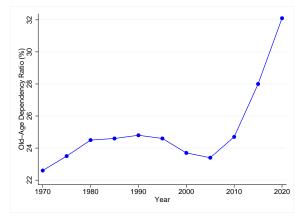
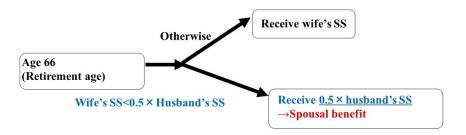
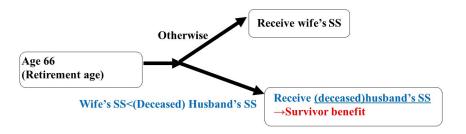
The Effect of Elimination of Auxiliary Benefits on Sustainability of Social Security in Population Aging


Tomoaki Kotera

Tohoku University

Keio University January 14th, 2022


Motivation


- Population aging advances in the US.
 - Would be more striking in the future.
 - Old-age dependency ratio in 2060: 46.7% (The United Nations).
- Main issue: Increasing concerns for sustainability of Social Security.

(Source: United Nations)

- Literature abstracts from auxiliary benefits.
- Auxiliary benefits: Spousal and survivor benefits.
 - Spousal benefit: For couples.
 - Survivor benefit: For widows and widowers.
 - 47.9% of females aged 62 and older collect either of them (2010-2020).

- Answer two questions:
 - What is the effect of elimination of the auxiliary benefits on the fiscal cost to sustaining the Social Security system?
 - **2** What are characteristics of this policy?

- Construct overlapping generations model with heterogeneous agents in a general equilibrium framework.
- Household
 - Couples and singles.
 - Choose consumption, the working decision, and asset.
 - Collect Social Security calculated based on average life-time earnings.
 - Couples can receive spouse or survivor benefits.
- 2 Firm
 - Combine capital and labor according to a CRS production technology.
- Government
 - Impose taxes to mainly finance Social Security benefits.

- Calibration target: The United States economy of year 2010.
- Simulation target: The United States economy of year 2060.
 - Higher old-age dependency ratio than the baseline economy.
 - Main question: How much additional tax does the government have to impose to sustain the Social Security system if
 - a government does not implement any policy for Social Security?
 - 2 the auxiliary benefits are eliminated?
 - Social Security benefits are cut?

• Reduce the fiscal cost strikingly.

- Equivalent to when the replacement rate is cut by 17.9%.
- Have three characteristics.
 - Labor supply for married females increases moderately.
 - Provide a construction of the second seco
 - Increase the welfare for singles.

Sustainability of Social Security with population aging.

 De Nardi et al. (1999); Kotlikoff et al. (2007); Diaz-Gimene and Diaz-Saavedra (2009); Imrohoroglu and Kitao (2012); Kitao (2014); McGrattan and Prescott (2017); Kotera (2020).

*****This paper: Investigate the effect of elimination of the auxiliary benefits.

2 Role of the auxiliary benefits on household behavior.

• Kaygusuz (2015); Sanchez-Marcos and Bethencourt (2018); Nishiyama (2019); Borella et al. (2021); Groneck and Wallenius (2021).

*This paper: Explore the role on the sustainability of Social Security toward an aging economy.

Introduction.

- 2 Model.
- Oalibration.
- Simulations.
- Onclusion.

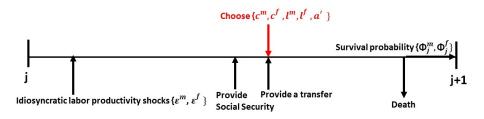
• A general equilibrium model of overlapping generations.

- Households:
 - Couples (Fraction ω).
 - A husband *m* and a wife *f* who are the same age.
 - Married from the initial period.
 - No risk of divorce.
 - Singles (Fraction 1ω).
 - Never married in their entire lives.
- The growth rate of a new cohort: n.
- The maximum age: J.
- Face mortality risk Φ_i^g where $g \in \{m, f\}$.
 - Become widowed if a husband or a wife dies.

• Decompose into four elements:

$$e^g = w\eta_j^g \epsilon^g l^g.$$

- w: Equilibrium wage.
- η_i^g : Age- and gender-specific labor productivity.
- ϵ^{g} : An idiosyncratic labor productivity shock.
- *l^g*: Hours of work.


