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An Endogeneity Problem in Empirical Cost Functions

A broad number of existing studies estimate cost functions without
considering an endogeneity problem even when the differentiated products
exist in a market.

Their estimated cost function parameters are possibly biased.

Theoretically, firms decide the quantity of outputs g; which maximize their
profits, considering the qualities of their differentiated products.

In their empirical cost functions, an error term u; that includes a cost shock
could correlate with the quantity of output g;.

. A Cov(q;uy)* Y
InC;=a+fFIng; +ylnw; +u;, plimpg =p -I-‘ var(qo) ;i b
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Endogeneity bias
As a cost shock increases, a profit-maximizing firm reduces the quantity of

output. This correlation causes a negative sign of the estimated coefficient of
the quantity of output.



How to Address an Endogeneity Problem (1)

« The most common method: Using instrumental variables (1V)
(An Instrumental Variable (IV) method or a 2 Step Least Square (2SLS) method)

« An instrumental variable may not be available. It is hard to find
a valid instrumental variable that is exogenous and relevant to
an endogenous explanatory variable.

 Two possible instrumental variables are consumers’ income and
the number of family members.

« Both could affect demand for products (relevant), while both could not
affect a production cost directly.

« However, both could correlate with a cost shock through unobserved
public amenities or environment (not exogenous).

InC; =a+fIng; + ylnw; + u;. <— u; includes a cost shock.
IVs: Consumers’ income; and the number of family members



How to Address an Endogeneity Problem (2)

e Qur method: A kind of structural estimation

 QOur idea is to eliminate the cause of an endogeneity problem
from estimated models by considering market structure.

« Based on the same idea, Byrne et al. [2021] proposes a new
method to deal with an endogeneity problem without any
instrumental variable in the empirical demand functions.

« Imaietal. [2019] summarizes Byrne et al. [2021].



Highlight: Our Method to Address an Endogeneity Problem

« A total cost Cis defined as a function of the number of outputs g, input factor
price w, observable qualities of product x, and cost shock v as follows;

~ A cost shock causes
C(q.w,x,v) = C(q,w) * exp(g(x, ¥)— |

an endogeneity problem.

« A marginal cost derived from a total cost necessarily includes the same cost
shock as a total cost.

MC(q,w,x,v) = MC(q,w) * exp(¢p(x, V)

 Therefore, a total costis expressed as a function, where all explanatory
variables are observables using the first-order condition for profit
maximization (F.0.C.)

C(q,w)
‘= CC*M C*%G@Q\) icqw




Highlight: Monte-Carlo Experiments

« A total cost Cis a function of a product price p, the number of market sales g,
market share of the products of the firm s, input factor price w, observable
product quality X.

~

C(q,w)
MC(q,w)

« The estimated model is obtained by specifying ¢, MC, and MR.

A total cost € and a marginal cost MC is driven from either a Cobb=Douglas production
function or a translog production function.

« A marginal revenue MR is specified with either a logit model (Berry [1994]) or a random
coefficient logit model (Berry et al. [1995]).

« A consideration of measurement error is also needed.

C(qg,w,x,v) = * MR(p, s, X).

« Qur results of the Monte-Carlo experiments show that we can obtain
consistent estimators of a cost function by using our method.



When Can Our Method Work? (1)

When the following assumptions hold, our method can work.

Assumption 1 Data requirements

Supply side: A total cost; the number of outputs; and input factor price
demand for input factors (not necessarily needed)
Demand side: market share; and observed product characteristics

Assumption 2 Markets are isolated.

Assumption 3 Differentiated-products oligopoly model: A logit model (Berry [1994]) or
a random coefficient logit model (Berry et al. [1995]) is employed for a demand side.

Assumption 4 Bertrand-Nash equilibrium holds in each market. Then, MC = MR holds.
Assumption 6 Following Gandhi et al. [2020], a total cost C can be expressed as follows;
C=C"+u=C"(qw; 0.)exp(p(x,v)) +u,
where ¢ is the cause of bias which is independent from a true cost C*,

0. is a parameter vector of a cost function.
To apply Shepard’s lemma to a cost function, C*(q,w, x; 6,.) * exp(v) * exp(u) is avoided.



When Can Our Method Work? (2)

Even when data on demand for input factors is not available, we can obtain
consistent estimators of a cost function by adding the orthogonality conditions

(Assumption b).

