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Abstract

Do policies that aim to mitigate fire sale externalities actually improve financial

stability? We study this question in a model of financial intermediation where banks

may sell long-term assets in financial markets subject to cash-in-the-market pricing

and bank runs. In the absence of interventions, banks hold more long-term assets

than is socially optimal, leading to inefficiently large fire sales in a crisis. Policymakers

may regulate banks’ choices to mitigate this externality, but lack commitment. We

show that, in economies with high market liquidity, such actions have the unintended

consequence of increasing fragility and lowering welfare.
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1 Introduction

Mitigating fire sale externalities has been a central concern of financial stability policy

since the financial crisis of 2007-08. There is now a sizable literature on the topic and a

variety of policy tools have since been introduced to mitigate fire sales in future periods

of financial stress. It is still not well understood, however, how these policies might affect

financial fragility and welfare. One challenge in studying this question is to understand how

policy choices affect the probability of a crisis. Financial crises are generally thought to

have an important self-fulfilling component: creditors are withdrawing from banks and other

financial institutions in part because they fear the withdrawals of other creditors will cause

losses. This self-fulfilling property can make it difficult to determine the ex-ante probability

of a crisis. In this paper, we endogenize the probability of a self-fulfilling bank run using

a robust control approach in the spirit of Hansen and Sargent (2001), and studies whether

policies that aim to mitigate fire sale externalities actually decrease financial fragility.

We address this question by constructing a version of the Diamond and Dybvig (1983)

model of financial intermediation augmented to include fire sale externalities. In particular, we

study an environment with financial markets subject to cash-in-the-market pricing based on

Allen and Gale (1998) and with limited commitment as in Ennis and Keister (2009). There

are two types of assets: short-term and long-term. Banks can sell long-term assets in financial

markets before they mature, and the asset price is endogenously determined. The banks face

a non-trivial portfolio choice and behave competitively in the sense that they take asset prices

as given. When a run occurs, banks may need to sell long-term assets in the market to pay

withdrawing depositors. Outside investors have limited funds and, therefore, fire sale pricing

will occur when total asset sales are large enough. Because banks rationally neglect the

impact of their choices on the asset price, an externality arises. As result of this externality,

banks hold more illiquid assets than is socially optimal and fire sales are inefficiently large.

We use this model to study an intervention that aims to mitigate fire sale externalities. A
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regulator has the ability to regulate banks’ short-term liabilities and portfolio choices, but

lacks commitment. The lack of commitment implies that runs may occur in equilibrium.1 The

regulator uses these policy instruments to maximize welfare at all times, given the situation

at hand. Specifically, the regulator will choose to reduce banks’ investment in the long-term

asset, which mitigates the fire sale externality.

We study how such an intervention affects financial fragility, measured by the probability

of a self-fulfilling bank run. Endogenizing the probability of a self-fulfilling bank run in

this framework is nontrivial because there are often multiple equilibria, as in the canonical

Diamond and Dybvig (1983) model. In such cases, we follow a robust-control approach: we

calculate the maximum probability of a run consistent with equilibrium and measure welfare

under this “worst-case” scenario.2 We show that the resulting probability of a run is well

defined and varies depending on the policy tools available to the regulator.

Our main contribution is a novel mechanism through which policies that aim to mitigate

fire sale externalities can increase financial fragility. The policymaker requires banks to hold

fewer long-term assets, which does mitigate the externality and raise the market value of

these assets in a crisis. By itself, this effect would tend to decrease the probability of a run.

However, as banks hold a more liquid asset portfolio, the policymaker also finds it optimal

to allow banks to issue more short-term liabilities. Having more short-term liabilities, by

itself, tends to increase the probability of a run. The impact of policy on the probability of a

run thus depends on the relative size of two competing effects. We show that when market

liquidity is high, meaning outside investors have significant funds available, the second effect

dominates and policy intervention increases the maximum probability of a bank run. This

fragility effect undermines the benefit of mitigating fire sales and, in some cases, leads to

lower welfare. When outside investors have fewer funds, in contrast, policy intervention tends

to lower the probability of a run. In these cases, intervention always raises welfare.

1The assumption of non-commitment prevents banks and the regulator from costlessly eliminating bank
runs by using an off-equilibrium threat such as suspension of convertibility, which is time-inconsistent. See
Ennis and Keister (2009, 2010).

2This approach follows Li (2017) and Izumi (2021).
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Our results show how a version of the classic time-inconsistency problem can arise with

policies that aim to mitigate fire sales. In some cases, it would be optimal for the policymaker

to commit not to regulate banks at all. Given the ability to regulate, however, the policymaker

will want to intervene in an attempt to mitigate fire sales. However, the policy choices can

end up giving depositors a stronger incentive to withdraw early and thereby increase the

probability of a bank run under the robust-control approach.

The reason market liquidity plays a crucial role in our results is that it determines whether

or not banks hold excess liquidity in equilibrium. When market liquidity is high, the fire

sale discount on assets will be small in the event of a crisis and banks will choose to hold

only enough short-term assets to cover the withdrawals that occur in normal times. In this

situation, a shift to holding more short-term assets will naturally lead banks to increase

its short-term liabilities, which creates the channel through which regulation can increase

fragility. When market liquidity is low, in contrast, the equilibrium fire sale discount will

be high. Faced with this possibility, banks will choose to hold a precautionary buffer of

short-term assets, above what is needed to cover withdrawals in normal times. When this

buffer is present, a required change in banks’ asset composition will not necessarily lead to a

substantial increase in short-term liabilities. We show that, in theses cases, regulation will

always decrease the probability of a run and increase welfare.

Related literature: Our paper contributes to the literature studying time-inconsistency

problems of policymakers in the spirit of Kydland and Prescott (1977). In the banking

context, bailouts have been studied extensively as a typical example of the time-inconsistent

problem since the financial crisis of 2007-08. A number of papers reveal how bailing out banks

without commitment can worsen welfare, including Farhi and Tirole (2012), Bianchi (2016),

Chari and Kehoe (2016), Keister (2016), and Dávila and Walther (2020). These papers study

“moral hazard” problems associated with time-inconsistent bailout policies. Our paper is

different: We study pecuniary externalities associated with fire sales, and show how a version

of the time-inconsistency problem can also arise in this context.
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We study consequences of the time-inconsistency problem in the growing literature

on fire sale externalities and policy interventions. Lorenzoni (2008), Gale and Gottardi

(2015), He and Kondor (2016) and Dávila and Korinek (2018) show that an equilibrium can

have either over-investment or under-investment in the presence of fire sale externalities.

Gale and Yorulmazer (2020) and Acharya, Shin and Yorulmazer (2011) show how fire sale

externalities distort banks’ portfolio choices. To correct such externalities, Perotti and Suarez

(2011), Walther (2016) and Kara and Ozsoy (2019) discuss optimal designs of capital and

liquidity regulations.

Our model follows the sizable literature that builds on the seminal works of Bryant (1980)

and Diamond and Dybvig (1983). More specifically, we contribute to the strand of literature

that introduces financial markets into this framework and determines asset prices as part

of the equilibrium. See, for example, Allen and Gale (2004), Farhi, Golosov and Tsyvinski

(2009), and Eisenbach and Phelan (2021). These models feature inefficient portfolio choices

in equilibrium associated with pecuniary externalities in financial markets.

We make two contributions to this literature. First, we provide precise conditions under

which a policy that aims to correct fire sale externalities is ineffective when the policymaker

lacks commitment. This differs from the existing literature which assumes the commitment

of policymakers and concludes that regulations are always effective in improving welfare or,

at least, do not worsen the situation. Our paper shows that when the policymaker lacks

commitment, their results do not always hold. Specifically, when the policymaker lacks

commitment, regulation does improve welfare when market liquidity is low, but actually

unintentionally worsens welfare when market liquidity is high.

Our second contribution is to endogenize the probability of a self-fulfilling bank run

in this framework by focusing on the maximum probability of a run that is consistent

with equilibrium. Cooper and Ross (1998), Ennis and Keister (2006) and Ennis and Keister

(2010) introduce a positive probability of bank runs into the Diamond-Dybvig framework. Li

(2017) and Izumi (2021) evaluate their equilibrium paths using the robust control approach
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in the spirit of Hansen and Sargent (2001), and use the maximum equilibrium probability as

a measure of financial fragility. The degree of fragility is, thus, determined in equilibrium

and depends on parameters and policy interventions. Our measurement of fragility follow

this approach, and we show that mitigating the externality can increase fragility.

Another approach to endogenize the probability of a bank run is based on global games, as

in Goldstein and Pauzner (2005). Within this framework, Eisenbach (2017) studies general

equilibrium determination of liquidation values of investments. Ahnert (2016) shows liquidity

regulations mitigate fire sale externalities that can occur in this type of environment. Unlike

the global-games approach, our model does not place ad hoc restrictions on the banking

contract or on regulators. When it becomes clear that a run is underway, banks and

policy makers respond by rescheduling payouts from the banking system in a way that

resembles policy responses in practice (Ennis and Keister (2009, 2010)). Our assumptions

about commitment are also consistent across policies: regulation is subject to the same

limited commitment friction as is commonly assumed for bailout policy. We show how to

endogenize the probability of a run within this framework and study how this probability

responds to policy choices.

The rest of the paper is organized as follows: Section 2 introduces the model environment.

Section 3 derives the equilibrium allocation and asset price to find the equilibrium condition

for a bank run. Section 4 studies comparative statics of the level of market liqudity, which

will be useful in illustrating the impact of interventions. We study policies that aim to correct

the externalities and their impacts on fragility in Section 5.

2 The model

Our analysis is based on a version of Diamond and Dybvig (1983) augmented to include

the limited commitment features of Ennis and Keister (2009), and to have financial markets

as in Allen and Gale (1998). This section describes the model environment including agents,

technologies, and markets, and then defines financial fragility in this environment.
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2.1 The environment

We consider an economy with three periods indexed by t = 0, 1, 2. The economy is

populated by a [0, 1] continuum of ex ante identical depositors, indexed by i. We suppose

that each depositor has preferences of the following CRRA form:

u (c1, c2;ωi) =
(c1 + ωic2)

1−γ

1− γ
,

where ct represents consumption of a single good in period t and the coefficient of relative

risk-aversion γ is assumed to be greater than one. The parameter ωi is a binomial random

variable with support Ω ≡ {0, 1} and represents a depositor’s type. If ωi = 1, depositor i

is patient, while she is impatient if ωi = 0. A depositor’s type is revealed in period 1 and

privately observed by each depositor. Each depositor is chosen to be impatient with a known

probability π ∈ (0, 1), and the fraction of impatient depositors in each location is equal to π.

