(In)Efficient Separations, Firing Costs and Temporary Contracts

Andrea Gerali, Elisa Guglielminetti, Danilo Liberati

Bank of Italy

Keio Macroeconomics Workshop

2 November 2021

The views and opinions expressed herein are those of the authors and do not necessarily reflect the position of the Bank of Italy.

Introduction ●0000	Single contract 0 0000 00 000000	Dual market 0 000000 000000	$\operatorname{Appendix}$ 000000000000000000000000000000000000

Motivation

- Labour market rigidities are often blamed for the relatively poor performance of the European labor market compared to US
- During the '90s and the '00s many European countries have implemented labor market reforms **mixed success**:
 - Spain and Italy: reforms and counter-reforms to liberalize the use of fixed-term contracts and lower dismissal costs
 - Success of broad reform packages: Hartz reforms in Germany (2004-2007), Portugal's Memorandum (2011-2014)

Introduction 0●000	Single contract 0 0000 00 000000	Dual market 0 000000 000000	${ m Appendix}$ 000000000000000000000000000000000000

This paper

- We investigate how **employment protection** affects social efficiency and unemployment.
 - Employment Protection on Regular contracts (EPR)
 - ▶ Introduction of fixed-term, Temporary contracts (Dual mkt)
- Crucially, the answer depends on the **interaction** with other labor market institutions (LMIs), such as generosity of unemployment benefits and wage setting protocol.
- What is the *constrained optimal* level of employment protection?
 - Analytical results
 - Quantitative application on Italy
- We adopt a **general equilibrium** approach to take into account externalities.

	pendix 0000000000000
--	-------------------------

Related literature

• Macro effects of labor market institutions

- Empirics: Nickell and Layard (1999), Blanchard and Wolfers (2000), Bassanini and Duval (2009), Gnocchi, Lagerborg, and Pappa (2015), Boeri and Jimeno (2016)
- Theory: Mortensen and Pissarides (1999), Blanchard and Giavazzi (2003), Garibaldi and Violante (2005), Zanetti (2011), Cacciatore and Fiori (2016), Murtin and Robin (2018)

• Effects of employment protection

- EPR: Blanchard and Tirole (2008), Karabay and McLaren (2011), Boeri, Garibaldi, and Moen (2017), Lalé (2019)
- Dual mkt: Bentolila and Saint-Paul (1992), Blanchard and Landier (2002), Sala, Silva, and Toledo (2012), Berton and Garibaldi (2012), Cahuc, Charlot, and Malherbet (2016), Veracierto (2007), Alonso-Borrego et al. (2005)

Introduction 00000	Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 0000000000000000

Preview of the results

- The **optimal level of EPR** can be positive and it increases with the degree of rigidity introduced by **other LMIs**.
 - ▶ In Italy the optimal level of firing costs during the period 1985-1995 was estimated at 2.5 monthly wages
- EPR is welfare improving as long as it reduces job destruction but there is an upper bound to this effect. However, too high firing costs generate sizable welfare losses.
 - ▶ In Italy too high firing costs during the period 1985-1995 (3.5 monthly wages) generated a consumption loss of 1.7% compared to the second best allocation
- The introduction of temporary contracts is welfare improving when EPR is *too high*, but generates high labor turnover, with potential side effects.
 - The flexibility introduced in Italy during the 2000s closed around 1/4 of the gap between the inefficient pre-reform allocation and the single-contract second best allocation

Introduction 0000●	Single contract 0 0000 00 000000	Dual market 0 000000 000000		Appendix 00000000000
-----------------------	--	--------------------------------------	--	-------------------------

Outline

1. Introduction

2. Single contract

The setup LMIs and social efficiency Constrained optimal level of EPR

3. Dual market

Introduce temporary contracts Quantitative analysis

4. Conclusions

		Single contract • • • • • • • • • • • • •	Dual market 0 000000 000000		Appendix 00000000000000000
--	--	--	--------------------------------------	--	-------------------------------

Outline

1. Introduction

2. Single contract

The setup LMIs and social efficiency Constrained optimal level of EPR

3. Dual market

Introduce temporary contracts Quantitative analysis

4. Conclusions

Introduction 00000	Single contract \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	Dual market 0 000000 000000	Conclusions 000	Appendix 00000000000000000
The setup				

Overview of the model

- The **representative household** consumes and invests in bonds. Labor supply is fixed Households
- The **government** gets fiscal revenues from layoff taxes and from a lump-sum component, which adjusts to finance unemployment benefits (balanced budget) Gov't
- The labor market is characterized by **labor market frictions**: unemployed workers (u_{t-1}) search for jobs and firms post vacancies (v_t) . Hires are determined by an aggregate matching function $m(v_t, u_{t-1})$ Laws of motion
- Each firm-worker match **produces** using linear technology s.t. aggregate & idiosyncratic productivity shocks: $y_{it} = A_t + z_{it}$

Resource const.

	Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 000000000000000
The setup			
The berg			

Labor market institutions

We consider these labor market institutions (LMIs):

- 1. γ : level of firing costs (EPR: Employment Protection on Regular contracts) paid by the firm upon layoff
- 2. b: unemployment benefits paid to unemployed individuals and financed by the government through lump-sum taxes
- 3. Θ_w : trade union density, which affects wage rigidity (the higher Θ_w , the less firms can adjust wages to idiosyncratic shocks)

We study the **interaction** among them, and whether there exist an **optimal** level of γ , given the levels of b and Θ_w

	Single contract $0 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 000000$	Dual market 0 000000 000000	Appendix 0000000000000000
The setup			

Firm's decisions

• Value of a productive match:

$$J(z_{it}) = y(\cdot) - w(\cdot) + \mathbb{E}_t \left\{ \beta \frac{\lambda_{t+1}}{\lambda_t} \left[(1-\phi) \max \left\{ J_{t+1}, V_{t+1} - \gamma \right\} + \phi V_{t+1} \right] \right\}$$

For a new match: $z_{it} = \overline{z}$ (max of the idiosyncratic prod). Workers

• Job creation: free-entry by firms until $V_t = 0$ or:

$$\frac{c}{q_t} = J_{0t}(\bar{z})$$

where $q(\theta_t)$ is the job filling probability.

• Job destruction: exogenous (at rate ϕ) + endogenous \rightarrow in any period a new z_{it} is drawn and the firm decides to continue iff $z_{it} \geq \tilde{z}_t$. Otherwise the worker is laid off and the firm pay the firing cost γ

$$S_t^F(\tilde{z}_t) = J_t(\tilde{z}_t) - V_t + \gamma = 0$$

Wage setting schemes

- 1. Flexible wages: wages are renegotiated whenever a shock occurs and set through Nash bargaining. Nash
- 2. **Rigid wages**: The wage is a weighted average of the efficient Nash-bargained wage $-w^n(z_{it})$ and a wage norm $-w_t^*$.

$$w(z_{it}) = (1 - \Theta)w^n(z_{it}) + \Theta w_t^*$$

where Θ is a proxy for trade union density.

When $\Theta > 0$ wages cannot perfectly adjust to idiosyncratic productivity shocks \rightarrow there exist **privately inefficient** separations when wage is too high and firms cease a match with negative *firm* surplus, but positive *total* one.

	Single contract 0 0000 0 0000000	Dual market 0 000000 000000	Appendix 0000000000000000
LMIs and social effic	eiency		

Effects of LMIs on social efficiency

Question: How do LMIs affect allocative efficiency?

Compare:

- (i) The decentralized competitive allocation Details
- (ii) Social planner allocation (*first best*): efficient allocation that would be selected by a social planner who maximizes welfare subject only to technological constraints and search and matching frictions, abstracting from LMIs (Detail)

Steps:

- 1. Study the role of unemployment benefits (b) and trade union density (Θ) by setting firing costs to 0 ($\gamma = 0$)
- 2. Re-introduce firing costs as a way to compensate inefficiencies generated by other institutions (taken as given)

	Single contract		Appendix
	0 0000 0 0 000000	0 000000 000000	
LMIs and social ef	ficiency		

Effects of LMIs on social efficiency: results

Proposition 1

- 1. Positive unemployment benefits determine a sub-optimal low level of job creation and a sub-optimal high level of job destruction
- 2. Wage rigidities determine a sub-optimal high level of both job creation and job destruction

Sub-optimal high level of job destruction \Rightarrow market allocation generates *so-cially inefficient* separations:

- unemployment subsidies: they are distortive while taxes to finance them are lump-sum. So hh's fail to recognize that subsidies cancel out with taxes
- wage rigidity: here separations are also *privately inefficient* because they could be neutralized by appropriate side payments between the firm and the worker

Gerali, Guglielminetti, Liberati

	Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 0000000000000000
Constrained optime			

Can firing costs restore efficiency?