Assumption 1 Data requirements
Supply side: A total cost; the number of output; input factor price;

demand-forinput-factors

Demand side: market share; observed product characteristics

Assumption 5 The orthogonality conditions



The Advantages and Disadvantages of Our Method:
A Comparison with an IV method and 2SLS

Advantages:

 QOur method could cover the disadvantage of using instrumental
variables (V).

« No statistical test can examine that an |V satisfies the exogeneity requirement. The
Generalized Method of Moments (GMM) overidentification test can verify the null
hypothesis that any statistical difference exists among the IV estimators. When the
null hypothesis is accepted, there is no statistical way to distinguish the valid

instruments from others. Even if the hypothesis is rejected, all Vs may not exogenous.
(Wooldrige [2016])

« So far, no instrumental variable can deal with the selection bias when the potential
entrants are unobservable.

Disadvantages:

« Cost data are required. Our method requires both input factor
price and demand for input factors.



Public sector could satisty our data requirements
while private sector might not.

An Example: A cost function of Japanese public hospitals

e Japan has multiple medical areas
that is a kind of oligopoly markets for medical care.

* Average wage and input factor price ® ~
vary across markets: [ ¢
win has enough variations ‘
to estimate a cost function.

. g




Some Examples of the Specific Models

A Cobb-Douglas cost function and a logit demand function
A translog cost function and a logit demand function

A Cobb-Douglas cost function and a random coefficient logit demand function

= W =

A translog cost function and a random coefficient logit demand function

Supply side Demand side

A Cobb-Douglas cost function |A logit demand function

A translog cost function A random coefficient logit demand function




How to Derive A Cobb=Douglas Cost Function (1)

e Let us assume a Cobb=Douglass production function, where a constant
return to scale does not hold. Firms change the quantities of outputs g given
input factor prices, depending on the qualities of products. Thus, observable
product quality x in addition to a cost shock v affects productivity.

q = [B eXp(xr] + v)]‘(“c"‘ﬁc)L“cKBc

« A Cobb=Douglass cost function is driven from the cost minimization problem
as follows;

C*(qg,w,1,x,v; 6,) = r}}lgl (rK + wlL)

s.t. g = [Bexp(xn +v)] (*+BopacgBe



How to Derive A Cobb=Douglas Cost Function (2)

* A long-term cost function is derived by solving the cost minimization problem,
using a Lagrange multiplier method.

w \%tBc [ 1 \%ctBec _1_
C*(qw,r,x,v; 8;) = |(ac + B¢) (a_> (—) Bexp(xn + v) q%tBe

C

A cost shock

l

CZC ﬁC aC ﬁC 1
lnC*=lnB+ln(aC+ﬁc)—<a n >lnac—< >ln,8c+< )lnw+< >lnr+< )lnq+nx+v
c ﬁC aC +ﬁC aC+ﬁC aC +ﬂC aC +BC
\_Y_)

The causes of bias




How to Derive a Marginal Cost Function

« Now, we have a following cost function;

ac B¢ 1

Jm(%m Wim, Tjms Xjm» Vim; 0 ) [(Clc + Bc) (W]:n)a6+ﬁc (Trézn)acwc] B exp(xjmn + Vim) qac+Bc :

« Let us differentiate a cost function by the number of outputs to derive a
marginal cost function.

1

ac Bc
_ 0 CW@jmWjmT jm Xjm Vim) _ | (Wjm\ac+Be (Tim\ac+Be actBe
MCm(CI]m Winv Tjm» Xjm» Vims ec) = 0 m = ( ) ) (E) B exp(x]mn + V]m) qim

« A cost shock in a total cost and a cost shock in a marginal cost are canceled
each other out, using the first-order condition for profit maximization (F.O.C.)

ij — C ‘ — (l“c + ﬁCI)CIijij

] Returns to scale
1



How to Derive a Marginal Revenue Function (1)

» Following Berry (1994), the utility share of product j in market m is specified
as follows;

6. — exp(ij,B — Djm@& + éjm)
m T )
Z§=0 exp(ij,B —Pim@ + éjm)

where X;,,, is observable product quality of rival firms, p;,, is a product price,
and &, is unobservable product characteristics.

 The logit demand function is driven using the utility that consumer i obtains
from product j in market m that is specitied as follows;

Uiim = XimB — Pjm@ + §jm-



How to Derive a Marginal Revenue Function (2)

- The quantity of output g;,,, can be expressed as the product of the market
share s;,, times the market size Qp, (qjm = QmSim).