- Can accumulate asset $a (\geq 0)$ with the equilibrium interest rate r.
 - Assume no asset in the initial period.
- Utility function.
 - Couples: $u(c^m, c^f, l^m, l^f)$.
 - Singles: $u(c^g, l^g)$.
- Can leave a bequest when die.
 - Collected by the government and distributed as a lump-sum transfer *tr**.
 - Derive "warm-glow" utility b(a') from leaving bequests.
- Guarantee the minimum consumption level *c*_{min}.
 - Receive a transfer benefit *tr* if total income plus assets are below *c*_{min}.
 - Different level between couples and singles.

- Pay-as-you-go pension system.
 - Start to receive Social Security benefits at *j_R*.
 - Calculate from average life-time earning \bar{e}^{g} .
 - Couples can receive spousal or survivors benefits.
- Can work even after collecting Social Security.
- Production function: $Y = F(K, L) = AK^{\alpha}L^{1-\alpha}$.
 - δ : Capital depreciation rate.

Government imposes

- progressive tax on income: τ^{I} .
 - The incomes of households are filed jointly.
- Social Security tax: τ^{ss}.
 - No additional tax is imposed if individuals' labor earnings are above the maximum amount of e^{ss} .
- consumption tax: τ^c .
- To finance
 - Social Security ss.
 - Itransfer benefits from the government tr.
 - 3 the government expenditure G.
 - the government debt issued in the previous period D.

• Timing for singles is similar.

Couples' Problem

•
$$\mathbf{x} = (j, a, \overline{e}^m, \overline{e}^f, \epsilon^m, \epsilon^f).$$

$$\begin{split} V_{c}\left(\mathbf{x}\right) &= \max_{\left\{c^{m},c^{f},l^{m},l^{f},a^{\prime}\right\}} u\left(c^{m},c^{f},l^{m},l^{f}\right) + \beta\left[\Phi_{j}^{m}\Phi_{j}^{f}\mathbb{E}\left[V_{c}\left(\mathbf{x}^{\prime}\right)\right] + \left(1-\Phi_{j}^{m}\right)\Phi_{j}^{f}\mathbb{E}\left[V_{s}^{f}\left(\mathbf{x}^{\prime}\right)\right] + \Phi_{j}^{m}\left(1-\Phi_{j}^{f}\right)\mathbb{E}\left[V_{s}^{m}\left(\mathbf{x}^{\prime}\right)\right] + \left(1-\Phi_{j}^{m}\right)\left(1-\Phi_{j}^{f}\right)b\left(a^{\prime}\right)\right], \end{split}$$

subject to

$$(1+\tau^{c})\left(c^{m}+c^{f}\right)+a' = a\left(\mathbf{x}\right)+\tilde{y}\left(\mathbf{x}\right)+tr\left(\mathbf{x}\right)+2\times tr^{*},$$

$$\tilde{y}(\mathbf{x}) = \left(1 - \tau^{I} \left[e^{m}(\mathbf{x}) + e^{f}(\mathbf{x}) + ra(\mathbf{x})\right]\right) \left(e^{m}(\mathbf{x}) + e^{f}(\mathbf{x}) + ra(\mathbf{x})\right) + ss^{m}(\mathbf{x}) + ss^{f}(\mathbf{x}) - \tau^{ss} \min\left\{e^{m}(\mathbf{x}), e^{ss}\right\} - \tau^{ss} \min\left\{e^{f}(\mathbf{x}), e^{ss}\right\},$$

$$tr = \max\left\{0, \left((1 + \tau^{c}) c_{\min,c} - \left(\tilde{y}\left(\mathbf{x}\right) + a\left(\mathbf{x}\right)\right)\right)\right\}.$$

$$V_{s}^{g}\left(\mathbf{x}\right) = \max_{\left\{c^{g}, \left|\beta, a'\right\}} u\left(c^{g}, l^{g}\right) + \beta \left[\Phi_{j}^{g} \mathbb{E}\left[V_{s}^{g}\left(\mathbf{x}'\right)\right] + \left(1 - \Phi_{j}^{g}\right) b\left(a'\right)\right],$$