Technologies: In period 0, depositors are each endowed with one unit of goods that

can be used for consumption or investment. There are two kinds of assets, short-term

and long-term, each representing a constant-returns-to-scale investment technology. The

short-term asset is represented by a storage technology that allows one unit of the good

placed in period t to be converted into one unit of the good in period t+ 1. The long-term

asset is represented by an investment technology that allows one unit of the good in period 0

to be converted into R > 1 units of the good in period 2.

Financial market: The long-term asset can be traded at price p in a competitive

asset market in period 1, where investors may purchase it subject to the cash-in-the-market

constraint.3 The investors receive endowments w in period 1, which represent the cash-in-

the-market. They can use the endowments to purchase the long-term asset when banks sell,

and they value consumption at t = 2 only. An investor also has an outside option that yields

3While Allen and Gale (1998) assume that investors are risk-neutral, we can assume any risk-preferences.
This is because there is no risk in terms of asset returns and investors will buy all long-term assets sold in
the market.

6



the return of R∗ > 0 in period 2.

Financial intermediation: The investment technologies are operated at a central

location, where depositors pool and invest resources together in period 0 to insure individual

preference risk. This intermediation technology can be interpreted as a financial intermediary

or bank. In period 0, the banks invest a fraction x of its portfolio into long-term assets and a

fraction (1− x) of its portfolio into short-term assets. Depositors do not observe the banks’

portfolio choice. In period 1, upon learning her preference type, each depositor chooses either

to withdraw her funds in period 1 or to wait until period 2. Those depositors who contact the

bank in period 1 arrive one at a time in the order given by their index i. This index is private

information and the bank only observes that a depositor has arrived to withdraw. Under this

sequential service constraint, as in Wallace (1988, 1990), the bank determines the payment to

each withdrawing depositor based on the number of withdrawals that have been made so far.

There is no restriction on these payments; the bank can freely choose the amount received by

each depositor when she withdraws. Depositors do not observe the bank’s payments made to

other depositors, but they can infer the chosen values in equilibrium. As in Ennis and Keister

(2009, 2010), the bank cannot pre-commit to future actions, which implies that the bank will

always serve depositors optimally depending on the current situation. The objective of the

bank is to maximize welfare measured by the equal-weighted sum of depositors’ expected

utilities,

W =

∫ 1

0

E [u (c1(i), c2(i);ωi)] di.

This intermediation technology is operated by a large number of identical intermediaries.

2.2 Financial crises

We follow Peck and Shell (2003) and many others in introducing the probability of bank

runs through an extrinsic sunspot variable. The economy will be in one of two sunspot states,

s ∈ S ≡ {α, β} with probabilities {1− q, q}. Depositors observe the realization of the sunspot

variable at the beginning of period 1 and may condition their withdrawal strategies on the

7



sunspot variable, while the banks do not observe the sunspot state and must infer it based

on the observed withdrawal behavior. In period 1, each depositor chooses to withdraw either

in period 1 or 2 based on the sunspot variable and her preference type:

yi : Ω× S → {0, 1},

where yi = 0 corresponds to withdrawing at t = 1 and yi = 1 corresponds to withdrawing at

t = 2. Let y denote a profile of withdrawal strategies for all depositors. An impatient depositor

will choose to withdraw at date 1 in both states, since she does not value consumption in

period 2. A patient depositor may or may not withdraw in period 1, and we say that a bank

run occurs if a positive measure of patient depositors withdraws in period 1. Therefore, if

withdrawals continue after the first π withdrawals, the banks infer that a run is underway.

We assume that the banks then react in a way that the run stops, as in Ennis and Keister

(2009) and many others.4 In view of this discussion, we consider the following run strategy

profile for a depositor i:

yi(ωi, α) = ωi for all i, and

yi(ωi, β) =

 0

ωi

 for

 i ≤ π

i > π

 .
(1)

Under this profile, state α has no run while state β incurs a run: each patient depositor

with i ≤ π chooses to withdraw early in state β. The banks do not know the realization of

the sunspot variable and cannot initially infer if a run is underway. After a fraction π of

depositors has been served, the banks can infer the sunspot state and respond in a way such

that the run stops, and all remaining patient depositors wait to withdraw in period 2. The

following definition provides the notion of financial fragility that we use in the paper.

4Ennis and Keister (2010) show that runs are necessarily partial in an environment where the banks can
react by changing the repayment schedule. This assumption can be generalized by introducing a richer space
for the sunspot variable in which runs can occur in multiple waves. Having multiple waves of runs, however,
does not change the mechanisms we will present and results will remain unchanged qualitatively.
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Definition 1. A banking system is said to be fragile if the strategy profile (1) is part of an

equilibrium; otherwise the banking system is said to be stable.

We will conduct much of our analysis by studying the set of values for q that makes the

run strategy profile an equilibrium and hence the banking system fragile. If q is small, the

banks may offer early repayments that are large enough to incentivize depositors to run on

the banks if they anticipate others will do so. In such a case, the run strategy profile can be

an equilibrium. If q is sufficiently large, however, the banks become conservative in choosing

the early payments. When q is large enough, depositors will no longer have an incentive to

run on the banks, and the economy is stable. The next section establishes the set of q that is

consistent with fragile banking systems.

2.3 Timeline

The timing of events is summarized in Figure 1. In period 0, depositors place their

endowments in the banks, the banks choose the portfolio, and the period ends. This choice of

portfolio is unknown to both depositors and investors. At the beginning of period 1, depositor

i learns her type ωi and the realized sunspot state, and can choose either to withdraw in

period 1 or wait until period 2. When a depositor makes a choice, she privately knows her

position in the order of withdrawals. At the same time, the banks choose a repayment plan

and begin redeeming deposits withdrawn by depositors from the front of the line sequentially.

To make these early repayments, the banks can use the proceeds from matured short-term

assets. After π withdrawals have been made, the banks can infer the realization of the

sunspot state by whether an additional withdrawal occurs or not. If a run is underway, the

banks’ reaction halts further withdrawals by patient depositors. In making these additional

repayments, the banks may exhaust short-term assets and sell long-term assets in the financial

market. The remaining impatient depositors receive repayments in period 1. In period 2, the

long-term asset matures and the banks repay the remaining patient depositors.
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Figure 1: Timeline of the events

2.4 Discussion

We assume depositors choose their withdrawal strategies without directly observing the

banks’ portfolio choices. In equilibrium, depositors will be able to perfectly infer their bank’s

choice and, hence, their withdrawal strategies will be a best response to their bank’s chosen

portfolio. However, our assumptions imply that any deviation from the equilibrium portfolio

by the banks (and, later on, the regulator) will not be observed by depositors and thus

cannot affect their choices. We could change the model to allow depositors to directly observe

their bank’s portfolio at the cost of making the model more complex. Assuming they do

not simplifies the analysis and creates symmetry between the choice of portfolio and early

payments. Moreover, it may be difficult in practice for banks to credibly communicate

information about the liquidity profile of their asset portfolio. Dang et al. (2017) point out

that the banking industry is inherently opaque, for instance. In such a situation, depositors

may be unable to precisely observe changes in the portfolio composition of their financial

intermediaries. In addition, Kacperczyk, Sialm and Zheng (2008) report that mutual fund

creditors do not observe all actions taken by fund managers despite extensive disclosure

requirements.

3 Equilibrium and financial fragility

We begin the analysis by studying equilibrium with no policy intervention as the bench-

mark, and we will introduce policy interventions in Section 5. Our interest is a withdrawal
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game in which the banks choose a portfolio and a repayment schedule and depositors choose

withdrawal strategies. In this simultaneous-move game, a depositor chooses yi to maximize

her expected utility, and the banks choose a portfolio x and a repayment strategy to maximize

the expected utility of depositors. An equilibrium is characterized by the following: each

depositor best-responds to the banks’ strategies, the banks best-respond to depositors’ strate-

gies, and the financial market clears. In this section, we first derive the banks’ best-response

in their portfolio choice and repayment schedule to the profile of withdrawal strategies in

(1), taking the price p as given. We then calculate the market-clearing price to determine

the allocation associated with profile (1). We finally verify whether the withdrawal strategy

profile is part of an equilibrium and hence whether the banking system is fragile. Throughout

the paper, we assume the outside return available to investors, R∗, is equal to the return

on the banks’ technology, R, which implies that p ≤ 1 always holds in equilibrium. This

assumption does not drive our main results, but allows us to focus on fire sales of assets and

simplify the presentation of the mechanism.

3.1 The best-response allocation

Each bank takes one unit of the goods from each of its depositors in period 0 and invests

it in a portfolio consisting of long-term assets (x) and short-term assets (1 − x). When

withdrawals begin at t = 1, the banks are initially unable to make any inference about the

realization of the sunspot variable and choose to give the same level of consumption c1 to

each withdrawing depositor with i ≤ π. Once π withdrawals have taken place, the banks

will be able to infer the sunspot state by observing whether or not withdrawals stop at this

point. They will use this information to calculate the fraction of its remaining depositors

who are impatient, which we denote as πs. (Notice that (1) generates πα = 0 and πβ = π.)

All uncertainty has been resolved when π withdrawals have been made, and the banks will

give a common amount c1β to each of the remaining impatient depositors if a run occurs. In

addition, each of the remaining patient depositors will receive a common amount c2s from her
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bank’s remaining resources when she withdraws in period 2. The portfolio and the repayment

schedule will be chosen to solve:

max
{x,c1,c1β ,c2α,c2β}

πu(c1) + (1− q)(1− π)u(c2α) + q(1− π) [πu(c1β) + (1− π)u(c2β)] . (2)

We can simplify the constraint set for this problem by first noting that it will never be

optimal for the banks to sell any of the long-term assets in state α. In such a case, the banks

could provide more consumption to all depositors by holding more short-term assets and

fewer long-term assets. Similarly, the assumption R > 1 implies that it will never be optimal

for the banks to hold short-term assets over two periods in state β. The banks may, however,

hold short-term assets until t = 2 in state α, and they may choose to pay additional period-1

withdrawals by selling the long-term assets in state β. Thus, we can write the banks’ resource

constraints as follows:

πc1 ≤ (1− x), (3)

(1− π)c2α = Rx+ (1− x− πc1), (4)

(1− x− πc1) ≤ (1− π)πc1β, (5)

(1− π)2c2β = R
{
x− 1

p
[(1− π)πc1β − (1− x− πc1)]

}
. (6)

The first constraint says that the consumption of the first π depositors to withdraw will

always come from the proceeds of the short-term assets. This constraint may or may not

hold with equality at the solution. The second constraint says that in state α, the remaining

patient depositors will consume all of the remaining resources. The third constraint reflects

the fact that additional period-1 payments may come from selling the long-term assets,

since all of the short-term assets have already been depleted. The last constraint is the

standard pro rata division of remaining resources that determines the payment in period 2.