Question: Can EPR be used to compensate the inefficiencies generated by the other LMIs?

- The effects of EPR is *a priori* ambiguous because it may help reducing excessive job destruction but may also hinder job creation.
- We need to find the optimal level of EPR conditional on the other LMIs (*second best*):
 - 1. We derive analytically the constrained optimal level of firing costs by solving a suitable Ramsey problem (Details)
 - 2. Application to the Italian economy

	Single contract 0 0000 00 00000	Dual market 0 000000 000000	Appendix 00000000000000
Constrained optim	al level of EPR		

Can firing costs restore efficiency? (1) Analytical results

Proposition 2

The optimal level of firing costs which implements the second-best allocation is:

1. equal to zero in absence of unemployment benefits and trade union density $(b = \Theta_w = 0)$

2. monotonically increasing in the amount of unemployment benefits b $\left(\frac{\partial \gamma^*}{\partial b} > 0\right)$

3. monotonically increasing in trade union density $\Theta_w \left(\frac{\partial \gamma^*}{\partial \Theta_w} > 0 \right)$

	Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 00000000000000000
Constrained optimal l	evel of EPR		

Can firing costs restore efficiency? (2) The case of Italy

Calibrate the model to the Italian economy in 1985-1995 (high firing costs); afterwards, several reforms liberalized the labor market by introducing temporary contracts

	Parameter	Value	Source
Targeted moments			
Interest rate	-	11.9%	avg. ann. int. rate (1985-1995)
Unemployment rate	u	9.4%	avg. unemp. rate (1985-1995)
Job finding rate	$f(\theta)$	0.4	D'Amuri et al. (2021)
Quits out of total separations	$\bar{s} = \phi / \delta$	60%	Comunicazioni Obbligatorie
Hiring costs as $\%$ of GDP	$\bar{h} = c n_0 / Y$	1%	Blanchard and Galí (2010)
Institutional parameters			
Benefits over labor income	$\frac{bu}{w(1-u)}$	0.04	Luksic (2020)
Trade union density	Θ_w	40%	OECD
Firing cost as fraction of avg. perm wage	γ/w	1.2	Garibaldi and Violante $\left(2005\right)$

	Single contract 0 0000 00 000●00	Dual market 0 000000 000000	Appendix 0000000000000000
Constrained optima	al level of EPR		

Figure 1: Long-run effects of firing costs

Gerali, Guglielminetti, Liberati

Labor mkt institutions

Figure 2: Optimal firing costs γ^*

In panel a) the wage rigidity parameter is set at its benchmark value ($\Theta_w = 0.4$); in panel b) unemployment benefits are at their benchmark level (b = 0.37).

	Single contract		Appendix
	0 0000 00 00000●	0 000000 000000	
Constrained optim	al level of EPR		

LMIs and efficiency in Italy: summary of results

- The downward wage rigidity determined by unemployment benefits and trade union density generate inefficient job separations
- In this context, a moderate amount of firing costs is welfare-improving: the Ramsey planner would choose a level of firing costs roughly equal to 2.5 monthly wages (0.83 at quarterly frequency)
- Beyond optimal EPR, the negative impact on job creation prevails
- The stricter firing restrictions faced by Italy (3.5 monthly wages) generated a sizeable consumption loss (1.7%) compared to Ramsey
- Practical solution: **flexibility at the margin** (introduction of temporary contracts). Welfare improving?

00000	
	0000
	00

Dual market

Conclusions 000

Outline

1. Introduction

2. Single contract

The setup LMIs and social efficiency Constrained optimal level of EPR

3. Dual market

Introduce temporary contracts Quantitative analysis

4. Conclusions

	Single contract 0 0000 00 000000	Dual market ○ ●00000 ○00000	Appendix 000000000000000000000000000000000000
Introduce tempora	ry contracts		
Research qu	iestions		

- Can temporary contracts restore efficiency when EPR is too high?
- Can temporary contracts substitute for excessive job security in regular contracts?
- What is the constrained optimal level of duality?

