γ0i is the preference heterogeneity for the treatment, and γ1i and γ2i respectively capture the direct and
spillover effect of the IV on the treatment choice. In this situation, the potential outcome when Z “ z is given
by yipzq “ β0i ` β1iDipzq without loss of generality. As such, the model is a simple binary treatment model
with potentially many IVs. It is straightforward to find that we can estimate a local average treatment effect
(LATE)-type parameter using the two-stage least squares method under a monotonicity condition between Di

and Zi (e.g., γ1i ě 0 for all i), without considering the spillover effect in the treatment choice model. If we set
T pi,Z,Aq “ 1t

ř

j‰iAijZj ą cu, this is clearly a correct IEM.

Example 2.3. The following linear-in-means model has been often used in applied studies of peer effects (cf.
Bramoullé et al., 2009):

Yi “ β0i ` β1

ř

j‰iAijYj
ř

j‰iAij
` β2Di,

assuming that each unit has at least one link. Letting Y “ pYiqiPNn , β0 “ pβ0iqiPNn , and G “ pGijqi,jPNn

with Gij “ Aij{
ř

j‰iAij , we can re-write the model in vector-form as Y “ β0 ` β1GY ` β2D. If |β1| ă 1

holds, In ´ β1G is nonsingular, where In is the identity matrix of dimension n, and we have

ypZq “ pIn ´ β1Gq´1pβ0 ` β2DpZqq.

This expression clearly shows that in general the potential outcome yipzq relates to all zi’s in a nontrivial manner.
When Dipziq “ Dipzi, z´iq is true, T pi,Z, Aq “

ř

j‰iGijyjpZq is a correct IEM specification.

3 Identification

This section discusses the identification of treatment parameters with potentially misspecified IEM. We first
study the ITT effects in Section 3.1. We then develop our main identification result for the LADE in Section
3.2. Throughout this section, we assume the following:

Assumption 3.1 (Conditional independence). For all i P Nn, Zi is conditionally independent of Z´i given Ti.

This assumption restricts the specification of IEM and the joint distribution of Z “ pZi,Z´iq. For example,
suppose that Zi’s are independent and identically distributed (IID) across i. Then, Assumption 3.1 would be
satisfied when Zi is not a determinant of Ti. Such examples include the instrumental exposures considered
in Examples 2.1 and 2.2. Because researchers can select the form of IEM to ensure Assumption 3.1, this

7



assumption may not be too restrictive in practice. Nevertheless, it should be noted that the interpretations of the
causal estimands presented below may differ significantly for different IEM specifications.

3.1 Intention-to-treat analysis

In this subsection, we provide the identification results for the ADE and ASE of the IV on the outcome and
on the treatment choice. Although the results in this subsection are simple corollaries of those in prior studies
(e.g., Aronow and Samii, 2017; Leung, 2021; Sävje, 2021), we describe them in some detail because they form
the basis for the identification analysis of the LADE parameter.

To proceed, consider a non-random sub-populationSn Ď Nn. Throughout the paper, we consider estimating
causal parameters specific to this sub-population. For an example of Sn, let Snpδq be the set of units whose
degrees are δ: Snpδq “ ti P Nn :

ř

i‰j Aij “ δu. In this case, we can examine whether the causal impacts are
heterogeneous across individuals with different centrality by comparing the parameter estimates obtained from
Snpδq with different δ’s.

Define

µYi pz, tq :“ ErYi | Zi “ z, Ti “ ts, µDi pz, tq :“ ErDi | Zi “ z, Ti “ ts,

for z P t0, 1u and t P T . Here, the expectation is taken with respect to the distribution of Z. Since these
quantities may vary with individuals due to heterogeneity in the potential outcome and potential treatment
choice, generally we cannot obtain consistent estimators for them in the design-based approach. Denote their
averages over Sn as

µ̄YSn
pz, tq :“

1

|Sn|

ÿ

iPSn

µYi pz, tq, µ̄DSn
pz, tq :“

1

|Sn|

ÿ

iPSn

µDi pz, tq,

where |Sn| is the cardinality of Sn. We will show in Section 4 that µ̄YSn
pz, tq and µ̄DSn

pz, tq can be consistently
estimated under ANI in our context (see Assumption 4.5) and certain conditions on the network structure.

The ADE of the IV on the outcome and that on the treatment receipt are respectively defined by

ADEYSnptq :“ µ̄YSn
p1, tq ´ µ̄YSn

p0, tq, ADEDSnptq :“ µ̄DSn
p1, tq ´ µ̄DSn

p0, tq,

for t P T . Similarly, we define the ASEs by

ASEYSnpz, t, t1q :“ µ̄YSn
pz, tq ´ µ̄YSn

pz, t1q, ASEDSnpz, t, t1q :“ µ̄DSn
pz, tq ´ µ̄DSn

pz, t1q,

for z P t0, 1u and t, t1 P T . It should be noted that these quantities are well-defined irrespective of whether
the IEM is correctly specified or not. The following proposition presents the causal interpretation of these
estimands.
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Proposition 3.1. Let πipz´i, tq :“ PrrZ´i “ z´i | Ti “ ts. Under Assumption 3.1, we have

ADEYSnptq “
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

tyip1, z´iq ´ yip0, z´iquπipz´i, tq,

ADEDSnptq “
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

tDip1, z´iq ´Dip0, z´iquπipz´i, tq,

ASEYSnpz, t, t1q “
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

yipz, z´iqtπipz´i, tq ´ πipz´i, t
1qu,

ASEDSnpz, t, t1q “
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

Dipz, z´iqtπipz´i, tq ´ πipz´i, t
1qu.

Proposition 3.1 shows that the ADEYSnptq and ADEDSnptq have a causal interpretation as the weighted
average of yip1, z´iq ´ yip0, z´iq and as that ofDip1, z´iq ´Dip0, z´iq, respectively, with the weight equal to
πipz´i, tq. If we additionally impose Assumption 2.1, the result for ADEYSnptq can be further well interpreted.
To see this, let DjpZi “ zi,Z´i “ z´iq be the potential treatment status of unit j ‰ i when Zi “ zi and
Z´i “ z´i, and let D´ipZi “ zi,Z´i “ z´iq “ pDjpZi “ zi,Z´i “ z´iqqj‰i. By the definition of
yipzi, z´iq and Assumption 2.1, we can observe that

yip1, z´iq ´ yip0, z´iq “ YipDip1, z´iq,D´ipZi “ 1,Z´i “ z´iqq ´ YipDip0, z´iq,D´ipZi “ 1,Z´i “ z´iqq
l jh n

direct effect of IV

` YipDip0, z´iq,D´ipZi “ 1,Z´i “ z´iqq ´ YipDip0, z´iq,D´ipZi “ 0,Z´i “ z´iqq
l jh n

spillover effect of IV

.

That is, yip1, z´iq´yip0, z´iq comprises of the direct effect of changing i’s own treatment status fromDip0, z´iq

to Dip1, z´iq and the spillover effect by changing the others’ treatments from D´ipZi “ 0,Z´i “ z´iq to
D´ipZi “ 1,Z´i “ z´iq. Hence, Proposition 3.1 can be read as that ADEYSnptq consists of the sum of the
ADE from own IV and the ASE caused by changing the unit’s own IV.

Given Proposition 3.1, the results for the ASE would be less interpretable than those for the ADE. This
difficulty in interpreting ASEs is mainly due to the possibility of misspecification of the IEM. That said, even
when the IEM is not properly specified, ASE contains beneficial information regarding spillover effects. A
non-zero estimate of ASE indicates the presence of some form of interference.

Proposition 3.1 is also useful for interpreting estimates of ADE or ASE obtained from different forms
of IEM. For example, suppose that two IEMs T and T 1 generate the same estimates of ADEY at t and t1,
respectively:

0 “ ADEYSnptq|IEM“T ´ ADEYSnpt1q|IEM“T 1

“
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

tyip1, z´iq ´ yip0, z´iqu ¨ tπipz´i, tq ´ π1
ipz´i, t

1qu,

This is possible for example (i) when the treatment effect yip1, z´iq ´ yip0, z´iq is homogeneous with respect
to z´i for all individuals (i.e., no spillovers), or (ii) when tTi “ tu and tT 1

i “ t1u are essentially the same
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conditions such that πipz´i, tq ´ π1
ipz´i, t

1q “ 0. Note that (i) is testable since if (i) is true the above equality
must hold for any IEMs.

Remark 3.1 (Correctly specified IEM). For now, suppose that the IEM T satisfies (2.1). In this situation,
the potential outcome and the potential treatment status given Zi “ z and Ti “ t are ryipz, tq and rdipz, tq,
respectively, and we have µYi pz, tq “ ryipz, tq and µDi pz, tq “ rdipz, tq. Then, it is straightforward to see that
ADEYSnptq “ |Sn|´1

ř

iPSn
rryip1, tq ´ ryip0, tqs, and a similar result applies to the other parameters as well.

Assumption 3.1 is unnecessary for this result to hold.

3.2 Local average direct effect

In this subsection, we present our main identification result for the LADE. Throughout this subsection, we
maintain Assumption 2.1. Firstly, we extend the notion of compliers (Angrist et al., 1996; Imai et al., 2021) to
our setting. Let

Cipz´iq :“ 1tDip1, z´iq “ 1, Dip0, z´iq “ 0u

be an indicator for being a complier who takes the treatment only when Zi “ 1 conditional on Z´i “ z´i.
Thus, the compliance status may depend on the assignment of IVs to the others. Denote the realized compliance
status of unit i as Ci :“ CipZ´iq. The expected compliance status conditional on Ti “ t is given by

ErCi | Ti “ ts “
ÿ

z´iPt0,1un´1

Cipz´iqπipz´i, tq.

The LADE is defined by the weighted average of yip1, z´iq ´ yip0, z´iq over the compliers:

LADESnptq :“
ÿ

iPSn

ÿ

z´iPt0,1un´1

tyip1, z´iq ´ yip0, z´iqu
Cipz´iqπipz´i, tq

ř

iPSn

ř

z´iPt0,1un´1 Cipz´iqπipz´i, tq
,

provided that the denominator
ř

iPSn
ErCi | Ti “ ts is non-zero. By the same decomposition as above, for a

complier i such that Cipz´iq “ 1,

yip1, z´iq ´ yip0, z´iq “ Yip1,D´ipZi “ 1,Z´i “ z´iqq ´ Yip0,D´ipZi “ 1,Z´i “ z´iqq
l jh n

direct effect of treatment

` Yip0,D´ipZi “ 1,Z´i “ z´iqq ´ Yip0,D´ipZi “ 0,Z´i “ z´iqq
l jh n

spillover effect of IV

.

As such, the LADE parameter captures the sum of the average direct treatment effect and the ASE caused by
changing the unit’s own IV, for the compliers.