Letting µ1, µ2α, µ1β, and µ2β be the Lagrangian multipliers on the above resource constraints,
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the solution to the problem is characterized by the first order conditions with respect to

(x, c1, c1β, c2α, c2β):

−µ1 + (R− 1)µ2α + µ1β + (R−R/p)µ2β = 0, (7)

πu′(c1)− πµ1 − πµ2α + πµ1β − π(R/p)µ2β = 0, (8)

q(1− π)πu′(c1β) + (1− π)πµ1β − (1− π)π(R/p)µ2β = 0, (9)

(1− q)(1− π)u′(c2α)− (1− π)µ2α = 0, (10)

q(1− π)2u′(c2β)− (1− π)2µ2β = 0. (11)

These first-order conditions imply that c1 < c2α and c1β < c2β always hold.5

The solution to the problem characterizes the banks’ best-response allocation to profile (1)

given (p, q). By expressing (c∗2α, c
∗
1β, c

∗
2β) as functions (x, c1), we summarize the best-response

allocation by the vector A(p, q) ≡ {x∗, c∗1}.6 This allocation will involve either (I) no excess

liquidity or (II) excess liquidity, where “excess” just means that the banks hold more short-

term assets than necessary to pay the first π withdrawals.7 In Case I, the equality in Equation

(3) binds and the banks do not hold more excess liquidity than necessary to pay πc1. In such

a case, the banks will sell the long-term assets to provide additional period-1 payments if a

run occurs. In Case II, the inequality in Equation (3) holds and the banks still have liquid

assets after paying the first π depositors. If a run occurs, the banks can deplete the proceeds

of the remaining short-term assets before it sells long-term assets. If the asset price is low,

excess liquidity is a useful option to prepare for runs. For notational convenience, we define

the following threshold value of q at which the banks’ solution switches from Case I to Case

II.

ql =

{
1 +

R

R− 1

(
1

p
− 1

)[
π

(
R

p

)1− 1
γ

+ (1− π)

]γ}−1
.

5The proof is given in Appendix A
6The explicit derivation of this allocation is given in Appendix A.
7This statement is not about efficiency. In fact, we will show that, in some economies, the efficient

allocation involves excess liquidity. Specifically, when a run is very likely to occur, it can be efficient to hold
excess liquidity to prepare for a large redemption.
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The best-response allocation, then, has the following property:

Lemma 1. The banks’ best-response to profile (1) lies in Case

 I

II

 if

0 < q < ql

ql ≤ q < 1

.

The intuition for the above result is as follows: If a crisis is very unlikely, holding excess

liquidity is too costly because the banks have to give up some long-term assets and thus

opportunities to earn more in state α. In such a case, it is optimal to hold short-term assets

only for the purpose of paying πc1. If a run occurs, the banks sell the long-term assets. As

the probability of a crisis increases, the banks will eventually choose to hold excess liquidity.

Having more short-term assets lowers the losses from selling long-term assets and thus leaves

the banks with more resources in the event of a run.

3.2 Market-clearing price

The price of long-term assets p follows the cash-in-the-market pricing. The demand for

long-term assets comes from investors: they purchase long-term assets from the banks subject

to the cash-in-the-market as long as p ≤ 1. The supply of long-term assets comes from the

banks that liquidate some of their long-term assets in order to repay additional withdrawal

requests in times of crisis. The bank knows exactly how many additional withdrawal requests

will come after the π withdrawals, and thus sells the assets all at once. If the banks hold excess

liquidity, the banks can pay part of the remaining period-1 payments without liquidating

long-term assets. Then, the asset supply measured in units of goods at t = 1 is expressed by

L = π(1− π)c1β − (1− x− πc1), where (1− x− πc1) = 0 in Case I and (1− x− πc1) > 0 in

Case II. Thus, the market clears all at once, and the market-clearing condition is expressed

by

w

p
=
π(1− π)c1β − (1− x− πc1)

p
, (12)

where (x, c1, c1β) are the functions of the market-clearing price. The patterns of the banks’

asset supply are described by the following result and Figure 2.

Lemma 2. L is strictly increasing in p in both Cases I and II.
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Figure 2: The asset supply measured in units of goods at t = 1 over price

The market-clearing condition implies that the equilibrium price is affected by the banks’

choice of repayment schedule. As we pointed out in Lemma 1, the best-response of the banks

to (1) involves holding excess liquidity and/or fire sales depending on the probability of a

bank run. The market-clearing price p∗ is, therefore, a function of the probability of a bank

run.

Lemma 3. The market-clearing price p∗ is strictly

decreasing

increasing

 in q if q

<≥
 ql.

Figure 3: The impact of q on the market-clearing price p∗
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Recall that when the solution lies in Case I, the banks have no excess liquidity. In this case,

the banks need to sell long-term assets to repay the additional withdrawals in period 1 if a

run occurs. Thus, the banks are expected to sell more long-term assets as a crisis becomes

more likely. When the solution lies in Case II, the banks become conservative and hold excess

liquidity to repay the extra withdrawals in times of a run. In this case, the banks sell fewer

long-term assets and hold even more excess liquidity as q increases. As a result, the price is

increasing over q.

3.3 Equilibrium bank runs

We now verify whether the strategy profile in (1) is part of an equilibrium, and hence

whether the banking system is fragile. The (indirect) expected utility of depositor i can be

defined as

vi(x, c1, y, p) = Eu(c1, c2;ωi), (13)

where the expectation operator is over ωi. An equilibrium features that depositors and banks

are best-responding to each other with the market-clearing price, which is defined as follows:

Definition 2. An equilibrium without regulation is profile of strategies (x∗, c∗1, y
∗) and a price

p∗ such that

1. vi(x
∗, c∗1, (y

∗
i (s), y

∗
−i(s)), p

∗) ≥ vi(x
∗, c∗, (yi(s), y

∗
−i(s)), p

∗) for all s, for all yi, for all i,

2. (x∗, c∗1) ∈ A(p, q),

3. p∗ satisfies the market clearing condition (12).

Recall that an impatient depositor will always strictly prefer to withdraw early, regardless

of whatever payment she receives, since she values period-1 consumption only. Therefore, we

only need to consider the actions of patient depositors. After π withdrawals, the banks infer

if a run is underway, and are able to implement the first-best continuation allocation. Thus, a

patient depositor with i > π prefers to wait in state β. For patient depositors with i ≤ π, the
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banks must consider each of the two possible sunspot states separately. In state α, a patient

depositor will strictly prefer to wait as specified in 1. In state β, a patient depositor with

i ≤ π receives c1 if she joins the run and c2β if she leaves her funds in the banking system.

The discussion above establishes that the profile (1) emerges as part of an equilibrium if and

only if the allocation satisfies c∗1 ≥ c∗2β.

We define q̄ as the maximum probability in which a run can occur in equilibrium. Following

Li (2017) and Izumi (2021), we use this q̄ as the measure of financial fragility.

Definition 3. Given (γ, π, w, R), let q̄ be the maximum value of q such that c∗1 ≥ c∗2β holds.

If c∗1 ≥ c∗2β does not hold for any value of q, then define q̄ = 0.

If the probability of a run exceeds this cutoff value, the banks will become sufficiently cautious

that a run is no longer an equilibrium behavior for depositors. This cutoff value provides a

natural measure of financial fragility; if a change in parameter values decreases the maximum

probability of a run equilibrium, it makes the banking system less fragile and more stable. In

the next section, we study comparative statics of the q̄ with no policy intervention as the

preliminary step to explore how interventions affect the q̄.

3.4 Discussion

The financial market is one of the central pieces of our framework, and we made the

assumption (R∗ = R) to focus on the case where the market-clearing price is p ≤ 1. This

could be generalized by allowing the price to be above 1, which requires one to consider the

case in which the banks invest only or mostly in long-term assets. Such a generalization does

not undermine our findings in p < 1, but focusing on this range allows us to demonstrate our

mechanisms and results in the clearest way. This type of assumption in which the long-term

asset pays less than or equally to the short-term asset in period 1 is a standard approach in

the literature.8

The equilibrium price involves an externality, which we call a fire sale externality. The

8See, for example, Diamond and Dybvig (1983), Cooper and Ross (1998) and many others.
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asset supplies are characterized by the banks’ best-response allocation A. Since we suppose

the competitive banking sector, banks choose the allocation taking the price as given. At the

equilibrium, all banks make the same choice, and hence the equilibrium price is dependent

on this choice. As a result, the banks over-invest in long-term assets and sell more long-term

assets in the financial market than the efficient level, and the price drops further. We will

discuss this inefficiency further in Section 5.

4 Market liquidity and financial fragility

In analyzing how interventions affect fragility, it is first useful to explore fragility in the

equilibrium with no policy intervention. Specifically, this section explores the comparative

statics of fragility (q̄) over market liquidity (w). Later in Section 5, we will study how the

introduction of policy interventions affects this result, which is useful in illustrating the effect

of interventions.

An important channel linking market liquidity and fragility is the banks’ holding of excess

liquidity. Lemma 2 implies that the market-clearing price is monotonically increasing over

w. When w is small, the market-clearing price is also low, and the banks choose to hold

excess liquidity to leave more resources for a time of crisis (Case II). As w increases, the

market-clearing price rises, and the banks choose to hold less excess liquidity. When w

reaches a particular level, the market-clearing price rises enough and the banks hold no excess

liquidity (Case I). Then, an increase in w has no impact on the magnitude of the banks’

excess liquidity because the banks hold no excess liquidity in the first place.