	Single contract 0 0000 00 000000	Dual market 0 0●0000 000000	Appendix 0000000000000000
Introduce tempora			

Introduce temporary contracts (1)

- Temporary contracts (TCs) are characterized by:
 - No firing costs $(\gamma^T = 0)$
 - No wage rigidity $(\Theta_w^T = 0)$
 - Expiration rate ι : if expired, can be converted to permanent; if not, can be renewed a limited number of times
 - Cost of posting a vacancy c^T
- In this setup c^T can serve as proxy for legal impediments to the introduction of TCs
- By setting c^T to a very high number, we are indeed able to replicate the single-contract economy

Introduce temporary contracts		Single contract 0 0000 00 000000	Dual market 0 00●000 000000	Appendix 0000000000000000
	Introduce tempora	ry contracts		

Introduce temporary contracts (2)

The introduction of TCs implies a modification of the single contract model by:

- new budget constraint Budget constraint
- new laws of motions Law of motions
- new firms' value functions for TCs Firms' value functions for TCs
- new workers' value functions for TCs Workers' value functions for TCs
- new Nash and effective wages for TCs Wages for TCs
- new JC and JD: see next slides

	Single contract 0 0000 00 000000	Dual market 0 000●00 000000	Appendix 00000000000000
Introduce tempora	ary contracts		

Job creation

• One-sided directed search:

- Firms can post vacancies in either the temporary or permanent submarket
- ▶ In both submarkets they face the same pool of (unemployed) workers
- Firms trade off the *ex-ante* benefits of a quick search with the *ex-post* costs of EPR
- Spillovers from the market of regular jobs to the one of TCs:

$$(job finding rate)^{T} = f_{t}^{T} (1 - f_{t}^{P})$$
$$(job filling rate)^{T} = q_{t}^{T} (1 - f_{t}^{P})$$

- Free-entry in both markets
- **Co-existence** of temporary and permanent contracts in the flow of new matches

		Dual market	Appendix
	0 0000 00 000000	0 000000 000000	
Introduce tempora	ry contracts		

The reduced TCs' model

By following (and doubling) the same steps as in the single-contract economy we derive the reduced equilibrium form of the dual market model as:

$$\begin{split} S_{t}^{F}(\tilde{z}_{t}^{C}) &= J_{0t}^{P}(z_{it}) - V_{t} = 0\\ S_{t}^{F}(\tilde{z}_{t}^{T}) &= J_{t}^{T}(z_{it}) - V_{t} + \gamma^{T} = 0\\ \tilde{z}_{t}^{C} &= \tilde{z}_{t}^{P} + \frac{\gamma^{P}}{[1 - \eta\left(1 - \Theta_{w}^{T}\right)]}\\ \frac{c^{T}}{\xi_{t}^{T}} &= \left[1 - \eta\left(1 - \Theta_{w}^{T}\right)\right](\bar{z} - \tilde{z}_{t}^{T}) - \gamma^{T} \end{split}$$

	Single contract 0 0000 00 000000	Dual market 0 00000● 000000	Appendix 00000000000000
Introduce temporar	y contracts		

The experiments

- We calibrate c^T and ι to match Italian data in the period 2003-2012:
 - average share of TCs must equal 12.6% (→ c^T is 60% higher than c^P)
 transition rate from a temporary job to unemployment equal to 0.29
 (→ ι = 0.083 corresponding to a maximum duration of 12 quarters)
- We then perform several experiments:
 - lowering c^T to simulate the gradual liberalization of TCs
 - lowering ι to simulate extending their duration
 - ▶ increasing γ^T to simulate increasing employment protection
 - increasing Θ_w^T to simulate increasing wage stickiness

00000	
	0000
	00

Dual market 0 000000 000000 Conclusions 000 Appendix 000000000000000

Quantitative analysis

LR effects of cost of creating a TC $\left(1\right)$

00000	

Single contract 0 0000 00 Conclusions 000

Quantitative analysis

LR effects of cost of creating a TC (2)

00000	

Single contract 0 0000 00 000000 Dual market 0 000000000000 Conclusions 000

Quantitative analysis

LR effects of TC's expiration rate (1)

00000	

Single contract 0 0000 00 Dual market 0 000000 000000 Conclusions 000

Quantitative analysis

LR effects of TC's expiration rate (2)

- \longrightarrow Italian economy without temporary contracts (single-contract)
- ---Counterfactual single-contract Italian economy with optimal firing costs

