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Abstract 

This paper develops a two-region model of interregional travel with 

infectious diseases and analyzes the optimal policy intervention. The main 

result is that even when infection spreads, both the restriction and promotion 

of travel may be optimal depending on regional asymmetry. This stems from 

the bidirectionality of interregional travel and the difficulty of identifying 

infected but asymptomatic from noninfected individuals. Numerical 

examples show that both taxes and subsidies on travel could be optimal in a 

realistic range of parameter values. 

 

Keywords: Tax; Subsidy; Interregional movement; Infectious diseases. 

JEL classification: D62; H23; I18. 

 

1 Introduction 

Due to the coronavirus disease 2019 (COVID-19) pandemic, many countries have 

restricted the inter- and intranational movement of people. Some countries, however, have 

adopted the opposite policies (World Tourism Organization, 2020). For example, the 

Japanese government initiated a travel promotion campaign (the `Go To Travel’ 

campaign) in July 2020, when the COVID-19 pandemic had yet to recede in the country.1 

Motivated by policy variations, this paper considers how to intervene in travel between 

regions where infection spreads. 

   This paper develops a two-region model of interregional travel with infectious 

diseases. The model is base on the setting used in the theoretical literature of air passenger 

 
1 The campaign offers 35 percent discounts on travel costs and additionally issues coupons equivalent 

to 15 percent of the costs that can be used for consumption at the destination. The government initially 

appropriated approximately 1.12 trillion JPY (roughly equivalent to 112 billion USD) for the campaign 

and added 0.31 trillion JPY (roughly 31 billion USD) in December 2020. 
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transport market (e.g., Brueckner, 2002; Brueckner 2004; Czerny and Zhang, 2015) and 

incorporates infectious diseases into it. The optimal tax on travel is then derived for the 

model, indicating whether, in the context of infectious disease, a government should 

always tax (i.e., restrict) interregional movement or subsidize (i.e., promote) it in some 

cases.  

   The main result is that the optimal tax could be not only positive but also negative 

(i.e., a subsidy) even when an infection spreads, suggesting that restriction of 

interregional movement is not always appropriate and that the promotion of movement is 

socially optimal in some cases. The signs and magnitudes of the travel externalities 

change according to the direction of a travel and the infectious status of a traveler. The 

asymmetry between regions also plays an important role to determine the externalities. 

The externality may be positive due to two features of the market:  (i) the 

bidirectionality of interregional travel and (ii) the difficulty of distinguishing infected (but 

not symptomatic) residents from noninfected residents. First, people travel between two 

regions in both directions. If travel from region A to region B increase the probability that 

a person is infected or infects others, travel from B to A may decrease it. When the latter 

effect is sufficiently large, a subsidy on travel may be optimal. As implied by this 

argument, regional asymmetry in infectious diseases plays a central role in determining 

the optimal tax. 

Second, it is difficult to distinguish noninfected and infected residents. The 

probability that a noninfected individual becomes infected is lower when they are active 

in the safer region where the infection is less widespread. However, an infected individual 

increases infection cases less when active in the riskier region. Since the people with 

whom the infected individual comes into contact are more likely to already be infected in 
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the riskier region, these contacts are less likely to cause additional infections. Therefore, 

to reduce infectious disease, a government wants noninfected individuals to be in the safer 

region and wants infected individuals to be in the riskier region. According to the balance 

of these incentives, both a tax and a subsidy could be optimal when it is impossible to 

identify the infectious status of residents. 

Numerical examples show that the optimal tax could indeed be negative with 

parameter values in a realistic range, which are set in line with the case of Japan in 2020. 

The optimal rate is, however, calculated to be small and at most on the order of 10 JPY 

(approximately 0.1 USD). Therefore, this result hardly supports the large subsidy in Japan, 

although it relies on a simple theoretical model and should be interpreted with caution. 

 

Related literature. 

   This paper is closely related to empirical studies that analyze the effects of restrictions 

on interregional mobility on the spatial spread of COVID-19. The literature often focuses 

on how mobility restrictions to/from a region with high levels of infection transmission 

can suppress the spread of infectious diseases into other regions (e.g., Chinazzi et al., 

2020; Fang et al., 2020). However, restrictions on movement to/from the epicenter might 

increase infectious cases in that region, as some studies point out (e.g., Kondo, 2021). 

When mobility is restricted, noninfected residents of the epicenter cannot escape to safer 

regions, and infected residents must stay in the region and spread infectious diseases there. 

This paper theoretically investigates the nature of externalities of travel under a pandemic 

and considers the optimal policy from the total welfare of all regions. The results indicate 

that since the effects of mobility restrictions on the epicenter may outweigh those on 

another region under certain circumstances, not restriction but promotion of movement 
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may be optimal. 

   Externalities of travel have been widely studied. While travelers contribute to the 

destination economy, they may accompany negative effects (e.g., Dwyer and Forsyth, 

1993). Negative externalities of travel include congestion (Palmer-Tous et al., 2007; 

Saenz-de-Miera and Rosselló, 2012), accidents (Page and Meyer, 1996), air pollution 

(Saenz-de-Miera and Rosselló, 2014), crime (Biagi and Detotto, 2014), and water 

shortage (Sheng et al., 2017). To our knowledge, however, the literature has not focused 

on infectious diseases as a source of externalities of travel. This paper theoretically 

investigates the nature of externalities of travel regarding infectious diseases, showing 

that the externality depends on the direction of a travel and the infectious status of a 

traveler and may be positive. 

Studies in the literature on knowledge spillover and brain drain also investigate 

externalities of movement of people. A region's productivity increases when research 

facilities are located there (e.g., Audretsch and Lehmann, 2005) and entrepreneurs move 

to the region (e.g., Gibson and Makenzie, 2014). There have also been studies on the 

interregional externalities of movement of higher educated or skilled workers (e.g., Leach, 

1996; Justman and Thisse, 2000). These studies and the present study differ in the nature 

of movement analyzed. The former is for the longer-term and one-way movement (i.e., 

migration), while the latter focuses on the shorter-term and round-trip movement (i.e., 

travel). In the context of travel, effects that a traveler takes away from the destination to 

the origin region (e.g., a traveler gets infected during travel and then infects others after 

coming back home) are relevant. This paper therefore uses a framework that takes those 

effects into account to investigate the externalties of travel regarding infectious diseases. 
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Structure of the article. 

   The remainder of this paper is organized as follows. Section 2 describes the model. 

Section 3 explores the optimal tax on interregional movement. Section 4 provides 

numerical examples. Section 5 concludes the paper. 

 

2 Model 

This section introduces a model to analyze taxes on interregional travel in the presence 

of infectious diseases. The model consists of two regions, labeled 1 and 2, and a central 

government. Each region has two types of residents: “decision-maker” and “non-

decision-maker.” The decision-makers decide whether to stay at their residence or travel 

to the other region. The non-decision-makers are assumed to always stay. An 

interpretation of the non-decision-makers is that they provide services for travelers, for 

example, in entertainment districts and sightseeing spots. The number of decision-makers 

and non-decision-makers in region 𝑖 is denoted by 𝑁𝑖 and �̅�𝑖, respectively. 

   We analyze a two-stage game and its subgame perfect Nash equilibrium. In the first 

stage, the government sets the tax (or subsidy) rate. In the second stage, the decision-

makers decide whether to stay or travel. Infection then spreads as explained below. At the 

end of the second stage, it turns out who are infected. 

Infectious diseases are modeled as described below and illustrated in Figure 1. First, 

the probability that a resident in region 𝑖 is already infected at the beginning of the game 

is 𝑛𝑖/𝑁𝑖  . This means that the number of infected decision-makers is 𝑛𝑖  and that of 

infected non-decision-makers is �̅�𝑖𝑛𝑖/𝑁𝑖  . Second, no residents know whether they are 

already infected when making their decisions. A possible interpretation of this is that the 

infected residents are in the incubation period. Third, the probability that a noninfected 
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resident becomes infected when coming into contact with an infected individual in region 

𝑖 is 𝑟𝑖. What matters is not their places of residence but where the contact takes place 

because the probability of transmission is plausibly determined by the climate of the place 

of contact. Fourth, a decision-maker comes into contact with non-decision-makers. 

Specifically, when choosing to stay, a decision-maker in region 𝑖  consumes services 

provided by non-decision-makers in region 𝑖  and is exposed to them; when travel is 

chosen, the decision-maker comes into contact with non-decision-makers in the other 

region. Fifth, the number of people with whom a decision-maker comes into contact is 

allowed to differ across stay (𝑘) and travel (𝑘 + 𝛼). Sixth, a decision-maker who becomes 

infected during travel experiences the onset of symptoms after returning home. 

