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1 Introduction

In this paper, we develop a new methodology for estimating the cost function in a di�erentiated

products model when both prices and outputs are endogenous. Our approach requires cost data

in addition to the commonly used demand-side data on products' prices, market shares, observed

characteristics. The literature on cost estimation has addressed the endogeneity issues by using

either instruments or assuming demand and cost shocks to be orthogonal (See Amsler et al. (2017)

and Kutlu et al. (2019) for more details). Another strand of the literature, such as Kumbhakar

(2001) has used the pro�t function, which is a function of output price and input price. If the

output and input markets are perfectly competitive, then, those prices can be considered to be

exogenous to the �rm, and thus, the pro�t function can be estimated without any instruments.

However, pro�t function based approach would also be subject to the endogeneity issue in the

case of di�erentiated products model since �rms also choose prices.

We follow Byrne et al. (2021) and do not use any instruments or other orthogonality condi-

tions, such as orthogonality of demand and cost shocks for dealing with the endogeneity issues.

Byrne et al. (2021) use their two-step nonlinear sieve estimation to recover a semiparametric

pseudo-cost function, which is a function of output, input prices, observed characteristics and

marginal revenue. They then propose to recover the cost function from the pseudo-cost function

by numerically integrating the marginal revenue function. It turns out that this approach is

subject to a large bias. Instead, we apply the idea developed by Gandhi et al. (2020) for esti-

mating production functions. They assume that the productivity shock enters in the production

function in a multiplicatively separable manner, so that one can eliminate it by using the ratio

of the production function and its derivative. We make a similar assumption but for cost func-

tions. That is, we assume a Hicks neutral cost shock, which is the inverse of the Hicks neutral

productivity shock. Then, the cost shock can be eliminated as long as we estimate parameters of

the cost function by taking the ratio of marginal cost to cost. We then replace the unobservable

marginal cost with marginal revenue which is a function of observables and parameters. We

thus show that there is a direct approach that sidesteps the pseudo-cost function estimation to

estimate the cost and demand function parameters jointly,

The Monte-Carlo results indicate that such a direct approach greatly improves the �nite

sample accuracy of both the demand and cost function parameter estimates compared to the

indirect approach adopted by Byrne et al. (2021).

This paper is organized as follows. In Section 2, we review the IV-based estimation of the
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di�erentiated products model of demand and the cost function. Then, we discuss the F.O.C.

of the pro�t maximization of �rms that we use for the instrument-free joint identi�cation and

estimation of the demand and cost functions. In Section 3, we study identi�cation when demand

and cost data are available and present our formal identi�cation results. In Section 4, we propose

the direct approach for estimating the cost function. Section 5 contains a Monte-Carlo study

that illustrates the e�ectiveness of our estimator. In Section 6 we conclude.

2 Demand and cost function and their IV estimation

The key component of our methodology is the �rst order condition (F.O.C.) of the �rm's pro�t

maximzation, so that marginal revenue equals marginal cost. Unlike the other approaches in the

literature, in our estimation, marginal revenue plays an important role. That is, we follow the

control function approach of Byrne et al. (2021) and use marginal revenue to control for the cost

shock. Therefore, we �rst review the standard di�erentiated products demand model, and derive

its marginal revenue function.

In this section, we describe the standard di�erentiated products model that we adopt includ-

ing some of the assumptions and provide an overview of IV estimation of the demand and supply

side. For more details, see Berry (1994), Berry et al. (1995), Nevo (2001) and others. Most

features of the model we discuss here are carried over to the next section where we explain our

cost data-based identi�cation strategy.

2.1 Di�erentiated products discrete choice demand models

In the standard model, consumer i in market m gets the following utility from consuming one

unit of product j:

uijm = xjmβ − pjmα+ ξjm + εijm,

where xjm is a 1×K vector of observed product characteristics, pjm is price, ξjm is the unobserved

product quality (or demand shock) that is known to both consumers and �rms but unknown to

researchers, and εijm is an idiosyncratic taste shock. The demand parameter vector is denoted

by θ =
[
α,β′

]′
, where β is a K × 1 vector.

It is assumed that there are M > 1 isolated markets.1 Market m has Jm + 1 > 2 products

1With panel data, the m index corresponds to a market-period.
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whose aggregate demand across individuals is,

qjm = sjmQm,

where qjm denotes output, Qm denotes market size and sjm denotes market share. In the case

of the Berry (1994) logit demand model, εijm is assumed to have a logit distribution. Then, the

aggregate market share for product j in market m is,

sjm(θ) ≡ sj (pm,Xm, ξm;θ) =
exp (xjmβ − pjmα+ ξjm)∑Jm
k=0 exp (xkmβ − pkmα+ ξkm)

=
exp (δjm)∑Jm
k=0 exp (δkm)

, (1)

where pm = [p0m, p1m, ..., pJmm]′ is a (Jm + 1)× 1 vector,

Xm =


x0m

x1m

...

xJmm


is a (Jm + 1)×K matrix, ξm = [ξ0m, ξ1m, ..., ξJmm]′ is a (Jm + 1)× 1 vector, and

δjm ≡ xjmβ − pjmα+ ξjm (2)

is the �mean utility� of product j in market m. Using this de�nition, we can express the market

share in Equation (1) as sj (δ(θ)) ≡ sj (pm,Xm, ξm;θ) where δ(θ) = [δ0m(θ), δ1m(θ), . . . , δJmm(θ)]′.

Good j = 0 is labeled the �outside good� or �no-purchase option� that corresponds to not

buying any of the j = 1, . . . , Jm goods. This good's product characteristics, price, and demand

shock are normalized to zero (i.e., x0m = 0, p0m = 0, and ξ0m = 0 for all m), which implies

δ0m(θ) = 0. (3)

This normalization, together with the logit assumption for the distribution of εijm, identi�es the

level and scale of utility.

In BLP, or equivalently, the random coe�cient logit model, one allows the price coe�cient and

coe�cients on the observed characteristics to be di�erent for di�erent consumers. Speci�cally, α

has a distribution function Fα (.;θα), where θα is the parameter vector of the distribution, and

similarly, β has a distribution function Fβ (.;θβ) with parameter vector θβ. The probability with
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which a consumer with coe�cients α and β purchases product j is identical to that provided by

the market share formula in Equation (1). The aggregate market share of product j is obtained

by integrating over the distributions of α and β:

sj (pm,Xm, ξm;θ) =

ˆ
α

ˆ
β

exp (xjmβ − pjmα+ ξjm)∑Jm
k=0 exp (xkmβ − pkmα+ ξkm)

dFβ (β;θβ) dFα (α;θα) , (4)

where θ =
[
θ′α,θ

′
β

]′
. Letting µα to be the mean of α and µβ the mean of β, the mean utility is

de�ned to be

δjm ≡ xjmµβ − pjmµα + ξjm, (5)

with δ0m = 0 for the outside good.

2.1.1 Recovering demand shocks

For each market m = 1, . . .M , researchers are assumed to have data on prices pm, market shares

sm = [s0m, s1m, ..., sJmm]′ and observed product characteristics Xm for all �rms in the market.