In what follows, we introduce a set of sufficient conditions for identifying the LADE. The following two
conditions are analogous to the IV relevance condition and the monotonicity condition for the standard LATE
estimation without interference.
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Assumption 3.2 (Relevance). There exists a constant c ą 0 (which may depend on T and t) such that
|Sn|´1

ř

iPSn
ErCi | Ti “ ts ě c.

Assumption 3.3 (Monotonicity). Dip1, z´iq ě Dip0, z´iq for all i P Sn and z´i P t0, 1un´1 such that
πipz´i, tq ą 0.

Assumption 3.2 states that there is a non-negligible proportion of units among those with Ti “ t whose
treatment status is positively affected by their assigned IV. The assumption is necessary to well-define the LADE
parameter. Assumption 3.3 requires that there do not exist defiers, whose treatment status is negatively affected
by the instrument. This assumption limits the heterogeneity in treatment choice in that the response to the IV
must be non-negative for all units. For instance, the treatment choice equation in Example 2.2 satisfies the
monotonicity condition if γ1i ě 0 for all i. Under Assumptions 3.2 and 3.3, each individual can be classified
into one of the three latent types: compliers; always takers (those who always take the treatment); never takers
(those who never take the treatment).

Unlike conventional identification results without interference, the set of the exclusion restriction, the
relevance condition, and the monotonicity condition does not suffice to identify the LADE parameter. This is
because we need to account for two potential interference channels at the same time: one is the spillover effect
of the IV on the treatment receipt, and the other is the spillover effect of the treatment on the outcome. As in the
conventional method, we use the variation in the value of IV to identify the LADE, but in the present situation,
the effect of shifting IV can be amplified in two steps by the two different spillovers. Therefore, to facilitate
the identification of the LADE parameter, some additional restriction on the interference structure is needed.
In this study, similar to Imai et al. (2021), we require the potential outcome yipzi, z´iq of noncompliers to be
insensitive to their own instrumental value zi.

Assumption 3.4 (Restricted interference). For all i P Sn and z´i P t0, 1un´1 such that πipz´i, tq ą 0,
yip1, z´iq “ yip0, z´iq holds whenever Dip1, z´iq “ Dip0, z´iq.

Here, we provide three empirically relevant sufficient conditions for this assumption. The first condition is
no spillovers between IV and the treatment choice:

Dipzi, z´iq “ Dipzi, z
1
´iq for any zi P t0, 1u and z´i, z

1
´i P t0, 1un´1. (3.1)

This corresponds to the personalized encouragement assumption of Kang and Imbens (2016), which states
that an incentive to take treatment must be personalized to everyone. Under this condition, we can define
the potential treatment status as Dipziq “ Dipzi, z´iq. Then, the potential outcome satisfies yipzi, z´iq “

YipDipziq, pDjpzjqqj‰iq, implying Assumption 3.4.
The second situation in which Assumption 3.4 holds is when there is no treatment spillover effect on the

outcome; that is,

Yipdi,d´iq “ Yipdi,d
1
´iq for any di P t0, 1u and d´i,d

1
´i P t0, 1un´1. (3.2)

Then, we may write the potential outcome given Di “ di as Yipdiq. It is easy to see that (3.2) implies
Assumption 3.4.
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The third sufficient condition for Assumption 3.4 is that the IV of any noncomplier does not affect the
treatment status of all other units; specifically, for any z´i P t0, 1un´1,

D´ipZi “ 1,Z´i “ z´iq “ D´ipZi “ 0,Z´i “ z´iq whenever Dip1, z´iq “ Dip0, z´iq. (3.3)

If this condition holds, the potential outcome of unit i with Dip1, z´iq “ Dip0, z´iq satisfies

yip1, z´iq “ YipDip1, z´iq,D´ipZi “ 1,Z´i “ z´iqq

“ YipDip0, z´iq,D´ipZi “ 0,Z´i “ z´iqq “ yip0, z´iq,

which implies Assumption 3.4.
As such, the interpretation of the LADE parameter can be different depending on which sufficient condition

the researcher considers for Assumption 3.4 to hold. For example, under (3.1) or (3.2),

YipDip0, z´iq,D´ipZi “ 1,Z´i “ z´iqq ´ YipDip0, z´iq,D´ipZi “ 0,Z´i “ z´iqq “ 0.

Therefore, the LADE is identical to solely the ADE of the treatment on the outcome for the compliers. On the
contrary, (3.3) does not restrict the interference structure for the compliers so that the IV of a complier may
affect the treatment status of others. In this case, as discussed above, the LADE parameter is considered as the
sum of the direct effect and the spillover effect for the compliers.

The following theorem shows that the LADE parameter can be identified by a Wald-type estimand.

Theorem 3.1. Under Assumptions 3.1 – 3.4, it holds that

LADESnptq “
ADEYSnptq

ADEDSnptq
. (3.4)

Remark 3.2 (Average noncompliance rate). Let

Aipz´iq :“ 1tDip1, z´iq “ Dip0, z´iq “ 1u and Nipz´iq :“ 1tDip1, z´iq “ Dip0, z´iq “ 0u

denote the indicators for being an always taker and a never taker, respectively, conditional on Z´i “ z´i. Their
realized states are Ai :“ AipZ´iq and Ni :“ NipZ´iq. Under Assumptions 3.1 and 3.3, similar arguments to
the proof of Theorem 3.1 can show that

1

|Sn|

ÿ

iPSn

ErDi | Zi “ 0, Ti “ ts “
1

|Sn|

ÿ

iPSn

ErAi | Ti “ ts,

1

|Sn|

ÿ

iPSn

Er1 ´Di | Zi “ 1, Ti “ ts “
1

|Sn|

ÿ

iPSn

ErNi | Ti “ ts.

Thus, we can measure the average noncompliance status by computing the left-hand sides of these equalities.

Remark 3.3 (Testable implication of (3.1)). Under condition (3.1), Proposition 3.1 implies thatASEDSnpz, t, t1q “

0 for all z P t0, 1u and t, t1 P T . Thus, if ASEDSnpz, t, t1q ‰ 0 is observed, it indicates there is a violation of
condition (3.1); however, the converse is generally not true. Of course, if the specification of IEM is correct,
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we can support (3.1) by confirming ASEDSnpz, t, t1q “ 0 for all z, t, and t1.

Remark 3.4 (Testable implication of (3.2)). Denote mp1q

i py, z, tq :“ Er1tYi ď yuDi | Zi “ z, Ti “ ts

for y P R, z P t0, 1u, and t P T . Condition (3.2) implies that mp1q

i py, z, tq “
ř

z´iPt0,1un´1 1tYip1q ď

yuDipz, z´iqπipz´i, tq by Assumption 3.1. As a result, we have m
p1q

i py, 1, tq ´ m
p1q

i py, 0, tq ě 0 un-
der Assumption 3.3. Note that this inequality might not hold without condition (3.2). Similarly, letting
m

p0q

i py, z, tq :“ Er1tYi ď yup1 ´ Diq | Zi “ z, Ti “ ts, we can show that mp0q

i py, 1, tq ´ m
p0q

i py, 0, tq ď 0.
Note that although these inequalities cannot be directly tested for each i, we can check whether they hold or not
on average for some sub-samples.

Remark 3.5 (Testable implication of (3.3)). Let gi : t0, 1un´1 Ñ R` be a known non-negative function of
D´i. Then, we can show that

ErDigipD´iq | Zi “ 0, Ti “ ts “
ÿ

z´iPt0,1un´1

Aipz´iqgipD´ipZi “ 0,Z´i “ z´iqqπipz´i, tq

by Assumptions 3.1 and 3.3. Similarly,

ErDigipD´iq | Zi “ 1, Ti “ ts “
ÿ

z´iPt0,1un´1

tCipz´iq ` Aipz´iqugipD´ipZi “ 1,Z´i “ z´iqqπipz´i, tq.

Thus, condition (3.3) leads to

ErDigipD´iq | Zi “ 1, Ti “ ts ´ ErDigipD´iq | Zi “ 0, Ti “ ts

“
ÿ

z´iPt0,1un´1

Cipz´iqgipD´ipZi “ 1,Z´i “ z´iqqπipz´i, tq ě 0.

A similar argument shows that

Erp1 ´DiqgipD´iq | Zi “ 0, Ti “ ts ´ Erp1 ´DiqgipD´iq | Zi “ 1, Ti “ ts ě 0.

Then, these inequalities provide testable implications of (3.3).

4 Estimation and Asymptotic Theory

In this section, we discuss the nonparametric estimation of the causal parameters presented in the previous
section. The estimation procedures are discussed in Section 4.1, and Section 4.2 presents their asymptotic
properties. In Section 4.3, we provide statistical inference methods.

4.1 Estimators

We consider the following data generating process (DGP):

Assumption 4.1 (DGP).

(i) tZiuiPNn are mutually independent.
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(ii) tpTi, ZiquiPSn are identically distributed across i P Sn.

(iii) T is a finite subset of RdimpT q.

Assumption 4.1(i) would be reasonable for many empirical situations. For example, the assumption
is relevant to a randomized experiment where the treatment eligibility is assigned to each unit with some
probability q P p0, 1q (i.e., a Bernoulli trial). Another example where the assumption can hold is an observational
study in which the IV of each unit is determined separately from the other units. Assumption 4.1(ii) can be
justified by appropriately choosing IEM T and sub-population Sn. For example, this assumption holds when
Ti “ 1t

ř

j‰iAijZj ą cu and Sn “ ti P Nn :
ř

j‰iAij “ δu for some c and δ, provided that tZiuiPNn

are IID. We require this assumption in order to construct a consistent estimator for the generalized propensity
score PrrZi “ z, Ti “ t | i P Sns. Lastly, Assumption 4.1(iii) restricts that the IEM takes finite values, which
facilitates our asymptotic analysis.

Under Assumption 4.1, we can write pSnpz, tq :“ PrrZi “ z, Ti “ t | i P Sns. In the following, the
condition i P Sn in the expectation is suppressed for notational simplicity. We estimate pSnpz, tq by

ppSnpz, tq :“
1

|Sn|

ÿ

iPSn

1tZi “ z, Ti “ tu.

Then, µ̄YSn
pz, tq and µ̄DSn

pz, tq can be estimated respectively by

pµYSn
pz, tq :“

1

|Sn|

ÿ

iPSn

Yi1tZi “ z, Ti “ tu

ppSnpz, tq
, pµDSn

pz, tq :“
1

|Sn|

ÿ

iPSn

Di1tZi “ z, Ti “ tu

ppSnpz, tq
.

Given these estimators, we compute

{ADEYSnptq :“ pµYSn
p1, tq ´ pµYSn

p0, tq, {ASEYSnpz, t, t1q :“ pµYSn
pz, tq ´ pµYSn

pz, t1q,

{ADEDSnptq :“ pµDSn
p1, tq ´ pµDSn

p0, tq, {ASEDSnpz, t, t1q :“ pµDSn
pz, tq ´ pµDSn

pz, t1q.