	Single contract 0 0000 00 000000	Dual market ○ ○○○○○○ ○○○○●○	Appendix 00000000000000
Ouentitative engly	aia		

LR effects of TC's employment protection and wage stickiness (w.r.t. the single-contract economy

	Single contract 0 0000 00 000000	Dual market 0 000000 00000●	Appendix 000000000000000
Quantitative analysis			

Answers to the research questions

- The introduction of TCs increases social welfare and closes around **one fourth of the gap** between the decentralized single-contract economy (blue line) and the optimal EPR policy (orange line)
- Social welfare is maximized when TCs are almost fully liberalized, hence when there are no limits to their duration and when the cost of posting a vacancy for a temporary job is only slightly higher than the cost of creating a regular job
- Overall, starting from the single-contract scenario, the most dangerous policy is introducing temporary contracts with no firing costs but still rather inflexible wages: ideally, **one would have TCs with fully flexible wages and a moderate degree of firing restrictions**

Single contract o ooco oo oocooo	Dual market 0 000000 000000	Conclusions ●00	Appendix 000000000000000000000000000000000000

Outline

1. Introduction

2. Single contract

The setup LMIs and social efficiency Constrained optimal level of EPR

3. Dual market

Introduce temporary contracts Quantitative analysis

4. Conclusions

Single contract 0 0000 00 000000	Dual market 0 000000 000000	$\begin{array}{c} \text{Conclusions} \\ \text{O} \bullet \text{O} \end{array}$	$\operatorname{Appendix}$ 000000000000000000000000000000000000

Wrap up

- Employment protection on regular contracts has non-linear effects
- The *optimal* level of employment protection increases with downward real wage rigidities generated by other LMIs
- Flexible contracts can mitigate the effects of excessive firing costs but exacerbate turnover
- Policy implication: need of unified design of labor market policies

THANKS FOR YOUR ATTENTION

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix •00000000000000

Households Back

The **representative household** consumes and invests in bonds. Labor supply is fixed and equal to 1.

$$W_t^H = \max_{C_t, B_t} \left[\log C_t + \mathbb{E}_t \beta W_{t+1}^H \right]$$

s.t. $C_t + B_t = R_{t-1} B_{t-1} + w_{0t} n_{0t} + w_t n_t + b u_t + \Pi_t^F - \bar{T}_t$
 $\Pi_t^F = Y_t - w_{0t} n_{0t} - w_t n_t - c v_t - (1 - \phi) G(\tilde{z}_t) (n_{0t} + n_t) \gamma$
 $\bar{T}_t = T_t + (1 - \phi) G(\tilde{z}_t) (n_{0t} + n_t) \gamma$

where

- We distinguish between **newly hired** (n_{0t}) and **incumbent workers** (n_t) because they earn a different wage $(w_{0t} \text{ and } w_t)$
- Π_t^F : firm's profits \Rightarrow production (Y) labor income vacancy costs (cv_t) firing costs $((1 \phi) G(\tilde{z}_t) (n_{0t} + n_t) \gamma)$

• T_t: lump-sum taxes Gerali, Guglielminetti, Liberati

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix o●ooooooooooooooo

$$\bar{T}_t = T_t + (1 - \phi) G(\tilde{z}_t) (n_{0t} + n_t) \gamma$$
$$bu_t = T_t$$

Notice that:

- Total taxes \overline{T}_t are made of two components: T_t , collected lump-sum but adjusted each period to finance unemployment benefits, plus layoff taxes, collected via dismissals [Albertini and Fairise (2013)]
- Unemployment subsidy (b) does not have any proper insurance motive (pooled consumption within the household): however, it affects both labor supply and demand, interacting with other LMIs
- Firing costs (γ) do not represent a pure waste because they finance the government and reduce the need to levy additional taxes

Introduction Single contract Dual market 00000 0 0 0000 00000 000000 00 000000 000000 000000 000000 000000		Appendix 000000000000000000000000000000000000
--	--	--

Laws of motion

$$1 = n_{0t} + n_t + u_t$$
$$n_{0t} = f_t u_{t-1}$$
$$n_t = (1 - \delta_t)(n_{0t-1} + n_{t-1})$$

where

- f_t is the job finding rate
- δ_t is the overall separation rate (exogenous + endogenous separations)

		Appendix
0 0000 00 000000	0 000000 000000	000000000000000000000000000000000000000

Aggregate resource constraint

• Total production

$$Y_t = n_{0t} \left(A_t + \bar{z} \right) + n_t \left(A_t + \int_{\bar{z}_t}^{\bar{z}} z' dG(z') \right)$$

$$Y_t = C_t + cv_t$$

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 000000000000000000000000000000000000

Worker's value functions

• Value of unemployment:

$$U_t = b + \mathbb{E}_t \beta \frac{\lambda_{t+1}}{\lambda_t} \left[f_{t+1} W_{0t+1}(\bar{z}) + (1 - f_{t+1}) U_{t+1} \right]$$

where f_t is the job finding rate.