The determination of q̄ depends on the ratio of c1
c2β

as in Definition 3. When w increases,

the banks can sell the asset at a higher price, and adjust the repayment schedule. If the

banks respond by raising c1 more than c2β, the value of q that sustains c∗1 ≥ c∗2β increases:

the q̄ rises. That is, when a run is more likely to occur, but also market liquidity is larger,

the banks will still pay c∗1 ≥ c∗2β. Similarly, if the banks raise c1 so that it is less than c2β,

the q̄ declines. How the banks change these consumption variables depends on whether the
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banks hold excess liquidity or not:

Lemma 4. c1/c2β is monotonically

decreasing

increasing

 in w if the solution lies in

Case I

Case II

.

This result is depicted in Figure 4, which shows how the banks change c1
c2β

in response to a

change in w and q. In this figure, c1
c2β

is monotonically decreasing over q: the banks become

conservative and pay less c1 as q increases. On the other hand, the banks’ response to an

increase in w depends on whether the banks hold excess liquidity or not.

(a) q̄ lies in Case I (b) q̄ lies in Case II

Figure 4: The impact of w on c1/c2β

To better understand the banks’ response, we decompose the ratio further into two parts

as: c1/c2β = c1/c2α × c2α/c2β. Then, the following relationship holds:

Lemma 5. c1/c2α is monotonically

 increasing

decreasing

 in w while c2α/c2β is monotonically

decreasing

increasing

 in w if the solution lies in

Case I

Case II

. And then, the effect of c2α/c2β is

always dominant in determining the change in c1/c2β.

In response to an increase in w, the banks raise not only (c1β, c2β) but also c1 as a substitution

over time. The magnitude of this increase depends on whether the banks hold excess liquidity
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or not. When the solution lies in Case I, the equality in Equation (3) holds: a desire to

smooth consumption between c1 and (c1β, c2β) requires the banks to hold fewer long-term

assets, and the banks reduce c2α. To avoid further decline in c2α, the banks increase c1 to a

lesser extent than c2β. As a result, c1
c2β

is decreasing over w. When the solution lies in Case

II, another substitution effect arises: the banks raise x and thus also c2α, leaving less excess

liquidity. The increase in x increases c2α more than c2β because long-term assets are not

liquidated in period 1 in state α. This increase in c2α drives the banks to raise c1 more than

c2β to better smooth consumption. As a result, c1
c2β

is increasing over w. The q̄ is, therefore,

increasing over w in Case II and decreasing over w in Case I:

Proposition 1. If q̄ lies in

Case I

Case II

, then q̄ is monotonically

decreasing

increasing

 in w.

This result is illustrated in Figure 5, which depicts q̄ over w. When w is small, the banks’

solution lies in Case II and the q̄ is increasing over w. Once w reaches a particular level,

the banks’ solution lies in Case I and an increase in market liquidity reduces q̄. When w is

substantially high such that p = 1 holds, the q̄ becomes inelastic to w. In such a situation,

an increase in market liquidity has no effect on the banks’ repayment schedule.

Figure 5: The impact of w on the q̄

In the next section, we study how interventions affect the q̄ and explore the comparative

statics of the q̄ with interventions.

20



5 Policy intervention

We will now consider government interventions that aim to mitigate fire sale externalities.

Specifically, we study two types of policy instruments: intervention in short-term payments

and intervention in portfolio choice. The regulator maximizes the expected utility of depositors

and is able to control (x, c1) subject to the same financial market as the banks. We suppose

that the regulator cannot direct depositors’ withdrawal decisions and cannot control the

actions of banks after π withdrawals. The banks, therefore, still decide (c2α, c1β, c2β) taking p

as given. However, unlike banks, the regulator takes into account the effect of choosing (x, c1)

on the asset price. One example of such an intervention is the liquidity requirements in the

revised Basel III accord. These requirements aim to ensure that banks’ liquidity holdings

are sufficient to meet short-term cash outflows, and this measure corresponds closely to the

choices on (x, c1).
9

We also suppose that the regulator is subject to the same limited commitment friction

as the banks: The regulator cannot credibly promise to use contracts that rule out runs,10

and the choices of (x, c1) will be made to maximize welfare taking as given depositors’ choice

of withdrawal strategy. As in the previous section, depositors do not directly observe the

regulators’ actions, but correctly anticipate them in equilibrium. The withdrawal game will

be, therefore, played by the regulator and depositors, and the difference from the previous

section is that (x, c1) are now chosen by internalizing their effects on the price such that

(x∗, c∗1) ∈ A(p∗, q). Our interest is in how such an intervention affects financial fragility q̄,

which, in turn, affects welfare.

9This interpretation is commonly used in the literature to study liquidity regulations. See, for example,
Keister (2016) and Li (2020).

10The assumption in which policymakers lack commitment is standard in the literature. The classic
reference is Kydland and Prescott (1977). In the bank runs context, see Ennis and Keister (2009, 2010) and
Keister (2016).
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5.1 A regulator’s problem

We begin our analysis by studying banks’ choices. Given (x, c1) and p, the banks choose

(c2α, c1β, c2β) to solve:

V (x, c1) = max
{c2α,c1β ,c2β}

(1− q)(1− π)u(c2α) + q(1− π) [πu(c1β) + (1− π)u(c2β)] , (14)

subject to (4-6). The solution to this problem depends on (x, c1), and the regulator takes the

banks’ actions and the price into account while choosing (x, c1). The regulator solves

max
{x,c1}

πu(c1) + V (x, c1), (15)

subject to (3). The asset price p will be determined at the market, and the regulator

internalizes the effect of choosing (x, c1) on p. Letting µ1 be the Lagrangian multiplier for

the constraint, the first-order conditions are characterized by

π

[
u′(c1)− µ1 − (1− q)u′(c2α)− qR

p
u′(c2β)

]
+ q

w

p

R

p
u′(c2β)

∂p

∂c1
= 0, (16)[

(1− q)(R− 1)u′(c2α)− µ1 − q
(
R

p
−R

)
u′(c2β)

]
+ q

w

p

R

p
u′(c2β)

∂p

∂x
= 0, (17)

with respect to c1 and x respectively. This regulator’s solution (x,c1) has the following

patterns:

Lemma 6. c∗1 ≤ c1R and x∗ ≥ xR in Case I,

where the subscript R indicates the regulator’s solution. The regulator invests less in long-

term assets, which indicates that the banks always over-invest in long-term assets in Case

I. The regulator knows that holding more long-term assets may decrease the asset price in

period 1, and this extra marginal cost of holding more long-term assets drives xR ≤ x∗. The

regulator, instead, holds more short-term assets and allocates more resources for c1. As the

equality in Equation 3 holds, the regulator chooses c1R ≤ c∗1 in Case I. As the first-order
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conditions include marginal effects on the price, holding long-term assets affects the relative

returns R
p
, on which the marginal rate of substitutions between c1 and other consumption

variables depend, in the regulator’s problem. The marginal rate of substitution changes in a

way that the banks’ c1 is inefficiently low, and therefore, the regulator moves resources to

early payments in internalizing the fire sale externalities. We derive the market-clearing asset

price based on the regulator’s solution:

Proposition 2. p∗ ≤ pR in Case I,

where pR is the market-clearing price associated with the regulator’s solution. Since the

regulator leaves less long-term assets, the asset supply decreases and the market-clearing price

rises. These mechanisms are common both in Cases I and II and appear clearly in Case I as

we have shown, while, in Case II, the holding of excess liquidity creates a complication. When

c1 reaches some level, the regulator desires to leave some resources for later consumption by

holding excess liquidity and thus the solution switches to Case II. In such a situation, the

regulator moves resources not only to c1 but also for later consumption in decreasing the

holdings of long-term assets. Figure 6 illustrates a numerical example of these results and

shows that the regulator’s solution involves a higher asset price and higher welfare both in

Case I and Case II.

5.2 Mitigating externalities

We can see the sources of the inefficiency in the first-order conditions (7-11). Rewriting

these conditions, we can derive

π

[
u′(c1)− µ1 − (1− q)u′(c2α)− qR

p
u′(c2β)

]
= 0, (18)[

(1− q)(R− 1)u′(c2α)− µ1 − q
(
R

p
−R

)
u′(c2β)

]
= 0. (19)

Notice that the only differences from (16-17) are the second terms in each equation. These
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Figure 6: Market-clearing prices, welfare, and welfare gains over q

second terms capture the incentives of internalizing the asset prices. The regulator chooses

(x, c1) by taking into account that these choices change the asset prices. The banks ignore

this effect and leave fewer resources for a crisis time. Once a crisis occurs, the banks fire-sell

assets and the price drops substantially, affecting other banks as a fire sale externality. The

asset price is inefficiently low in the equilibrium without interventions, and the intervention

mitigates the fire sale externalities.

A numerical example of welfare gain of policy intervention is captured in Figure 6. When

q is zero, there is no benefit of the intervention because fire sales are not anticipated. As

q increases, fire sales are more likely to occur and hence the benefit of intervention starts

rising. It is perhaps worth noting that the welfare gain diminishes when q is sufficiently large

because we assume p ≤ 1 and the asset prices remain at 1 as q becomes sufficiently large.

5.3 Competing effects on fragility

A bank run can still occur in the regulator’s problem because we assume that the regulator

cannot direct a depositor’s withdrawal decision. Thus, the regulator’s choices also depend on

q. We study the set of q that satisfies c1,R ≥ c2β,R and let q̄R denote the maximum value of q
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in this set, as in Section 3. We find that

Proposition 3. q̄R ≥ q̄ holds:

• if q̄R and q̄ are both in Case I, and

• for some parameter values with q̄R and/or q̄ in Case II.

This result indicates that the intervention can be associated with a higher degree of financial

fragility. When both the banks and the regulator hold no excess liquidity (Case I), the

regulator always chooses a higher c1 and smaller x than the banks. The banks choose c1

subject to the marginal rates of substitution: (i) c1 and c2α and (ii) c1 and (c1β, c2β). Behind

this decision, the banks are choosing x but assume that choosing (x, c1) does not affect the

asset price. The regulator considers the same factors as the banks, and additionally, considers

the effect of choosing (x, c1) on the asset price. By reducing the asset supply, the regulator

knows that the asset price will go up. This benefit of reducing the asset supply encourages

the regulator to hold less x and more c1 than the banks. This intervention raises the price of

long-term assets in period 1 but leaves fewer long-term assets for (c1β, c2β). The increased

price partially offsets the fewer remaining resources: it reduces the cost of paying c1β but

not c2β as the return of long-term assets in period 2 is fixed at R. The net effect on c2β is a

decline. By decreasing x, the regulator instead holds more short-term assets and allocates

more resources for c1. While c2β decreases, c1 rises. As a result, the q̄ always increases.