The identification result in Theorem 3.1 leads to the following estimator for the LADE:

{LADESnptq :“
{ADEYSnptq

{ADEDSnptq
.

Remark 4.1 (Unbiased estimation of ADEs and ASEs). The proposed estimators may have finite sample bias
due to the estimation of pSnpz, tq. Meanwhile, in an experimental situation where pSnpz, tq can be directly
computed from the known distribution of Z, we can achieve unbiased estimation of ADEs and ASEs. Then, we
can estimate µ̄YSn

pz, tq and µ̄DSn
pz, tq respectively by

qµYSn
pz, tq :“

1

|Sn|

ÿ

iPSn

Yi1tZi “ z, Ti “ tu

pSnpz, tq
, qµDSn

pz, tq :“
1

|Sn|

ÿ

iPSn

Di1tZi “ z, Ti “ tu

pSnpz, tq
(4.1)

without biases.
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4.2 Asymptotic properties

In this section, we prove the consistency and asymptotic normality of the proposed estimators. In the next
two assumptions, we require the potential outcome yipzq and the generalized propensity score pSnpz, tq to be
uniformly bounded by some constants.

Assumption 4.2 (Bounded outcome). There exists a constant ȳ such that |yipzq| ď ȳ ă 8 for all i P Sn and
z P Zn.

Assumption 4.3 (Overlap). There exist constants p and p̄ such that pSnpz, tq P rp, p̄s Ă p0, 1q for all z P t0, 1u

and t P T .

These requirements are popular in the literature but restrict the DGP. In particular, Assumption 4.3 depends
on the specification of IEM T , the choice of sub-population Sn, the distribution of Z, and the structure of
network A. For example, when Ti “ 1t

ř

j‰iAijZj ą 0u and Sn “ ti P Nn :
ř

j‰iAij “ δu, this assumption
is violated if every unit in Sn has at least one direct neighborhood with Zj “ 1.

The next assumption calls for some additional notations. Denote the path distance (defined on the whole
population Nn) between units i and j as ℓApi, jq.4 For a non-negative integer s ě 0, let NApi, sq :“ tj P

Nn : ℓApi, jq ď su be the set of units within s distance from unit i; namely, unit i’s s-neighborhood. Note that
i P NApi, sq for all s ě 0. We write the sub-vector of z P Zn restricted onNApi, sq as zNApi,sq :“ pzjqjPNApi,sq.
Similarly, let ANApi,sq “ pAklqk,lPNApi,sq denote the sub-matrix of A restricted on NApi, sq.

Assumption 4.4 (IEM). There exists a known positive integer K P N such that, for all i P Sn, A,A1 P An,
and z, z1 P Zn,

NApi,Kq “ NA1pi,Kq, ANApi,Kq “ A1
NA1 pi,Kq, and zNApi,Kq “ z1

NA1 pi,Kq ùñ T pi, z,Aq “ T pi, z1,A1q.

The assumption states that the instrumental exposure of each unit depends only on the unit’s own K-
neighborhood. This would be a mild requirement that most IEMs of practical interest should satisfy. For
instance, in our empirical example, we consider Ti “ 1t

ř

j‰iAijZj ą 0u and Ti “ 1t
ř

j‰iAijDj ą 0u for
which K “ 1.

Next, we introduce the concept of ANI, which is recently proposed in Leung (2021). Let N c
Api, sq :“

NnzNApi, sq denote the set of units who are more than distance s away from i. Writing Z 1 as an independent
copy of Z, we define Z

psq

i :“ pZNApi,sq,Z
1
Nc

Api,sq
q by combining the sub-vector of Z on NApi, sq and that of

Z 1 on N c
Api, sq. Denote

θn,s :“ max

"

max
iPSn

E |yipZq ´ yipZ
psq

i q|, max
iPSn

E |DipZq ´DipZ
psq

i q|

*

.

This quantity measures the intensity of interference with distant units that are at least s distance away. Note that
θn,s is bounded uniformly in n and s ě 0 by Assumption 4.2.

Assumption 4.5 (ANI). supnPN θn,s Ñ 0 as s Ñ 8.

4 A path between i and j is a sequence of links Ak1k2 “ Ak2k3 “ ¨ ¨ ¨ “ Akm´1km “ 1, where k1 “ i and km “ j. The length
of this path is m´ 1. The path distance between i and j is the length of the shortest path between them. As convention, we define the
path distance between i and j as 8 when no path exists and 0 if i “ j.
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The ANI assumption says that spillover effects from units that are sufficiently far away should be sufficiently
small. In particular, those not connected with unit i (i.e., j’s with ℓApi, jq “ 8) do not affect the outcome and
treatment response of i. Thus, assuming ANI would be reasonable in practical situations where only nearby
people can affect one’s decision-making. Note that ANI is much weaker than the commonly used assumption of
group-wise interference such that θn,K “ 0 for some K, in that it allows interaction with units at any distance
as in Example 2.3.

Let SB
Api, sq :“ tj P Sn : ℓApi, jq “ su be the subset of Sn that are exactly at distance s from unit

i P Sn. We denote its k-th sample moment as MB
Sn

ps; kq :“ |Sn|´1
ř

iPSn
|SB

Api, sq|k. When k “ 1, we write
MB

Sn
psq “ MB

Sn
ps; 1q. Further, define

rθn,s :“

#

θn,ts{2u for s ą 2maxtK, 1u

1 otherwise
, (4.2)

where t¨u indicates the floor function.

Assumption 4.6 (Weak dependence 1).

(i) max1ďsď2K MB
Sn

psq “ Op1q, where K is as given in Assumption 4.4.

(ii) |Sn|´1
řn´1

s“1 M
B
Sn

psqrθn,s “ op1q.

Assumption 4.6(i) rules out that there are a non-negligible proportion of units whose 2K neighborhoods in
Sn grow to infinite as n increases. For example, this assumption is violated if the network is a complete graph.
Assumption 4.6(ii) is analogous to Assumption 5 of Leung (2021) and Assumption 3.2 of Kojevnikov et al.
(2021). This assumption restricts the rate of convergence of rθn,s to zero as s Ñ 8. For example, consider a
ring network where every unit connects only to the two adjacent units. In this case, we can see thatMB

Sn
psq ď 2

for all s, and Assumption 4.6(ii) is reduced to the condition |Sn|´1
řn´1

s“1
rθn,s “ op1q.

The following theorem establishes the consistency of the proposed estimators. We omit its proof because it
is straightforward from Lemma B.2.

Theorem 4.1. Suppose that Assumptions 4.1 – 4.6 hold. Then, if |Sn| Ñ 8, we have

(i) {ADEYSnptq ´ ADEYSnptq
p

Ñ 0,

(ii) {ADEDSnptq ´ ADEDSnptq
p

Ñ 0.

Additionally, if Assumptions 3.1–3.4 hold, we have

(iii) {LADESnptq ´ LADESnptq
p

Ñ 0.

Remark 4.2 (Rate of convergence). In view of the proof of Lemma B.2, we can find that the convergence rates
of the proposed estimators are determined by the convergence rate given in Assumption 4.6(ii). In particular,
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a

|Sn|-consistency can be achieved if Assumption 4.6(ii) is strengthened to

n´1
ÿ

s“1

MB
Sn

psqrθn,s “ Op1q. (4.3)

Next, we investigate the asymptotic distributions of our estimators. For each i P Sn, let

V ADEY
i :“ W Y

i ´
µ̄YSn

p1, tq

pSnp1, tq
WZ

i `
µ̄YSn

p0, tq

pSnp0, tq
W 1´Z

i , V ADED
i :“ WD

i ´
µ̄DSn

p1, tq

pSnp1, tq
WZ

i `
µ̄DSn

p0, tq

pSnp0, tq
W 1´Z

i ,

V LADE
i :“

1

ADEDSnptq
V ADEY
i ´

ADEYSnptq

rADEDSnptqs2
V ADED
i ,

where

W Y
i :“ Yi

„

1tZi “ 1, Ti “ tu

pSnp1, tq
´

1tZi “ 0, Ti “ tu

pSnp0, tq

ȷ

,

WD
i :“ Di

„

1tZi “ 1, Ti “ tu

pSnp1, tq
´

1tZi “ 0, Ti “ tu

pSnp0, tq

ȷ

,

WZ
i :“ 1tZi “ 1, Ti “ tu, W 1´Z

i :“ 1tZi “ 0, Ti “ tu.

(4.4)

In the proof of the theorem presented below, we will show that the asymptotic distribution of {ADEYSnptq ´

ADEYSnptq can be obtained by that of |Sn|´1
ř

iPSn
pV ADEY

i ´ ErV ADEY
i sq (see (A.2)). Similar results hold

for the other cases. Let

`

σADEY
Sn

˘2
:“ Var

«

1
a

|Sn|

ÿ

iPSn

V ADEY
i

ff

,
`

σADED
Sn

˘2
:“ Var

«

1
a

|Sn|

ÿ

iPSn

V ADED
i

ff

,

`

σLADE
Sn

˘2
:“ Var

«

1
a

|Sn|

ÿ

iPSn

V LADE
i

ff

.

Note that to achieve
a

|Sn|-consistent estimation, these variances are to be bounded.
To derive the asymptotic distributions, we employ the central limit theorem (CLT) for ψ-weakly dependent

processes in Kojevnikov et al. (2021) (see Definition B.1 for the notion of ψ-weak dependence). Under
Assumptions 4.1–4.5, for each Vi “ V ADEY

i , V ADED
i , or V LADE

i , we show that tViuiPSn is a ψ-weakly
dependent process with the dependence coefficients trθn,susě0. Then, we can apply their CLT to our context if
we introduce additional restrictions on the network structure. Let SApi, sq :“ tj P Sn : ℓApi, jq ď su and

∆Snps,m; kq :“
1

|Sn|

ÿ

iPSn

max
jPSB

Api,sq
|SApi,mqzSApj, s´ 1q|k,

where we take SApj, s ´ 1q “ ∅ if s “ 0. This is the k-th sample moment of the maximum number (over j’s
at distance s from i) of units who are within distance m from i but at least distance s apart from j. In general,
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∆Snps,m; kq increases as m becomes larger, but decreases to zero as s grows. In addition, we define

cSnps,m; kq :“ inf
αą1

r∆Snps,m; kαqs
1
α

„

MB
Sn

ˆ

s;
α

α ´ 1

˙ȷ1´ 1
α

.

This is a measure of the denseness of the network, which plays an important role in establishing the CLT for
ψ-weakly dependent processes.