 Then, a marginal revenue function is as follows;

MR.. = 0D jmQqjm . apijmSjm?Q’mapijjm
Jm 4 jm 0QmSjm \Qmasjm
-1
=p.. +S; [asjm(pm,Xm, $m; Hd)] =p, — 1
jm = m I jm S (A=sjm)a’



How to Derive a Marginal Revenue Function (3)

Product formula is used.

-1
9S jm (Pm, Xm, &ms 00) 0exp(X jmB—p jma+& jm)[2§=0 exp(XjmB—Djma+§ jm)]
0D jm 0D jm

= exp(XjmB = Pym@ + Ejm) [Zo XD Ky = Pjm + Egm)]| @ = ex0 (X = Dyt + &)’ [Tl XD Ky = Pjma + &) @

-1 -1
=exp(ij,8 —Pjm& + S(jm) [Z§=0 exp(ijﬁ —Pima + fjm)] ll - exp(ij,B — Pjm& + Stjm) [Z§=0 exp(ijﬂ —DPjm& + fjm)] l a

= =Sjm(1 = sjm)



How to ldentify Parameters of a Cost Function
When Data on K and L is Available (1)

e Let us substitute a marginal revenue function for a cost function as follows;

* * L
ij = (a, + ﬁc)qjm * Mij = (a. + .Bc)Qjm * [pjm T a- ]

Sim)®

« The measurement error is added to a cost function as follows;

* 1
Cim = ij T Upy, = (ac + IBC)CIjm * ’pjm — ] + Ui,

« Then, a. + B, and @ can be estimated, using an Ordinary Least Square method
(OLS) or a Maximum Likelihood method (ML).



How to ldentify Parameters of a Cost Function
When Data on K and L is Available (2)

« Let us take a natural logarithm to obtain a liner cost function as follows;

)ln Wim + (acicﬁc) In7j, + (ﬁ) Inqjm +n%jm + Vi -

InCj, =InB +In(a.; + B¢) — (aco-l:ﬁc) Ina, — ( " ﬁc) Inf. + ( oy

alnCJ*m . ac

dlnwjm  act+pc

oC;
« T = 1. holds from Shepard’s lemma. Then ]
OWjm Jm P ’ Cim = WimLjm + TjmKjm
OInCjy _ OINCly  dwjm _ (0InCl 3C/n )\ (0Inwjm 1 (1 " 1 \' WimLjm
J In Wim aW]m dIn Wim ac;m OWjm aW]m C;m jm Wim C;m ’
dlncC: Wi L i
« Therefore, = IR = holds. @, and B, are identified as follows;
C C
0lnwjny Cim ac ,BC

@z = (a7 B.) ngmfm (a7 ﬂc)%, Be = (as ¥ B.) — @,



How to Identify Parameters of a Cost Function
When Data on K and L is Not Available (1)

« When data on demand for inputs are not available, the estimated equation to
identity a. and B, is as follows; A cost shock

|

)ln,BC Inwjy, + % Inry, + ai Inqjm + Nxjm + Vim,
ac B c+Bec c+Bec

InCj, =InB +In(a; + ) — (a:icﬁc) Ina, — (

1
actPc

In G, — ( )ln qjm = (Constant) + ( )ln Wjm + ( ﬁfﬁ )lnrjm + NXjm + Vim,

AcTPc

ac+Pe
%ﬁ) Inwjy, + B (

c c

1
“c+ﬁc

)ln qjm = (Constant) + a, ( /Jlr\ﬁ )ln Tim + NXjm + Vim.

AcTPpc

In Gy, — Ujpy — (

* A cost shock vy, is treated as an error term and assumes that a cost shock
follows a normal distribution.

« @, B., and 7 can be identified by regressing (ln Cim — Ujm — (ﬁ) In Cljm) on

(“Ciﬁc) I Wjn, (aciﬁc) In 7, and Xim -




How to ldentify Parameters of a Cost Function
When Data on K and L is Not Available (2)

 If all explanatory variables are not correlated with an error term which is a cost

shock here, OLS estimators @, B; and 1j are not biased. A cost shock
) ) An error term

A 1
InCjpy, — Ujm — (m) In g, = (Constant) + a, (m) In wj,, + B (m) N7, + NXjm + Vi,

No correlations

« Here, assumption 5 (the orthogonal conditions) needs to be satisfied to obtain
consistent estimators of «, B, and n.