Given θd and this data, one can solve for the vector δm through market share inversion. That

is, if we denote sj (δm (θd) ;θd) to be the market share of �rm j predicted by the model, market

share inversion involves obtaining δm by solving the following set of Jm equations,

sj (δm (θd) , j;θd)− sjm = 0, for j = 0, . . . , Jm, (6)

and therefore,

δm (θd) = s−1 (sm;θd) . (7)

The vector of mean utilities that solves these equations perfectly aligns the model's predicted

market shares to those observed in the data.

In the logit model, Berry (1994) shows we can easily recover mean utilities for product j

using its market share and the share of the outside good as δjm (θd) = log (sjm) − log (s0m),

j = 1, . . . , Jm. In the random coe�cient model, there is no such closed-form formula for mar-

ket share inversion. Instead, BLP propose a contraction mapping algorithm that recovers the

unique δjm (θd) that solves Equation (7) under some regularity conditions. In both cases, δ0m is

normalized to 0.

With the mean utilities and parameters in hand, one can recover the structural demand

shocks straightforwardly from Equation (2) for the logit demand and Equation (5) for the BLP
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demand.

2.1.2 IV estimation of demand

A simple regression of Equation (2) or (5) with δjm (θd) being the dependent variable and xjm

and pjm being the regressors would yield a biased estimate of the price coe�cient. This is because

�rms likely set higher prices for products with higher unobserved product quality, which creates

a correlation between pjm and ξjm, violating the OLS orthogonality condition E[ξjmpjm] = 0.

Researchers use a variety of demand instruments to overcome this issue. In particular, researchers

construct a GMM estimator for θ by assuming the following population moment conditions are

satis�ed at the true value of the demand parameters θd0:

E[ξjm (θd0) zjm] = 0

where zjm is an L × 1 vector of instruments that is correlated with xjm. Also, instruments are

required to satisfy the exclusion restriction that at least one variable in zjm is not contained in

xjm.

2.2 Cost Function Estimation

For each product j in market m, in addition to the data related to demand explained above,

researchers observe output qjm (hence, market size Qm = qjm/sjm as well), L×1 vector of input

price wjm and cost Cjm. The observed cost Cjm is assumed to be a function of output, input

prices wjm, observed product characteristics xjm and a cost shock υjm. That is,

Cjm = C (qjm,wjm,xjm, υjm;θc) ,

where θc is the parameter vector. C () is assumed to be strictly increasing and continuously

di�erentiable in output and cost shock.As with demand estimation, one can recover unobserved

cost shocks through inversion:

Cjm = C (qjm,wjm,xjm, υjm;θc)⇒ υjm = υ (qjm,wjm,xjm, Cjm;θc) . (8)

Like demand estimation, there are important endogeneity concerns with standard approaches

to estimating cost functions. Speci�cally, output qjm is endogenously determined by pro�t-

maximizing �rms as in Equation (9), and is potentially negatively correlated with the cost shock
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υjm. That is, all else equal, less e�cient �rms tend to produce less. In dealing with this issue,

researchers have traditionally focused on selected industries where endogeneity can be ignored,

or used instruments for output.

The IV approach to cost function estimation typically uses excluded demand shifters as

instruments. Denoting this vector of cost instruments by z̃jm, one can estimate θc assuming

that the following population moments are satis�ed at the true value of the cost parameters θc0:

E [υjm (qjm,wjm,xjm, Cjm;θc0) z̃jm] = 0. See Wang (2003)

Typical instruments that can be used for price in demand function estimation and output in

cost function estimation are the product characteristics of rival �rms in the same market:X−jm.

However, if �rms endogenouly choose their observed characteristics in response to own and other

�rms' cost shocks, then X−jm could be correlated with the cost shock υjm and thus, won't be

valid instruments. One way to deal with this problem is to assume that observed characteristics

are uncorrelated with the cost shock in the short run.This assumption is similar to the ones often

used in panel data estimation: the innovation of the cost shock is uncorrelated with the current

observed product characteristics. Petrin and Seo (2016) utilize similar assumptions for estimation

of the market share function. They show that innovations in observed product characteristics

can be used as instruments for the cost shock.

2.3 Firms' Pro�t and Pro�t Maximization.

Assuming that there is one �rm for each product, �rm j's pro�t function is as follows:

πjm = pjmqjm − C (qjm,wjm,xjm, υjm;θc) .

Let MRjm, be the marginal revenue of �rm j in market m. BLP assume that �rms act as

di�erentiated products Bertrand price competitors. Therefore, the optimal price and quantity of

product j in marketm are determined by the F.O.C. that equates marginal revenue and marginal

cost:

MRjm =
∂pjmqjm
∂qjm

= pjm + sjm

[
∂sj (pm,Xm, ξm;θd)

∂pjm

]−1

︸ ︷︷ ︸
MRjm

= MCjm =
∂C (qjm,wjm,xjm, υjm;θc)

∂qjm︸ ︷︷ ︸
MCjm

.

(9)

Note that given the market share inversion in Equation (6), and the speci�cation of mean

utility δm, ξm is a function of (pm, sm,Xm) and θd. Therefore, marginal revenue of �rm j in
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market m, MRjm in Equation (9) can be written as a function of observables and parameters

as follows:

MRjm ≡MRj (pm, sm,Xm;θd) , (10)

Equations (9) and (10) imply that demand parameters can potentially be identi�ed if there

is data on marginal cost2 or even without such data, if the cost function is known or can be

estimated and its derivative with respect to output can be taken. Berry et al. (1995) assume

that marginal cost is log-linear in output and observed product characteristics, i.e., MCjm =

exp (wjmγw + qjmγq + υjm) (see their Equation 3.6). They then use instruments to deal with the

endogeneity of output with cost shocks and of prices to demand shocks. As long as the parametric

speci�cation of the supply side is accurate and there are enough instruments for identi�cation,

the demand side and F.O.C. based orthogonality conditions are su�cient for identifying demand

parameters.

In this research, we follow the insight of Byrne et al. (2021) that jointly estimating both

demand and cost sides of the model can remove the need for any instruments to deal with the

endogeneity issue in the estimation of price coe�cient of demand function and output coe�cient

of cost function.

3 Identi�cation of demand and cost functions using cost data and

without instruments

In this section, we present our methodology for dealing with the endogeneity issues in identi-

�cation mentioned above. We propose using cost data in addition to demand data to identify

price parameters and the parameters of the cost function. We do so by using the control func-

tion approach of Byrne et al. (2021). That is, given output, input prices and observed product

characteristics, we use the observed cost to control for the cost shock. We �rst present our

methodology using general marginal revenue and cost functions and then, illustrate it with the

logit demand function and Cobb-Douglas and translog cost functions. First, we explain the

underlying assumptions of the model.

2Genesove and Mullin (1998) use data on marginal cost to estimate the conduct parameters of the homogeneous
goods oligopoly model.
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3.1 Main Assumptions

We �rst state all the main assumptions for our methodology. Most of these assumptions are

standard as discussed in the previous section or simply describe the environment our methodology

is applicable to. For each market in the population, we attach a unique positive real number m

as an identi�er. Then, we assume m ∈ M, where M is the set of all market identi�ers, and is

an uncountable subset of R+.