Assumption 4.7 (Weak dependence 2). For each σSn “ σADEY
Sn

, σADED
Sn

, and σLADE
Sn

, there exist some positive
sequence mn Ñ 8 and a constant 0 ă ε ă 1 such that for each k P t1, 2u

(i)
1

|Sn|k{2σ2`k
Sn

n´1
ÿ

s“0

cSnps,mn; kqrθ1´ε
n,s Ñ 0,

(ii)
|Sn|k{2

σkSn

rθ1´ε
n,mn

Ñ 0.

This assumption corresponds to Assumption 3.4 of Kojevnikov et al. (2021).5 Note that the assumption re-
stricts not only the network structure but also our choice of sub-populationSn. In particular, whenσSn is bounded
by zero and infinity uniformly in n, Assumption 4.7 can be reduced to (i) |Sn|´k{2

řn´1
s“0 cSnps,mn; kqrθ1´ε

n,s Ñ 0

and (ii) |Sn|k{2
rθ1´ε
n,mn

Ñ 0.
The following theorem shows that the proposed estimators are asymptotically normal.

Theorem 4.2. Suppose that Assumptions 4.1 – 4.7 hold. Then, if |Sn| Ñ 8, we have

(i)

a

|Sn|

´

{ADEYSnptq ´ ADEYSnptq
¯

σADEY
Sn

d
Ñ Normalp0, 1q,

(ii)

a

|Sn|

´

{ADEDSnptq ´ ADEDSnptq
¯

σADED
Sn

d
Ñ Normalp0, 1q,

provided that pσADEY
Sn

q´1 “ Op1q and pσADED
Sn

q´1 “ Op1q. Additionally, if Assumptions 3.1–3.4 hold, we
have

(iii)

a

|Sn|

´

{LADESnptq ´ LADESnptq
¯

σLADE
Sn

d
Ñ Normalp0, 1q,

provided that

1

σLADE
Sn

“ Op1q,
σADEY
Sn

σADED
Sn

a

|Sn|σLADE
Sn

“ op1q,
pσADED

Sn
q2

a

|Sn|σLADE
Sn

“ op1q. (4.5)

5 Note that Assumption 4.7 is weaker than Assumption 3.4 of Kojevnikov et al. (2021). This comes from the following two facts.
First, the ψ-weak dependent processes considered here are uniformly bounded by Assumptions 4.2 and 4.3, while Kojevnikov et al.
(2021) only assume the existence of 4 ` ε moments of them. Second, they consider a more general form of ψ-function than ours. See
Assumption 2.1 of their paper and Lemma B.3.
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The conditions in (4.5) are fairly mild, which are satisfied especially when the estimators are
a

|Sn|-
consistent. Nonetheless, it should be noted that Theorem 4.2 does not rule out the possibility that the estimators
exhibit slower convergence rates.

Remark 4.3 (Constant IEM). Note that Assumption 4.4 does not exclude the case where the IEM is a constant
function (so that Sn “ Nn). Therefore, the results in Theorems 4.1 and 4.2 can be applied to this case as well.
This means that, under the assumptions made, if we are interested only in the direct effect of own IV, we can
simply ignore the others IV in the estimation. Similar results can be found in Sävje et al. (2021).

4.3 Statistical inference

4.3.1 Network HAC variance estimator

In this subsection, we develop the network HAC estimator and prove its asymptotic property. Under Assumption
4.5, we can see that

pσADEY
Sn

q2 “
1

|Sn|

ÿ

iPSn

ÿ

jPSn

Cov
“

V ADEY
i , V ADEY

j

‰

1tℓApi, jq ď n´ 1u,

and analogous equalities hold for pσADED
Sn

q2 and pσLADE
Sn

q2. Then, the infeasible (oracle) network HAC estimator
of pσADEY

Sn
q2 is given by

prσADEY
Sn

q2 :“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

pV ADEY
i ´ ErV ADEY

i sqpV ADEY
j ´ ErV ADEY

j sq1tℓApi, jq ď bnu,

where bn ě 0 is a bandwidth parameter that grows as n Ñ 8. This estimator is infeasible because both V ADEY
i

and ErV ADEY
i s are unobservable to us. For constructing feasible variance estimators, we compute

pV ADEY
i :“ xW Y

i ´
pµYSn

p1, tq

ppSnp1, tq
WZ

i `
pµYSn

p0, tq

ppSnp0, tq
W 1´Z

i , pV ADED
i :“ xWD

i ´
pµYSn

p1, tq

ppSnp1, tq
WZ

i `
pµYSn

p0, tq

ppSnp0, tq
W 1´Z

i ,

pV LADE
i :“

1

{ADEDSnptq
pV ADEY
i ´

{ADEYSnptq

r {ADEDSnptqs2
pV ADED
i ,

where

xW Y
i :“ Yi

„

1tZi “ 1, Ti “ tu

ppSnp1, tq
´

1tZi “ 0, Ti “ tu

ppSnp0, tq

ȷ

,

xWD
i :“ Di

„

1tZi “ 1, Ti “ tu

ppSnp1, tq
´

1tZi “ 0, Ti “ tu

ppSnp0, tq

ȷ

.

Note that the sample mean of each of pV ADEY
i , pV ADED

i , and pV LADE
i is zero. Then, the feasible network HAC

estimators are given by

ppσADEY
Sn

q2 :“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

pV ADEY
i

pV ADEY
j 1tℓApi, jq ď bnu,
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ppσADED
Sn

q2 :“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

pV ADED
i

pV ADED
j 1tℓApi, jq ď bnu,

ppσLADE
Sn

q2 :“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

pV LADE
i

pV LADE
j 1tℓApi, jq ď bnu.

Recall that SApi, sq denotes the subset of Sn composed of units within s distance from unit i. We write its
k-th sample moment as MSnps, kq :“ |Sn|´1

ř

iPSn
|SApi, sq|k. Further, define

JSnps, bnq :“ tpi, j, k, lq P S4
n : ℓApi, jq “ s, ℓApi, kq ď bn, ℓApj, lq ď bnu.

Assumption 4.8 (Weak dependence 3).

(i) There exists some 0 ă ϵ ă 1 such that
řn´1

s“1 M
B
Sn

psqrθ1´ϵ
n,s “ Op1q and

řn´1
s“0 |JSnps, bnq|rθ1´ϵ

n,s “

op|Sn|2q.

(ii) MSnpbn, kq “ op|Sn|k{2q for each k P t1, 2u.

This assumption restricts both the network structure and the rate of divergence of bn in a similar manner to
Assumption 7 of Leung (2021) and Assumption 4.1 of Kojevnikov et al. (2021). The first part of Assumption
4.8(i) strengthens Assumption 4.6(ii) and ensures

a

|Sn|-consistency of our estimators (see Remark 4.2). The
second part of Assumption 4.8(i) corresponds to Assumption 4.1(iii) of Kojevnikov et al. (2021). Assumption
4.8(ii) is the same as Assumption 7(b)–(c) of Leung (2021). Under these conditions, we can derive the
probability limits of the infeasible oracle variance estimators, and evaluate the stochastic errors caused by
replacing unobserved V ADEY

i , V ADED
i , and V LADE

i with their estimators pV ADEY
i , pV ADED

i , and pV LADE
i .

Let

BADEY
Sn

:“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

ErV ADEY
i sErV ADEY

j s1tℓApi, jq ď bnu,

BADED
Sn

:“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

ErV ADED
i sErV ADED

j s1tℓApi, jq ď bnu,

BLADE
Sn

:“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

ErV LADE
i sErV LADE

j s1tℓApi, jq ď bnu.

Theorem 4.3. Suppose that Assumptions 4.1 – 4.5 and 4.8 hold. Then, if |Sn| Ñ 8 and bn Ñ 8, we have

(i) ppσADEY
Sn

q2 “ pσADEY
Sn

q2 `BADEY
Sn

` oP p1q,

(ii) ppσADED
Sn

q2 “ pσADED
Sn

q2 `BADED
Sn

` oP p1q.

Additionally, if Assumptions 3.1–3.4 hold, we have

(iii) ppσLADE
Sn

q2 “ pσLADE
Sn

q2 `BLADE
Sn

` oP p1q.
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In the proof, we show that

ppσADEY
Sn

q2 “ prσADEY
Sn

q2 `BADEY
Sn

` oP p1q,

where the infeasible oracle estimator prσADEY
Sn

q2 is consistent for pσADEY
Sn

q2. There is an asymptotic bias term
BADEY

Sn
due to the fact that we cannot estimate the heterogeneous mean ErV ADEY

i s. It is well known in
the design-based uncertainty framework that heterogeneous means cause standard variance estimators to have
asymptotic biases (cf. Imbens and Rubin, 2015).

4.3.2 Wild bootstrap

Alternatively to the HAC estimator, we can consider using a network-dependent bootstrap method. Here, we
particularly focus on Kojevnikov’s (2021) wild bootstrap approach.

For exposition, we focus only on constructing a confidence interval for ADEYSnptq. The following
procedure can be applied to the other parameters as well. As shown in (A.2) in Appendix A, we have

a

|Sn|

´

{ADEYSnptq ´ ADEYSnptq
¯

“
1

a

|Sn|

ÿ

iPSn

V ADEY
i ` oP p1q.

(Note that |Sn|´1{2
ř

iPSn
ErV ADEY

i s “ 0.) Thus, if it is possible to simulate the distribution of |Sn|´1{2
ř

iPSn
V ADEY
i ,

we can construct an asymptotically valid confidence interval forADEYSnptq. To this end, noting that the sample
mean of pV ADEY

i over Sn is zero, we construct a bootstrap counterpart V ˚,ADEY
i of V ADEY

i in the following
procedure: V ˚,ADEY

i :“ pV ADEY
i Ri, where Ri is the i-th element of the |Sn| ˆ 1 vector rΩSnpbnqs1{2ζSn with

ΩSnpbnq :“

ˆ

|SApi, bnq X SApj, bnq|

MSnpbn, 1q

˙

i,jPSn

,

ζSn is an |Sn| ˆ 1 vector of random variables drawn from Normalp0, I|Sn|q independently of the data, and
bn is a bandwidth parameter. Then, by repeatedly drawing ζSn many times, we can obtain the distribution of
|Sn|´1{2

ř

iPSn
V ˚,ADEY
i conditional on the observed data, which serves as an approximation of the distribution

of |Sn|´1{2
ř

iPSn
V ADEY
i . An intuition for the (first-order) validity of this bootstrap method is as follows.

Since the conditional expectation of V ˚,ADEY
i given the observed data is zero, we have

Var

«

1
a

|Sn|

ÿ

iPSn

V ˚,ADEY
i

ˇ

ˇ

ˇ

ˇ

ˇ

data

ff

“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

pV ADEY
i

pV ADEY
j rΩSnpbnqsi,j .