Cov(wjm, vjm) = 0, Cov(rjm, vjm) = 0, Cov(xjm, vjm) =0



An Attempt to Obtain an Estimate of £:

« We do not have g still now. If we can obtain 8, we can conduct a policy simulation using an
estimated demand function.

- To obtain a consistent estimator of 8, the following equation is estimated using an OLS
method without addressing the endogeneity problem in an empirical demand function.

. A logit model (Berry (1994)) is used to identify 8.

exXp(XjmB—Pjma+$§jm) exp(0)
Sim/ S = =« = expl X; — D+ Ein ).
Jm/ om Zf:() exXp(XjmB—Pjma+<$jm) Z§=0 exp(XjmB—a+$§jm) p( ]mlg Pjm gjm)

! mmm

The market share of the 0-th goods ] _
ns,, —lIns ma = X; .
Purchase the 0-th goods Jm om T Pjm Jm'B + gjm

= Purchase nothing in market m _ _
« [ can be obtained by regressing (lnsjm —In sy, + pjma) on Xip,.

Utility level of no purchase equals zero.

* If X, is correlated with &, an OLS estimator 8 is biased.



A Comparison of Our Parametric Approach
and a Non-parametric Approach in Byrne et al. (2021)

e Byrne et al. (2021) employs a non-parametric approach and
estimates a more general function.

Our Parametric Approach A Non-parametric Approach in Byrne et al. (2021)

_ é;;n(qjm' Wim» Xjm; o)

- @(Qjm: Wim» Xjms 00)

ij * MR; (Pmo Sm> Xms 0a) Cj>;71 =1 (Qjm; Wimsr Xjm. MR (P, Sy Xm; Hd))

When a Cobb-Douglas cost function and a logit market share function are employed:;
1

1-— sjm)a_

Cj*m = (ac + ﬁc)CIjm Pjm — ( =Y (Qjm: Wim, Xjm, MR (D, Ss Xims Hd))

« While a non-parametric approach in Byrne et al. (2021) needs to

estimate ¢ to obtain parameter estimates a. + . and &, we directly
estimate a. + B, and a. Our direct estimation is more efficient.



Some Examples of the Specific Models

A Cobb-Douglas cost function and a logit demand function
A translog cost function and a logit demand function

A Cobb-Douglas cost function and a random coefficient logit demand function

= W =

A translog cost function and a random coefficient logit demand function

Supply side Demand side

A Cobb-Douglas cost function |A logit demand function

A translog cost function A random coefficient logit demand function




A Translog Cost Function

« A translog production function is specified as follows;

1
In djm = bO + Zlk<=1 bk In Lkm + 52115:1 Zlk{’=1 bkki In Lkm In Lkim _ (nxqjm + qum)-

« Then, the corresponding translog cost function is as follows;
InC*;, = 1 Ly (1 R SRV 1
ncC jm — Yo + Vq nq]m + Eyqq( nCI]m) + Zk:l ykq anjm nq]m A cost shock

K 1yK K
+ Xge=1 Vi N Wy jm + 52k=1 2 =1 Y kk! M Wicjm INWer sy + 025 + Ujpe
\ )
|

C . _ The causes of bias
« A restrictions on the homogeneity of degree are as follows:

Z§=1 Ve =1, Z§=1 Yk = 0, ZE’=1 Yik =0, Xh=1 Ykqg = 0.



Estimated Equations (1)

« A total cost can be rewritten by using the first order condition for profit
maximization (F.O.C.) as follows:

* *

-1
RGN = A A
MG \0an) \Gu) ~\oamm) \ TG ) “\gm) gy = Um|fa Vel 2, Via W Wigm -

MC;, Insert 0 In g, instead of 9Cjy,,

 Therefore, an estimated translog cost function is as follows;
-1
1

1- Sjm)a

+ u]'m.

K
ij = Cj>;n + Uim = Qjm |Vq T Vqq In qjm T z Vkq lnijm [pjm - (
k=1

* Then, v, Vg, Viq, @nd @ can be obtained as OLS estimators or ML estimators.



Estimated Equations (2)

* Now, 7, V44, @and v, can be obtained while y;; and y;,, are still not obtained.