Assumption 1 Data Requirements: Researchers have data on outputs, product prices, market

shares, input prices, observed product characteristics, and total costs of �rms.

Note that market size can be derived from data on outputs and market shares. Thus, we

need to assume observability of only two of these three variables. In contrast to BLP, we require

data on total costs of �rms. But we do not need data on marginal cost.

Assumption 2 Isolated Markets: Outputs, market shares, prices and costs in market m are

functions of variables in market m .

Assumption 3 Logit demand: Market share sjm is speci�ed as in Equation (4) with µα < 0.

Assumption 4 Equilibrium Concept: Bertrand-Nash equilibrium holds in each market. That

is, for any j = 1, . . . , Jm, �rm j in market m chooses its price pjm to equalize marginal revenue

and marginal cost, given market size Qm and prices of other �rms in the same market p−j,m.
3

The next assumption describes the support of variables that determine the equilibrium

outcomes in market m. Let the set of these variables be denoted by Vm. Then Vm ≡

(Qm,Wjm,Xm, ξm,υm), and let V ≡ {Vm}m∈M. Let V \ wlkm to be the set V without the

element wlm for any l = 1, 2, . . . , L. For other elements of V, the set V without the element is

similarly de�ned. The assumption imposes substantially weaker restrictions on the support of

the variables in V than is typical in the literature. In particular, it imposes minimal restrictions

on the joint distribution of these variables as stated below.

Assumption 5 Support of V: The support of Qm conditional on V \Qm can be any nonempty

subset of R+ for all m. The support of wlm conditional on V \ wlm is R+ for all l,m; the

3Note that we have assumed this for expositional purposes only. It is not required for identi�cation. MR is a
one-to-one function of MC in equilibrium, and not necessarily equal to MC, we can identify the price parameters.
This makes our framework applicable to �rms that are under government regulation and �rms under organizational
incentives or behavioral aspects that prevent them from setting MR =MC.
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support of xkjm conditional on V \ xkjm is either R or R+ for all k, j, m; and the support of

ξjm conditional on V \ ξjm is R. Finally, the support of υjm conditional on V \ υjm is R+.

Assumption 5 ensures that the variables in V are not subject to any orthogonality conditions,

which typically restrict the moments of a subset of the unobserved variables (ξm,υm) conditional

on the other variables to be zero. In other words, we do not require them to be econometrically

exogenous, and thus, Assumption 5 removes the validity of any conventional instruments.

Note that we do not impose any assumptions on the support of market size other than that

it is nonempty and positive. For logit, we require the conditional support to be R+ since as we

show later, market size variation is needed for identifying the price parameters of logit but not

for BLP.

We follow Gandhi et al. (2020) and assume that the cost function can be multiplicatively

separated into the component that has output, input price and observed product characteristics

and the remaining component that only includes observed product characteristics and the cost

shock. In addition, we also allow for additive measurement error.

Assumption 6 The true cost function, denoted as C∗ () can be expressed as follows:

C∗ (q,w,x, υ;θc0) = C̃ (q,w,x;θc0) exp (ϕ (x, υ)) . (11)

where C̃ () is only a function of observables, such as output, input prices and observed character-

istics and ϕ (x, υ) is an unspeci�ed smooth function of observed characteristics x and unobserved

characteristics u. Furthermore, the observed cost Cjm is given by the sum of the true cost C∗jm

and the measuremente error ucjm as follows:

Cjm = C∗jm + ujm = C∗ (qjm,wjm,xjm, υjm;θc0) + ucjm,

where we assume ujm to be i.i.d. distributed and independent to all other observables in the

demand and cost functions and θc0 is the cost function parameter vector we identify. Similarly,

we assume that expenditure on input k, denoted by Lk , whose price is wkjm, is measured with

error, i.e.

Ckjm = wkjmLjmk + ukjm, k = 1, . . . ,K

where we assume ukjm to be i.i.d. distributed and independent to other varialbes in the demand

and cost functions.
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4 Demand and cost function estimation without instruments

4.1 General identi�cation result

In this section, we discuss how to recover the cost function from the data without using any

instruments. Byrne et al. (2021) propose to use the pseudo-cost function and marginal cost

to recover the cost function by numerically integrating the numerically derived cost function.

However, this process results in a large bias in the recovered cost function because numerical

errors accumulate during integration. We explain the details later.

In this paper, we propose an alternative approach. More concretely, we eliminate the cost

shock from the estimation by exploiting Assumption 6, where we assume the cost shock compo-

nent to enter multiplicatively in the total cost function. Then, the total cost4 and the marginal

cost functions can be expressed as follows,

C∗ (qjm,wjm,xjm, υjm;θc) = C̃ (qjm,wjm,xjm;θc) exp (ϕ (xjm, υjm)) .

MC∗ (qjm,wjm,xjm, υjm;θc) =
∂

∂q
C̃ (qjm,wjm,xjm;θc) exp (ϕ (xjm, υjm))

= M̃C (qjm,wjm,xjm;θc) exp (ϕ (xjm, υjm)) . (12)

Therefore, by taking the ratio of margial cost and cost, we obtain

C∗ (qjm,wjm,xjm, υjm;θc)

MC∗ (qjm,wjm,xjm, υjm;θc)
=

C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)
. (13)

Note that the RHS does not contain the unobservable cost shock υjm. Furthermore, from the

F.O.C., we obtain

MRj (pm, sm,Xm;θd) = MC∗ (qjm,wjm,xjm, υjm;θc) . (14)

Using Equation (14) to substitute MR () for MC∗ () into Equation (13) we derive:

C∗ (qjm,wjm,xjm, υjm;θc)

MRj (pm, sm,Xm;θd)
=

C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)

and by multiplying MRj on both sides, we get

C∗jm = C∗ (qjm,wjm,xjm, υjm;θc) =
C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)
MRj (pm, sm,Xm;θd) .

4From now on, we simply call cost for total cost, whenever there is no confusion.

11



This is how we can express the cost function as a function that does not have the unobservable

cost shock υjm, which was the source of the endogeneity bias.

Our identi�cation strategy is based on the exclusion restriction that there are variables that

potentially enter in the marginal revenue function but not in the cost function. These variables

are market size Qm, which enters in the marginal revenue function through qjm = sjm/Qm,

prices of �rms in market m, pm, market shares s−jm and observed characteristics X−jm of rival

�rms in the same market. For example, in the logit demand model, marginal revenue is

MRj (pm, sm,Xm;θd) = pjm −
1

(1− sjm)α
= pjm −

1

(1− qjm/Qm)α
. (15)

Therefore, the exclusion restriction is that price pjm market size Qm enter in the marginal revenue

function, but not in the cost function.

Then, from Assumption 6, observed cost can be speci�ed as follows:

Cjm =
C̃ (qjm,wjm,xjm;θc0)

M̃C (qjm,wjm,xjm;θc0)
MRj (pm, sm,Xm;θd0) + ucjm. (16)

Now, we discuss the di�erence between the above speci�cation and the conventional one,

which is:

Cjm = C∗ (qjm,wjm,xjm, υjm;θc0) = C̃ (qjm,wjm,xjm;θc0) exp (υjm) .