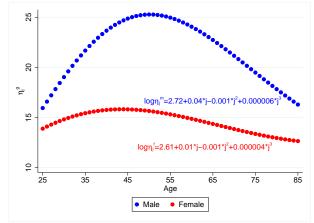
subject to

$$(1 + \tau^{c}) c^{g} + a' = a(\mathbf{x}) + \tilde{y}(\mathbf{x}) + tr(\mathbf{x}) + tr^{*},$$

$$\tilde{y}(\mathbf{x}) = \left(1 - \tau^{I}\left[e^{g}\left(\mathbf{x}\right) + ra\left(\mathbf{x}\right)\right]\right)\left(e^{g}\left(\mathbf{x}\right) + ra\left(\mathbf{x}\right)\right) + ss^{g}\left(\mathbf{x}\right) - \tau^{ss}\min\left\{e^{g}\left(\mathbf{x}\right), e^{ss}\right\},$$

$$tr = \max\left\{0, \left((1 + \tau^{c}) c_{\min,s} - (\tilde{y}(\mathbf{x}) + a(\mathbf{x}))\right)\right\}.$$

Stationary Equilibrium


Parameter	Description	Values/Source
J	Maximum age	85 (Age 109)
ω	A fraction of couples	0.8429
Φ_j^g	Conditional survival probability	Bell and Miller (2005)
n	Population growth rate	0.016

Fixed Parameters: Labor Productivity

• Employ the following regression.

$$log\eta_j^{g,data} = \alpha_0^g + \alpha_1^g j + \alpha_2^g j^2 + \alpha_3^g j^3.$$

Assume that none of households works after age 86.

(Data Source: PSID)

- Specified as AR(1) process in log (Heathcoate et al. (2010)).
 - The value of a persistence parameter: 0.97.
 - The value of the variance of the white noise: 0.018.
 - The value of correlation: 0.13.
 - Assume that shocks for couples are correlated.

• Make four grid points.

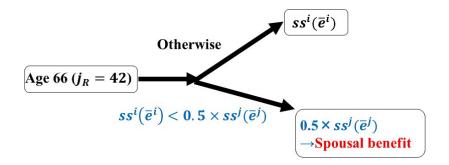
Fixed Parameters: Preferences

• Utility function:

$$u(c^{m}, c^{f}, l^{m}, l^{f}) = \frac{(c^{m})^{1-\sigma}}{1-\sigma} + \frac{(c^{f})^{1-\sigma}}{1-\sigma} + \gamma^{m} \frac{(1-l^{m}-\mathbf{1}_{l^{m}>0}\mathbf{1}_{j>21}\theta^{m}(j-21)^{\kappa})^{1-\sigma}}{1-\sigma} + \gamma^{f} \frac{(1-l^{f}-\mathbf{1}_{l^{f}>0}\mathbf{1}_{j>21}\theta^{f}(j-21)^{\kappa})^{1-\sigma}}{1-\sigma}$$

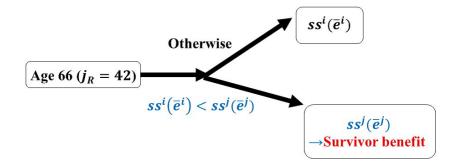
- $\theta^{g} (j-21)^{\kappa}$: Time cost when work after j = 21 (Age 45).
- Set $\sigma = 2.0$.
- Bequest motive:

$$b(a') = \frac{b_1}{1-\sigma} \frac{(b_2 + a')^{1-\sigma}}{1-\sigma}.$$


- $j_R = 42$ (Age 66).
- Calculate by the following formula:

$$ss(\overline{e}) = \begin{cases} 0.9 \times \overline{e} & \text{if } \overline{e} < \$9, 132 \\ \$8, 219 + 0.32 \times (\overline{e} - \$9, 132) & \text{if } \$9, 132 \le \overline{e} < \$55, 032 \\ \$23, 199 + 0.15 \times (\overline{e} - \$55, 032) & \text{if } \overline{e} \ge \$55, 032. \end{cases}$$

 \overline{e} : The average of the past 35 highest annual earnings.

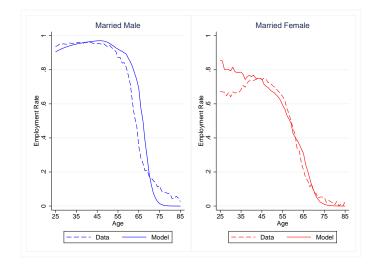

Fixed Parameters: Social Security System (Spousal Benefit)

• *i*'s SS benefit: Determined based on the comparison of $ss^i(\overline{e}^i)$ and $0.5 \times ss^j(\overline{e}^j)$.