Thus, this is a version of the HAC estimator with kernel ΩSnpbnq. For more details, see Kojevnikov (2021).
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5 Numerical Illustrations

5.1 Monte Carlo simulation

In this subsection, we investigate the finite sample properties of our methods using a set of Monte Carlo
experiments. The following two DGPs are considered:

DGP 1: Yi “ β0i ` β1iDi

Di “ 1

#

γ0i ` γ1Zi ` γ2
ÿ

j‰i

A
pKq

ij Zj ě 0

+

where β0i, β1i, and γ0i are drawn from Normalp1, 1q, Normalp1, 1q, and Normalp´2, 1q, respectively,
pγ1, γ2q “ p1.5, 0.5q, and Zi’s are IID Bernoullip0.4q.

DGP 2: Yi “ β0i ` β1iDi ` β2
ÿ

j‰i

A
pKq

ij Dj

Di “ 1 tγ0i ` γ1Zi ě 0u

where β0i, β1i, and γ0i are drawn from Normalp1, 1q, Normalp1, 1q, and Normalp´1.5, 1q, respectively,
pβ2, γ1q “ p0.5, 1.5q, and Zi’s are IID Bernoullip0.4q. The individual-specific coefficients are drawn only
once, and they are fixed throughout the simulations. Here, ApKq

ij is a ring-shape network where individuals
interact with their K-nearest neighbors:

A
pKq

ij “

$

&

%

1 if mint|i´ j|, |i´ j ` n|, |i´ j ´ n|u ď K

0 otherwise

For both DGPs, we consider two cases K P t2, 3u. For the specification of the IEM, we consider two versions
for each DGP in which the one is a correctly specified IEM and the other is misspeficied:

DGP 1: Correct IEM Ti “
ř

j‰iA
pKq

ij Zj

Incorrect IEM Ti “
ř

j‰iA
p1q

ij Zj

DGP 2: Correct IEM Ti “
ř

j‰iA
pKq

ij Dj “
ř

j‰iA
pKq

ij 1 tγ0j ` γ1Zj ě 0u

Incorrect IEM Ti “
ř

j‰iA
p1q

ij Dj “
ř

j‰iA
p1q

ij 1 tγ0j ` γ1Zj ě 0u

The forms of µDi pz, tq and µYi pz, tq under correct IEMs are straightforward. For DGP 1, when the IEM is
misspecified, noting that

ř

j‰iA
pKq

ij Zj “ Ti `
ř

j‰ipA
pKq

ij ´ A
p1q

ij qZj and the second term on the right-hand
side is distributed as Binomialp2K ´ 2, 0.4q, we have

µYi pz, tq “ β0i ` β1i Pr
´

rZpKq ě ´pγ0i ` γ1z ` γ2tq{γ2

¯

,
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where rZpKq „ Binomialp2K ´ 2, 0.4q. Similarly, for DGP 2, we have under the incorrect IEM that

µYi pz, tq “ β0i ` β11 tγ0i ` γ1z ě 0u ` β2t` β2
ÿ

j‰i

pA
pKq

ij ´A
p1q

ij qPr pZ ě ´γ0j{γ1q ,

where Pr pZ ě ´γ0j{γ1q “ 1t´γ0j{γ1 ď 0u ` 0.4 ¨ 1t0 ă ´γ0j{γ1 ď 1u.
The data are generated for two sample sizes n P t500, 1000u. Note that in our DGPs, all individuals have

the same network structure and the same distribution of Ti. Thus, we use the whole sampleNn as Sn. For each
setup, we estimate pADEYNnp2q,LADENnp2qq in DGP 1 and pADEYNnp1q,LADENnp1qq in DGP 2 using the
estimators introduced in Section 4. The performance of the estimators is measured in terms of the bias and the
root mean squared error (RMSE) based on 1,000 Monte Carlo repetitions.

The results are summarized in Table 1. We can find that our estimators work satisfactorily well overall
irrespective of whether the IEM is correctly- or mis-specified. Although our estimators are not unbiased for
the finite sample as we have stated in Remark 4.1, the biases are sufficiently small in all setups. The RMSE
values for the LADE parameter are larger than that of ADEY. This is because the estimation of LADE involves
the estimation of ADED (i.e., the average probability of compliance conditional on Ti “ t). Note that the
estimation accuracy of ADED and the size of the compliers depend largely on the specification of the IEM T

and the choice of value t. Depending on these factors, especially for small n, ADED may be estimated to be
zero, resulting in the failure of LADE estimation.

Table 1: Bias and RMSE

Correct IEM Incorrect IEM
ADEY LADE ADEY LADE

DGP K n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 2 500 -0.0008 0.1995 -0.0034 0.3410 -0.0103 0.3184 -0.0252 0.6099

1000 0.0021 0.1456 -0.0005 0.2554 0.0046 0.2165 0.0054 0.3892
3 500 -0.0034 0.2002 -0.0080 0.3460 -0.0118 0.3212 -0.0420 0.8275

1000 -0.0044 0.1511 -0.0107 0.2694 0.0028 0.2227 0.0076 0.4697
2 2 500 0.0055 0.1699 0.0071 0.3528 0.0001 0.1672 -0.0052 0.3449

1000 -0.0065 0.1212 -0.0221 0.2754 -0.0008 0.1208 -0.0031 0.2709
3 500 0.0106 0.1785 0.0307 0.3742 -0.0010 0.1708 -0.0078 0.3524

1000 0.0059 0.1378 -0.0045 0.3000 -0.0021 0.1230 -0.0060 0.2768

We next examine the performance of the HAC estimator and the wild bootstrap approach introduced in
subsections 4.3.1 and 4.3.2, respectively. The DGPs and the target parameters considered are the same as above.
For the ADEY and LADE parameters in each setup, we compute the coverage rate of the 95% confidence interval
obtained based on these two approaches. The bandwidth is chosen from bn P tK, 2Ku for both approaches.

The results are summarized in Table 2. Overall, we can see that the empirical coverage ratios are reasonably
close to the nominal 95% level for both estimators. Given that the estimators have non-negligible biases, the
above results indicate that the magnitude of the bias is not severe. For some specific designs and parameters
(such as ADEY in DGP 1 under the incorrect IEM), the confidence intervals tend to be narrower than the
nominal level, but it seems possible to correct the size distortion by increasing the sample size.
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Table 2: Coverage ratio of the 95% CI

Correct IEM Incorrect IEM
ADEY LADE ADEY LADE

DGP K n bn HAC Bootstrap HAC Bootstrap HAC Bootstrap HAC Bootstrap
1 2 500 2 0.939 0.935 0.943 0.939 0.922 0.921 0.950 0.950

4 0.936 0.926 0.931 0.932 0.909 0.916 0.945 0.946
1000 2 0.945 0.946 0.954 0.950 0.952 0.951 0.952 0.948

4 0.941 0.942 0.944 0.950 0.944 0.942 0.945 0.943
3 500 3 0.935 0.938 0.942 0.945 0.916 0.912 0.940 0.939

6 0.915 0.919 0.934 0.933 0.898 0.902 0.918 0.926
1000 3 0.945 0.936 0.943 0.932 0.934 0.934 0.950 0.951

6 0.932 0.925 0.934 0.922 0.937 0.931 0.945 0.943
2 2 500 2 0.954 0.955 0.951 0.949 0.947 0.940 0.946 0.945

4 0.951 0.953 0.947 0.941 0.931 0.937 0.936 0.933
1000 2 0.953 0.949 0.952 0.951 0.954 0.948 0.956 0.951

4 0.949 0.949 0.950 0.946 0.946 0.943 0.951 0.949
3 500 3 0.938 0.935 0.940 0.933 0.946 0.946 0.942 0.941

6 0.918 0.926 0.912 0.920 0.933 0.937 0.930 0.939
1000 3 0.929 0.933 0.935 0.936 0.946 0.942 0.955 0.959

6 0.929 0.924 0.932 0.932 0.942 0.940 0.956 0.944

5.2 Empirical application

We apply the proposed methods to the data from Paluck et al.’s (2016) field experiment on anti-conflict
intervention programs at American middle schools. During the 2012-2013 school year, the research team
organized intervention meetings to help students identify common conflict behaviors in their schools and
instruct them on behavioral strategies to mitigate conflicts. The purpose of the experiment was to examine how
the intervention program affects participants’ behavior and whether the students’ social networks influence the
climate of conflict in schools.

The data include n “ 24, 471 students in 56 public middle schools in the state of New Jersey. Half of these
schools were randomly selected to host the anti-conflict intervention program. Within each selected school, a
group of students (called seed-eligible students) were non-randomly selected by the research team, and half of
these students (called seed students or treatment-eligible students) were randomly invited to join the program.
The experimental design was one-sided noncompliance where meeting attendance was not compulsory and the
students without an invitation were not able to attend. Thus, there are only compliers and never-takers in this
empirical analysis, and joining in the intervention program means that the student is a complier.

Before starting the intervention program, the research team measured the students’ social networks by asking
them to nominate up to 10 students in their school with whom they had spent time in person or online in the past
few weeks. We construct a symmetric adjacency matrix A by treating the pair of students as friends if either
student nominated the other, as in Aronow and Samii (2017).

In our analysis,Zi P t0, 1u indicates whether student i received an invitation to the intervention program (i.e.,
whether student i was a seed student), and Di P t0, 1u represents the participation in the intervention program
(i.e., whether student i attended at least one intervention meeting). Let Yi P t0, 1u be a (self-reported) indicator
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Table 3: Descriptive statistics for seed-eligible students

Treatment eligibility
Overall Zi “ 0 Zi “ 1

Treatment
Di “ 0 2,357 (79%) 1,491 (100%) 866 (58%)
Di “ 1 626 (21%) 0 (0%) 626 (42%)

Outcome
Yi “ 0 2,684 (90%) 1,392 (93%) 1,292 (87%)
Yi “ 1 299 (10%) 99 (7%) 200 (13%)

IEM1
T1i “ 0 1,435 (48%) 716 (48%) 719 (48%)
T1i “ 1 1,548 (52%) 775 (52%) 773 (52%)

IEM2
T2i “ 0 2,277 (76%) 1,144 (77%) 1,133 (76%)
T2i “ 1 706 (24%) 347 (23%) 359 (24%)

for the wearing of a program wristband given by the treated students as a reward to students for engaging in
friendly or conflict-mitigating behaviors. This is regarded as a proxy variable of student’s willingness to endorse
anti-conflict norms and behaviors, and the same outcome variable is used in Aronow and Samii (2017) and Leung
(2021). We consider the following two IEMs: T1i “ 1t

ř

j‰iAijZj ą 0u and T2i “ 1t
ř

j‰iAijDj ą 0u,
respectively labeled as “IEM1” and “IEM2”. In other words, T1i and T2i indicate whether student i has at
least one treated and treatment-eligible friend, respectively. In line with Assumption 4.1(ii), we focus on the
following sub-populations:

Snpδq “ ti P Nn : i is a seed-eligible student who has δ seed-eligible friend(s)u for δ P t1, 2, 3u.