By taking logs, we obtain

lnCjm = lnC̃ (qjm,wjm,xjm;θc0) + υjm (17)

The estimation of Equation (17) is subject to the endogeneity bias if output and cost shock

are correlated. Since pro�t maximizing �rms tend to increase prices and decrease output as a

result of an increase in the cost shock, negative correlation between the cost shock and output is

a likely scenario. In contrast, in Equation (16) the cost shock, which is the source of endogeneity

is factored out. Since, from Assumption 6, measurement error of cost ucjm is assumed to be

independent to all the other variables in the marginal revenue and the marginal cost functions,

endogeneity issues do not arise.

As long as we assume that the variables in C̃ () are independent to the productivity shock

υjm, we can estimate the parameter vector θc consistently. Even then, it is customary to jointly
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estimate the model with equations that can be derived using Shephard's Lemma for the sake of

e�ciency. Shephard's Lemma states that

∂C∗ (qjm,wjm,xjm, υjm;θc0)

∂wkjm
= Lkjm. (18)

Then, using Equation (17), the above equation can be modi�ed as follows:

∂lnC̃ (qjm,wjm,xjm;θc0)

∂lnwkjm
=
∂lnC∗ (qjm,wjm,xjm, υjm;θc0)

∂lnwkjm
=
wkjmLkjm

C∗jm
, k = 1, . . . ,K (19)

and after adding an error term εkjm, k = 1, . . . ,K, for estimation purpose, which also indicates

allocative ine�ciency, we obtain

∂lnC̃ (qjm,wjm,xjm;θc0)

∂lnwkjm
=
wkjmLkjm

C∗jm
+ εkjm, k = 1, . . . ,K − 1, (20)

which, together with Equation (17) forms a system that is estimated joinly by Maximum Like-

lihood, where researchers construct the log likelihood by assuimg υjm and εjm to be jointly nor-

mally distributed. Note that in estimation, as we can see in Equation (20), onlyK−1 input share

equations are used. This is becauce of the linear dependence of the K input shares since they add

to one. The existence of the allocative ine�ciency in Equation (20) implies that it should also

be included in the cost function. Kumbhakar (1997) derived the modi�ed translog cost function

that explicitly includes the allocative ine�ciency, i.e., C∗ (qjm,wjm,xjm, υjm, εjm;θc), where

εjm ≡ (ε1jm, . . . , εKjm), and Kumbhakar and Tsionas (2005) provided a Bayesian estimation

method for estimating the translog cost function when such allocative ine�ciencies exist.

Instead, we use Assumption 6. That is, Shephard's Lemma and Assumption 6 together imply

Ckjm = wkjmLkjm + ukjm = C∗jm
∂lnC̃ (qjm,wjm,xjm;θc0)

∂lnwkjm
+ ukjm, (21)

which we use for estimation. As before, since the measurement error in input cost ukjm are

assumed to be independent to the variables in the marginal revenue and cost functions, the

above equation is not subject to an endogeneity issue. Furthermore, note that the di�erence

in how we and Kumbhakar (1997) and the subsequent literature interpret the error term that

corresponds to the discrepancy between the input price elasticity of cost function and the input

cost share. Kumbhakar (1997) speci�ed them as the allocation error and pointed out the need

for including them in the cost function as unobservable variables. In our speci�cation of cost
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function in Assumption 6, measurement error does not enter in the true cost function C∗.

So far, we have speci�ed measurement errors as additive to the total cost as well as the

components of the cost. We believe that it is more realistic to specify to the total cost as the

sum of various cost components, and so are the measurement error of the total cost. Therefore,

if we specify the measurement errors as additive to cost, then the measurement error of the total

cost can be simply expressed as the sum of all the measurement errors of the individual cost

components.

Next, we discuss in more detail the identi�cation. First, we discuss an example with the cost

function that is based on the following Cobb-Douglas production function.

q = [Bexp (xη + υ)]−(αc+βc) LαcKβc .

We can derive the cost function from the below cost minimization problem.

C∗ (q, w, r, x, υ) = maxK,LrK + wL

s.t. q ≤ (Bexp (xη + υ))−(αc+βc)LαcKβc .

Then, given wage w and the capital rental rate r, the cost and the marginal cost functions are

as follows:

C∗ (q, w, r, x, υ) =

[
(αc + βc)

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)]
Bexp (xη + υ) q

1
αc+βc .

MC∗ (q, w, r, x, υ) =

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)
Bexp (xη + υ) q

1
αc+βc

−1
.

Thus, the log cost function is speci�ed as

lnC∗ = ln (αc + βc)−
αc

αc + βc
lnαc −

βc
αc + βc

lnβc

+
αc

αc + βc
lnw +

βc
αc + βc

lnr +
1

αc + βc
lnq + ηx+ υ (22)

By taking derivative of the above cost function with respect to output,

∂lnC∗ (qjm,wjm,xjm, υ)

∂lnq
=

1

αc + βc
=
MR () qjm

C∗jm
.
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Then,

C∗ (qjm, wjm, rjm,xjm, υ) = (αc + βc) qjmMRj (pm, sm,Xm;θd) , (23)

and the estimating equation is:

Cjm = C∗jm + ucjm = (αc + βc) qjmMRj (pm, sm,Xm;θd) + ucjm, (24)

which identi�es αc + βc and the demand parameters θd. If we assume the market share function

to be logit, then, we obtain

Cjm = C∗jm + ucjm = (αc + βc) qjm

[
pjm −

1

(1− sjm)α

]
+ ucjm,

which identi�es αc + βc and α. However, Equation (24) does not identfy αc or βc separately. If

we have the cost data for each input item, then using the Shephard' Lemma, we derive

∂lnC̃ (qjm, wjm, rjm,xjm;θc0)

∂lnwjm
=

αc
αc + βc

=
wjmLjm
C∗jm

.

Manipulating the above equation, we obtain

CLjm = wjmLjm + uLjm = αcqjmMRj (pm, sm,Xm;θd) + uLjm.

and thus, we identify αc, and βc = αc+βc−αc. In case we do not have data on input cost, given

αc + βc, we can identify the remaining parameters by putting the terms with them on the RHS

as follows:

lnC∗jm − (αc + βc) lnqjm = A+
αc

αc + βc
lnwjm +

βc
αc + βc

lnrjm + xjmη + υjm.

where

A ≡ ln (αc + βc)−
αc

αc + βc
lnαc −

βc
αc + βc

lnβc

and C∗jm can be obtained from Equation (23) given both αc+βc and θd are identi�ed. If we assume

xjm, wjm and rjm to be orthogonal to υjm, the above equation can be esitmated consistently by

OLS.

Next, we summarize the above results. That is, estimation that is based solely on Equation
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(16) can only identify the parameters in C̃ (qjm,wjm,xjm;θc) /M̃C (qjm,wjm,xjm;θc). Because

∂lnC∗ (qjm,wjm,xjm, υjm;θc)

∂lnq
=
∂lnC̃ (qjm,wjm,xjm,θc)

∂lnq

=
M̃C (qjm,wjm,xjm;θc)

C̃ (qjm,wjm,xjm;θc)
qjm =

MR (pm,xm,Xm;θd)

C∗jm
qjm,

this implies that what we identify from the F.O.C. of pro�t maximization is the demand param-

eters θd and the output elasticity of cost. In other words, F.O.C. only identi�es the paramters of

the cost function that a�ect the output elasticity of cost, which we denote as the vector θcq. In

the above example with the cost function that is based on the Cobb-Douglas production function,

θc = (αc + βc, αc), and θcq = αc + βc.