Fixed Parameters: Social Security System (Survivor Benefit)

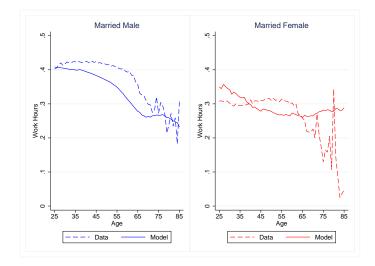
• *i*'s SS benefit: Determined based on the comparison of $ss(\overline{e}^i)$ and $ss^j(\overline{e}^j)$.

Fixed Parameters: Production Technology & Tax Scheme


- Production function: $Y = F(K, L) = AK^{\alpha}L^{1-\alpha}$.
- Income taxation: Employ a standard tax schedule (Gouveia and Strauss (1994)).

$$\tau^{I}\left[ra+e^{m}+e^{f}\right] = \lambda_{0}\left\{\left(ra+e^{m}+e^{f}\right)-\left(\left(ra+e^{m}+e^{f}\right)^{-\lambda_{1}}+\lambda_{2}\right)^{\frac{-1}{\lambda_{1}}}\right\}.$$

Description	Values/Source
Capital share of output	0.36
Capital depreciation rate	4.1%
Social Security tax	10.6%
Maximum amount of labor earning	\$106,800
Consumption tax	5.0%
Coefficients for income tax	$\{0.258, 0.768\}$
Government spending	20% of GDP
Government debt	40% of GDP
Consumption floor	{\$6,570,\$4,380}
	Capital share of output Capital depreciation rate Social Security tax Maximum amount of labor earning Consumption tax Coefficients for income tax Government spending Government debt


Parameter	Value	Target Moment	Data	Model
γ^m	0.901	Employment rate for married males at age 45	0.953	0.970
γ^f	1.021	Employment rate for married females at age 45	0.743	0.746
θ^m	0.0003	Employment rate for married males at age 70	0.174	0.189
$ heta^f$	0.0002	Employment rate for married females at age 50	0.709	0.672
К	2.048	Employment rate for married females at age 70	0.079	0.089
b_1	257	The ratio of the median value of asset at age 90 to age 80	0.810	0.857
β	0.970	Capital-output ratio for the US in 2010	3.63	3.69
λ_2	0.156	Balance the government budget constraint	-	-
Α	1.145	Normalize the aggregate output to 1	_	_

Non-Targeted Moment: Labor Supply for Couples over the Life Cycle

(Data Source: PSID)

Non-Targeted Moment: Work Hours for Couples over the Life Cycle

(Data Source: PSID)

Non-Targeted Moment: A Fraction of Females Receiving Spouse or Survivor Benefit

	Data	Model
Spouse Benefit	19.7%	22.8%
Survivor Benefit	28.2%	22.0%
Total	47.9%	44.8%

(Data Source: SSA Annual Statistical Supplement for Retirement Statistics 2011-2021)

• Simulate the United States economy of year 2060.

- Change two exogenous forces:
 - Survival probability.
 - Projected survival probability by gender in 2060 (Bell and Miller (2005)).
 - **2** Population growth rate n = 0.001.
 - The old-age dependency ratio in the simulation: 45%.

Add a proportional income tax to balance the government budget.

- Conduct three simulations.
 - Simulation I: No policy for Social Security.
 - Simulation II: Spouse and survivor benefits are eliminated.
 - Simulation III: The replacement rate is cut by 17.9%.

	2010	2060
	Baseline	Simulation I
Capital per capita	-	-16.5%
Labor per capita	-	-11.6%
Average work hours	-	+1.22%
Consumption per capita	-	-9.93%
Equilibrium interest rate	5.66%	6.02%
Equilibrium wage rate	-	-2.17%
Employment rate for married males at ages 25-65	92.9%	93.4%
Employment rate for married males at ages 66-85	16.0%	19.8%
Employment rate for married females at ages 25-65	69.7%	69.0%
Employment rate for married females at ages 66-85	6.53%	8.69%
Benefit spending per capita	_	+48.0%
Additional tax on income	_	13.3%

Employment Rates and Work Hours for Couples (Simulation I)

	2010	20	060
	Baseline	Simulation I	Simulation II
Capital per capita	_	-16.5%	+12.3%
Labor per capita	-	-11.6%	+0.03%
Average work hours	-	+1.22%	-2.66%
Consumption per capita	-	-9.93%	+3.45%
Equilibrium interest rate	5.66%	6.02%	5.30%
Equilibrium wage rate	-	-2.17%	+4.32%
Employment rate for married males at ages 25-65	92.9%	93.4%	94.0%
Employment rate for married males at ages 66-85	16.0%	19.8%	21.5%
Employment rate for married females at ages 25-65	69.7%	69.0%	73.1%
Employment rate for married females at ages 66-85	6.53%	8.69%	9.56%
Benefit spending per capita	_	+48.0%	-16.0%
Additional tax on income	_	13.3%	9.02%
Average welfare effect		_	5.46%