Under these assumptions, the probability that a noninfected (i.e., susceptible) 

decision-maker becomes infected can be calculated. Additionally, the expected number 

of additional infections that an infected decision-maker will cause can be derived. Table 

1 summarizes these probabilities and expectations, which play an important role in 

understanding the optimal tax and are referred to several times in the rest of the paper. 

The upper row shows the probability that a susceptible decision-maker from region 𝑖 is 

not infected. If deciding to stay, a susceptible decision-maker becomes infected when 
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coming into contact with a non-decision-maker with a probability of (𝑛𝑖/𝑁𝑖)𝑟𝑖, where 

𝑛𝑖/𝑁𝑖 is the probability that the non-decision-maker is infected and 𝑟𝑖 is the probability 

of transmission. The probability that the susceptible individual is not infected by a contact 

is therefore 1 − (𝑛𝑖/𝑁𝑖)𝑟𝑖 . Since the number of contacts is 𝑘  in the stay case, the 

probability of not being infected is 1 − (𝑛𝑖/𝑁𝑖)𝑟𝑖 to the power of 𝑘. In the travel case, 

a susceptible decision-maker becomes infected when coming into contact with a non-

decision-maker in the other region, denoted by −𝑖, with the probability of (𝑛−𝑖/𝑁−𝑖)𝑟−𝑖. 

The probability of not being infected is thus 1 − (𝑛−𝑖/𝑁−𝑖)𝑟−𝑖 to the power of 𝑘 + 𝛼. 

The lower row of Table 1 presents the expected number of additional infections 

caused by an infected decision-maker. In the stay case, a contact between an infected 

decision-maker and a non-decision-maker brings about an additional infection with a 

probability of (1 − 𝑛𝑖/𝑁𝑖)𝑟𝑖, where 1 − 𝑛𝑖/𝑁𝑖 represents the probability that the non-

decision-maker is not yet infected. Since the infected decision-maker comes into contact 

with 𝑘 residents, the expected number is 𝑘(1 − 𝑛𝑖/𝑁𝑖)𝑟𝑖. In the travel case, because the 

conditions in region −𝑖 is relevant and because the number of contacts changes to 𝑘 +

𝛼, the expected number is (𝑘 + 𝛼)(1 − 𝑛−𝑖/𝑁−𝑖)𝑟−𝑖. 

A resident’s utility is based on the setting used in the theoretical literature on air 

travel market (e.g., Brueckner, 2002; Brueckner 2004; Czerny and Zhang, 2015) and 

incorporates infectious diseases. The utility depends on consumption of goods other than 
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travel, benefits from travel, and damages from infection: 

𝑈 = 𝑦 + Θ(−𝐴 + 𝑏) − Ψ𝑑,  

where 𝑦 is income, Θ takes value one if an individual travels and zero otherwise, 𝐴 is 

the tax (or subsidy if negative) on travel, 𝑏  represents benefits from traveling and is 

uniformly distributed on the interval [𝐵 − ℎ, 𝐵], Ψ takes value one if infected and zero 

otherwise, and 𝑑  denotes the damages from infection, including physical and 

psychological damages and income losses. To simplify the model, the monetary costs of 

travel are assumed to be zero.2  Accordingly, 𝑦 − Θ𝐴  equals nontravel consumption 

expenditure. 

A decision-maker chooses one of two options based on expected utility since the 

infection status Ψ is uncertain at the time of decision. For a decision-maker from region 

𝑖, the expected utility from traveling is 

𝑢𝑇,𝑖
𝑏 = 𝑦 − 𝐴 + 𝑏 − [

𝑛𝑖

𝑁𝑖
+ (1 −

𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛−𝑖

𝑁−𝑖
𝑟−𝑖)

𝑘+𝛼

}] 𝑑. 

The probability of being infected at the end of the second stage appears in the square 

brackets. The first term is the probability that the decision-maker is already infected, 

which is not yet revealed. The second term is the probability that the decision-maker is 

not initially infected, 1 − 𝑛𝑖/𝑁𝑖 , multiplied by the probability of becoming infected 

during travel to region −𝑖 , 1 − (1 − 𝑛−𝑖𝑟−𝑖/𝑁−𝑖)
𝑘+𝛼  (see Table 1). Similarly, the 

expected utility from staying is 

𝑢𝑆,𝑖 = 𝑦 − [
𝑛𝑖

𝑁𝑖
+ (1 −

𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛𝑖

𝑁𝑖
𝑟𝑖)

𝑘

}] 𝑑. 

   The central government maximizes the social surplus 𝑊, defined as the sum of the 

 
2 Alternatively, 𝑏 can be interpreted as a net benefit, that is, the travel benefits minus the travel costs. 

The results do not change when the travel costs are instead explicitly modeled. 
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residents’ expected utilities and the fiscal surplus: 

𝑊 = ∑ [𝑁𝑖 ∫ max{𝑢𝑇,𝑖
𝑏 , 𝑢𝑆,𝑖}

1

ℎ
𝑑𝑏

𝐵

𝐵−ℎ

+ �̅�𝑖{𝑦 − 𝑃𝑟𝑜𝑏𝑖(Ψ = 1)𝑑}]

𝑖=1,2

+ 𝐹𝑖𝑠𝑐𝑎𝑙 𝑆𝑢𝑟𝑝𝑙𝑢𝑠. 

The first term in square brackets represents the sum of expected utilities for the decision-

makers in region 𝑖 . The second term is that of the non-decision-makers, where 

𝑃𝑟𝑜𝑏𝑖(Ψ = 1)  represents the probability that a non-decision-maker in region 𝑖  is 

infected at the end of the second stage and depends on the number of travelers to/from 

the region. Note that �̅�𝑖 𝑃𝑟𝑜𝑏𝑖(Ψ = 1) represents the expected number of infected non-

decision-makers in region 𝑖 . Accordingly, using the expected number of additional 

infections caused by an infected decision-maker shown in Table 1, it can be replaced by 

�̅�𝑖 𝑃𝑟𝑜𝑏𝑖(Ψ = 1) = �̅�𝑖
𝑛𝑖

𝑁𝑖
+ (𝑁𝑖 − 𝑞𝑖)

𝑛𝑖

𝑁𝑖
𝑘 (1 −

𝑛𝑖

𝑁𝑖
) 𝑟𝑖 + 𝑞−𝑖

𝑛−𝑖

𝑁−𝑖
(𝑘 + 𝛼) (1 −

𝑛𝑖

𝑁𝑖
) 𝑟𝑖, 

where 𝑞𝑖 denotes the number of travelers from region 𝑖 to region −𝑖, (𝑁𝑖 − 𝑞𝑖)𝑛𝑖/𝑁𝑖 

is the number of infected decision-makers who stay in region 𝑖, and 𝑞−𝑖𝑛−𝑖/𝑁−𝑖 is the 

number of infected travelers from region −𝑖.3 

   The fiscal surplus is 

𝐹𝑖𝑠𝑐𝑎𝑙 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 = ∑ (𝐴𝑞𝑖 − 𝐷𝑖𝐶𝑖)

𝑖=1,2

, 4 

where 𝐷𝑖 represents government expenditures per infection, including costs of medical 

 

3 To express the expected number as above, we implicitly assume that �̅�𝑖 is sufficiently large relative 

to 𝑛𝑖, which is sufficient to assume 𝑘𝑛𝑖 + (𝑘 + 𝛼)𝑛−𝑖 < �̅�𝑖, and that a nondecision-maker comes 

into contact with a decision-maker once at most.  

4 When the government provides private consumption goods uniformly for the residents, its budget 

constraint is ∑ {𝐴𝑞𝑖 − 𝐷𝑖𝐶𝑖 − (𝑁𝑖 + 𝑁�̅�)𝑔}𝑖=1,2 = 0, where 𝑔 is the publicly provided private goods 

per resident. If 𝑔 is assumed to be simply added to the utilities, that is, 𝑦 + Θ(−𝐴 + 𝑏) − Ψ𝑑 + 𝑔, 

the same results are obtained. 



11 

 

treatment and administration regarding infection control, and 𝐶𝑖  is the number of 

infected residents of region 𝑖: 

𝐶𝑖 = 𝑛𝑖 + �̅�𝑖

𝑛𝑖

𝑁𝑖
+ (𝑁𝑖 − 𝑞𝑖) (1 −

𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛𝑖

𝑁𝑖
𝑟𝑖)

𝑘

}

+ 𝑞𝑖 (1 −
𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛−𝑖

𝑁−𝑖
𝑟−𝑖)

𝑘+𝛼

} + (𝑁𝑖 − 𝑞𝑖)
𝑛𝑖

𝑁𝑖
𝑘 (1 −

𝑛𝑖

𝑁𝑖
) 𝑟𝑖

+ 𝑞−𝑖

𝑛−𝑖

𝑁−𝑖

(𝑘 + 𝛼) (1 −
𝑛𝑖

𝑁𝑖
) 𝑟𝑖. 