If both the banks and the regulator, or only the regulator, choose to hold excess liquidity,

the impact on q̄ will depend on parameters.11 The regulator still chooses a higher c1 and

smaller x than the banks, but the regulator also holds excess liquidity (πc1 < 1− x). Holding

excess liquidity mitigates the negative effect on fragility: It provides additional resources to

pay c1β and reduces the asset supply, which raises the price of long-term assets furthermore.

This action leaves more resources for c2β, and the net effect on c2β is now ambiguous. Holding

11If both of them choose to hold excess liquidity, the regulator always holds more excess liquidity in
internalizing the asset price.
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excess liquidity, therefore, makes the change in the q̄ ambiguous, and whether the q̄ increases

or not depends on parameter values.

This result is illustrated in the middle sub-figure in Figure 9, which shows that an

intervention involves the higher fragility when w is near 0.2. The banks do not hold any

excess liquidity because they think the asset price will be high enough and rather want

to use funds for profitable long-term investments. The regulator takes it differently: the

equilibrium asset price will be still low enough to hold excess liquidity. This difference comes

from the fact that the regulator internalizes the effects of the choices on asset prices. The

regulator decreases the asset supply by holding fewer long-term assets and instead holding

more short-term assets. The regulator uses some of these extra short-assets for paying more

c1 as the opportunity cost of paying out funds at t = 1 is lower when there is excess liquidity.

However, the regulator uses the rest of short-term assets to pay out c1β in case of runs, which

reduces the asset supply and also raises the asset prices, leaving more long-term assets for c2β.

Therefore, the net effect on c2β is ambiguous. When w is near 0.2 in this numerical example,

excess liquidity is not enough for c2β to rise as much as c1. As a result, the intervention

makes the banks more fragile: q̄R > q̄.

Figure 7: Comparing the sets where q̄ > q̄R, q̄R > q̄, and q̄ = q̄R
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In comparing outcomes across different market liquidity, it will be useful to study the set

of economies that are more fragile with or without the intervention. We calculate (q̄, q̄R) for

combinations of the parameters, and identify whether the intervention increases or decreases

fragility. Figure 7 depicts the results of this numerical exercise over (w,R). This numerical

exercise shows that, when w is small or R is low, the intervention is likely to decrease fragility:

q̄R < q̄. It is worth noting that, in such a situation, the intervention involves with holding

excess liquidity: The asset price is too low and holding excess liquidity will be useful in paying

c1β. As a result, the regulator raises c2β more than raises c1, rendering q̄R < q̄. However,

when w is large or R is high, the intervention involves with a higher fragility: q̄R > q̄. In

this region, both the asset price is anticipated to be high and the marginal benefit of holding

excess liquidity is small. The intervention accompanies few excess liquidity or even no excess

liquidity, decreasing fragility. When w is sufficiently high, the asset price will be at the upper

bound of 1 both in the banks’ and regulator’s solution. The externality, therefore, does not

arise and the intervention does not change allocation: q̄R = q̄.

The next proposition characterizes the sufficient condition for q̄R > q̄:

Proposition 4. There exists {ws,j}4j=1 such that q̄R > q̄ when both ws1 ≤ w ≤ ws2 and

ws3 < w < ws4 hold,

where the formulas for the thresholds can be found in Appendix B. Similarly to Lemma 1,

we define the threshold ql,R such that the regulator’s solution always lies in Case I if q < ql,R.

In such a case, the regulator views that the probability of runs is small enough to hold no

excess liquidity. It is straightforward to show that ql,R < ql because the regulator internalizes

the price and is more likely to hold excess liquidity. We focus on the economies where pR = 1

when q = ql,R for tractability of the analysis, and then the sufficient condition guarantees

q̄R > q̄. The conditions correspond to (i) When w ≥ ws1, pR = 1 always holds at q = ql,R, (ii)

w ≤ ws2 establishes q̄R > ql,R, (iii) w < ws3 leads to q̄ < ql,R, and (iv) w > ws4 is required

for p∗ < 1 when q = ql,R. Perhaps, it is worth emphasizing that, when w > ws4, there will

be no fire sale externality as p∗ = pR = 1, and hence q̄ = q̄R. We illustrate these conditions

27



Figure 8: The sufficient conditions for q̄R > q̄

in Figure 8. This figure shows that the economies that satisfy these conditions are a strict

subset of the general case in which we examined the set of economies that satisfy q̄R > q̄.

5.4 Welfare implications

This unintended effect on fragility negatively affects welfare evaluated at q̄R. The increased

fragility sometimes undermines the benefit of mitigating the fire sale externality, which

decreases welfare evaluated at q̄.

Proposition 5. Let WR denote welfare with the intervention. Then WR(q̄R) ≤ W(q̄) holds:

• if q̄R and q̄ are both in Case I, and

• for some parameter values with q̄ and/or q̄R in Case II.

The intervention, thus, does not always improve welfare. In some cases, the intervention

mitigates the fire sale externality and also decreases fragility. In other cases, however, the

intervention has the unintended consequence of increasing fragility and lowering welfare.

This result can be interpreted as a version of the classic time-inconsistency problem as in

Kydland and Prescott (1977). If the regulator has commitment, intervention cannot lower
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welfare. However, it is well known that an intervention without commitment can worsen

welfare. Figure 7 and Proposition 4 suggest that the intervention is likely to lower welfare

when w is greater. In such a situation, it would be desirable to commit to not correcting

fire sale externalities. The implication of this analysis is that, in some cases, policymakers

should not be given macroprudential tools to mitigate fire sale externalities. If intervention

is allowed, the policymaker has discretion in setting the policy tools, which can result in

increasing fragility and lowering welfare.

Figure 9: Market-clearing prices, q̄, and welfare over w

These results are illustrated in Figure 9, which depicts (i) p∗ and p∗R, (ii) q̄ and q̄R, and

(iii) W(q̄) and WR(q̄R) as functions of w. The equilibrium with no intervention and the

equilibrium with intervention have the same pattern: the market-clearing prices increase in

both Cases I and II, and the fragility increases in Case II. Welfare evaluated at q̄ initially

declines as w increases because financial fragility increases. Eventually, welfare begins to

increase as an increase in p∗ becomes substantial.

5.5 Discussion

The feature that the regulator cannot pre-commit to (x, c1) is reminiscent of the financial

crisis of 2007-8, in which banks were exposed to distress regarding financial assets related

to housing for over a year. This made depositors nervous about their funds at banks, and

29



the crisis reached a climax in the fall of 2008 with runs.12 During such periods of distress,

banks may be able to gradually adjust the propotion of liquid assets in their portfolios, and

regulators may be able to adjust the requirements they impose on banks in light of the

situation. Allowing the regulator to choose both (x, c1) at the same time when depositors

make decisions is suitable for capturing this type of situation.

Some policymakers, including Stein (2012), consider applying these liquidity regulations to

some shadow banking arrangements. However, our analysis shows that such an intervention

may actually make the financial system fragile. While introducing a restriction on the

composition of banks’ assets and liabilities indeed reduces asset fire sales, it creates competing

effects on depositors’ incentive to run. Specifically, requiring banks to hold fewer long-term

assets tends to make the banks more stable, but as banks are more liquid, the policymaker

also finds it optimal to allow banks to issue more short-term liabilities. This action tends to

increase the incentive for depositors to run, which in turn undermines welfare. We show that

whether or not the intervention successfully raises welfare depends on the level of market

liquidity. Our results suggest that liquidity requirements may mitigate the externality but

end up with unintended consequences of increasing fragility and lowering welfare when the

market liquidity is high.

6 Conclusion

There has been much discussion of fire-sale externalities since 2008, and policies have

been adopted that aim to mitigate fire sales in future periods of financial stress. However,

how these policies might affect financial fragility and welfare is not yet well understood. The

challenge in studying this question is to determine the ex-ante probability of a crisis. We

study how policies that aim to mitigate fire sale externalities affect the probability of a crisis

and welfare using a robust-control approach.

Our benchmark model has the following three key features: (i) banks choose its portfolio

12For example, Gorton and Metrick (2012) discuss runs on repo in 2007-8.
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endogenously, (ii) the price of long-term assets depends on the banks’ choices and cash-in-

the-market, and (iii) the banks cannot credibly promise to use contracts that rule out runs.

The banks choose the portfolio anticipating the possibility of runs and fire sales. The banks

do not, however, internalize the effects of their choices on asset prices. As a result, the banks

hold more long-term assets than is socially optimal, leading to inefficiently large fire sales in

a crisis.

We then studied an intervention that contains two policy instruments in mitigating fire

sale externalities: intervention in the short-term payments and intervention in the banks’

portfolio. The regulator has the ability to regulate these choices, but lacks commitment.

We have found that the impact of such an intervention on fragility is mixed: While the

intervention does raise the market value of each long-term asset, it leaves fewer long-term

assets for long-term payments. These competing effects render the impact of the intervention

on long-term payments ambiguous. In decreasing the holdings of long-term assets, the

regulator also allocates more resources toward short-term payments. These effects may or

may not raise short-term payments relative to payments in a crisis time. When market

liquidity is high, the net effect increases fragility and lowers welfare. On the other hand,

when market liquidity is low, the regulator chooses to hold excess liquidity and leave more

resources for later payments in the form of excess liquidity. Holding excess liquidity can

alleviate a depositor’s incentive to run on the banks, and hence, the intervention can decrease

fragility when market liquidity is sufficiently low.

The primary takeaway from our analysis is that there may be situations in which it

would be desirable to prevent policymakers from intervening to correct fire sale externalities.

While mitigating the externality itself is desirable, a policymaker with discretion may end

up increasing the incentive to depositors to join in a run, which can have the unintended

consequence of increasing fragility and lowering welfare. In such cases, a commitment to not

intervene, if feasible, would lead to better outcomes.
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Appendix A Equilibrium preliminaries

In this appendix, we first derive the best response of the banks to the strategy profile

(1) given the asset price p and then verify whether the asset market is clear under the

competitive equilibrium. Secondly, we drive those conditions under different policy regimes.

The expressions derived here are used in the proofs of the propositions given in Appendix B.

A.1 The best-response allocation of the banks under the compet-

itive equilibrium

Given the asset price p, the banks choose (x, c1, c1β, c2α, c2β) to solve the problem (2)

following the timeline described in Figure 1.