Average Life-Time Labor Earning by Initial ϵ

Couples	ϵ_1	ϵ_2	ϵ_3	ϵ_4
ϵ_1 (the lowest)	1.00	1.12	1.26	1.47
ϵ_2	1.19	1.28	1.41	1.59
ϵ_3	1.45	1.51	1.61	1.76
ϵ_4 (the highest)	1.82	1.86	1.92	2.01
	Singles		-	
	ϵ_1	0.56		
	ϵ_2	0.72		
	ϵ_3	0.91		
	ϵ_4	1.15		

Fraction of Married Females Receiving Auxiliary Benefits by Initial ϵ

Couples	ϵ_1	ϵ_2	ϵ_3	ϵ_4
ϵ_1	46.5%	29.8%	14.7%	5.26%
ϵ_2	66.3%	48.6%	28.5%	12.0%
ϵ_3	85.2%	72.8%	52.6%	28.3%
ϵ_4	94.7%	90.3%	81.6%	62.8%
	Sing	les		
	ϵ_1	0.0	0%	
	ϵ_2	0.0	0%	
	ϵ_3	0.0	0%	
	ϵ_4	0.0	0%	

Result of Simulation II: Welfare Effect by Initial ϵ

Couples				
Male/Female	ϵ_1	ϵ_2	ϵ_3	ϵ_4
ϵ_1	5.26%	5.55%	5.70%	5.47%
ϵ_2	5.01%	5.43%	5.79%	5.84%
ϵ_3	4.53%	4.98%	5.54%	5.96%
ϵ_4	3.87%	4.19%	4.67%	5.42%
	Singles	3	_	
	ϵ_1	6.47%		
	ϵ_2	6.32%		
	ϵ_3	6.16%		
	ϵ_4	6.19%		

	Simulation I	Simulation II	Simulation III
Capital per capita	_	+12.3%	+10.5%
Labor per capita	-	+0.03%	-0.11%
Average work hours	-	-2.66%	-0.96%
Consumption per capita	-	+3.45%	+4.88%
Equilibrium interest rate	6.02%	5.30%	5.39%
Equilibrium wage rate	_	+4.32%	+3.73%
Employment rate for married males at ages 25-65	93.4%	94.0%	93.5%
Employment rate for married males at ages 66-85	19.8%	21.5%	21.8%
Employment rate for married females at ages 25-65	69.0%	73.1%	69.4%
Employment rate for married females at ages 66-85	8.69%	9.56%	9.82%
Benefit spending per capita	+48.0%	-16.0%	-17.5%
Additional tax on income	13.3%	9.02%	9.02%
Average welfare effect	_	5.46%	5.29%

5.17%	Simulation II			5.259	%	Simula	ation III			
Male/Female	ϵ_1	ϵ_2	ϵ_3	E,	4		ϵ_1	ϵ_2	ϵ_3	ϵ_4
ϵ_1	5.26%	5.55%	5.70%	5.4	7%	ϵ_1	5.10%	5.16%	5.23%	5.25%
ϵ_2	5.01%	5.43%	5.79%	5.84	4%	ϵ_2	5.19%	5.20%	5.27%	5.31%
ϵ_3	4.53%	4.98%	5.54%	5.9	5%	ϵ_3	5.33%	5.28%	5.30%	5.37%
ϵ_4	3.87%	4.19%	4.67%	5.42	2%	€ 4	5.26%	5.26%	5.29%	5.37%
	-	6.25%	Simulatio	on II	5.3	7%	Simulation III	_		
	-	ϵ_1	6.31%	,	e	1	5.41%	_		
		ϵ_2	6.31%	,	e	2	5.41%			
		<i>ϵ</i> 3	6.18%	,	e	3	5.32%			
		€4	6.23%	,	e	4	5.39%			

The Effect of Elimination of the Auxiliary Benefits: Summary

- The fiscal cost to sustaining SS reduces significantly (13.3% →9.02%).
- 2 Employment rates for married females increase moderately.
 - Between ages 25 and 65: +4.19% (vs +0.40%).
 - Mechanism: SS benefits become dependent only on average life-time earnings.
- The gap of welfare effect is large across couples.
 - Welfare gap: 2.09% (vs 0.27%).
 - Mechanism: The smaller a fraction of receiving the auxiliary benefits is, the larger their welfare gain becomes.
 - Decrease the welfare for households who are eligible for the auxiliary benefits.
- Singles' welfare increases.
 - The average welfare effect: 6.25% (vs 5.37%).
 - Mechanism: Singles' Social Security remains the same.