The first and second terms represent the number of initial infections for decision-makers 

and non-decision-makers, respectively. The third and fourth terms are the number of 

decision-makers in region 𝑖  who are not initially infected but become infected while 

staying or traveling, respectively (see Table 1). The fifth and sixth terms are the number 

of non-decision-makers in region 𝑖 who are not initially infected but become infected by 

staying decision-makers from region 𝑖 and travelers from region −𝑖, respectively (see 

again Table 1). 

   This model incorporates two kinds of externalities regarding infection. One is for 

susceptible decision-makers. When a susceptible individual becomes infected, 

government expenditures, 𝐷𝑖, are required in addition to private costs, 𝑑. The second is 

for infected individuals. Although an infected decision-maker has no private damage from 

infecting others, the damages suffered by the infected individuals, 𝑑, and the associated 

government expenditures, 𝐷𝑖, are counted as external costs. As summarized in Table 1, a 

decision on whether to stay or travel changes both the probability of a susceptible 

decision-maker becoming infected and the expected number of additional infections 

caused by an infected decision-maker. However, since decision-makers do not consider 

external costs, their choices may deviate from the socially optimal choices. Susceptible 

decision-makers may choose an option with a higher probability of infection than the 
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socially optimal option. Additionally, infected decision-makers may choose an option 

with a larger expected number of additional infections. The next section considers the 

optimal policy intervention to address these externalities. 

 

3 Optimal Travel Tax 

This section discusses the optimal tax in the model. Subsection 3.1 characterizes the 

subgame perfect Nash equilibrium. Subsection 3.2 investigates how the optimal tax varies 

according to conditions of infection. 

 

3.1 Subgame perfect Nash equilibrium 

This subsection derives the subgame perfect Nash equilibrium of the model. The second 

stage, in which decision-makers choose whether to stay or travel, is considered first. A 

decision-maker from region 𝑖 travels if the expected utility from traveling exceeds that 

from staying, that is, 

𝑢𝑇,𝑖
𝑏 − 𝑢𝑆,𝑖 ≥ 0 

⟺ 𝑏 ≥ 𝐴 + (1 −
𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛−𝑖

𝑁−𝑖
𝑟−𝑖)

𝑘+𝛼

} 𝑑 − (1 −
𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛𝑖

𝑁𝑖
𝑟𝑖)

𝑘

} 𝑑

≡ 𝑏𝑖 . 

Thus, decision-makers with a travel benefit above the threshold, 𝑏𝑖, travel.5 Accordingly, 

the number of travelers from region 𝑖 to region −𝑖 is 

 

 

5  To avoid a situation in which every decision-maker chooses same action regardless of the 

government’s choice, we assume that 𝐵 − ℎ < 𝑏𝑖 < 𝐵, 𝑖 = 1,2. 
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𝑞𝑖 =
𝑁𝑖

ℎ
(𝐵 − 𝑏𝑖) 

=
𝑁𝑖

ℎ
[𝐵 − 𝐴 − (1 −

𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛−𝑖

𝑁−𝑖
𝑟−𝑖)

𝑘+𝛼

} 𝑑 + (1 −
𝑛𝑖

𝑁𝑖
) {1 − (1 −

𝑛𝑖

𝑁𝑖
𝑟𝑖)

𝑘

} 𝑑]. 

The third term in brackets is the probability that a decision-maker from region 𝑖 becomes 

infected during travel to region −𝑖 (see Table 1) multiplied by the damage from infection. 

As this probability increases, people hesitate to travel to region −𝑖 . The fourth term 

represents the probability that a decision-maker from region 𝑖 becomes infected when 

staying in region 𝑖 (see again Table 1) and is also multiplied by the damage. As this 

probability increases, decision-makers become more likely to travel to escape from region 

𝑖. In addition, the number of travelers depends on the tax, 𝐴. 

   In the first stage, the government sets the tax rate to maximize social welfare, 𝑊, 

considering residents’ decisions in the second stage.6  From the first-order condition, 

𝑑𝑊/𝑑𝐴 = 0, the optimal tax (𝐴∗) is found to be 

𝐴∗ = 𝑆1 + 𝑆2 + 𝐼1 + 𝐼2, (1) 

where 

𝑆𝑖 ≡
𝑁𝑖 − 𝑛𝑖

𝑁1 + 𝑁2
𝐷𝑖 {(1 −

𝑛𝑖

𝑁𝑖
𝑟𝑖)

𝑘

− (1 −
𝑛−𝑖

𝑁−𝑖
𝑟−𝑖)

𝑘+𝛼

} 

and 

𝐼𝑖 ≡
𝑛𝑖

𝑁1+𝑁2
{−𝑘 (1 −

𝑛𝑖

𝑁𝑖
) 𝑟𝑖(𝐷𝑖 + 𝑑) + (𝑘 + 𝛼) (1 −

𝑛−𝑖

𝑁−𝑖
) 𝑟−𝑖(𝐷−𝑖 + 𝑑)}. 

The second-order condition is always satisfied as 𝑑2𝑊/𝑑𝐴2 = (−𝑁𝑖 − 𝑁𝑗)/ℎ < 0. 

   The four components of the optimal tax correspond to the government’s four 

incentives to address externalities regarding infection. The externality arising from the 

 

6 Using the notation of the threshold of 𝑏𝑖, the sum of expected utilities of decision-makers in region 

𝑖 reduces to 𝑁𝑖 ∫ max{𝑢𝑇,𝑖
𝑏 , 𝑢𝑆,𝑖}/ℎ 𝑑𝑏

𝐵

𝐵−ℎ
= 𝑁𝑖 ∫ 𝑢𝑆,𝑖/ℎ 𝑑𝑏

𝑏
𝑖

𝐵−ℎ
+ 𝑁𝑖 ∫ 𝑢𝑇,𝑖

𝑏 /ℎ 𝑑𝑏
𝐵

𝑏𝑖
. 
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behaviors of susceptible decision-makers in region 𝑖 is addressed by 𝑆𝑖. The first term 

in curly braces in the equation for 𝑆𝑖  represents the probability that a susceptible 

decision-maker is not infected if choosing to stay. The second term is the probability of 

not being infected during travel. The difference thus represents how the probability of 

being infected is changed by travel. Although the private costs (𝑑) associated with this 

change in the probability of infection are considered in deciding whether to travel, 

government expenditures (𝐷𝑖) are not. The government therefore has an incentive to have 

susceptible decision-makers internalize these external costs. This incentive is represented 

by 𝑆𝑖 and weighted by the number of susceptible decision-makers in region 𝑖 (𝑁𝑖 − 𝑛𝑖) 

among all decision-makers (𝑁1 + 𝑁2). 

   The externality arising from the behaviors of already infected decision-makers is 

addressed by 𝐼𝑖 . The two terms in curly braces in the equation for 𝐼𝑖  represent the 

expected number of additional infections caused by an infected individual (see Table 1) 

multiplied by the sum of government expenditures (𝐷𝑖 or 𝐷−𝑖) and private costs (𝑑) in 

the cases of staying and traveling, respectively. The difference between the terms in 

braces therefore reflects the change in social costs due to travel by an infected individual. 

Since the costs are entirely external for infected decision-makers, the government has an 

incentive to have them internalize these costs. The ratio of targeted individuals, 

𝑛𝑖/(𝑁1 + 𝑁2), is multiplied as the weight for 𝐼𝑖. 

   Obviously, in the absence of infectious disease (i.e., 𝑛1 = 𝑛2 = 0), all components 

of 𝐴∗ are zero. Since no externality exists, the government has no incentive to intervene 

in the decisions of residents. The next subsection discusses 𝐴∗  in the presence of 

infectious diseases (i.e., 𝑛1 > 0 and/or 𝑛2 > 0). 
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3.2 Optimal tax with infectious diseases 

This subsection analyzes how 𝐴∗ varies according to the conditions regarding infectious 

diseases. First, the situation where travel significantly increases contacts with others (i.e., 

𝛼 is large) is briefly discussed. Then, we consider in detail situations with 𝛼 =  0: the 

case of symmetric regions, the cases where one of the parameters is asymmetric, and 

some cases where more parameters are asymmetric. 

   To our knowledge, there is no consensus regarding whether people come into more 

contact with others when they travel than when they remain in the place of residence. 