πu(c1) + (1− q)(1− π)u(c2α) + q(1− π)[πu(c1β) + (1− π)u(C2β)]

subject to the following resources constraints

πc1 ≤ 1− x,

(1− π)c2α = Rx+ 1− x− πc1,

(1− π)πc1β ≥ 1− x− πc1,

(1− π)2c2β = R{x− 1
p
[(1− π)πc1β − (1− x− πc1)]}.

Let µ1, µ2α, µ1β, µ2β be the Lagrangian multipliers on the above resource constraints, the
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first order conditions with respect to (x, c1, c1β, c2α, c2β) are:

−µ1 + (R− 1)µ2α + µ1β + (R−R/p)µ2β = 0,

πu′(c1)− πµ1 − πµ2α + πµ1β − π(R/p)µ2β = 0,

q(1− π)πu′(c1β) + (1− π)πµ1β − (1− π)π(R/p)µ2β = 0,

(1− q)(1− π)u′(c2α)− (1− π)µ2α = 0,

q(1− π)2u′(c2β)− (1− π)2µ2β = 0.

The allocation will lie in different cases, depending on the value of q given the other

parameters (γ, π,R, p). For notational convenience, we define the following threshold value

of q at which the banks’ solution switches from Case I to Case II.

ql =

{
1 +

R

R− 1

(
1

p
− 1

)[
π

(
R

p

)1− 1
γ

+ (1− π)

]γ}−1
.

Case I: If 0 < q < ql, then there is no excess liquidity (i.e. µ1 > 0), fire sale occurs (i.e.
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µ1β = 0), and the solution is given by:

πc1 = 1− x, (20)

(1− π)c2α = Rx, (21)

c1β/c2β = (R/p)−1/γ < 1, (22)

c1β = px/[(1− π)π + (1− π)2(R/p)1/γ−1], (23)

u′(c1) = µ1 + µ2α + (R/p)µ2β = (1− q)Ru′(c2α) + qRu′(c2β) = Rµ2α +Rµ2β, (24)

c1 =
(
π + (1− π){(1− q)R1−γ + q[πp1/γ−1 + (1− π)R1/γ−1]γ}1/γ

)−1
, (25)

x =
(
1 + π/(1− π)R{(1− q)R + qR[π(R/p)1−1/γ + (1− π)]γ}−1/γ

)−1
, (26)

c1/c2α = {(1− q)R + qR[π(R/p)1−1/γ + (1− π)]γ}−1/γ < 1, (27)

c2α/c2β = π(R/p)1−1/γ + (1− π), (28)

c1/c2β = {(1− q)R[π(R/p)1−1/γ + (1− π)]−γ + qR}−1/γ. (29)

Note that (1− π)πc1β > 0 (i.e., µ1β = 0) always holds and that 0 < q < ql implies that

µ1 > 0 holds in this case. It is worth emphasizing that c1β < c2β and c1 < c2α always hold if

the solution lies in Case I. As a result, the equilibrium allocation will be in Case I if cI1 ≥ cI2β

holds.

As we discussed in the text, there is a representative investor who purchases the long-term

asset from the banks and the banks sell it for obtaining liquidity to meet early withdrawal

demand. In equilibrium, the asset market is clear, that is, L = w. When the solution lies

in Case I, the liquidity obtained by the banks is LI = π(1− π)c1β. Using the equations we

derived above, LI is given by:

LI = π(1−π)·(p/R)1/γ·{(1−q)R[π(R/p)1−1/γ+(1−π)]−γ+qR}1/γ·c1, where c1 is given by (9).

It is straightforward to show c1 is strictly increasing in p, and both the second and third term

in the right-hand side of the above equation are strictly increasing in p. Thus, LI is strictly

38



increasing in p when the solution lies in Case I.

Case II: If ql ≤ q < 1, then there is excess liquidity (i.e. µ1 = 0), fire sale occurs (i.e.

µ1β = 0), and the solution is given by:

(1− π)c2α = Rx+ 1− x− πc1, (30)

c1β/c2β = (R/p)−1/γ < 1, (31)

c1β = px/[(1− π)π + (1− π)2(R/p)1/γ−1], (32)

u′(c1) = (1− q)u′(c2α) + qu′(c1β) = (1− q)Ru′(c2α) + qRu′(c2β), (33)

c1 = {π + (1− π)[(R− p)/(1− p)]1/γ−1(1− q)1/γ

+ (1− π)[π + (1− π)(R/p)1/γ−1][(R− p)/(R− 1)]1/γ−1q1/γ}−1, (34)

x = {[π + (1− π)[(R− p)/(1− p)]1/γ(1− q)1/γ]c1 − 1}/(R− 1), (35)

c1/c2α = [(1− q)(R− p)/(1− p)]−1/γ < 1 as long as p ≥ pl, (36)

c2α/c2β = [q/(1− q) · (R/p) · (1− p)/(R− 1)]−1/γ, (37)

c1/c2β = [q · (R/p) · (R− p)/(R− 1)]−1/γ. (38)

Note that if ql < q < 1 which implies that πc1 ≤ 1− x and (1− π)πc1β > 1− x− πc1 hold,

which in turn implies µ1 = 0 and µ1β = 0 (i.e. the banks will sell the long-term asset and

hold excess liquidity). It is worth emphasizing that c1β < c2β and c1 < c2α always hold if the

solution lies in Case II. As a result, the equilibrium allocation will be in Case II if cII1 ≥ cII2β

holds.

When the solution lies in Case II, the liquidity obtained by the banks is LII = π(1 −

π)c1β − (1− x− πc1). Using the equations we derived above, LII is given by:

LII = ∆ · c1 −R/(R− 1), where c1 is given by (33) and

∆ = π + π(1− π)[(R− p)/(R− 1)]1/γq1/γ + [π + (1− π)[(R− p)/(1− p)]1/γ(1− q)1/γ]/(R− 1).
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Differentiating c1 and ∆ with respect to p, and the derivative of these expressions are given

by:

∂c1/∂p ∝ (1/q − 1)− (1− p)/(R− 1)[π + (1− π)(R/p)1/γ]γ,

∂∆/∂p ∝ {1 + [π + (1− p)1+1/γ/(R− 1)1/γ]γ}−1 − q.

It is straightforward to show that both ∂c1/∂p and ∂∆/∂p are positive as long as ql < q < 1.

Thus, LII is strictly increasing in p when the solution lies in Case II.

A.2 Policy intervention

We will now assume that the regulator chooses c1 and x while the banks still choose the

remaining payments to its depositors. In this subsection, we derive the best-response of the

banks and the policymaker backwards.

Bank’s problem. After π withdrawals served, in the good state, the banks choose c2α to

maximize

max
{c2α}

(1− q)(1− π)u(c2α),

subject to

(1− π)c2α = Rx+ 1− x− πc1.

Combining them, we obtain

Vα(x, c1) = (1− q)(1− π)u(c2α) where c2α =
Rx+ 1− x− πc1

1− π
.

In the bad state, the banks choose c1β and c2β to maximize

max
{c1β ,c2β}

q(1− π) [πu(c1β) + (1− π)u(c2β)]
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subject to

(1− π)πc1β ≥ 1− x− πc1

(1− π)2c2β = R

{
x− 1

p
[(1− π)πc1β − (1− x− πc1)]

}

Let µ1β and µ2β be the Lagrangian multipliers for the above two constraints, respectively,

differentiating with respect to c1β and c2β yields

qu′(c1β) + µ1β = q
R

p
u′(c2β).

It is straightforward to show that (1− π)πc1β > 1− x− πc1 or µ1β = 0 holds, then we have

qu′(c1β) = q
R

p
u′(c2β) or c1β = (R/p)−1/γc2β.

Plugging the above equation into the second constraint, we can obtain

(1− π)2c2β = R

{
x− 1

p
[(1− π)πc1β − (1− x− πc1)],

}

which yields

c1β =
px+ (1− x− πc1)

(1− π)[π + (1− π)(R/p)1/γ−1]
. (39)

We substitute this formula into the market-clearing condition:

w

p
=

(1− π)πc1β − (1− x− πc1)
p

,

and then, the price level p is determined by

w =
πpx− (1− π)(R/p)1/γ−1(1− x− πc1)

π + (1− π)(R/p)1/γ−1
. (40)
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In addition, the utility level is given by

Vβ(x, c1) = q(1− π)[π + (1− π)(R/p)1/γ−1)]u(c1β),

where c1β and p are determined by (39) and (40) respectively.

The regulator’s problem. The policymaker chooses x and c1 to maximize

max
{x,c1}

πu(c1) + Vα + Vβ

subject to

πc1 ≤ 1− x

Let µ1 be the Lagrangian multiplier for the constraint, we have the following F.O.Cs:

wrt c1,

π

[
u′(c1)− µ1 − (1− q)u′(c2α)− qR

p
u′(c2β)

]
+ q

w

p

R

p
u′(c2β)

∂p

∂c1
= 0,

wrt x,

[
(1− q)(R− 1)u′(c2α)− µ1 − q

(
R

p
−R

)
u′(c2β)

]
+ q

w

p

R

p
u′(c2β)

∂p

∂x
= 0.

Differentiating equation (40) with respect to x and c1 yields

∂p

∂x
=

[
πp+ (1− π)(R/p)1/γ−1

]
p
[
π + (1− π)(R/p)1/γ−1

]
(1− 1/γ)π(1− π)(R/p)1/γ−1(1− x− πc1)− [π + 1/γ(1− π)(R/p)1/γ−1] πpx

∂p

∂c1
=

π(1− π)(R/p)1/γ−1p
[
π + (1− π)(R/p)1/γ−1

]
(1− 1/γ)π(1− π)(R/p)1/γ−1(1− x− πc1)− [π + 1/γ(1− π)(R/p)1/γ−1] πpx
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Plugging ∂p/∂x and ∂p/∂c1 into the above two F.O.Cs, we have

u′(c1) = µ1 + (1− q)u′(c2α) + q
R

p
u′(c2β) (41)

·

[(
1− 1

γ

)
π + (1− π)

(
R
p

) 1
γ
−1
]

(1− π)
(
R
p

) 1
γ
−1

(1− x− πc1)−
[
π + 1+γ

γ
(1− π)

(
R
p

) 1
γ
−1
]
πpx(

1− 1
γ

)
π(1− π)

(
R
p

) 1
γ
−1

(1− x− πc1)−
[
π + 1

γ
(1− π)

(
R
p

) 1
γ
−1
]
πpx

µ1 = (1− q)(R− 1)u′(c2α) + q
R

p
u′(c2β) (42)

·

[
π +

(
1 + 1−p

γ

)
(1− π)

(
R
p

) 1
γ
−1
]
πpx−

[(
1− 1−p

γ

)
π + (1− π)

(
R
p

) 1
γ
−1
]

(1− π)
(
R
p

) 1
γ
−1

(1− x− πc1)(
1− 1

γ

)
π(1− π)

(
R
p

) 1
γ
−1

(1− x− πc1)−
[
π + 1

γ
(1− π)

(
R
p

) 1
γ
−1
]
πpx

Note that there exist two possible cases depending on whether the constraint πc1 ≤ 1− x is

binding or not.