- Study the effect of elimination of the auxiliary benefits on sustainability of Social Security in population aging.
- Construct a general equilibrium model of overlapping generations.
- Main findings: Elimination of the auxiliary benefits
 - reduces the fiscal cost strikingly.
 - has three characteristics:
 - Labor supply for married females increases moderately.
 - 2 There is a considerable variation in welfare effect across couples.
 - Singles increae their welfare.

• Future work: Compute the transition dynamics.

- Households' allocation rule solves the recursive optimization problem.
- Factor prices: $w = (1 \alpha)AK^{\alpha}L^{-\alpha}$ and $r = \alpha AK^{\alpha-1}L^{1-\alpha} \delta$.
- The labor and capital market clearing conditions are following.

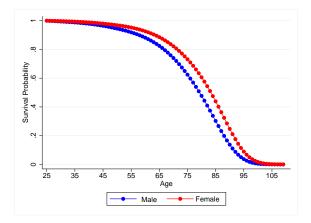
$$L = \sum_{\mathbf{x}} \left(\eta_j^m \epsilon l^m(\mathbf{x}) + \eta_j^f \epsilon l^f(\mathbf{x}) \right) \mu(\mathbf{x}),$$

$$K = \sum_{\mathbf{x}} a(\mathbf{x}) \mu(\mathbf{x}) - D.$$

Definition of Stationary Equilibrium

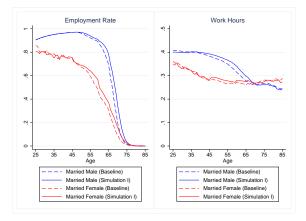
• The lump-sum bequest transfer is equal to the sum of bequests:

$$tr^* = \sum_{\mathbf{x}} (1 - \Phi^m) \left(1 - \Phi^f \right) a'(\mathbf{x}) \mu_{mar}(\mathbf{x}) +$$
$$(1 - \Phi^m) \Phi^f a'(\mathbf{x}) \mu^m_{wid}(\mathbf{x}) + \Phi^m \left(1 - \Phi^f \right) a'(\mathbf{x}) \mu^f_{wid}(\mathbf{x}) \,.$$


• The parameter in the income tax function satisfies the government budget constraint.

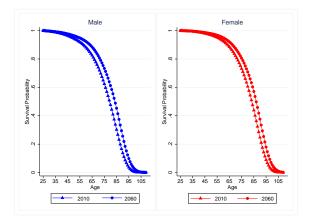
$$\begin{aligned} G + (1+r)D + \left[\sum_{\mathbf{x}} \left(ss^{m}\left(\mathbf{x}\right) + ss^{f}\left(\mathbf{x}\right)\right) + \sum_{\mathbf{x}} tr(\mathbf{x})\right]\mu(\mathbf{x}) &= \\ \sum_{\mathbf{x}} \left[\tau^{I} \left[e^{m}\left(\mathbf{x}\right) + e^{f}\left(\mathbf{x}\right) + ra(\mathbf{x})\right] \left(e^{m}\left(\mathbf{x}\right) + e^{f}\left(\mathbf{x}\right) + ra(\mathbf{x})\right) + \\ \tau^{ss}\min\left\{e^{m}(\mathbf{x}), e^{ss}\right\} + \tau^{ss}\min\left\{e^{f}(\mathbf{x}), e^{ss}\right\} + \tau^{c}c(\mathbf{x})\right]\mu(\mathbf{x}) + D'. \end{aligned}$$

In the stationary equilibrium, D' = (1 + n)D holds.


• The distribution of individuals across states $\mu(\mathbf{x})$ is stationary.

Unconditional Survival Probability at Age 25

(Data Source: Bell and Miller (2005))


Employment Rates and Work Hours for Couples in Simulation I

🕨 Go Back

45/41

Unconditional Survival Probability at Age 25 in 2010 and 2060

(Data Source: Bell and Miller (2005))