If we have data on cost of each input, we can identify some of the remaining parameters from

the Shephard's Lemma, which identi�es the elasticity of cost with respect to input price, i.e.

∂lnC̃ (qjm,wjm,xjm;θc0)

∂lnwkjm
=
wkjmLkjm

C∗jm
,

and thus the parameters that determine the input price elasticity of cost. Similarly as before,

let θcw be the vector of such parameters that is not in the element of θcq. In the example with

the cost function based on the Cobb-Douglas production function, θcw = αc. The parameters

of the cost function that remains unidenti�ed is not a function of either log output or log input

price, and thus, can be identi�ed from the remaining cost component that can be expressed as a

function of xjm and υjm, i.e., lnϕ
(
xjm, υjm;θc,(−q,−w)

)
.

Consider the other case where we only have data on total cost, and not the cost data for each

input. Given that θcq are the parameters that determines the output elasticity of cost, and thus

identi�ed from ∂lnC∗ (qjm,wjm,xjm, υ;θc) /∂lnq, we identify the remaining parameters θc,−q

from the component that is not a�ected by log output from the regression.

lnC∗ = lnC̃ (qjm,wjm,xjm,θcq,θc,−q) + υjm (25)

Since only the parameters θcq are subject to endogeneity bias, the remaining parameters θc,−q

can be estimated via regression consistently.
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4.2 Estimation issues

Next, we discuss the estimation when we have cost data for each input. We would then estimate

jointly the equations (16) and (21). The conventional methods are feasible generalized least

squares (FGLS) and maximum likelihood (ML) methods. If the measurement errors are speci�ed

as i.i.d., jointly normally distributed, then in large sample, FGLS and ML in this particular

cases are very similar in the sense that they both result in consistency and they have the same

asymptotic distribution. FGLS estimates the parameters by minimizing the following objective

function

u′jmWujm,

where the e�cient weight would be W = Σ−1, and Σ ≡ V ar (ujm) is the variance-covariance

matrix. The variance-covariance matrix is estimated by using the residual of the �rst stage

parameter estimate which is estimated by initially setting the weighting matrix to W = I.

Similarly, we can use the Maximum Likelihood procedure and construct the likelihood based

on the joint distribution of the measurement errors. Since ukjm is speci�ed to be a measurement

error, it is a component of the measurement error of total cost ucjm. Hence, we need to allow

for correlation between ukjm and ucjm.

We assume that the measurement errors (ucjm, u1jm, . . . , uK−1,jm) are jointly normally dis-

tributed. That is,

(ucjm, ukjm)′ ∼ N (0,Σ0)

where

Σ0,11 = σ2
c0

Σ0,k+1,k+1 = σ2
k0, k = 1, . . . ,K − 1

Σ0,1,k+1 = ρσc0σk0, k = 1, . . . ,K − 1

Σ0,k+1,l+1 = 0, k, l > 0, k 6= l.

σc0 is the standard deviation of the measurement error of total cost, σk0 is the standard devi-

ation of the measurement error of the cost of kth input, and ρ is the correlation between the

measurement error of the overall cost data and the measurement error of the cost of kth input.

Let ljm be the log likelihood increment of �rm j in market m. Since the measurement errors
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are jointly normally distributed with mean zero and variance-covariance matrix Σ:

ljm = −K
2
lnπ − 1

2
ln |Σ| − 1

2
U′jmΣ−1Ujm

where

U1jm = ucjm ≡ Cjm −
C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)
MRj (pm, sm,Xm;θd) ,

Uk+1jm = ukjm ≡ Ckjm − C∗jm
∂lnC̃ (qjm,wjm,xjm;θc)

∂lnwkjm
, k = 1, . . . ,K − 1.

We choose the parameters so as to maximize the sum of log likelihood increments over all �rms.

That is,

(
θ̂c, θ̂d

)
= argmax{(θc,θd)∈Θc×Θd}

∑
j,m

ljm

In case we only have data on total cost, we estimate Equation (16) by either nonlinear

OLS, where ucjm is the residual, or Maximum Likelihood by assuming ucjm to be normally

distributed with mean zero and variance σ2
c . Next, given the parameter estimates θ̂cq, the

remaining parameters θc,−q can be estimated by Equation (25).

Note that since the RHS of Equation (16) does not contain either the cost shock or the

demand shock, our estimation procedure does not su�er from any endogeneity issues and thus,

we do not need to impose any orthogonality conditions using instruments.

We next show that from the Equation (12) and the F.O.C. in Equation (14),

MRj

(
pm, sm,Xm; θ̂d

)
= M̃C

(
qjm,wjm,xjm; θ̂c

)
exp (ϕ̂ (xjm, υjm)) ,

which results in

ϕ̂ (xjm, υjm) = lnMRj

(
pm, sm,Xm; θ̂d

)
− lnM̃C

(
qjm,wjm,xjm; θ̂c

)
. (26)

In the conventional approach, the cost shock is identi�ed as part of the residual of the cost

function estimates, i.e., it is the di�erence between the cost data and the cost predicted by the

cost function. In contrast, we identify the cost shock as the di�erence between log marginal

revenue and log of the deterministic component of the marginal cost. The economic logic behind

the above result is as follows: the logit model predicts that �rms with larger market shares have
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higher monopoly power. It then follows that a �rm with high price and small market share does

not have much monopoly power, and thus, its marginal cost should be close to its price. Then,

we can infer that it has high marginal cost, and thus, a high cost shock.

It is important to note that in general, we need to impose additional assumptions for sepa-

rately identifying the cost shock υjm from the observed product characteristics xjm. For example,

if we assume linearity, and cost shock to be uncorrelated with observed characteristics, then

ϕjm = η0 + xjmηx + υjmηυ.

where υjmηυ is the residual. We can normalize the cost shock and set ηυ = 1. The less restrictive

approach could be to assume that cost shock is orthogonal to the observed product characteristics

and specify ϕjm as follows:

ϕjm = η (xjm) + υjm.

where η () can be estimated as the polynomial of xjm. Even less restrictive would be to assume

that υjm is independent of xjm, and ϕ (xjm, υjm) is increasing in υjm by looking at the quantiles

of ϕ (xjm, υjm) given xjm. To do so, we �rst normalize the cost shock υ so that it is uniformly

distributed in (0, 1). Then, τth quantile of υ is τ . Therefore, if we de�ne the τth quantile of

yconditional on x as yτ |x, then,

yτ |x = ϕ (x, τ)

Thus, in order to recover the cost shock, we do not require orthogonality between the cost

shock and the output. Furthermore, the price coe�cient on the demand side can be estimated

without any orthogonality restrictions between the demand shock (or unobserved product char-

acteristics) and other variables such as input price, own and rival �rm observed product charac-

teristics, and market size.