• Value function for a worker:

$$W_t(z_{it}) = w_t(z_{it}) + \mathbb{E}_t \beta \frac{\lambda_{t+1}}{\lambda_t} (1-\phi) \left[\int_{\tilde{z}_{t+1}}^{\tilde{z}} W_{t+1}(z') dG(z') + G(\tilde{z}_{t+1}) U_{t+1} \right]$$
$$+ \mathbb{E}_t \beta \frac{\lambda_{t+1}}{\lambda_t} \phi U_{t+1}$$

Introduction Single contract Dual market Cc 00000 0 0 00	
---	--

Nash bargaining

Wage setting:

$$(1 - \eta) (W_t(z_{it}) - U_t) = \eta (J_t(z_{it}) - V_t + \gamma)$$

$$(1 - \eta) (W_{0t}(\bar{z}) - U_t) = \eta (J_{0t}(\bar{z}) - V_t + \gamma)$$

After some algebra we obtain:

$$w_t^n(z_{it}) = (1-\eta)b + \eta \left\{ y_t(A_t, z_{it}) + \mathbb{E}_t \beta \frac{\lambda_{t+1}}{\lambda_t} c\theta_{t+1} + \gamma \left[1 - \mathbb{E}_t \beta \frac{\lambda_{t+1}}{\lambda_t} (1-\phi - f_{t+1}) \right] \right\}$$
$$w_{0t}^n(\bar{z}) = w_t^n(\bar{z})$$

 $\P{} \text{ back}$

Single contract O OOOO OO OOOOOO	Dual market 0 000000 000000	Appendix 00000000000000

Decentralized allocation

We collapse the main equations of the model to obtain two conditions for the labor market tightness (θ_t) and the job destruction threshold (\tilde{z}_t) which characterize the decentralized allocation and evaluate them in steady state:

$$\frac{c}{q(\theta^{dec})} = \left[1 - \eta(1 - \Theta_w)\right] (A + \bar{z}) + \left[1 - \eta(1 - \Theta_w)\right] \beta(1 - \delta) \left[H(\tilde{z}^{dec}) - \tilde{z}^{dec}\right]$$
$$- \eta(1 - \Theta_w)\beta c\theta^{dec} - (1 - \Theta_w)(1 - \eta)b - \Theta_w w^*$$
$$- \eta(1 - \Theta_w) \left[1 - \beta(1 - \phi)\right] \gamma - \beta(1 - \phi)\gamma - \eta(1 - \Theta_w)\beta f(\theta^{dec})\gamma$$
$$\frac{c}{q(\theta^{dec})} = \left[1 - \eta(1 - \Theta_w)\right] (\bar{z} - \tilde{z}^{dec}) - \gamma$$

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 000000000000000

Social planner allocation (first best)

The social planner chooses labor market tightness, unemployment and the job destruction threshold to solve the following problem:

$$\begin{split} \max_{\{\theta_t, u_t, \tilde{z}_t\}_{t=0}^{\infty}} & \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(C_t) \\ \text{s.t.} & C_t = n_{0t} \left(A_t + \bar{z} \right) + n_t \left[A_t + \frac{1}{1 - G(\tilde{z}_t)} \int_{\tilde{z}_t}^{\bar{z}} xg(x) dx \right] - c \theta_t u_{t-1} \\ & n_{0t} = f(\theta_t) u_{t-1} \\ & n_t = (1 - \phi) \left[1 - G(\tilde{z}_t) \right] (n_{0t-1} + n_{t-1}) \\ & 1 = u_t + n_{0t} + n_t \\ & f(\theta_t) = \Phi \theta_t^{\varepsilon} \end{split}$$