Naturally, the size of the parameter representing it (𝛼) affects 𝐴∗. As 𝛼 increases, the 

probability that a susceptible decision-maker becomes infected during travel increases, 

resulting in positive values of 𝑆𝑖 due to the negative externality of travel. Additionally, 

with a sufficiently large 𝛼, the large expected number of additional infections caused by 

travel by an infected decision-maker results in a positive 𝐼𝑖. Not surprisingly, the optimal 

policy is therefore to reduce travel (i.e., 𝐴∗ > 0) when 𝛼 is sufficiently large. The focus 

in the remainder of this subsection is on situations with 𝛼 =  0. We consider whether 

externalities persist and should be addressed by a tax or subsidy even when the number 

of contacts with others does not differ between the stay and travel cases. In addition, 

understanding factors determining 𝐴∗ other than 𝛼 is another purpose of the following 

investigation. 

When 𝛼 =  0, each component of 𝐴∗ reduces to the forms summarized in Table 2. 

The table highlights an interesting nature of the interregional travel market. First, the 

values in the curly braces in the equations for 𝑆1 and 𝑆2 have the same absolute value 

but the opposite signs. This means that if the probability of a susceptible decision-maker 

being infected is increased by travel from region 1 to 2, travel in the opposite direction 
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decreases the probability by the same amount. Second, the values in curly braces in the 

equations for 𝐼1 and 𝐼2 also have the same absolute value but the opposite signs. This 

indicates that if social costs are increased by an infected individual’s travel from region 1 

to 2, travel in the opposite direction decreases social costs by the same amount. These 

facts reflect the bidirectional nature of the interregional travel market, which plays an 

important role in understanding 𝐴∗. 

   A straightforward result found from Table 2 is that 𝐴∗ = 0  when the regions are 

symmetric in the four parameters (𝑛𝑖, 𝑁𝑖, 𝑟𝑖, and 𝐷𝑖) with 𝛼 =  0. If the regions are 

symmetric, the probability that a susceptible decision-maker becomes infected does not 

differ between the stay and travel cases. Accordingly, the value in parentheses in the 

equation for 𝑆𝑖, which represents the travel externality of a susceptible decision-maker, 

becomes zero. Additionally, the expected number of additional infections caused by an 

infected decision-maker is not changed by travel if the regions are symmetric. 

Accordingly, the value in parentheses in the equation for 𝐼𝑖, which represents the travel 

externality of an infected decision-maker, also becomes zero. This result is summarized 

as a proposition: 

 

Proposition 1. When 𝑛1 = 𝑛2, 𝑁1 = 𝑁2, 𝑟1 = 𝑟2, 𝐷1 = 𝐷2, 𝑎𝑛𝑑 𝛼 = 0, then 𝐴∗ = 0. 
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This proposition implies that even when infectious diseases spread rapidly (i.e., large 

values of 𝑛𝑖 ), the government does not need to intervene in the interregional travel 

market as long as the degree of the spread is symmetric (i.e., 𝑛1 = 𝑛2) with 𝛼 = 0. 

However, A* becomes positive if infectious diseases spread asymmetrically (i.e., 

𝑛1 ≠ 𝑛2), even when 𝛼 = 0. 

 

Proposition 2. When 𝑛1 ≠ 𝑛2, 𝑁1 = 𝑁2, 𝑟1 = 𝑟2, 𝐷1 = 𝐷2, 𝑎𝑛𝑑 𝛼 = 0, then 𝐴∗ > 0. 

 

This proposition means that when infection spreads more in one region than in another, 

interregional travel should be discouraged. Although this may seem very natural, it is not 

as obvious if one recognizes the bidirectional nature of the travel market. The remark that 

trips to/from the risky region should be restricted is not enough, or even inaccurate, to 

prove the proposition. This is because, for example, susceptible decision-makers from the 

risky region can decrease their probability of being infected if they travel to the safer 

region and thus should be encouraged to travel by a subsidy. 

To prove Proposition 2, Table 3 summarizes 𝑆𝑖 and 𝐼𝑖 in this situation. To explain 

specifically, it is assumed that region 1 is riskier than region 2 (i.e., 𝑛1 > 𝑛2). The signs 

of 𝑆2  and 𝐼1  are positive. Since susceptible decision-makers from the safer region 

(region 2) are more likely to be infected if they travel to the riskier region, their trips have 

a negative externality. The government thus has an incentive to discourage them (𝑆2 > 0). 
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It also has an incentive to restrict travel by infected decision-makers in the riskier region 

(𝐼1 > 0 ). To understand this, note that the expected number of additional infections 

decreases if an infected individual is active in the riskier region, since the people in this 

region that this individual comes into contact with are more likely to already be infected. 

Therefore, travel by infected decision-makers in the riskier region also has a negative 

externality. These two incentives may lead to the intuitive, although insufficient, 

explanation of the proposition that when infectious diseases spread asymmetrically, travel 

to/from the riskier region should be discouraged. 

However, 𝑆1 and 𝐼2 are negative, indicating that the government also has incentives 

to subsidize travel even when infectious diseases spread. Susceptible decision-makers 

from the riskier region (region 1) do not take into account the decrease in government 

expenditures associated with the reduced probability of infection. The government 

therefore has an incentive to make them internalize the positive externality of travel to the 

safer region, which is reflected by 𝑆1 < 0. Additionally, there is a positive externality 

from travel by infected decision-makers from the safer region (region 2). The expected 

number of additional infections and the associated social costs can be reduced by moving 

this person to the riskier region. Therefore, 𝐼2 is also negative. The bidirectional nature 

of the interregional travel market thus results in simultaneously both negative and positive 

externalities of travel and accordingly the government’s incentives both to discourage (𝑆2 
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and 𝐼1) and to encourage (𝑆1 and 𝐼2) the movement of people. 

Nevertheless, proposition 2 states that the optimal tax is always positive in this 

situation. The reason stems from the weights of each incentive, which correspond to the 

ratio of targeted individuals over the total population. First, the incentives to intervene for 

susceptible individuals (𝑆1 < 0  and 𝑆2 > 0 ) are compared. Recall that the absolute 

values in curly braces are the same but have the opposite signs. Since 𝑛2 < 𝑛1 with the 

same population (𝑁1  =  𝑁2 = 𝑁), there are more susceptible decision-makers in region 

2 than in region 1 (i.e., 𝑁 − 𝑛2 > 𝑁 − 𝑛1). The government therefore places a greater 

weight on 𝑆2 , resulting in 𝑆1 + 𝑆2 > 0 . Second, the weights of the interventions for 

infected individuals (𝐼1 > 0  and 𝐼2 < 0 ) are compared. The absolute values in curly 

braces are again identical. The government places a greater weight on 𝐼1 because 𝑛1 >

𝑛2. Therefore, 𝐼1 + 𝐼2 > 0. Combining these, the optimal tax is proven to be positive. 

Intuitively, because susceptible decision-makers tend to be more common in the safer 

region than in the riskier region and because infected individuals tend to be more common 

in the riskier region than in the safer region, the restriction of interregional travel is the 

optimal policy. 

Similarly, 𝐴∗ > 0  when 𝑁1 ≠ 𝑁2 , the other parameters ( 𝑛𝑖 , 𝑟𝑖 , and 𝐷𝑖 ) are 

symmetric, and 𝛼 = 0 . Specifically, suppose that 𝑁1 < 𝑁2 , meaning that region 1 is 

riskier in the sense that the share of infected residents is higher than region 2. In this case, 

the signs of the components of 𝐴∗ are identical to those in the case of proposition 2: 

𝑆1 < 0 , 𝑆2 > 0 , 𝐼1 > 0 , and 𝐼2 < 0 . Since susceptible decision-makers are more 

common in the safer region (𝑁1 − 𝑛 < 𝑁2 − 𝑛), the intervention for them (𝑆2 > 0) is 

weighted higher, that is, 𝑆1 + 𝑆2 > 0. Since the number of infected decision-makers is 

the same across regions ( 𝑛1 = 𝑛2 ), the incentives of the interventions for infected 
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residents fully cancel out, that is, 𝐼1 + 𝐼2 = 0. 

It is obvious from Table 2 that 𝐴∗ = 0 if either one of 𝑟𝑖 or 𝐷𝑖 is asymmetric. In 

summary, when 𝛼 = 0 and only one of the four parameters is asymmetric, then 𝐴∗ ≥ 0. 

Interestingly, however, if more than one of the parameters is asymmetric, then a 

negative tax (i.e., subsidy) can be optimal. Before providing four examples as the proof, 

the result is summarized as a proposition and interpreted. 

 

Proposition 3. When two parameters are asymmetric, 𝐴∗ could be negative. 