The descriptive statistics for the seed-eligible students are summarized in Table 3. We can see that all
students without invitation did not actually join the intervention program, implying that the monotonicity
condition in Assumption 3.3 holds. It is also interesting that not just IEM1 but the distribution of IEM2 is also
insensitive to the student’s own invitation status. This would suggest that one’s treatment eligibility does not
have substantial impacts on the others’ treatment choices. Indeed, we found that the conditional distribution of
ř

j‰iAijDj given Zi “ 1 is almost identical to that given Zi “ 0.
For each realization of both IEMs, Tables 4 and 5 present the ITT estimates with the standard errors

based on the network HAC estimation using bandwidth bn P t0, 1, 2, 3u.6 Overall, receiving an invitation has
a statistically significant positive effect on the probability of wearing a wristband, which is consistent with
previous findings (e.g., Aronow and Samii, 2017; Leung, 2021). For example, the estimate of ADEYSnp1qp0q

for IEM1 indicates that receiving an invitation leads to about a six percentage point increase in the probability of
wearing a wristband for the seed-eligible students whose seed-eligible friend is not treatment-eligible. Similarly,
the ADED estimates indicate positive effects of receiving an invitation on the probability of participation, which

6 The wild bootstrap produced similar standard errors to those reported here. To save space, we omit the results from the wild
bootstrap.
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supports the IV relevance condition in Assumption 3.2. Remarkably, ADEYSnpδqp1q is substantially larger
than ADEYSnpδqp0q for IEM2, implying that having at least one treated friend boosts the direct effect. This is
reasonable because the wristband is given by the program participants.

The estimates of LADE and their standard errors based on the HAC estimation are also reported in Tables
4 and 5. For example, the estimate of LADESnp1qp1q based on IEM1 indicates a twenty-four percentage point
increase in the probability of wearing a wristband for the seed-eligible students who have a treatment-eligible
friend. Interestingly, the LADE estimates tend to be larger than the corresponding ITT estimates, implying that
the ITT analysis might underestimate the effect of the anti-conflict intervention program.

Nonetheless, we should be cautious in interpreting the LADE estimates because the interpretation of LADE
crucially depends on which sufficient condition we consider for Assumption 3.4. Due to the nature of the
anti-conflict intervention program, it is plausible to imagine that the never-takers (i.e., those who never join
the intervention program irrespective of their invitation status) were unable to affect the participation of others.
Thus, the third sufficient condition (3.3) for Assumption 3.4 is plausible here, and LADE aggregates the ADE
of participation in the intervention program and the ASE caused by changing the student’s own treatment
eligibility. However, since one’s treatment eligibility seems to have little impact on the others’ treatment choice
as observed above, LADE should mainly account for the ADE of the intervention program.

6 Conclusion

In this study, we developed a causal inference method that simultaneously addresses cross-unit interference
within a social network and the issue of noncompliance with the assigned treatment. The key feature of
our approach is to admit the possibility of misspecification of IEM, which is a function of IVs that enables
summarizing the spillover effects into a low-dimensional variable. We conducted the identification analysis
for the ITT effect and the ADE for compliers. Here, we mainly discussed a causal interpretation for the ADE
parameter and the identification result for the LADE parameter. Based on the identification results, we proposed
nonparametric procedures for estimating the treatment parameters and investigated their asymptotic properties
based on the ANI framework originally introduced by Leung (2021). We also considered the statistical inference
methods based on the network HAC estimation and the wild bootstrap. The empirical application to the data of
Paluck et al. (2016) highlighted the usefulness of our method.

Several important research topics related to our study remain to be investigated. First, it would be of interest
to examine whether some treatment parameters can be recovered in the case where some of our identification
conditions are violated. In that case, it would be difficult to achieve point identification of the treatment
parameters, and a promising approach in this direction would be to pursue a partial identification strategy (cf.
Manski, 2013). Second, we could extend our analysis to the situation in which the treatment and/or IV take
non-binary values. It is known in the absence of interference that the standard monotonicity condition does
not apply to a case with a discrete treatment or IV, and a careful analysis would be required for handling this
issue (cf. Heckman and Pinto, 2018). Finally, our asymptotic theory depends somewhat on the sparsity of the
network, and it may be worthwhile to investigate under what conditions it is possible (or impossible) to derive
similar results for dense networks.
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Table 4: Direct effects conditional on T1i “ 0 or T2i “ 0

ADEYSnp0q ADEDSnp0q LADESnp0q

Sn |Sn| bn Estimate SE Estimate SE Estimate SE
(A) IEM1
Snp1q 1006 0 0.063 0.027 0.423 0.031 0.150 0.060

1 0.027 0.031 0.060
2 0.028 0.041 0.064
3 0.030 0.062 0.063

Snp2q 660 0 0.101 0.044 0.365 0.052 0.277 0.108
1 0.044 0.052 0.109
2 0.039 0.065 0.092
3 0.045 0.076 0.104

Snp3q 341 0 ´0.034 0.103 0.500 0.107 ´0.068 0.209
1 0.104 0.107 0.211
2 0.106 0.116 0.215
3 0.106 0.124 0.215

(B) IEM2
Snp1q 1006 0 0.039 0.019 0.299 0.023 0.131 0.060

1 0.019 0.024 0.060
2 0.020 0.034 0.062
3 0.022 0.054 0.067

Snp2q 660 0 0.043 0.020 0.198 0.028 0.219 0.093
1 0.021 0.028 0.093
2 0.019 0.035 0.085
3 0.020 0.044 0.088

Snp3q 341 0 ´0.012 0.025 0.130 0.032 ´0.094 0.202
1 0.025 0.033 0.202
2 0.025 0.037 0.202
3 0.022 0.040 0.172
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Table 5: Direct effects conditional on T1i “ 1 or T2i “ 1

ADEYSnp1q ADEDSnp1q LADESnp1q

Sn |Sn| bn Estimate SE Estimate SE Estimate SE
(A) IEM1
Snp1q 1006 0 0.102 0.028 0.423 0.031 0.240 0.062

1 0.029 0.034 0.061
2 0.028 0.045 0.060
3 0.028 0.061 0.052

Snp2q 660 0 0.098 0.029 0.496 0.032 0.198 0.056
1 0.030 0.035 0.056
2 0.035 0.047 0.064
3 0.033 0.063 0.059

Snp3q 341 0 0.022 0.034 0.400 0.040 0.054 0.083
1 0.035 0.047 0.085
2 0.038 0.057 0.093
3 0.037 0.070 0.091

(B) IEM2
Snp1q 1006 0 0.235 0.054 0.864 0.033 0.273 0.062

1 0.054 0.033 0.061
2 0.056 0.035 0.065
3 0.052 0.044 0.058

Snp2q 660 0 0.185 0.052 0.897 0.027 0.206 0.058
1 0.052 0.027 0.057
2 0.058 0.028 0.064
3 0.052 0.028 0.057

Snp3q 341 0 0.075 0.069 0.891 0.039 0.084 0.077
1 0.071 0.039 0.079
2 0.081 0.038 0.091
3 0.081 0.041 0.091
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A Appendix: Proofs

A.1 Proof of Proposition 3.1

We prove only the results for the outcome variable, and those for the treatment receipt can be shown in the same
manner. We first note that the observed outcome can be written as

Yi “

1
ÿ

zi“0

ÿ

z´iPt0,1un´1

1tZi “ zi,Z´i “ z´iuyipzi, z´iq.

We then observe that

µYi pz, tq “
ÿ

z´iPt0,1un´1

yipz, z´iqPrrZ´i “ z´i | Zi “ z, Ti “ ts

“
ÿ

z´iPt0,1un´1

yipz, z´iqπipz´i, tq,
(A.1)

where the second line follows from Assumption 3.1. This equality implies the results for ADEYSnptq and
ASEYSnpz, t, t1q.

A.2 Proof of Theorem 3.1

Observe that Di “
ř1

zi“0

ř

z´iPt0,1un´1 1tZi “ zi,Z´i “ z´iuDipzi, z´iq. By Assumption 3.1, it holds that

µDi pz, tq “
ÿ

z´iPt0,1un´1

Dipz, z´iqπipz´i, tq

“
ÿ

z´iPt0,1un´1

1tDip1, z´iq ‰ Dip0, z´iquDipz, z´iqπipz´i, tq

`
ÿ

z´iPt0,1un´1

1tDip1, z´iq “ Dip0, z´iquDipz, z´iqπipz´i, tq.

Thus, Assumption 3.3 implies that

ADEDSnptq “
1

|Sn|

ÿ

iPSn

rµDi p1, tq ´ µDi p0, tqs

“
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

1tDip1, z´iq ‰ Dip0, z´iqutDip1, z´iq ´Dip0, z´iquπipz´i, tq

`
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

1tDip1, z´iq “ Dip0, z´iqutDip1, z´iq ´Dip0, z´iquπipz´i, tq

“
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

Cipz´iqπipz´i, tq.

29



In the same manner, we can show that

ADEYSnptq “
1

|Sn|

ÿ

iPSn

rµYi p1, tq ´ µYi p0, tqs

“
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

tyip1, z´iq ´ yip0, z´iqu1tDip1, z´iq ‰ Dip0, z´iquπipz´i, tq

`
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

tyip1, z´iq ´ yip0, z´iqu1tDip1, z´iq “ Dip0, z´iquπipz´i, tq

“
1

|Sn|

ÿ

iPSn

ÿ

z´iPt0,1un´1

tyip1, z´iq ´ yip0, z´iquCipz´iqπipz´i, tq,

where the last line follows from Assumptions 3.3 and 3.4. Combining these equalities with Assumption 3.2, we
obtain the desired result.

A.3 Proof of Theorem 4.2

Proof of result (i). Observe that

pµYSn
pz, tq “

qµYSn
pz, tq

ppSnpz, tq
pSnpz, tq

“ qµYSn
pz, tq ´

qµYSn
pz, tq

ppSnpz, tq
rppSnpz, tq ´ pSnpz, tqs

“ qµYSn
pz, tq ´

µ̄YSn
pz, tq

pSnpz, tq
rppSnpz, tq ´ pSnpz, tqs ´

qµYSn
pz, tq ´ µ̄YSn

pz, tq

ppSnpz, tq
rppSnpz, tq ´ pSnpz, tqs

` µ̄YSn
pz, tq

ˆ

1

pSnpz, tq
´

1

ppSnpz, tq

˙

rppSnpz, tq ´ pSnpz, tqs

“ qµYSn
pz, tq ´

µ̄YSn
pz, tq

pSnpz, tq
rppSnpz, tq ´ pSnpz, tqs ` oP

˜

1
a

|Sn|

¸

,

where the last equality holds from Lemmas B.1 and B.2 and Assumption 4.3. Using this, we have

{ADEYSnptq ´ ADEYSnptq

“ pµYSn
p1, tq ´ pµYSn

p0, tq ´ µ̄YSn
p1, tq ` µ̄YSn

p0, tq

“ qµYSn
p1, tq ´ qµYSn

p0, tq ´
µ̄YSn

p1, tq

pSnp1, tq
rppSnp1, tq ´ pSnp1, tqs `

µ̄YSn
p0, tq

pSnp0, tq
rppSnp0, tq ´ pSnp0, tqs

´ µ̄YSn
p1, tq ` µ̄YSn

p0, tq ` oP

˜

1
a

|Sn|

¸

“
1

|Sn|

ÿ

iPSn

˜

rW Y
i ´ EW Y

i s ´
µ̄YSn

p1, tq

pSnp1, tq
rWZ

i ´ EWZ
i s `

µ̄YSn
p0, tq

pSnp0, tq
rW 1´Z

i ´ EW 1´Z
i s

¸

` oP

˜

1
a

|Sn|

¸

“
1

|Sn|

ÿ

iPSn

`

V ADEY
i ´ ErV ADEY

i s
˘

` oP

˜

1
a

|Sn|

¸

.