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 00000000000000000

Social planner allocation: solution

By computing the planner's FOCs and simplifying we obtain two conditions characterizing labor market tightness and the job destruction threshold for the optimal allocation in steady state:

$$\frac{c}{q(\theta^{opt})} = \varepsilon \left(A + \bar{z}\right) + \varepsilon \beta (1 - \delta) \left[H(\tilde{z}^{opt}) - \tilde{z}^{opt}\right] - (1 - \varepsilon)\beta c \theta^{opt}$$
$$\frac{c}{q(\theta^{opt})} = \varepsilon (\bar{z} - \tilde{z}^{opt})$$

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 000000000000000000000000000000000000

Ramsey allocation (second best)

We solve the Ramsey problem of a social planner who takes into account the constraints due to agents' choices in the decentralized economy, which are affected by LMIs. The planner takes as given b and Θ_w and choose the best possible allocation that can be attained by changing γ .

$$\begin{split} \max_{\{\theta_t, u_t, \tilde{z}_t, \gamma\}_{t=0}^{\infty}} & \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(C_t) \\ \text{s.t.} & C_t = n_{0t} \left(A_t + \bar{z} \right) + n_t \left[A_t + \frac{1}{1 - G(\tilde{z}_t)} \int_{\tilde{z}_t}^{\bar{z}} xg(x) dx \right] - c \theta_t u_{t-1} \\ & n_{0t} = f(\theta_t) u_{t-1} \\ & n_t = (1 - \phi) \left[1 - G(\tilde{z}_t) \right] (n_{0t-1} + n_{t-1}) \\ & 1 = u_t + n_{0t} + n_t \\ & f(\theta_t) = \Phi \theta_t^{\varepsilon} \\ & \frac{c}{q(\theta_t)} = \left[1 - \eta (1 - \Theta_w) \right] (\bar{z} - \bar{z}_t) - \gamma \\ & J_t(\tilde{z}_t) - V_t + \gamma = 0 \end{split}$$

		Single contract 0 0000 00 000000	Dual market 0 000000 000000		Appendix 000000000000000000000000000000000000
--	--	--	--------------------------------------	--	--

HHs' budget constraint in the dual labor market model:

$$C_t + B_t = R_{t-1}B_{t-1} + w_{0t}^P n_{0t}^P + w_t^P n_t^P + w_{0t}^T n_{0t}^T + w_t^T n_t^T + bu_t + \Pi_t^F - \bar{T}_t$$

Law of motions in the dual labor market model:

$$1 = n_{0t}^{T} + n_{t}^{T} + n_{0t}^{P} + n_{t}^{P} + u_{t}$$

$$n_{0t}^{T} = \chi_{t}^{T} u_{t-1}$$

$$n_{0t}^{P} = f_{t}^{P} u_{t-1} + \zeta_{t} \left(n_{0t-1}^{T} + n_{t-1}^{T} \right)$$

$$n_{t}^{T} = (1 - \delta_{t}^{T} - \zeta_{t}) (n_{0t-1}^{T} + n_{t-1}^{T})$$

$$n_{t}^{P} = (1 - \delta_{t}^{P}) (n_{0t-1}^{P} + n_{t-1}^{P})$$

back

		Single contract 0 0000 00 000000	Dual market 0 000000 000000		Appendix 000000000000000000000000000000000000
--	--	--	--------------------------------------	--	--

Firms' value functions for TCs in the dual labor market

$$\begin{split} J_{t}^{T}(z_{it}) &= y_{t}(A_{t}, z_{it}) - w_{t}^{T}(A_{t}, z_{it}) + \mathbb{E}_{t}\beta\frac{\lambda_{t+1}}{\lambda_{t}} \begin{cases} (1-\phi) \begin{bmatrix} \iota \int_{\tilde{z}_{t-1}}^{\tilde{z}} J_{t+1}^{P}(z')dG(z') \\ + (1-\iota) \begin{bmatrix} \int_{\tilde{z}_{t+1}}^{\tilde{z}} J_{t+1}^{T}(z')dG(z') - G(\tilde{z}_{t+1}^{T})\gamma^{T} \\ + (1-\iota) \begin{bmatrix} \int_{\tilde{z}_{t+1}}^{\tilde{z}} J_{t+1}^{P}(z')dG(z') \\ - \int_{\tilde{z}_{t+1}}^{\tilde{z}} J_{t+1}^{P}(z')dG(z') \\ + (1-\iota) \begin{bmatrix} \int_{\tilde{z}_{t+1}}^{\tilde{z}} J_{t+1}^{T}(z')dG(z') \\ - \int_{\tilde{z}_{t+1}}^{\tilde{z}} J_{t+1}^{T}(z')dG(z') - G(\tilde{z}_{t+1}^{T})\gamma^{T} \end{bmatrix} \end{bmatrix} \\ V_{t}^{T} &= -c^{T} + \xi_{t}^{T} J_{0t}^{T}(\tilde{z}) + \mathbb{E}_{t}\beta\frac{\lambda_{t+1}}{\lambda_{t}} \left(1-\xi_{t}^{T}\right)V_{t+1}^{T} \\ & S_{t}^{FT}(z_{it}) = J_{t}^{T}(z_{it}) - V_{t}^{T} + \gamma^{T} \end{split}$$