After estimation, we can analyze properties of the cost shock in various ways. For example,

e�ciency of a �rm can be obtained by decomposing the cost shock as follows:

υjm = −ζjm + ηjm

where ζjm and ηjm are assumed to be independent and ζjm is speci�ed to be half normally

distributed, and ηjm to be mean zero normal. We can make additional decompositions as below

as well

vjm = ωj + χm + ujm + ηjm

19



where ωj is the �rm speci�c and χm is the market speci�c �xed e�ect, if we de�ne the market as

time. For more details on the estimation of �rm speci�c �xed e�ects, see Greene (2005), Wang

and Ho (2010) and others.

Diewert and Fox (2008) also use the F.O.C. of pro�t maximization to estimate markup and

the cost function parameters. We extend their approach by including the cost shock into the cost

function, and thereby explicitly deal with the endogeneity issues, but at the same time, without

the use of instruments. We also jointly estimate the parameters of the cost function and the

demand function.

We now explain further the di�erence between the approach taken in this paper, and the

one in Byrne et al. (2021). They take a more general approach, where they show that the

cost function can be expressed as a function of output, input price vector, observed product

characteristics and marginal revenue as follows:

C∗ (qjm,wjm,xjm, υjm;θc) = ψ (qjm,wjm,xjm,MRj (pm, sm,Xm;θd))

They call the function ψ () the pseudo-cost function and show that it can be estimated from the

data using the following equation:

Cjm = ψ (qjm,wjm,xjm,MRj (pm, sm,Xm;θd)) + ujm

where ujm is the residual term that is assumed to be independent to all the variables in the

pseudo-cost function and the marginal revenue function. They show that the pseudo-cost function

ψ can be estimated nonparametrically by using polynomials of qjm, wjm, xjm and MRjm. They

then propose an algorithm to obtain the cost function from the pseudo-cost function by using the

F.O.C. The procedure involves starting from a point
(
qj(0)m(0) ,wj(0)m(0) ,xj(0)m(0) ,pm(0) , sm(0) ,Xm(0)

)
=(qjm,wjm,xjm,pm, sm,Xm), and then �nding another point that satis�es

MRj (pm, sm,Xm;θd) =
∂C∗ (qjm,wjm,xjm, υjm;θc)

∂q

= (∆q)−1
[
ψ
(
qjm + ∆q,wjm(1) ,xj(1),m(1) ,MRj(1) (pm(1) , sm(1) ,Xm(1) ;θd)

)
−ψ (qjm,wjm,xjm,MRj (pm, sm,Xm;θd))

]
.

That is, researchers have to �nd a point
(
qj(1)m(1) ,wj(1)m(1) ,xj(1)m(1) ,pm(1) , sm(1) ,Xm(1)

)
in

the population which satis�es qj(1)m(1) = qjm + ∆q and the 2nd equality. Then, the two points

20



(qjm,wjm,xjm,pm, sm,Xm) and
(
qj(1)m(1) ,wj(1)m(1) ,xj(1)m(1) ,pm(1) , sm(1) ,Xm(1)

)
have approxi-

mately the same cost shock. By continuing this procedure, one can obtain the set of points in

the population
{(
qj(l)m(l) ,wj(l)m(l) ,xj(l)m(l) ,pm(l) , sm(l) ,Xm(l)

)}∞
l=0

, qj(l)m(l) = q(0) + l∆q, l > 0,

that have approximately the same cost shock. That is,

MRj (pm(l) , sm(l) ,Xm(l) ;θd)

= (∆q)−1
[
ψ
(
qj(l+1)m(l+1) ,wm(l+1) ,xj(l+1)m(l+1) ,MRj(l+1) (pm(l+1) , sm(l+1) ,Xm(l+1) ;θd)

)
−ψ

(
qj(l)m(l) ,wm(l) ,xm(l) ,MRj(l) (pm(l) , sm(l) ,Xm(l) ;θd)

)]
.

As we can see, this procedure relies on the numerical derivative which is subject to inaccuracies.

These inaccuracies accumulate if we iterate on l.

Note, in out set up where the cost shock enters multiplicatively in the cost function, the

pseudo-cost function can be expressed as follows.

ψ (qjm,wjm,xjm,MRj (pm, sm,Xm;θd0)) =
C̃ (qjm,wjm,xjm;θc0)

M̃C (qjm,wjm,xjm;θc0)
MRj (pm, sm,Xm;θd0) .

Then, as long as the functional form of the cost function is speci�ed in advance, direct estimation

of C̃ () is more e�cient.

4.3 Identi�cation of market size.

Given the data on output, market share can be derived by dividing the output by the market

size. However, market size may not be directly observable, unless we have a variable that

unambiguously corresponds to it. Here, we follow Byrne et al. (2021) and estimate the market

size as a function of observables zm, which typically would be demographic variables, as follows:

Qm = λ0 + λ1zm.

Here, we use the example of logit demand function to show that market size can be identi�ed.

C∗ (qjm,wjm,xjm, υjm;θc) =
C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)

[
pjm −

1

(1− qjm/Qm)α

]
=

C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)

[
pjm −

λ0 + λ1zm
(λ0 + λ1zm − qjm)α

]
.
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Then, we can identify the market size function separately from the cost function. First, the

parenthesis that includes the price pjm should only have variables that explains the market size,

zm.

4.4 Estimation using translog cost function.

We next discuss the estimation of the parameters of the translog cost function and the logit

market share function. The translog cost function is speci�ed as follows:

lnC∗jm = γ0 + γqlnqjm +
1

2
γqq (lnqjm)2 +

K∑
k=1

γklnwkjm

+
1

2

K∑
k=1

K∑
k′=1

γkk′ lnwkjmlnwk′jm +

K∑
k=1

γkqlnwqlnqjm + lnυjm.

We impose the following restrictions on the cost function parameters so that the cost function

has homogeneity of degree one in input prices:

K∑
k=1

γk = 1,

K∑
k=1

γkk′ = 0,

K∑
k′=1

γkk′ = 0,

K∑
k=1

γkq = 0.

Then, taking the derivative of the log cost function with respect to log output, we obtain:

∂lnC∗ (qjm,wjm,xjm, υjm;θc)

∂lnqjm

=
qjmMC∗ (qjm,wjm,xjm, υjm;θc)

C∗jm
= γq + γqqlnqjm +

K∑
k=1

γkqlnwk. (27)

The remaining parameters γk and γkk′ , k = 1, . . . ,K, k′ = 1, . . . ,K ′ can be identi�ed from the

Shephard's Lemma as follows:

wkjmLkjm
C∗jm

=
∂lnC∗ (qjm,wjm,xjm, υjm;θc)

∂lnwkjm
= γk +

K∑
k′=1

γkk′ lnwk′jm + γkqlnqjm.

Thus, the log likelihood increment of �rm j in market m is

ljm = −K
2
lnπ − 1

2
ln |Σ| − 1

2
U′jmΣ−1Ujm
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where

U1jm = Cjm −

(
γq + γqqlnqjm +

K∑
k=1

γkqlnwk

)−1(
pjm −

1

(1− sjm)α

)
qjm

Uk+1jm = Ckjm −
γk +

∑K
k′=1 γkk′ lnwk′jm + γkqlnqjm

γq + γqqlnqjm +
∑K

k′=1 γk′qlnwk′

(
pjm −

1

(1− sjm)α

)
qjm, k = 1, . . . ,K − 1

and

Σ11 = σ2
c ,

Σk+1,k+1 = σ2
kk, k = 1, . . . ,K − 1

Σk+1,1 = ρσcσkk, k = 1, . . .K − 1,

Σkl = 0, for k 6= l

The log likelihood is the sum of the log likelihood increment:

l =
M∑
m=1

Jm∑
j=1

ljm

As we can see above, we do not need to use any instruments for the estimation of either the

demand parameters or the cost function parameters.