(A.2)
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By Lemma B.4, tV ADEY
i uiPSn isψ-weakly dependent with the dependence coefficients trθn,susě0. Then, letting

rGADEY
Sn

:“ |Sn|´1{2
ř

iPSn
pV ADEY

i ´ ErV ADEY
i sq{σADEY

Sn
, the same arguments as in the proofs of Lemmas

A.2 and A.3 of Kojevnikov et al. (2021) show that there exists a positive constant C ą 0 such that

sup
aPR

ˇ

ˇ

ˇ
Pr

´

rGADEY
Sn

ď a
¯

´ Φpaq

ˇ

ˇ

ˇ
ď C

2
ÿ

k“1

¨

˝

g

f

f

e

1

|Sn|k{2pσADEY
Sn

q2`k

n´1
ÿ

s“0

cSnps,mn; kqrθ1´ε
n,s `

|Sn|k{2

pσADEY
Sn

qk
rθ1´ε
n,mn

˛

‚,

whereΦ denotes the cumulative distribution function ofNormalp0, 1q, andmn and ε are as given in Assumption
4.7. The right-hand side converges to zero by Assumption 4.7, implying that rGADEY

Sn

d
Ñ Normalp0, 1q. Thus,

we have
a

|Sn|

´

{ADEYSnptq ´ ADEYSnptq
¯

σADEY
Sn

“ rGADEY
Sn

` oP

˜

1

σADEY
Sn

¸

d
Ñ Normalp0, 1q,

under the condition pσADEY
Sn

q´1 “ Op1q.

Proof of result (ii). Result (ii) can be shown in the same manner as in result (i).

Proof of result (iii). We can observe that

{LADESnptq ´ LADESnptq

“
1

ADEDSnptq
r {ADEYSnptq ´ ADEYSnptqs ´

{ADEYSnptq

{ADEDSnptqADEDSnptq
r {ADEDSnptq ´ ADEDSnptqs

“
1

ADEDSnptq
r {ADEYSnptq ´ ADEYSnptqs ´

ADEYSnptq

rADEDSnptqs2
r {ADEDSnptq ´ ADEDSnptqs

´

˜

{ADEYSnptq

{ADEDSnptqADEDSnptq
´

ADEYSnptq

rADEDSnptqs2

¸

r {ADEDSnptq ´ ADEDSnptqs

“
1

|Sn|

ÿ

iPSn

ˆ

1

ADEDSnptq
rV ADEY

i ´ EV ADEY
i s ´

ADEYSnptq

rADEDSnptqs2
rV ADED

i ´ EV ADED
i s

˙

`OP

˜

σADEY
Sn

σADED
Sn

|Sn|

¸

`OP

˜

pσADED
Sn

q2

|Sn|

¸

` oP

˜

1
a

|Sn|

¸

“
1

|Sn|

ÿ

iPSn

`

V LADE
i ´ ErV LADE

i s
˘

`OP

˜

σADEY
Sn

σADED
Sn

|Sn|

¸

`OP

˜

pσADED
Sn

q2

|Sn|

¸

` oP

˜

1
a

|Sn|

¸

,

where the third line follows from Assumption 3.2 and results (i)–(ii). Here, V LADE
i is uniformly bounded by

Assumptions 3.2, 4.2, and 4.3, and Lemma B.4 implies that tV LADE
i uiPSn is ψ-weakly dependent with the

dependence coefficients trθn,susě0. Then, letting rGLADE
Sn

:“ |Sn|´1{2
ř

iPSn
pV LADE

i ´ ErV LADE
i sq{σLADE

Sn
,

the same arguments as in the proof of result (i) show that rGLADE
Sn

d
Ñ Normalp0, 1q. Thus, in conjunction with
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(4.5), we obtain

a

|Sn|

´

{LADESnptq ´ LADESnptq
¯

σLADE
Sn

“ rGLADE
Sn

`OP

˜

σADEY
Sn

σADED
Sn

a

|Sn|σLADE
Sn

¸

`OP

˜

pσADED
Sn

q2
a

|Sn|σLADE
Sn

¸

` oP

˜

1

σLADE
Sn

¸

d
Ñ Normalp0, 1q.

A.4 Proof of Theorem 4.3

To save space, we prove only the result for σADEY
Sn

(those for σADED
Sn

and σLADE
Sn

can be shown in the same
manner). It is easy to see that

ppσADEY
Sn

q2 “ prσADEY
Sn

q2 `BADEY
Sn

`
1

|Sn|

ÿ

iPSn

ÿ

jPSn

´

pV ADEY
i

pV ADEY
j ´ V ADEY

i V ADEY
j

¯

1tℓApi, jq ď bnu

`
2

|Sn|

ÿ

iPSn

ÿ

jPSn

pV ADEY
i ´ ErV ADEY

i sqErV ADEY
j s1tℓApi, jq ď bnu,

(A.3)

where prσADEY
Sn

q2 is the infeasible oracle estimator defined as

prσADEY
Sn

q2 :“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

`

V ADEY
i ´ ErV ADEY

i s
˘ `

V ADEY
j ´ ErV ADEY

j s
˘

1tℓApi, jq ď bnu.

By Lemma B.4 and Assumptions 4.2, 4.3, and 4.8(i), Proposition 4.1 of Kojevnikov et al. (2021) implies that
prσADEY

Sn
q2 “ pσADEY

Sn
q2 ` oP p1q. Thus, we obtain the desired result if the second and third lines of (A.3) are

asymptotically negligible.
For the second line of (A.3), observe that

1

|Sn|

ÿ

iPSn

ÿ

jPSn

´

pV ADEY
i

pV ADEY
j ´ V ADEY

i V ADEY
j

¯

1tℓApi, jq ď bnu

“
1

|Sn|

ÿ

iPSn

ÿ

jPSn

´

pV ADEY
i ´ V ADEY

i

¯

pV ADEY
j 1tℓApi, jq ď bnu

`
1

|Sn|

ÿ

iPSn

ÿ

jPSn

´

pV ADEY
j ´ V ADEY

j

¯

V ADEY
i 1tℓApi, jq ď bnu.

(A.4)

Since maxjPSn | pV ADEY
j | “ OP p1q and maxiPSn | pV ADEY

i ´ V ADEY
i | “ OP p|Sn|´1{2q by Assumptions 4.2,

4.3, and 4.8(i) and Lemmas B.1 and B.2, we have
ˇ

ˇ

ˇ

ˇ

ˇ

1

|Sn|

ÿ

iPSn

ÿ

jPSn

´

pV ADEY
i ´ V ADEY

i

¯

pV ADEY
j 1tℓApi, jq ď bnu

ˇ

ˇ

ˇ

ˇ

ˇ
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ď

ˆ

max
jPSn

| pV ADEY
j |

˙ ˆ

max
iPSn

| pV ADEY
i ´ V ADEY

i |

˙

1

|Sn|

ÿ

iPSn

ÿ

jPSn

1tℓApi, jq ď bnu

“ OP p1q ¨OP

˜

1
a

|Sn|

¸

¨MSnpbn, 1q,

which is oP p1q under Assumption 4.8(ii). Similarly, we can show that the second term of (A.4) is oP p1q. Thus,
the second line of (A.3) is oP p1q.

To evaluate the third line of (A.3), let κn,i :“
ř

jPSn
ErV ADEY

j s1tℓApi, jq ď bnu. Using the norm
inequality, we have

E

ˇ

ˇ

ˇ

ˇ

ˇ

1

|Sn|

ÿ

iPSn

pV ADEY
i ´ ErV ADEY

i sqκn,i

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝E

»

–

˜

1

|Sn|

ÿ

iPSn

pV ADEY
i ´ EV ADEY

i qκn,i

¸2
fi

fl

˛

‚

1{2

“

¨

˝

1

|Sn|2

ÿ

iPSn

VarrV ADEY
i sκ2n,i `

1

|Sn|2

ÿ

iPSn

ÿ

jPSnztiu

CovrV ADEY
i , V ADEY

j sκn,iκn,j

˛

‚

1{2

.

Noting that V ADEY
i is bounded by Assumptions 4.2 and 4.3, we have |Sn|´2

ř

iPSn
VarrV ADEY

i sκ2n,i ď

C|Sn|´1MSnpbn, 2q “ op1q by Assumption 4.8(ii). Further, we can see that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

|Sn|2

ÿ

iPSn

ÿ

jPSnztiu

CovrV ADEY
i , V ADEY

j sκn,iκn,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

|Sn|2

n´1
ÿ

s“1

ÿ

iPSn

ÿ

jPSn

1tℓApi, jq “ su|CovrV ADEY
i , V ADEY

j s| ¨ |κn,i| ¨ |κn,j |

ď
C

|Sn|2

n´1
ÿ

s“1

rθn,s
ÿ

iPSn

ÿ

jPSn

ÿ

kPSn

ÿ

lPSn

1tℓApi, jq “ su1tℓApi, kq ď bnu1tℓApj, lq ď bnu

“
C

|Sn|2

n´1
ÿ

s“1

|JSnps, bnq|rθn,s “ op1q,

where the second inequality follows from the fact that tV ADEY
i uiPSn is ψ-weakly dependent by Lemma B.4 and

the last line follows from the second part of Assumption 4.8(i). Thus, the third line of (A.3) is oP p1q.
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B Appendix: Lemmas

B.1 Lemmas for Theorem 4.1

Lemma B.1. Suppose that Assumptions 4.1, 4.4, and 4.6(i) hold. Then, we have

ppSnpz, tq ´ pSnpz, tq “ OP

˜

1
a

|Sn|

¸

for all z P t0, 1u and t P T .