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 00000000000000000000000

HHs' value functions for TCs in the dual labor market

$$\begin{split} \mathbf{W}_{t}^{T}(z_{it}) &= \mathbf{w}_{t}^{T}(A_{t}, z_{it}) + \mathbb{E}_{t}\beta \frac{\lambda_{t+1}}{\lambda_{t}} \left\{ (1-\phi) \begin{bmatrix} \iota \int_{\tilde{z}_{t+1}^{\tilde{z}}}^{\tilde{z}} \mathbf{W}_{t+1}^{P}(z')dG(z') \\ &+ (1-\iota) \begin{bmatrix} \int_{\tilde{z}_{t+1}^{T}}^{\tilde{z}} \mathbf{W}_{t+1}^{T}(z')dG(z') \\ &+ \left(\iota G(\tilde{z}_{t+1}^{C}) + (1-\iota)G(\tilde{z}_{t+1}^{T})\right] U_{t+1} \end{bmatrix} + \phi U_{t+1} \right\} \\ \mathbf{W}_{0t}^{T}(\tilde{z}) &= \mathbf{w}_{0t}^{T}(A_{t}, \tilde{z}) + \mathbb{E}_{t}\beta \frac{\lambda_{t+1}}{\lambda_{t}} \left\{ (1-\phi) \begin{bmatrix} \iota \int_{\tilde{z}_{t+1}^{\tilde{z}}}^{\tilde{z}} \mathbf{W}_{t+1}^{P}(z')dG(z') \\ &+ (1-\iota) \begin{bmatrix} \int_{\tilde{z}_{t+1}^{\tilde{z}}}^{\tilde{z}} \mathbf{W}_{t+1}^{T}(z')dG(z') \\ &+ (1-\iota) \begin{bmatrix} \int_{\tilde{z}_{t+1}^{\tilde{z}}}^{\tilde{z}} \mathbf{W}_{t+1}^{T}(z')dG(z') \\ &+ \left(\iota G(\tilde{z}_{t+1}^{C}) + (1-\iota)G(\tilde{z}_{t+1}^{T})\right] U_{t+1} \end{bmatrix} + \phi U_{t+1} \right\} \\ U_{t} &= b + \mathbb{E}_{t}\beta \frac{\lambda_{t+1}}{\lambda_{t}} \left[\chi_{t}^{T} W_{0t+1}^{T}(\tilde{z}) + f_{t+1}^{P} W_{0t+1}^{P}(\tilde{z}) + \left(1 - \chi_{t}^{T} - f_{t+1}^{P}\right) U_{t+1} \right] \\ S_{t}^{WT}(z_{it}) &= W_{t}^{T}(z_{it}) - U_{t} \end{split}$$

Single contract 0 0000 00 000000	Dual market 0 000000 000000	Appendix 000000000000000●

Nash and effective wages in the dual labor market

$$(1 - \eta) \left(W_t^T(z_{it}) - U_t \right) = \eta \left(J_t^T(z_{it}) - V_t^T + \gamma^T \right) (1 - \eta) \left(W_{0t}^T(\bar{z}) - U_t \right) = \eta \left(J_{0t}^T(\bar{z}) - V_t^T + \gamma^T \right) w_t^T(z_{it}) = (1 - \Theta_w^T) w_t^{nT}(z_{it}) + \Theta_w^T w_t^{T*} w_{0t}^T(\bar{z}) = (1 - \Theta_w^T) w_{0t}^{nT}(\bar{z}) + \Theta_w^T w_t^{T*}$$