This approach is related to Kumbhakar et al. (2012), who estimate markups using the output

elasticity of translog cost function. They start from the price being above markup

pjm > MCjm ≡
∂Cjm
∂qjm

,

which implies
pjmqjm
Cjm

>
∂lnCjm
∂lnqjm

,

and thus, specify the revenue divided by cost by

pjmqjm
Cjm

=
∂lnCjm
∂lnqjm

+ ujm + υjm = γq + γqqlnqjm +

K∑
k=1

γkqlnwkjm + ujm + vjm, ujm ≥ 0.

We additionally focus on the endogeneity of output with respect to the shock ujm+vjm. That is,

if �rms tend to reduce output to increase markup, then the shock and the output are negatively

correlated, resulting in downward bias of the estimate of γq and thus, the residual ujm + vjm
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could misrepresent the true markup. In our approach, we deal with it by using the marginal

revenue, more explicitly, which we derive from the demand side.

While we can deal with the endogeneity issue of both demand and supply side without

using instruments, we impose some functional form assumptions on both the demand and cost

functions. They can be fairly �exible, except that there are variables in the market share function

but not in the cost function.

5 Monte-Carlo experiments

This section presents results from a series of Monte-Carlo experiments that highlight the �-

nite sample performance of our estimator. To generate samples, we use the following random

coe�cients logit demand model:

sj (pm,Xm, ξm;θd) =

ˆ
α

ˆ
β

exp (xjmβ − pjmα+ ξjm)∑Jm
k=0 exp (xkmβ − pkmα+ ξkm)

dFβ (β;θβ) dFα (α;θα) , (28)

where xjm is the 1×K vector of observed product characteristics. We set the number of product

characteristics K to be 1. We assume that each market has four �rms, each producing one

product (e.g., Jm = J = 4). Hence consumers in each market have a choice of j = 1, . . . , 4

di�erentiated products or not purchasing any of them (j = 0).

On the supply-side, we assume �rms compete on prices a la di�erentiated products Bertrand

competition, use labor and capital inputs in production and have a Cobb-Douglas production

function. Given output, input prices w = [w, r]′ (w is the wage and r is the rental rate of capital),

total cost and marginal cost functions are speci�ed as

C∗ (q, w, r, x, υ) =

[
(αc + βc)

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)]
Bexp (xη + υ) q

1
αc+βc

MC∗ (q, w, r, x, υ) =

[(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)]
Bexp (xη + υ) q

1
αc+βc

−1
.

Notice that in the above speci�cation, the cost function is homogeneous of degree one in input

prices.

To create our Monte-Carlo samples, we generate wage, rental rate, variable cost shock, market

size Qm, and observable product characteristics xjm as follows:

ln (wjm) ∼ i.i.d.TN (µw, σw) , e.g., ln (wjm) = µw + σw%wm, %wm ∼ i.i.d.TN (0, 1) .
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ln (rjm) ∼ i.i.d.TN (µr, σr) , e.g., ln (rjm) = µr + σr%rm, %rm ∼ i.i.d.TN (0, 1) .

Qm ∼ i.i.d.U (QL, QH) .

xjm ∼ i.i.d.TN (µx, σx) , e.g., xjm = µx + σx%xjm, %xjm ∼ i.i.d.TN (0, 1) .

TN (0, 1) is the truncated standard normal distribution, where we truncate both upper and

lower 0.82 percentiles. U (QL, QH) is the uniform distribution with lower bound of QL and

upper bound of QH .

We also specify the unobserved characteristics and the cost shock so as to allow for correlation

between ξjm and input prices, the cost shock, market size and the observed characteristics of the

products other than j in market m denoted by xojm ≡ (1/3)
∑

l 6=j %xlm. Speci�cally, we set:

ξjm = δ0ξ + δ1ξ%ξjm + δw%wm + δr%rm + δυ%υjm

+δQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
+ δx%xlm + δxoxojm,

and

υjm = δ0υ − δ1υ%υjm − δw%wm − δr%rm − δξ%ξjm

−δQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
− δx%xlm − δxoxojm,

where %ξ is the idiosyncratic component of the demand shock.

For transforming the uniformly distributed market size shock to truncated normal distribu-

tion, we use small positive δ = 0.025 for truncation. We truncate the distribution of the shocks

to ensure that the true cost function is positive and bounded given the parameter values of the

cost function we set (which will be discussed later).

By construction, neither market size nor observed product characteristics of own product or

products of other �rms can be used as instruments since they are designed to be correlated with

the cost shock. Furthermore, cost shock is set to be correlated with the demand shock, and thus,

demand side variables such as prices and market shares cannot be used as instruments either.

The only sources of exogenous variation we allow for the model are input prices. We assume

competitive markets for inputs and thus, they are exogenous to the �rm. In other words, we

do not consider monopsony or oligopolistic behavior of �rms in the input markets. In sum, we

exclude the possibilit of any conventional instruments in either demand or supply equation. Since

no instruments for demand estimation is valid, we won't be able to estimate �rst the parameters
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of the market share equation, and then, derive the marginal revenue to derive the equivalent

marginal cost, and then, from the marginal cost, calculate the cost function.

To solve for the equilibrium price, quantity, and market share for each oligopoly �rm, we use

the golden section search on price.5

We estimate the paramters using GLS, where, in this case, we assume we know the true

variance covariance matrix of the measuremente errors, and set it to W = I.

Table 1 summarizes the parameter setup of the Monte-Carlo experiments.

In Table 2, we present the Monte-Carlo results of the direct estimator that estimates the cost

function parameters without using the pseudo-cost function. We report the average, standard

deviation, and square root of the mean squared errors (RMSE) of the parameter estimates

of the BLP market share function and the Cobb-Douglas cost function from 100 Monte-Carlo

simulation/estimation replications. As we can see, the averages of the parameter estimates are

close to the true values, even for the cases with sample size of only 200. Furthermore, the

standard errors and RMSEs of the estimates decrease with the sample size, demonstrating the

validity of our approach.

In Table 3, we present the results where we also allow the observed product characteristics to

be correlated with the unobserved product characteristics and the cost shock. In paticular, we

set corr (xjm, ξjm) > 0 and corr (xjm, υjm) < 0. Then, we can see that the parameter estimates

µ̃β and η̂c, which are the coe�cients of the observed product characteristics are both biased,

indicating the bias due to the correlation mentioned above. Nonetheless, we can see that all the

other parameter estimates are close to the true values, and the standard errors and the RMSEs

decrease with sample size.

We next present the results of the scenario where quantity of inputs are not observable. To

obtain consistent parameter estimates, we require that log wage, log rental rate are uncorrelated

with the cost shock. The results are shown in Table 4. Except for the parameter estimates with

sample size of 200, all the other sample averages of the parameter estimates are close to the

true values. Furthermore, the standard deviations and the RMSEs decrease with sample size.