Case I. If πc1 = 1− x or µ1 > 0, then the above two F.O.Cs lead to the following equation

that determines the equilibrium price:

u′(c1)

u′(c2β)
=

1− π
πR

[
π

(
R

p

) 1
γ
−1

+ (1− π)

]
πp[

π + (1− π)
(
R
p

) 1
γ
−1
]
w

− 1



−γ

= (1− q)R

[
π

(
R

p

)1− 1
γ

+ (1− π)

]−γ
+ qR

(1− π)
(
R
p

) 1
γ
−1

γπ + (1− π)
(
R
p

) 1
γ
−1
. (43)

In addition, the solution lies in the case where (1 − π)πc1β > 1 − x − πc1 ≡ 0 and µ1 > 0

hold, if the following condition is satisfied

u′(c2α)

u′(c2β)
=

[
π

(
R

p

)1− 1
γ

+ (1− π)

]−γ
>

qR
p

(1− q)(R− 1)

γπ + (γ + 1− p)(1− π)
(
R
p

) 1
γ
−1

γπ + (1− π)
(
R
p

) 1
γ
−1

(44)

In other words, if the above condition (44) holds, then the solution under the regime regulating
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x and c1 lies in Case I: no excess liquidity holds in state α (i.e., µ1 > 0) and selling long-term

assets in state β (i.e., (1 − π)πc1β > 1 − x − πc1 ≡ 0). Moreover, it is easy to show that

µ1 > 0 implies that

u′(c1)

u′(c2α)
= (1− q)R + qR

[
π

(
R

p

)1− 1
γ

+ (1− π)

]γ (1− π)
(
R
p

) 1
γ
−1

γπ + (1− π)
(
R
p

) 1
γ
−1

> 1

always holds, or c1 < c2α is satisfied. Thus, there exists a run equilibrium when the solution

lies in Case I under intervention if

u′(c1)

u′(c2β)
= (1− q)R

[
π

(
R

p

)1− 1
γ

+ (1− π)

]−γ
+ qR

(1− π)
(
R
p

) 1
γ
−1

γπ + (1− π)
(
R
p

) 1
γ
−1
≤ 1 (45)

Case II. If πc1 < 1− x or µ1 = 0, then the above two F.O.Cs characterizes the solution pair

of (x, p) as follows:



u′(c1)

u′(c2α)
= (1− q)

(R− p)πx+

[(
1 + (γ − 1)R

p

)
π + γ(1− π)

(
R
p

) 1
γ

]
w

(1− p)πx+

[(
1 + (γ − 1)1

p

)
π + γ 1

p
(1− π)

(
R
p

) 1
γ
−1
]
w

u′(c1)

u′(c2β)
=

qR

(R− 1)

(R− p)πx+

[(
1 + (γ − 1)R

p

)
π + γ(1− π)

(
R
p

) 1
γ

]
w

πpx+ (γ − 1)πw

(46)

where

c1
c2α

=
1− π
π

(1− π)
(
R
p

) 1
γ
−1

+

[
π + (1− π)

(
R
p

) 1
γ
−1
]
w −

[
πp+ (1− π)

(
R
p

) 1
γ
−1
]
x[

π + (1− π)
(
R
p

) 1
γ

]
px−

[
π + (1− π)

(
R
p

) 1
γ
−1
]
w

c1
c2β

=
1− π
π

(1− π)
(
R
p

) 1
γ
−1

+

[
π + (1− π)

(
R
p

) 1
γ
−1
]
w −

[
πp+ (1− π)

(
R
p

) 1
γ
−1
]
x(

Rx− R
p
w
)(

R
p

) 1
γ
−1
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In addition, the solution lies in the case where (1− π)πc1β > 1− x− πc1 and πc1 < 1− x

hold, if the following condition is satisfied

π

(
R

p

)− 1
γ

+ (1− π) <
c2α
c2β

< π

(
R

p

)1− 1
γ

+ (1− π)

where

c2α
c2β

=

[
π + (1− π)

(
R
p

) 1
γ

]
px−

[
π + (1− π)

(
R
p

) 1
γ
−1
]
w(

Rx− R
p
w
)(

R
p

) 1
γ
−1

or (47)

u′(c2α)

u′(c2β)
=

qR

(1− q)(R− 1)

(1− p)πx+

[(
1 + (γ − 1)1

p

)
π + γ 1

p
(1− π)

(
R
p

) 1
γ
−1
]
w

πpx+ (γ − 1)πw

Notice that as the solution pair (x, p) is feasible the ration c2α/c2β given by (47) is always

strictly larger than π(R/p)−
1
γ + (1−π). Thus, the solution under the regime regulating x and

c1 characterized by (46) lies in Case II: excess liquidity holds in state α (i.e., πc1 < 1−x) and

selling long-term assets in state β (i.e., (1− π)πc1β > 1− x− πc1) if the following condition

is satisfied

c2α
c2β

< π

(
R

p

)1− 1
γ

+ (1− π) or
u′(c2α)

u′(c2β)
>

[
π

(
R

p

)1− 1
γ

+ (1− π)

]−γ
(48)

It is worth emphasizing that c1 < c2α always hold if the solution lies in Case II. As a

result, the equilibrium allocation will be in Case II if

u′(c1)

u′(c2β)
=

qR

(R− 1)

(R− p)πx+

[(
1 + (γ − 1)R

p

)
π + γ(1− π)

(
R
p

) 1
γ

]
w

πpx+ (γ − 1)πw
≤ 1. (49)
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Appendix B The thresholds in Proposition 4

The explicit formulas for {ws,j}4j=1 in the proposition are summarized below:

ws1 =
π(1− π)R1− 1

γ

πR1− 1
γ

 γ R
R−1

[
πR

1− 1
γ +(1−π)

]
+(1−π)

γ R
R−1

[
πR

1− 1
γ +(1−π)

]γ+1

+

[
γπR

1− 1
γ +(1−π)

]

− 1
γ

+ (1− π)
[
πR1− 1

γ + (1− π)
]

ws2 =
π(1− π)R1− 1

γ

πR + (1− π)
[
πR1− 1

γ + (1− π)
]

ws3 =

π(1− π)R1− 1
γ

(
1
π

{
1
R
− 1

γ

(
R−1
R

)2 [
πR1− 1

γ + (1− π)
]−γ−1 [

γπR1− 1
γ + (1− π)

]}− 1
γ

− 1−π
π

) 1
1−γ

πR1− 1
γ + (1− π)R−

1
γ

{
1
R
− 1

γ

(
R−1
R

)2 [
πR1− 1

γ + (1− π)
]−γ−1 [

γπR1− 1
γ + (1− π)

]}− 1
γ

ws4 =
π(1− π)R1− 1

γ

πR1− 1
γ

 γ R
R−1

[
πR

1− 1
γ +(1−π)

]
+

[
γπR

1− 1
γ +(1−π)

]
γ R
R−1

[
πR

1− 1
γ +(1−π)

]γ+1

+

[
γπR

1− 1
γ +(1−π)

]

− 1
γ

+ (1− π)
[
πR1− 1

γ + (1− π)
]

Appendix C Proofs of Propositions

Lemma 1. The banks’ best response to profile (1) lies in Case

 I

II

 if

0 < q < ql

ql ≤ q < 1

.

Proof. According to Appendix A.1, we have the desired result.

�

Lemma 2. The amount of liquidity obtained by the banks L is strictly increasing in p in

both Cases I and II.

Proof. According to Appendix A.1, we have the desired result.

�
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Lemma 3. The market-clearing price p∗ is strictly

decreasing

increasing

 in q if q

<≥
 ql.

Proof. According to Appendix A.1, the price is determined by w = LI when the solution lies

in Case I, that is,

w = LI =
πp

[π + (1− π)(R/p)
1
γ
−1]
· 1

1 + π
1−πR

1− 1
γ {(1− q) + q[π(R/p)1−

1
γ + (1− π)]γ}−

1
γ

.

It is easy to show that LI is strictly increasing in q since [π(R/p)1−
1
γ + (1 − π)]γ > 1

always holds. Combined with the fact that LI is strictly increasing in p, we have p∗ is strictly

decreasing in q given the market liquidity w fixed when the solution lies in Case I.

We next focus on Case II, in which the price is determined by

w = LII =
(1− π) p

R−p

{
[(1− q)(R− p)/(1− p)]

1
γ − [π + (1− π)(R/p)

1
γ ][q(R− p)/(R− 1)]

1
γ

}
π + (1− π)

{
[π + (1− π)(R/p)

1
γ
−1]q

1
γ [(R− p)/(R− 1)]

1
γ
−1 + (1− q)

1
γ [(R− p)/(1− p)]

1
γ
−1
} .

After some algebra, we have LII is strictly decreasing in q. Combined with the fact that

LII is strictly increasing in p, we have p∗ is strictly increasing in q given the market liquidity

w fixed when the solution lies in Case II.

�

Proposition 1. If q̄ lies in

Case I

Case II

, then q̄ is strictly

decreasing

increasing

 in w.

Proof. This proof follows Lemma 4.

�

Lemma 4. c1/c2β is monotonically

decreasing

increasing

 in w if the solution lies in

Case I

Case II

.

Proof. According to Appendix A.1, when the equilibrium is in Case I, differentiating the

expression of c1/c2β with respect to p, we have c1/c2β is strictly decreasing in p given other
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parameters. Similarly, we have c1/c2β is strictly increasing in p when the equilibrium lies in

Case II. In addition, it is straightforward to show that the market-clearing price p∗ is strictly

increasing in w. Recall the definition of q̄ that is the maximum probability q such that c1/c2β

crosses 1, we then have Lemma 4 as desired.