 

This means that even when infectious diseases are widespread, a subsidy (not a tax) on 

travel could be optimal. At first glance, this result may appear counterintuitive. It stems 

from (i) the bidirectional nature of interregional travel and (ii) the impossibility of 

distinguishing susceptible and infected decision-makers. First, as Table 2 indicates, if one 

of 𝑆1 and 𝑆2 is positive, the other must be negative due to the bidirectionality of travel. 

Similarly, if one of 𝐼1 and 𝐼2 is positive, then the other is negative. Therefore, according 

to the relative weights, the optimal tax may be negative. Second, the impossibility of 

setting the tax differentially according to infectious status is another driver of this result. 

On the one hand, the government wants susceptible decision-makers to be active in the 

safer region. On the other hand, it is better for infected decision-makers to be active in 

the riskier region, where residents are more likely to already be infected and coming into 

contact with infected decision-makers causes fewer additional infections. Therefore, 

according to the weights, the sum of 𝑆1  and 𝐼1  and/or that of 𝑆2  and 𝐼2  may be 

negative. 

   It is easy to find examples in which the optimal tax is negative. Four of them are 
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presented in the remainder of this section. The first is a situation where both the 

probability of being infected by contact (𝑟𝑖) and government expenditures per infection 

(𝐷𝑖) are larger in one region than in another. 

 

Example 1. When 𝑛𝑖 = 𝑛−𝑖, 𝑁𝑖 = 𝑁−𝑖, 𝑟𝑖 > 𝑟−𝑖 , 𝐷𝑖 > 𝐷−𝑖, 𝑎𝑛𝑑 𝛼 = 0, then 𝐴∗ < 0. 

 

Table 4 summarizes the components of 𝐴∗ . The government has incentives to induce 

susceptible decision-makers to be active in the region with a lower probability of infection 

(region −𝑖 ), which are reflected by 𝑆𝑖 < 0  and 𝑆−𝑖 > 0 . The larger government 

expenditures in region 𝑖 mean that the social costs of an infection are higher for residents 

of region 𝑖 than those of region −𝑖, resulting in 𝑆𝑖 + 𝑆−𝑖 < 0. The government also has 

incentives to induce infected decision-makers to be active in region −𝑖, where both the 

probability of infecting others and government expenditures per infection are lower. 

Therefore, 𝐼𝑖 < 0 and 𝐼−𝑖 > 0. These are completely offset (i.e., 𝐼𝑖 + 𝐼−𝑖 = 0) because 

the number of infected decision-makers is same (i.e., 𝑛𝑖 = 𝑛−𝑖). 

   The second example is the situation where the infection is more widespread in region 

𝑖 and government expenditures per infection are sufficiently higher in the same region. 

 

Example 2. When 𝑛𝑖 > 𝑛−𝑖, 𝑁𝑖 = 𝑁−𝑖, 𝑟𝑖 = 𝑟−𝑖, 𝐷𝑖 > (𝐷−𝑖 + 𝑑)
𝑁−𝑛−𝑖

𝑁−𝑛𝑖
− 𝑑, 𝑎𝑛𝑑 𝛼 =
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0, then 𝐴∗ < 0. 

 

Table 5 summarizes the components of 𝐴∗ in this situation. Since susceptible decision-

makers should be kept away from the riskier region, 𝑆𝑖 < 0  and 𝑆−𝑖 > 0 . The 

government believes that 𝑆𝑖 is more important than 𝑆−𝑖 due to the larger expenditures 

per infection in the region 𝑖 . Therefore, 𝑆𝑖 + 𝑆−𝑖 < 0 . The sufficiently larger 

expenditures per infection in region 𝑖 also indicate that it is better for infected decision-

makers to be active in region −𝑖 and thus that 𝐼𝑖 < 0 and 𝐼−𝑖 > 0. Because there are 

more targeted individuals for 𝐼𝑖, 𝐼𝑖 + 𝐼−𝑖 < 0. 

The third situation is similar to example 2. 

 

Example 3. When 𝑛𝑖 = 𝑛−𝑖, 𝑁𝑖 < 𝑁−𝑖, 𝑟𝑖 = 𝑟−𝑖, 𝐷𝑖 > 𝐷−𝑖
𝑁−𝑖−𝑛

𝑁𝑖−𝑛
, 𝑎𝑛𝑑 𝛼 = 0, then 𝐴∗ <

0. 

 

Infection spreads more in region 𝑖 in the sense that the share of infected residents in the 

population (𝑛/𝑁𝑖) is larger due to the smaller denominator, while it is larger because of 

the larger numerator in example 2. Additionally, government expenditures per infection 

(𝐷𝑖) are sufficiently larger in region 𝑖 than in region −𝑖, as in example 2. Table 6 shows 
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the components of 𝐴∗ . By the same logic as in example 2, 𝑆𝑖 + 𝑆−𝑖 < 0 . The same 

number of infected decision-makers (𝑛𝑖 = 𝑛−𝑖) means 𝐼𝑖 + 𝐼−𝑖 = 0 as in example 1. 

   Examples 1-3 are all situations with an asymmetric 𝐷𝑖. The last example shows that 

the optimal tax could also be negative when 𝐷𝑖 is symmetric. 

 

Example 4. When 𝑛𝑖 = 𝑛−𝑖, 𝑁𝑖 > 𝑁−𝑖, 𝑟𝑖 > 𝑟−𝑖
𝑁𝑖

𝑁−𝑖
, 𝐷𝑖 = 𝐷−𝑖, 𝑎𝑛𝑑 𝛼 = 0, then 𝐴∗ < 0. 

 

This is a situation where the probability of being infected by contact with an infected 

person (𝑟𝑖) is sufficiently larger in the region with a larger population. Table 7 describes 

𝑆𝑖 and 𝐼𝑖 in the situation. Since susceptible decision-makers should be kept away from 

the riskier region (region 𝑖), 𝑆𝑖 < 0 and 𝑆−𝑖 > 0. The weight on 𝑆𝑖 is larger because 

of the larger population in region 𝑖, resulting in 𝑆𝑖 + 𝑆−𝑖 < 0. The incentives regarding 

infected decision-makers are completely canceled out (𝐼𝑖 + 𝐼−𝑖 = 0) because the number 
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of infected residents is same (𝑛𝑖 = 𝑛−𝑖). 

   Figure 2 summarizes the results discussed in this section. In the model, the optimal 

tax is zero in the absence of infectious disease (𝑛1 = 𝑛2 = 0). With infected residents in 

at least one region, if the increase in contacts during travel (𝛼) is sufficiently large, the 

optimal tax is positive to address the large negative externalities of travel. Focusing on 

situations where travel does not increase contacts (𝛼 = 0), it is shown that 𝐴∗ could be 

zero, positive, or negative. If two regions are symmetric, 𝐴∗ = 0 (proposition 1). If only 

one of the four parameters is asymmetric, then 𝐴∗ ≥ 0. In particular, when the number 

of infected decision-makers (𝑛𝑖) is asymmetric, a positive 𝐴∗ to restrict travel is optimal 

(proposition 2). However, in more complicated situations where more than one parameter 

is asymmetric, it is easy to find examples in which 𝐴∗ is negative (proposition 3). The 

next section provides numerical examples to show that 𝐴∗ could be both positive and 

negative within a realistic range of parameter values. 
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4 Numerical Examples 

This section provides numerical examples. Subsection 4.1 discusses the optimal tax under 

parameter values that conform to the situation in Japan in 2020. Subsection 4.2 

investigates the sensitivity of the optimal tax to parameter values. 

 

4.1 Situation of Japan in 2020 

This subsection presents the optimal tax for six situations: three pairs of regions of Japan 

at two time points in 2020. The pairs of regions are Tokyo (region 1) and Hokkaido, 

Fukuoka, or Okinawa (region 2). Because the model supposes travel with a stay of several 

days, three major prefectures located far from Tokyo are selected (Figure 3). Hokkaido 

(831 kilometers from Tokyo) and Okinawa (1,554 kilometers) are located in the 
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northernmost and southernmost parts of Japan, respectively, and are popular tourist 

destinations. Fukuoka (881 kilometers) is the largest prefecture in Kyushu, the southern 

main island of Japan. The time points are July 22, 2020, when the travel promotion 

campaign in Japan began, and December 28, 2020, when the campaign stopped due to 

the spread of COVID-19. 