Overall, if we compare the standard deviations and RMSEs with the ones in Table 2, we can

see that they are higher. Therefore, we conclude that the use of input quantity improves the

e�ciency of the estimation procedure.

5The algorithm for �nding equilibria in oligopoly markets is available upon request.
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6 Conclusion

We have developed a new methodology for estimating the cost parameters of a di�erentiated

products oligopoly model. The method uses data on prices, market shares, and product char-

acteristics, and some data on �rms' costs. Using these data, our approach identi�es demand

parameters in the presence of price endogeneity, and the cost function in the presence of output

endogeneity without any instruments. Moreover, our method can accommodate measurement

error and �xed cost in cost data that do not have to be randomly distributed.
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7 Tables and Figures

Table 1: Monte Carlo Parameter Values

Parameter Description Value

(a) Demand-side parameters
µα Price coef. mean 2.0
σα Price coef. std. dev 0.5
µβ Product characteristic coef. mean 1.0
σβ Product characteristics coef. std. dev. 0.2
µX Product characteristic mean 3.0
σX Product characteristic std. dev. 1.0
δ0 Unobserved product quality mean 2.0
δξ Unobserved product quality std. dev. 0.5
QL Lower bound on market size 5.0
QH Upper bound on market size 10.0

(b) Supply-side parameters
η coef. on observed product characteristics 0.2
µw log wage mean 1.0
σw log wage std. dev. 0.2
µr log rental rate mean 1.0
σr Rental rate std. dev. 0.2
µv log cost shock mean -5.0
σv log cost shock std. dev. 0.1
J Number of �rms in each market 4
B Scaling factor for output in the cost function 1.0

(c) Cost measurement error
σν+ς Measurement std. dev. 0.4

(d) Correlation parameters with unobservables ξjm and vjm
δx ξjm and xjm correlation 0
δxo ξjm and X−jm correlation 0.0833
δw ξjm and wm correlation 0.0833
δr ξjm and rm correlation 0.0833
δv ξjm and vjm correlation 0.0833
δQ ξjm and Qm correlation 0.0833
ζQ vjm and Qm correlation 0.0833

(e) Cobb-Douglas Production Function Parameters
αc Labor coef. in Cobb-Douglas prod. fun. 0.5
βc Capital coef. in Cobb-Douglas prod. fun. 0.3
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Table 2: Parameter estimates based on Shephard's Lemma

(a) Demand side parameters
µ̂α σ̂α

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 2.031 0.3687 0.3682 0.5102 0.1260 0.1258
100 400 1.999 0.2740 0.2726 0.4982 0.1056 0.1051
200 800 1.982 0.1799 0.1798 0.4908 0.0751 0.0753
400 1600 2.001 0.1556 0.1548 0.4965 0.0600 0.0598

True Value 2.0 0.5

(a) Demand side parameters
µ̂β σ̂β

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.9913 0.2412 0.2401 0.2167 0.1155 0.1161
100 400 0.9859 0.1880 0.1876 0.2160 0.0973 0.0981
200 800 0.9896 0.1289 0.1287 0.2048 0.0595 0.0594
400 1600 1.0016 0.1034 0.1029 0.2027 0.0404 0.0402

True Value 1.0 0.2

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.5233 0.0679 0.0715 0.3111 0.0412 0.0425
100 400 0.5144 0.0497 0.0515 0.3057 0.0316 0.0320
200 800 0.5071 0.0419 0.0423 0.3051 0.0281 0.0284
400 1600 0.5034 0.0295 0.0296 0.3014 0.0180 0.0180

True Value 0.5 0.3

η̂

Markets Sample Size Mean Std. Dev. RMSE

50 200 0.1998 0.0130 0.0129
100 400 0.2002 0.0083 0.0082
200 800 0.2007 0.0057 0.0057
400 1600 0.1995 0.0048 0.0040

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1.
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Table 3: Parameter estimates based on Shephard's Lemma
(Product characteristic xjm and unobserved product quality ξjm,

cost shock υjm are correlated)

(a) Demand side parameters
µ̂α σ̂α

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 2.059 0.3790 0.3816 0.5095 0.1398 0.1394
100 400 2.011 0.2512 0.2501 0.5021 0.1053 0.1048
200 800 1.994 0.1631 0.1623 0.4931 0.0793 0.0792
400 1600 2.005 0.1568 0.1560 0.4979 0.0564 0.0562

True Value 2.0 0.5

(a) Demand side parameters
µ̂β σ̂β

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 1.1614 0.2294 0.2795 0.2335 0.1314 0.1349
100 400 1.1542 0.1608 0.2222 0.2151 0.0873 0.0882
200 800 1.1535 0.1087 0.1878 0.2054 0.0594 0.0593
400 1600 1.1606 0.0967 0.1872 0.2040 0.0431 0.0431

True Value 1.0 0.2

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.5210 0.0654 0.0684 0.3098 0.0407 0.0416
100 400 0.5130 0.0500 0.0514 0.3046 0.0303 0.0305
200 800 0.5044 0.0357 0.0358 0.3035 0.0238 0.0239
400 1600 0.5031 0.0278 0.0279 0.3014 0.0170 0.0170

True Value 0.5 0.3

η̂
Markets Sample Size Mean Std. Dev. RMSE

50 200 0.1694 0.0188 0.0358
100 400 0.1688 0.0145 0.0343
200 800 0.1679 0.0098 0.0336
400 1600 0.1666 0.0083 0.0344

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1.
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Table 4: Parameter estimates without using input data
(Product characteristic xjm and unobserved product quality ξjm,

cost shock υjm are uncorrelated)

(a) Demand side parameters
µ̂α σ̂α

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 2.698 2.787 2.860 0.4935 0.2994 0.2990
100 400 2.115 0.5304 0.5403 0.4540 0.1877 0.1923
200 800 2.066 0.3504 0.3546 0.4593 0.1387 0.1439
400 1600 2.035 0.2242 0.2258 0.4837 0.1141 0.1147

True Value 2.0 0.5

(a) Demand side parameters
µ̂β σ̂β

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 1.3284 1.5293 1.5567 0.3348 0.4509 0.4684
100 400 1.0734 0.4003 0.4050 0.2235 0.1437 0.1449
200 800 1.1057 0.2603 0.2652 0.2102 0.0978 0.0979
400 1600 1.1027 0.1593 0.1608 0.2027 0.0755 0.0752

True Value 1.0 0.2

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.5216 0.0733 0.0761 0.3048 0.0917 0.0914
100 400 0.5101 0.0610 0.0615 0.3101 0.0724 0.0728
200 800 0.4997 0.0443 0.0441 0.2983 0.0530 0.0528
400 1600 0.4992 0.0342 0.0340 0.3024 0.0379 0.0378

True Value 0.5 0.3

η̂
Markets Sample Size Mean Std. Dev. RMSE

50 200 0.1968 0.0168 0.0170
100 400 0.1998 0.0106 0.0105
200 800 0.2007 0.0068 0.0068
400 1600 0.1996 0.0060 0.0059

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1.
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