�

Lemma 5. c1/c2α is monotonically

 increasing

decreasing

 in w while c2α/c2β is monotonically

decreasing

increasing

 in w if the solution lies in

Case I

Case II

. And then, the effect of c2α/c2β is

always dominant in determining the change in c1/c2β.

Proof. Using the best-response allocation from Appendix A.1, we have

(c1/c2α)I = {(1− q)R + qR[π(R/p)1−1/γ + (1− π)]γ}−1/γ,

(c2α/c2β)I = π(R/p)1−1/γ + (1− π),

(c1/c2α)II = [(1− q)(R− p)/(1− p)]−1/γ,

(c2α/c2β)II = [q/(1− q) · (R/p) · (1− p)/(R− 1)]−1/γ.

Differentiating these expressions with respect to p, we have this proposition as desired.

�

Lemma 6. c∗1 ≤ c∗1R and x∗ ≥ x∗R in Case I.

Proof. Based on the derivation in Appendix A, we have πc1 = 1− x and πpx = [π + (1−

π)(R/p)
1
γ
−1]w, which implies that c1 is increasing in p while x is decreasing in p when the

solution lies in Case I. Thus, we have the desired result since p∗ ≤ p∗R in this case as shown

later in Proposition 2.

�

Proposition 2. p∗ ≤ p∗R in Case I.
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Proof. According to Appendix A, the solution in Case I under the competitive equilibrium is

characterized by

1− π
πR


πp[

π + (1− π)
(
R
p

) 1
γ
−1
]
w

− 1



−γ

= (1− q)R + qR

[
π

(
R

p

)1− 1
γ

+ (1− π)

]γ

The solution of the regulator’s problem in Case I is determined by

1− π
πR


πp[

π + (1− π)
(
R
p

) 1
γ
−1
]
w

− 1



−γ

= (1− q)R + qR

[
π

(
R

p

)1− 1
γ

+ (1− π)

]γ

·
(1− π)

(
R
p

) 1
γ
−1

γπ + (1− π)
(
R
p

) 1
γ
−1

It is straightforward to show that p∗I ≤ p∗R,I since the right-hand side of the solution

equation in the competitive equilibrium RHSI is higher than that in the regulator’s problem

RHSR,I , and thus we have the desired result.

�

Proposition 3. q̄R ≥ q̄ holds:

• if q̄R and q̄ are both in Case I, and

• for some parameter values with q̄R and/or q̄ in Case II.

Proof. Recall that we define q̄ is the maximum crisis probability beyond that there is a run

equilibrium, i.e., c1 ≥ c2β, which implies that q̄R ≥ q̄ as long as (c1/c2β)R ≥ (c1/c2β) when

the equilibrium lies in Case I under both regimes. In this case, according to Appendix A, the
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ratio c1/c2β under both regimes is given by

c1
c2β

=
1− π
πR

[
π

(
R

p

)1− 1
γ

+ (1− π)

]
πp[

π + (1− π)
(
R
p

) 1
γ
−1
]
w

− 1

 .

It is easy to show that this ratio is increasing in p, which in turn yields the first part of

the proposition since p∗R,I ≥ p∗I in this case. Finally, the second part of this result can be

illustrated in the figure in the text.

�

Proposition 4. There exists {ws,j}4j=1 such that q̄R > q̄ when both ws1 ≤ w ≤ ws2 and

ws3 < w < ws4 hold.

Proof. Recall that LI,R(q = ql,R) = w determines the price pI,R(q = ql,R) at q = ql,R and

we have pI,R(q = ql,R) = 1 as long as w ≥ ws1. Recall also that (c1/c2β)I,R at q = ql,R with

pR = 1 is given by

(c1/c2β)I,R|q=ql,R and pR=1 =
1− π
πR

[
πR1− 1

γ + (1− π)
] πR1− 1

γ[
πR1− 1

γ + (1− π)
]
w
− 1

 ,

which yields (c1/c2β)I,R ≥ 1 at q = ql,R with pR = 1 as long as w ≤ ws2. Thus, q̄R is no less

than q̂ ≡

1 + γ R
R−1

[
πR

1− 1
γ +(1−π)

]γ+1

γπR
1− 1

γ +(1−π)


−1

according to our definition of q̄.

Recall next that ql,R < ql always holds, which implies that the solution lies in Case-I in

the competitive equilibrium at q = q̂ defined above. Recall also that the ratio of (c1/c2β)I is

given by

(u′(c1)/u
′(c2β))I = (1− q)R

[
π(R/p)1−

1
γ + (1− π)

]−γ
+ qR,

which implies that (c1/c2β)I < 1 as long as (1− q)R
[
π(R/p)1−

1
γ + (1− π)

]−γ
+ qR > 1 at

q = q̂ with pI < 1. Note that here we focus on the case with pI < 1; otherwise there is no

need of regulation (i.e., the regulation regime yields the same result as that in the competitive
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equilibrium). The above inequality will be satisfied if

R

[
1

π

( 1
R
− q̂

1− q̂

)− 1
γ

− 1− π
π

] γ
1−γ

< pI |q=q̂ < 1.

Using the market-clearing condition w = LI |q=q̂, it is straightforward to show that c1 < c2β

at q = q̂ with pI < 1 when ws3 < w < ws4 holds. Thus, q̄ will be less than q̂ if c1 < c2β still

holds when q > q̂.

Now, we are going to prove that c1 < c2β holds when q > q̂. Note that when the solution

lies in Case-II in the competitive equilibrium, the price is determined by

w =

(
q

1−q

R
p
−R

R−1

)− 1
γ

−
[
π
(
R
p

)− 1
γ

+ (1− π)

]
(

1
p
− 1
)(

q
1−q

R
p
−R

R−1

)− 1
γ

+ π
1−π

(
R
p
− 1
)(

qR
p
R−p
R−1

)− 1
γ

+
(
1− 1

R

) [
π
(
R
p

)1− 1
γ

+ (1− π)

] ≡ A

B

Differentiating both sides with respect to q, we have (dA/dq)B − (dB/dq)A = 0, where

dA

dq
= −1

γ

1

q(1− q)

(
q

1− q

R
p
−R

R− 1

)− 1
γ

+
1

γ

1

p(1− p)

(
q

1− q

R
p
−R

R− 1

)− 1
γ
dp

dq

dB

dq
= −1

γ

(1

p
− 1

)
1

q(1− q)

(
q

1− q

R
p
−R

R− 1

)− 1
γ

+
π

1− π

(
R

p
− 1

)
1

q

(
q
R

p

R− p
R− 1

)− 1
γ


−
(

1− 1

γ

) 1

p2

(
q

1− q

R
p
−R

R− 1

)− 1
γ

+
π

1− π
R

p2

(
q
R

p

R− p
R− 1

)− 1
γ

+

(
1− 1

R

)
1

p
π

(
R

p

)1− 1
γ

 dp
dq

It is easy to show that (dp/dq) > 0, which implies that (dB/dq) < 0, combined with

(dA/dq)B = (dB/dq)A, we have (dA/dq) < 0. This inequality can be expressed as

dp

dq
<
p(1− p)
q(1− q)

.

Recall next that (u′(c1)/u
′(c2β)) = q(R/p)[(R− p)/(R− 1)] when the solution lies in Case-II
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in the competitive equilibrium. Differentiating both sides with respect to q, yields

d

dq

(
u′(c1)

u′(c2β)

)
=

R

R− 1

[(
R

p
− 1

)
− q R

p2
dp

dq

]

Combined with (dp/dq) < [p(1− p)]/[q(1− q)], we have

d

dq

(
u′(c1)

u′(c2β)

)
>

R

R− 1

[(
R

p
− 1

)
−
(
R

p
−R

)
1

1− q

]

In addition, suppose c1 ≥ c2β holds when the solution lies in Case-II, which implies that

u′(c1)

u′(c2β)
= q

R

p

R− p
R− 1

or q ≤ p(R− 1)

R(R− p)

Thus, we have

(
R

p
− 1

)
−
(
R

p
−R

)
1

1− q
≥ (R− 1)2(R− p)

(R− p)2 + p(1− p)
> 0,

which implies that (c1/c2β) is strictly decreasing in q when c1 ≥ c2β in Case-II.

Finally, when the solution lies in Case-I in the competitive equilibrium, the ratio of c1/c2β

is strictly decreasing in q in Case-I. Therefore, the fact that when the solution lies in Case-II

c1/c2β is strictly decreasing in q as long as c1 ≥ c2β holds in this case, which implies that

c1/c2β is expected to across 1 once. This fact implies that once c1 < c2β holds when the

solution lies in Case-I then the economy is always stable as the solution lies in Case-II.

In sum, when both ws1 ≤ w ≤ ws2 and ws3 < w < ws4 hold, we have q̄R ≥ q̂ and q̄ < q̂,

which gives us the desired result.

�

Proposition 5. Let WR denote welfare with the intervention. Then WR(q̄R) ≤ W(q̄) holds:

• if q̄R and q̄ are both in Case I, and

• for some parameter values with q̄ and/or q̄R in Case II.
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Proof. When the q̄ lies in Case I under both regimes, according to Appendix A, the ratio

c1/c2β in Case I is given by

c1
c2β

=
1− π
πR

[
π

(
R

p

)1− 1
γ

+ (1− π)

]
πp[

π + (1− π)
(
R
p

) 1
γ
−1
]
w

− 1

 .

Recall that we have c1/c2β = 1 at q = q̄, and thus c1/c2β = 1 yields the same price level

evaluated at q̄ in Case-I under both regimes. This fact implies that the early payment c1 is

the same as well.

Recall also that the welfare level in Case I is given by

W = πu(c1) + (1− q)(1− π)u(c2) + q(1− π) [πu(c1β) + (1− π)u(c2β)]

= πu(c1) + (1− π)

(1− q)

[
π

(
R

p

)1− 1
γ

+ (1− π)

]1−γ
+ q

[
π

(
R

p

)1− 1
γ

+ (1− π)

]u(c2β).

After some algebra, it is easy to show that the welfare level evaluated at q̄ is determined by

W =

(
π + (1− π)

{
(1− q)

(
q

1− q
R/p−R
R− 1

)1−γ

+ q

[
π

(
R

p

)1− 1
γ

+ (1− π)

]})
u(c1)

which is decreasing in q given p. This fact in turn yields the first part of the proposition since

q̄R ≥ q̄ holds if both q̄ are in Case I. Finally, the second part of this result can be illustrated

in the figure in the text.

�
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