   The optimal tax depends on seven parameters: 𝑁𝑖, 𝑛𝑖, 𝑘, 𝑟𝑖, 𝛼, 𝐷𝑖, and 𝑑. Table 8 

summarizes the data source and assumptions used to set parameter values. The number 

of decision-makers who determine whether to travel (𝑁𝑖) is set based on the population 

of each prefecture (the population estimates on October 1, 2019, provided by the Statistics 

Bureau of Japan). The decision-makers on a day are assumed to be one-sixtieth of the 

population. Accordingly, the number of infected decision-makers (𝑛𝑖) is assumed to be 

Table 8

Data and Assumption to Set Parameter Values

Parameter Data Assumption

Population on October 1, 2019 from Statistics

Bureau of Japan.
1/60 of the population.

The daily number of infectious cases from

Ministry of Health, Labour, and Welfare.
1/60 of the number.

The number of close contacts for each infection

case reported by Asahikawa City. The average

is 4.5 as of February 15, 2021.

Five.

The effective reproduction number calculated

based on the daily number of infectious cases.

To be set to equate the expected additional

infections in the model, k(1 - n i /N i )r i  , to the

effective reproduction number.

- 0 or 0.5k.

- One million JPY.

- 0.3 million JPY.

Note:

d

The average of the last seven days is used for the number of infectious cases and the effective

reproduction number to take into account day of the week.

N i

n i

k

r i

α

D i
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one-sixtieth of the daily number of infectious cases. 7  The number of contacts of a 

decision-maker (𝑘) is assumed to be five. This is set to be near the average number of 

close contacts of Asahikawa city, 4.48, as of January 29, 2021. Asahikawa is the second 

largest city in Hokkaido and a rare example in Japan that reports the number of close 

contacts for each infectious case. The probability that a susceptible individual becomes 

infected when coming into contact with an infected individual (𝑟𝑖) is set to equate the 

expected number of additional infections caused by an infected person, 𝑘(1 − 𝑛𝑖/𝑁𝑖)𝑟𝑖, 

to the data on the effective reproduction number of the region. The effective reproduction 

number is calculated based on the data on the daily number of infectious cases and the 

formula based on Jung, Akhmetzhanov, Mizumoto, and Nishiura (2020), as in Fujii and 

Nakata (2021). To account for day-of-the-week effects, the average for the last seven days 

is used in the calculations. Because of the lack of consensus on the extent of the increase 

in contacts during travel (𝛼), both 𝛼 = 0 and 0.5𝑘 are considered. Due to the lack of 

available data, 𝐷𝑖  and 𝑑  are assumed to be one million JPY (approximately 10 

thousand USD) and 0.3 million JPY (three thousand USD), respectively. Subsection 4.2 

addresses the robustness of the results to these assumptions. 

   Table 9 shows the data and parameter values. Tokyo has a population of 13.9 million 

and is the largest prefecture in Japan, which has a population of 126 million and 47 

prefectures. Hokkaido, Fukuoka, and Okinawa are the eighth, ninth, and 25th largest 

prefectures, with populations of 5.3 million, 5.1 million, and 1.5 million, respectively. 

The number of infectious cases is the largest in Tokyo and larger on July 22 than on 

December 28 for all prefectures. The effective reproduction number varies across regions 

 
7 Even when the assumption on the share of decision-makers in the population is changed, the optimal 

tax calculated subsequently is unaffected. 
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and days. The number exceeds one except for Hokkaido on December 28, meaning that 

Japan was in the expansion phase of COVID-19 on both days. 

   The probability of infection (𝑟𝑖) is estimated to be 0.16-0.45. Note that this number 

should be interpreted with caution when the number of infectious cases is small because 

even a small change in the number of infectious cases results in substantial changes in the 

effective reproduction number and in turn the estimated probability of infection. 

Excluding the observations with relatively small numbers of infectious cases (Hokkaido, 

Fukuoka, and Okinawa on July 22), the probability of infection ranges from 0.16 to 0.25. 

Cheng et al. (2020) report that the probability of secondary clinical attack by an infected 

person in Taiwan is 0.7 percent with a 95 percent confidence interval of 0.4 percent to 1.0 

percent, which is much smaller than the range in Table 9. One reason for the discrepancy 

is the difference in the definition of close contacts. Cheng et al. (2020) report that the 

number of close contacts per infected person is 27.61, which is much larger than the 

assumption of 𝑘 = 5 based on the data for Asahikawa city in Hokkaido. If the number 

Table 9

Parameter Values

α=0 α=0.5k

(Region 1)

Tokyo 7.22 13.9 242.9 1.25 232.0 4.05 0.25 0.000017 0.999978 - -

12.28 13.9 743.1 1.13 232.0 12.39 0.23 0.000053 0.999940 - -

(Region 2)

Hokkaido 7.22 5.3 8.1 2.23 87.5 0.14 0.45 0.000002 0.999997 0.999978 0.999967

12.28 5.3 106.9 0.78 87.5 1.78 0.16 0.000020 0.999984 0.999940 0.999909

Fukuoka 7.22 5.1 26.4 1.65 85.1 0.44 0.33 0.000005 0.999991 0.999978 0.999967

12.28 5.1 132.3 1.22 85.1 2.20 0.24 0.000026 0.999968 0.999940 0.999909

Okinawa 7.22 1.5 1.3 1.02 24.2 0.02 0.20 0.000001 0.999999 0.999978 0.999967

12.28 1.5 33.0 1.09 24.2 0.55 0.22 0.000023 0.999975 0.999940 0.999909

Note: The number of infectious cases and the effective reproduction number are the average of the last seven days.

n i

Parameter

Probability not  to be infected

Travel to Tokyo

Data Reference indices

Stay

Population

(million)
r i n i /N i

Infectious

cases

(daily)

Effective

reproduction

number

N i

(thousand)

Date
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of close contacts is assumed to be 27.61, 𝑟𝑖 is estimated to be from 2.5 percent to 4.5 

percent and becomes nearer to the reported number of Cheng et al. (2020). Additionally, 

𝑟𝑖  is calculated based on the number of reported infectious cases, which includes 

asymptomatic infection cases and infections without close contacts, neither of which is 

reflected in the number of Cheng et al. (2020). 

   Table 9 also presents key indexes to understand the optimal tax. First, the share of 

infected individuals among decision-makers (𝑛𝑖/𝑁𝑖) is larger in Tokyo than in the other 

prefectures. However, it is small and at most 0.0053 percent. Second, due to this small 

share of infected residents, the probability that a susceptible person is not infected is 

nearly 100 percent in all situations. For example, it is 99.9997 percent for susceptible 

decision-makers in Hokkaido on July 22. If they travel to Tokyo, the probability decreases 

but remains at 99.9978 percent for 𝛼 = 0 and 99.9967 percent for 𝛼 = 0.5𝑘. Thus, the 

probability depends little on whether they stay or travel. The difference is at most 0.0066 

percent for Okinawa on December 28 with 𝛼 = 0.5𝑘. 

   Table 10 shows the results. The upper and lower sections are for 𝛼 = 0.5𝑘 and 0, 

respectively. Panels I and II present the breakdowns of 𝑆𝑖  and 𝐼𝑖 . Panel I shows the 

externalities of travel. A positive value means that travel causes a negative externality and 

should be restricted by a tax. A negative value means a positive externality, which should 

be internalized by a subsidy. Because of the larger ratio of infected individuals (𝑛𝑖/𝑁𝑖) in 

Tokyo, travel by susceptible decision-makers in Tokyo has a positive externality and 

should be promoted by a subsidy (𝑆1 < 0). In contrast, travel by susceptible decision-

makers in another region has a negative externality and should be restricted by a tax (𝑆2 >

0). If the number of contacts increases due to travel (𝛼 = 0.5𝑘), both 𝑆1 and 𝑆2 shift 

toward positive relative to the case of 𝛼 = 0. An important observation shown in Panel 
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I is that the absolute values of the externality of travel of susceptible residents are small, 

with a maximum of 75 JPY (approximately 0.75 USD). This is because the probability 

that a susceptible individual becomes infected changes little regardless of whether the 

person stays or travels, as shown in Table 9. 