K K
1 1
lnC*]m—a0+yqlnq]m+ yqq(lnq]m) +Zqu1an]m1nq]m+Z]/k1an]m EZ Z Yiir IN Wy jm Inwys jm T Uim
 In order to obtain estimates of the rest parameters, y, and y,,, the equation
which is driven from the Shephard’s Lemma is estimated.

0Cim

= Ljm holds from Shepard’s lemma. Similar to a case of a Cobb=Douglas
jm

cost function, the estimated equation can be obtained as follows;.
" K
dInC (CIjm: Wim» Xjm» UVims 6c) _ ijmijm
d Inwy jim Cim

=YrqgInq + v + Z Vi I0Wyr i,

k'=1
K

= VigIng +y; + z Vi IMWyer i + €jm.
k'=1

0 In C (qm» Wjm» Xjm»> Vim; 6Oc)
dIn Wk im




The Monte-Carlo Experiments

« Table 1 shows how to set the parameter values for the  consumers’ Five Choices
Monte-Carlo experiments to examine whether we can in Oligopoly Market m
obtain consistent parameters using our method.

 Only input factor price w is exogenous, while other
explanatory variables are endogenous. j=1 Products of firm 1

« A multiple-inputs-and-a-single-output production j=2 Products of firm 2
model is assumed for each firm.

« Four firms exist in each oligopoly market.
« Sample size: 4 products x (the number of markets) J=#% Productsoffirm 4

j=0 Not purchase

j =3 Products of firm 3



Some Examples of the Specific Models

A Cobb-Douglas cost function and a logit demand function
A translog cost function and a logit demand function

A Cobb-Douglas cost function and a random coefficient logit demand function

= W =

A translog cost function and a random coefficient logit demand function

Supply side Demand side

A Cobb-Douglas cost function |A logit demand function

A translog cost function A random coefficient logit demand function




Table 1: Parameter values of Monte-Calro experiments

Supply side

Demand side

Cobb-Douglas Production Function

Random Coefficient Logit Demand Function

R e
Parameter Value Parameter Value
a . Uy 2.0
. 0.3 o 0.5
Uy, 1.0 Ug 1.0
Oy 0.2 op 0.2
Uy 1.0 Uy 3.0
o 0.2 Oy 1.0
Uy -5.0 e 2.0
oy 0.1 Of 0.5
B 1.0 Lower bound on market size 5.0
The standard deviation of Upper bound on market size 10.0
a measurement error 0.4
for a total cost J 4.0

Here, a variable returns to scale (a. + B, # 1) is assumed.




Table 1: Continued

Endogenities

Correlation coefficient Value
Corr(fjm, xjm) 0 or 0.833
Corr(fjm, ij) 0.833
Corr(Ejm, Wi ) 0.833
Corr(fjm, rm) 0.833
Corr(fjm, vjm) 0.833
Corr(€jm, Qm) 0.833
Corr(vjm, Qm) 0.833




Table 2: Estimated Results when data on K and L is available (Corr(é im xjm)=0)

(a) Demand side parameters

— Ha Oa
Markets Sample Size | Mean J Std DM Mean Std Dev. RMSE
a0 200 2.031 0.3687 0.3682 Q2 0.1260 0.1258
100 400 1.999 0.2740 0.2726 0.4982 0.1051
200 300 1.982 0.1799 01798 0.4908 0.0753
400 1600 2.001 0.1556 0.1548 0.4965
True Value 2.0 0.5
(a) Demand side_poromebess
fig oL
e——
Markets Sample Size J Mean | Std. Dev. RMSE  Mean  Std Dev.}@E
a0 200 0.9913 0.2412 0.2401  0.2167
100 400 0.9859 0.1880 01876 0.2160
200 800 0. 9896 0.1289 0.1287  0.204
400 1600 1.0016 0.1034 0.1029
True Value 1.0 0
(b oduction funection par r:tr:rl
[ Be
Markets Sample Size | Mean J Std Dev, Mfan ] Std Dev. RMSE
a0 200 0.5233 0.0679 0.3111 0.0412 0.0425
100 400 0.5144 0.0497 0.3057 0.0316 0.0320
200 800 0.5071 0.0419 0.,3051 0.0281 0.0284
400 1600 0, 5034 0.0295 0.3014 0.0180 0.0180
True Value 0.5 / I 0.3
7
— |
Markets Sample Size | Mean | Std, Dev., RMSE
a0 200 0,1998 0.0130 0.0129
100 400 02002 0.0083 0.0082
200 00 02007 00057 00057
400 1600 0,1995 0.0048 0.0040
True Value 0.2