Proof. By Assumption 4.1(ii), ErppSnpz, tqs “ pSnpz, tq, and thus it suffices to show that VarrppSnpz, tqs “

Op|Sn|´1q. Observe that

VarrppSnpz, tqs “
1

|Sn|2

ÿ

iPSn

Varr1tZi “ z, Ti “ tus `
1

|Sn|2

ÿ

iPSn

ÿ

jPSnztiu

Covr1tZi “ z, Ti “ tu,1tZj “ z, Tj “ tus

“ O

ˆ

1

|Sn|

˙

`
1

|Sn|2

ÿ

iPSn

ÿ

jPSn

ÿ

sě1

1tℓApi, jq “ suCovr1tZi “ z, Ti “ tu,1tZj “ z, Tj “ tus

“ O

ˆ

1

|Sn|

˙

`
1

|Sn|2

ÿ

iPSn

ÿ

jPSn

2K
ÿ

s“1

1tℓApi, jq “ suCovr1tZi “ z, Ti “ tu,1tZj “ z, Tj “ tus,

where the last equality follows from the fact that, for any i, j P Sn such that ℓApi, jq ą 2K, pZi, Tiq is
independent of pZj , Tjq by Assumptions 4.1(i) and 4.4. By the Cauchy–Schwarz inequality, the second term
of the last line is bounded above by |Sn|´1

ř2K
s“1M

B
Sn

psq which is Op|Sn|´1q by Assumption 4.6(i). This
completes the proof.

Lemma B.2. Suppose that Assumptions 4.1 – 4.6 hold. Then, we have

(i) pµYSn
pz, tq ´ µ̄YSn

pz, tq “ oP p1q,

(ii) pµDSn
pz, tq ´ µ̄DSn

pz, tq “ oP p1q,

as |Sn| Ñ 8, for all z P t0, 1u and t P T . Further,
a

|Sn|-consistency is achieved if Assumption 4.6(ii) is
strengthened to (4.3).

Proof. We prove only the first result since the second one can be shown in the same way. Observe that

pµYSn
pz, tq “ qµYSn

pz, tq ´
qµYSn

pz, tq

ppSnpz, tq
rppSnpz, tq ´ pSnpz, tqs

“ qµYSn
pz, tq `OP

˜

1
a

|Sn|

¸

,

by Lemma B.1 and Assumptions 4.2 and 4.3. Here, it is easy to see that ErqµYSn
pz, tqs “ µ̄YSn

pz, tq. Further,
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letting QY
i :“ Yi1tZi “ z, Ti “ tu{pSnpz, tq, we can see that

Var
“

qµYSn
pz, tq

‰

“
1

|Sn|2

ÿ

iPSn

VarrQY
i s `

1

|Sn|2

ÿ

iPSn

ÿ

jPSnztiu

CovrQY
i , Q

Y
j s

“ O

ˆ

1

|Sn|

˙

`
1

|Sn|2

n´1
ÿ

s“1

ÿ

iPSn

ÿ

jPSn

1tℓApi, jq “ suCovrQY
i , Q

Y
j s.

Using Assumptions 4.1–4.5, similar arguments to the proof of Theorem 2 of Leung (2021) can show that the
second term in the last line is bounded above byC|Sn|´1

řn´1
s“1 M

B
Sn

psqrθn,s for some positive constantC. Thus,
we obtain the desired result by Assumption 4.6(ii) or (4.3) and Chebyshev’s inequality.

B.2 Lemmas for Theorem 4.2

For completeness, we define ψ-dependence in line with Definition 2.2 of Kojevnikov et al. (2021). For d P N,
let Ld be the set of real-valued bounded Lipschitz functions on Rd:

Ld :“ tf : Rd Ñ R : }f}8 ă 8, Lippfq ă 8u,

where }f}8 :“ supxPRd |fpxq| and Lippfq indicates the Lipschitz constant of f (with respect to the Euclidean
norm). We write the distance between subsets H,H 1 Ă Sn by ℓApH,H 1q :“ mintℓApi, jq : i P H, j P H 1u.
For h, h1 P N, denote the collection of pairs pH,H 1q whose sizes are h and h1, respectively, with distance at
least s as

PSnph, h1, sq :“ tpH,H 1q : H,H 1 Ă Sn, |H| “ h, |H 1| “ h1, ℓApH,H 1q ě su.

For a generic random vector Wn,i P Rv, let Wn,H “ pWn,iqiPH and Wn,H 1 “ pWn,iqiPH 1 .

Definition B.1 (ψ-dependence). A triangular array tWn,iuiPSn is called ψ-dependent, if for each n P N, there
exist a sequence of uniformly bounded constants trθn,susě0 with rθn,0 “ 1 and a collection of nonrandom
functions tψh,h1uh,h1PN, where ψh,h1 : Lhv ˆ Lh1v Ñ r0,8q, such that for all s ą 0, pH,H 1q P PSnph, h1, sq,
f P Lhv, and f 1 P Lh1v,

|CovrfpWn,Hq, f 1pWn,H 1qs| ď ψh,h1pf, f 1qrθn,s.

The sequence trθn,susě0 is called the dependence coefficients of tWn,iuiPSn . Further, if supnPN
rθn,s Ñ 0 as

s Ñ 8, we say that tWn,iuiPSn is ψ-weakly dependent.

Denote Wi :“ pW Y
i ,W

D
i ,W

Z
i ,W

1´Z
i q, whose elements are as defined in (4.4). For a subsetH Ă Sn with

|H| “ h, we write WH “ pWiqiPH .

Lemma B.3. Under Assumptions 4.1 – 4.5, the triangular array tWiuiPSn is ψ-weakly dependent with the
dependence coefficients trθn,susě0 defined by (4.2) and

ψh,h1pf, f 1q “ Cr}f}8}f 1}8 ` h}f 1}8 Lippfq ` h1}f}8 Lippf 1qs, @h, h1 P N, f P L4h, f
1 P L4h1 ,
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with some positive constant C.

Proof. Consider arbitrary n, h, h1 P N, s ą 0, pH,H 1q P PSnph, h1; sq, f P L4h, and f 1 P L4h1 . Let
ξ :“ fpWHq and ζ :“ f 1pWH 1q. Consider two independent copies of Z, say Z 1 and Z2. For i P H and
j P H 1, define Zps,ξq

i :“ pZNApi,sq,Z
1
Nc

Api,sq
q, Zps,ζq

j :“ pZNApj,sq,Z
2
Nc

Apj,sq
q, and

W
Y,ps,ξq

i :“ yipZ
ps,ξq

i q

«

1tZi “ 1, T pi,Z
ps,ξq

i ,Aq “ tu

pSnp1, tq
´

1tZi “ 0, T pi,Z
ps,ξq

i ,Aq “ tu

pSnp0, tq

ff

,

W
Y,ps,ζq

j :“ yjpZ
ps,ζq

j q

«

1tZj “ 1, T pj,Z
ps,ζq

j ,Aq “ tu

pSnp1, tq
´

1tZj “ 0, T pj,Z
ps,ζq

j ,Aq “ tu

pSnp0, tq

ff

.

We similarly define WD,ps,ξq

i , WD,ps,ζq

j , WZ,ps,ξq

i , WZ,ps,ζq

j , W 1´Z,ps,ξq

i , and W 1´Z,ps,ζq

j , and let

W
ps,ξq

i :“ pW
Y,ps,ξq

i ,W
D,ps,ξq

i ,W
Z,ps,ξq

i ,W
1´Z,ps,ξq

i q, W
ps,ξq

H :“ pW
ps,ξq

i qiPH , ξpsq :“ fpW
ps,ξq

H q,

W
ps,ζq

j :“ pW
Y,ps,ζq

j ,W
D,ps,ζq

j ,W
Z,ps,ζq

j ,W
1´Z,ps,ζq

j q, W
ps,ζq

H 1 :“ pW
ps,ζq

j qjPH 1 , ζpsq :“ f 1pW
ps,ζq

H 1 q.

Since f and f 1 are bounded functions,

|Covpξ, ζq| “ |Covpξ, ζq| ¨ 1ts ď 2maxtK, 1uu ` |Covpξ, ζq| ¨ 1ts ą 2maxtK, 1uu

ď 2}f}8}f 1}8 ¨ 1ts ď 2maxtK, 1uu ` |Covpξ, ζq| ¨ 1ts ą 2maxtK, 1uu.

For the second term, recall that ℓApH,H 1q ą 2maxtK, 1u when s ą 2maxtK, 1u. Then, denoting s1 “ ts{2u,
Assumptions 4.1(i) and 4.4 imply that W ps1,ξq

H is independent of W ps1,ζq

H 1 . From this, we have

|Covpξ, ζq| ď |Covpξ ´ ξps1q, ζq| ` |Covpξps1q, ζ ´ ζps1qq| ` |Covpξps1q, ζps1qq|

“ |Covpξ ´ ξps1q, ζq| ` |Covpξps1q, ζ ´ ζps1qq|

ď 2}f 1}8 E |ξ ´ ξps1q| ` 2}f}8 E |ζ ´ ζps1q|

ď 2}f 1}8 LippfqE }WH ´ W
ps1,ξq

H } ` 2}f}8 Lippf 1qE }WH 1 ´ W
ps1,ζq

H 1 },

where } ¨ } denotes the Euclidean norm. Here, by Assumption 4.4,

W Y
i ´W

Y,ps1,ξq

i “ ryipZq ´ yipZ
ps1,ξq

i qs

ˆ

1tZi “ 1, T pi,Z,Aq “ tu

pSnp1, tq
´

1tZi “ 0, T pi,Z,Aq “ tu

pSnp0, tq

˙

and

WD
i ´W

D,ps1,ξq

i “ rDipZq ´DipZ
ps1,ξq

i qs

ˆ

1tZi “ 1, T pi,Z,Aq “ tu

pSnp1, tq
´

1tZi “ 0, T pi,Z,Aq “ tu

pSnp0, tq

˙

.

Further, it is easy to see that WZ
i ´W

Z,ps1,ξq

i “ 0 and W 1´Z
i ´W

1´Z,ps1,ξq

i “ 0 by Assumption 4.4. Thus, by
Assumptions 4.2 and 4.3, E }WH ´W

ps1,ξq

H } ď Chθn,s1 for some positive constant C. In the same way, we can
see that E }WH 1 ´ W

ps1,ζq

H 1 } ď Ch1θn,s1 . In conjunction with Assumption 4.5, this completes the proof.
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The next lemma is immediate from Lemma B.3 (cf. Lemma 2.1 of Kojevnikov et al., 2021). Let tcn,iuiPSn

be a sequence of uniformly bounded nonrandom vectors in R4.

Lemma B.4. Under Assumptions 4.1 – 4.5, the triangular array tcJ
n,iWiuiPSn is ψ-weakly dependent with the

dependence coefficients trθn,susě0 defined by (4.2) and

ψh,h1pf, f 1q “ Cr}f}8}f 1}8 ` h}f 1}8 Lippfq ` h1}f}8 Lippf 1qs, @h, h1 P N, f P Lh, f
1 P Lh1 ,

with some positive constant C.
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