   In contrast, the externalities of travel by infected residents, which are represented by 

𝐼1 and 𝐼2, are large, with a maximum of 2.7 million JPY (approximately 27 thousand 

USD). This is because the expected number of additional infections (or the effective 

reproduction number shown in Table 9) substantially differs across regions. In essence, 

the government has incentives to induce infected decision-makers to stay in or travel to 

the region with fewer additional infections. Both 𝐼1 and 𝐼2 shift toward positive in the 

case of 𝛼 = 0.5𝑘  relative to the case of 𝛼 = 0 . The large externality of an infected 

Table 10

Results of Numerical Examples

IV

S 1 S 2 I 1 I 2 S 1 S 2 I 1 I 2 S 1 S 2 I 1 I 2

α = 0.5 k

Hokkaido 7.22 -0.017 0.029 2,717.5 -452.7 72.6% 27.4% 0.00127% 0.00004% -12.1 8.0 34.4 -0.2 30.2

12.28 -0.037 0.075 40.9 1,200.1 72.6% 27.4% 0.00388% 0.00056% -26.7 20.5 1.6 6.7 2.1

Fukuoka 7.22 -0.009 0.024 1,586.7 301.2 73.2% 26.8% 0.00128% 0.00014% -6.6 6.5 20.3 0.4 20.6

12.28 -0.013 0.059 913.9 618.1 73.2% 26.8% 0.00391% 0.00070% -9.4 15.8 35.7 4.3 46.4

Okinawa 7.22 -0.021 0.032 353.4 1,123.4 90.5% 9.5% 0.00158% 0.00001% -18.6 3.0 5.6 0.1 -9.9

12.28 -0.023 0.066 645.4 797.2 90.5% 9.5% 0.00483% 0.00021% -21.3 6.2 31.2 1.7 17.9

α = 0

Hokkaido 7.22 -0.018 0.018 1,268.1 -1,268.1 72.6% 27.4% 0.00127% 0.00004% -13.4 5.0 16.1 -0.5 7.2

12.28 -0.045 0.045 -463.7 463.7 72.6% 27.4% 0.00388% 0.00056% -32.4 12.2 -18.0 2.6 -35.6

Fukuoka 7.22 -0.013 0.013 514.2 -514.2 73.2% 26.8% 0.00128% 0.00014% -9.8 3.6 6.6 -0.7 -0.3

12.28 -0.029 0.029 118.3 -118.3 73.2% 26.8% 0.00391% 0.00070% -21.0 7.7 4.6 -0.8 -9.5

Okinawa 7.22 -0.021 0.021 -308.0 308.0 90.5% 9.5% 0.00158% 0.00001% -19.0 2.0 -4.9 0.0 -21.9

12.28 -0.036 0.036 -60.7 60.7 90.5% 9.5% 0.00483% 0.00021% -32.4 3.4 -2.9 0.1 -31.8

Note: 

I II III

Region 1 is Tokyo.

Region 2 Date Externality per travel (thousand JPY) Weight I * II (JPY) Optimal tax

(JPY)
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person indicates that if the government can identify infected residents, it should intervene 

in their travel decisions with a high rate of tax or subsidy. However, during the incubation 

period, it is difficult to identify them and thus impossible to set taxes or subsidies 

differentially for infected and susceptible residents. Therefore, the optimal tax is the 

weighted average of the externalities regarding infected and susceptible decision-makers, 

the weights of which are the number of targeted individuals, as shown in equation (1). 

   Panel II of Table 10 presents the weights. Since the share of susceptible residents is 

the largest in Tokyo, the weight of 𝑆1 is the largest (72.6 percent to 90.5 percent). The 

second largest is the weight of 𝑆2  (9.5 percent to 27.4 percent). The weights of the 

externalities of infected residents (𝐼1 and 𝐼2) are very small, with a maximum of 0.00483 

percent, because the share of infected residents in the population is small. Multiplying the 

size of externalities (Panel I) and the weights (Panel II), all of 𝑆𝑖 and 𝐼𝑖 are found to be 

on the order of only 10 JPY (roughly 0.1 USD) as shown in Panel III. 

   Panel IV of Table 10 shows the optimal tax, the sum of the components in Panel III. 

In both cases, 𝛼 = 0.5𝑘 and 𝛼 = 0, the optimal tax could be both positive or negative, 

suggesting that a subsidy to promote travel may be optimal in reality. If 𝛼 = 0.5𝑘, the 

optimal tax is positive in five of the six situations. It is negative only in the situation where 

region 2 is Okinawa on July 22. Since Okinawa on July 22 has a relatively low risk of 

infection due to the small 𝑟2 and 𝑛2/𝑁2, the positive externality of susceptible residents 

of Tokyo is large. In addition, its weight is large because of both the small population of 

Okinawa and the small number of infected cases at 7.22. If 𝛼 = 0, the optimal policy is 

a subsidy in five of the six cases. A tax is optimal only when region 2 is Hokkaido on July 

22. Since the expected number of additional infections by an infected individual is large 

there due to the large 𝑟2 and small 𝑛2/𝑁2, the negative externality of infected travelers 
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from Tokyo is large. 

   However, the absolute values of the optimal tax are small in all of the situations. The 

maximum is only 46 JPY (roughly 0.46 USD). The reasons are as follows. First, the 

externalities of susceptible individuals are small, as shown in Panel I. Second, although 

the externalities of infected individuals are large, their weights are very small, as shown 

in Panel II. Third, the positive and negative values of the four components shown in Panel 

III are partially cancelled out. These result in a low rate of the optimal tax or subsidy. This 

numerical example implies that although a subsidy to promote travel may be optimal in 

some realistic situations, a large subsidy cannot be supported for the situations analyzed 

in this subsection. 

 

4.2 Sensitivity to parameter values 

This subsection discusses how the optimal tax depends on parameters, focusing on 𝑛𝑖, 

𝐷𝑖, and 𝑑. Throughout this subsection, the situations on December 28 and the case of 

𝛼 = 0.5𝑘 are considered. 

   First, we examine the sensitivity of the optimal tax to 𝑛𝑖. One reason for the low rates 

of the optimal tax calculated in the previous subsection is that the share of infected 

residents in the total population (𝑛𝑖/𝑁𝑖 ) is small. This results in both the almost 100 

percent probabilities that a susceptible individual is not infected regardless of whether the 

individual travels and the small weights for the externalities regarding travel by infected 

residents. To examine how the rate becomes large when the 𝑛𝑖 of Tokyo increases, it is 

hypothetically increased to 120, which is approximately ten times as large as the actual 

value (12.39). If 𝑛1  is 120, the share of infected residents in the total population is 

approximately 0.06 percent. This is not unrealistic. For example, the largest number of 
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reported infection cases in New York city in 2020 was 12,697 on December 17 and 

accounted for 0.15 percent of its population. 

   Figure 4 shows the changes in the components of the optimal tax when 𝑛1 increases. 

The top-left panel is for 𝑆1, the term that captures the externality of travel by susceptible 

residents of Tokyo. As 𝑛1  increases, 𝑆1  decreases to encourage the susceptible to 

escape from Tokyo. The middle-left panel is for 𝑆2 regarding susceptible residents of 
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region 2. As 𝑛1  increases, 𝑆2  increases to persuade the susceptible to remain in the 

safer region. This effect is stronger when region 2 is Hokkaido and Fukuoka than when it 

is Okinawa because of their larger population and accordingly larger weights of 𝑆2. The 

top-right panel is for 𝐼1  regarding infected residents of Tokyo. An increase in 𝑛1 

increases 𝐼1  simply because its weight, 𝑛1/(𝑁1 + 𝑁2) , increases. For the case when 

region 2 is Fukuoka and Okinawa, the negative externality per travel is larger than that of 

Hokkaido (see panel I of Table 10) due to the larger probability of infection (𝑟𝑖). The 

middle-right panel shows that 𝐼2, the term for infected residents of region 2, is almost 

unchanged but decreases very slightly. 

   The bottom-left panel is for the optimal tax, the total of the four components. 

Interestingly, when 𝑛1  increases, while the optimal tax increases for travel to/from 

Fukuoka, it decreases for travel to/from Hokkaido or Okinawa. For the Fukuoka market, 

the tax-increasing effects of 𝑛1 through 𝑆2 and 𝐼1 are both larger. In contrast, for the 

Hokkaido and Okinawa markets, because either one of the effects through 𝑆2 or 𝐼1 is 

small, the tax-decreasing effects through 𝑆1  dominate the sum of them. This result 

implies that even when infectious diseases spread more in the epicenter, not only a tax 

but also a subsidy on interregional travel may be optimal depending on the situation of 

the paired region. However, the absolute values of the tax or subsidy remain small in all 

cases analyzed here. Even when 𝑛1 = 120, they are 100-200 JPY (roughly 1-2 USD). 

This is because the tax-increasing and tax-decreasing effects are partially cancelled out. 

   Second, the sensitivity of the optimal tax to government expenditure per infection (𝐷𝑖) 

is examined. It consists of, for example, the costs of medical treatment and administration 

regarding infection control, and it is difficult to obtain comprehensive data on these 

aspects. In the baseline case in Subsection 4.1, the total is assumed to be one million JPY 
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(approximately 10 thousand USD) for all situations. 