A consistent estimator
of each parameter



Table 3: Estimated Results when data on K and L is available (Corr(¢ im xjm)>0,

(a) Demand side parameters

Corr(vjm, xjm)>0)

Hex T
Markets Sample Size | Mean | Std. DME Mean Std Dev. RMSE
al 200 2,031 0.3687 0.3682 : 0.1260 0.1258
100 400 1.999 0.2740 0.2726 0.498 0.1051
200 800 1.982 0.1799 0.1798 0.4908 0.0753
400 1600 2.001 0.1556 0.1548 0.4965
True Value 2.0 0.5 A consistent estimator
(a) Demand side parameters
i of each parameter
—
Markets Sample Size | Mean § Std. Dev. RDMSE
al 200 0.9913 0.2412 0.2401
100 400 0.9859 0.1880 0.1876
200 800 0.9896 0.1289 0.1287
400 1600 1.0016 0.1034 0.1029 .
: < Not consistent
True Value 1.0 .
(ﬁmadan funetion par
e
Markets Sample Size | Mean J§ Std. Dev, RMSE
al 200 0.5233 0.0679 0.0425
100 400 0.5144 0.0497 0.0320
200 800 0.5071 0.0419 0.0284
400 1600 0.5034 0.0295 0.0180
True Value 0.5 /
U
—
Markets Sample Size | Mean J Std. Dev. RMSE
a0 200 0.1998 0.0130 0.0129
100 400 0.2002 00083 0.0082
200 800 0.2007 00057 0.0057
400 1600 0.1995 00,0048 0.0040
True Value 0.2




(o) Demand stde porameters

o Tou
Markets Sample Size Mean [ Std. Dewv. Mean Std. Dev.  RMSE
all 200 2608 2787 2860 (1.4 [1.2004 (120010
L0 400 2115 [1.5304 05405 04540 o (1923
200 a00 2066 [1.3504 [.A546 0 04593 (1587 450
40n Lo 2055 0.2242 [.2258 (L4837 1141
True Value 2.0 (1.5
(i) Demand st Ta
fig o8
Markets Sample Size Mean f Std. Dev.  RMSE Mean St Lh'r./ﬂ."il-;
Al 200 13284 15203 LAs6aT  0.3348 (1.4
L 400 L0734 [.4003 (A0S0 02205 71407 /1140
200 a00 L1057 [.26G05 02652 0.2102 [.0a78
400 LGO0 L1027 (1505 [.1608 ; L0755

True Value

10 e

M— 1 .
(b} Progefetion function porogfheters
&1: ,3-::

Markets Sample Size Mean f Std. Dev.  RMSE I Myfn Std. Dev. RMSE
ol 2010 (L5216 [.0735 [.0761 E1IEL [n.0aLs oo
L0 4010 [.5101 00610 71 03101 [.0724 0728
200 &1 4997 (0445 [1.2983 [1.0530 [052H
40n LG0n 14902 [.0342 [.3024 (L0570 (03T H

True Value

1] / 0.3
Ie——

Markets Sample Size Mean [ Std. Dev.  HMSE
Al 200 11968 (L0168 (01710
Lon 400 119095 (L0106 (L0105
200 a00 02007 00068 [1.006G8
400 Lann (199G [1.0060 10055

True Value

.z

Table 4: Estimated Results when data on K and L is not available (C orr(f im xjm)=0)

A consistent estimator
of each parameter

The estimators in Table 4
are less consistent

than those in Table 2.

It is probably because

a cost shock is treated as
an error term.



Remaining Problems and the Future Research (1)

To compare our method with a method using instrumental
variables (IVs), using the Monte-Carlo experiments

« Our method considers a measurement error differently from a
method using IVs. A comparison of our method and an |V
method is needed.

« Our Method: C*(q,w, x; 8,) * exp(v) + u
« An IV Method: C*(q,w, x; 6,) * exp(v) * exp(u)

To improve the consistency of g when &;,, is correlated with x;,

To extend the current single output model to a multiple output
model



Remaining Problems and the Future Research (2)

« A theory of a cost function is based on the assumption that all
product quality is homogenous. However, our method assumes
a homogenous production function for all product differentiated
firms. We need to discuss this more carefully.
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