   To check the robustness of the assumption of 𝐷𝑖, its value is increased to ten times 

the baseline. Figure 5 shows the result. When 𝐷1 and 𝐷2 increase simultaneously, the 

components of the optimal tax are simply amplified. Accordingly, when they are 

increased tenfold, the optimal tax is also increased nearly tenfold. 

   Thus far, the government expenditure per infection, 𝐷𝑖, has been assumed to be the 

same in all regions. However, it may be larger in, for example, a region with higher wages 
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or a region with more load applied to the medical system. Thus, the case in which only 

the expenditures of Tokyo are increased to ten times the baseline, while those of the other 

regions are unchanged, is examined. Figure 6 shows the result. The bottom-left panel 

shows that as 𝐷1  increases, the optimal tax decreases. When 𝐷1  becomes large, 

susceptible residents of Tokyo should be strongly encouraged to escape to a safer region 

(𝑆1 < 0), and infected residents of Tokyo also should be encouraged to travel to the other 



37 

 

region to avoid spreading infection in Tokyo (𝐼1 < 0). Although infected residents of the 

other region should be kept away from Tokyo (𝐼2 > 0), the effects through 𝑆1 and 𝐼1 

dominate it because of the large population of Tokyo. These results imply that the optimal 

tax is sensitive to the level and asymmetry of the government expenditure parameter 𝐷𝑖 

and that it is important to set its values as exactly as possible. 

   Third and finally, we discuss the sensitivity to the assumption on the private damage 

of infection, 𝑑. In the baseline, it is assumed to be 0.3 million JPY (approximately 30 

thousand USD), which is equivalent to 30 percent of government expenditures. Here, it 

is increased to ten times the baseline. 

   Figure 7 displays the result. Since susceptible residents fully internalize private 

damage, 𝑆1 and 𝑆2 do not depend on its amount. However, the greater the damage of 

infection is, the larger the negative externality of infected residents’ spreading infection. 

Therefore, as 𝑑 increases, the terms that capture the negative externalities, 𝐼1 and 𝐼2, 

become large. However, because the weights of 𝐼1 and 𝐼2 are small due to the small 

share of infected individuals, the rate of the optimal tax remains small: 20-130 JPY 

(roughly 0.2-1.3 USD) even when the private cost is assumed to be ten times the baseline. 

This result implies that although the data on 𝑑 may be difficult to obtain, the optimal tax 

is not seriously affected by the value assumed for it. 

 

5 Conclusion 

This study theoretically investigated the externality of interregional travel with infectious 

diseases. Developing a two-region model with infectious diseases, this study considered 

the optimal tax or subsidy on interregional travel. 

The results revealed that the optimal tax could be both positive and negative (i.e., a 
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subsidy) depending on the asymmetry of the regions. The drivers of this result are (i) the 

bidirectional nature of the interregional travel market and (ii) the difficulty of 

distinguishing infected (but not symptomatic) residents from susceptible residents. 

Numerical examples, where the baseline parameter values are set in line with the situation 

of Japan in 2020, showed that a subsidy on travel may indeed be optimal in some realistic 

cases. However, the numerical results also suggested that the optimal subsidy is at most 
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on the order of 10 JPY (approximately 0.1 USD) and therefore did not support offering 

large subsidies, as were provided in the `Go To Travel’ campaign in Japan. 

   The results imply that it is not an easy question to answer how the government should 

intervene in interregional travel in the presence of infectious diseases. It is not always 

optimal to restrict travel even when infectious diseases spread. Additionally, whether a 

traveler comes into contact with more people when traveling than when staying in the 

place of residence is not the only determining factor of the optimal intervention. Rather, 

the intervention policy should be set by taking into account regional asymmetries, such 

as the number of infected residents, the population, the probability of transmission, and 

government expenditures per infection. This implication can be applicable not only for 

interregional travel within a country but also for international travel. 

   Note that this argument is subject to the presumption that the infectious diseases in a 

region cannot be fully contained in a short period. If possible, the strict restriction of 

interregional movement to achieve eradication of the virus may be socially optimal. 

A limitation of this study is that it focuses on policy intervention in interregional 

movement and does not consider policies to reduce the probability of infection 

transmission within a region, such as stay-at-home orders and closing restaurants. The 

restriction of interregional movement may be more effective when combined with such 

intraregional measures. The optimal combination of them remains a question for future 

research. However, the insights obtained from this study could serve as a foundation for 

such research. 

 

 



40 

 

References 

Audretsch, Daivid B., Erik E. Lehmann. 2005. “Does the Knowledge Spillover Theory 

of Entrepreneurship hold for regions?” Research Policy 34: 1191-1202. 

Biagi, Bianca, Claudio Detotto. 2012, “Crime as Tourism Externality.” Regional Studies 

48 (4): 693-709. 

Brueckner, Jan K. 2002. “Airport Congestion When Carriers Have Market Power.” 

American Economic Review 92 (5): 1357-1375. 

Brueckner, Jan K. 2004. “Network Structure and Airline Scheduling.” Journal of 

Industrial Economics 52 (2): 291-312. 

Cheng, Hao-Yuan, Shu-Wan Jian, Ding-Ping Liu, Ta-Chou Ng, Wan-Ting Huang, Hsien-

Ho Lin, the Taiwan Covid-Outbreak Investigation Team. 2020. “Contact Tracing 

Assessment of Covid-19 Transmission Dynamics in Taiwan and Risk at Different 

Exposure Periods before and after Symptom Onset.” JAMA Internal Medicine 180 (9): 

1156-1163. 

Chinazzi, Matteo, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, 

Stefano Merler, Ana Pastore y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun. 2020. 

“The Effect of Travel Restrictions on the Spread of the 2019 Novel Coronavirus 

(Covid-19) Outbreak.” Science 368 (6489): 395-400. 

Czerny, Achim I., Anming Zhang. 2015. “How to Mix Per-Flight and Per-Passenger 

Based Airport Charges.” Transportation Research Part A: Policy and Practice 71: 77-

95. 

Dwyer, Larry, Peter Forsyth. 1993. “Assessing the Benefits and Costs of Inbound 

Tourism.” Annals of Tourism Research 20 (4): 751-768. 



41 

 

Fang, Hanming, Long Wang, Yang Yang. 2020 “Human Mobility Restrictions and the 

Spread of the Novel Coronavirus (2019-Ncov) in China.” NBER Working Paper 26906. 

Fujii, Daisuke, Taisuke Nakata. 2021. “Covid-19 and Output in Japan.” RIETI Discussion 

Paper 21-E-004. 

Gibson, John, David Mckenzie. 2014.“Scientific mobility and knowledge networks in 

high emigrationcountries: Evidence from the Pacific.” Research Policy 43: 1486-1495. 

Leach, John. 1996.“Training, migration, and regional income disparities.” Journal of 

Public Economics 61: 429-443. 

Jung, Sung-mok, Andrei R. Akhmetzhanov, Kenji Mizumoto, Hiroshi Nishiura. 2020. 

“Real-time Estimation of the Effective Reproduction Number of COVID-19 in Japan.” 

Mimeo. 

Justman, Moshe, Jacques Francois Thisse. 2000.“Local Public Funding of Higher 

Education when Skilled Labor is Imperfectly Mobile.” International Tax and Public 

Finance, 7: 247-258. 

Kondo, Keisuke. 2021. “Simulating the Impacts of Interregional Mobility Restriction on 

the Spatial Spread of Covid-19 in Japan.” RIETI Discussion Paper 20-E-089. 

Page, Stephen J, Denny Meyer. 1996. “Tourist Accidents: An Exploratory Analysis.” 

Annals of Tourism Research 23 (3): 666-690. 

Palmer-Tous, Teresa, Antoni Riera-Font, Jaume Rosselló-Nadal. 2007. “Taxing Tourism: 

The Case of Rental Cars in Mallorca.” Tourism Management 28 (1): 271-279. 

Saenz-de-Miera, Oscar, Jaume Rosselló. 2012. “The Responsibility of Tourism in Traffic 

Congestion and Hyper-Congestion: A Case Study from Mallorca, Spain.” Tourism 

Management 33 (2): 466-479. 

Saenz-de-Miera, Oscar, Jaume Rosselló. 2014, “Modeling Tourism Impacts on Air 



42 

 

Pollution: The Case Study of Pm10 in Mallorca.” Tourism Management 40: 273-281. 

Sheng, Li, Tao Li, Jia Wang. 2017. “Tourism and Externalities in an Urban Context: 

Theoretical Model and Empirical Evidence.” Cities 70: 40-45. 

World Tourism Organization. 2020. Understanding Domestic Tourism and Seizing Its 

Opportunities. UNWTO Briefing Note – Tourism and Covid-19, Issue 3. 


