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Abstract

We analyze a dynamic matching market where matching between agents is de-

cided for each time period. To analyze this situation, we embed the situation into

the framework of many-to-many matching with contracts where the contract in-

cludes the time period at which the matching occurs. While a general stability

concept is already defined for the matching with contracts framework, in a dy-

namic matching model, a stable outcome may not exist when contracts exhibit

complementarities across time periods. Thus, we define a stability concept called

temporal stability that is more suitable to the dynamic nature of the model. We

provide sufficient conditions for the existence of a temporally stable outcome, in-

cluding a corresponding substitutability condition, ordered substitutability, for the

dynamic matching model.
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1 Introduction

The classic problem of the two-sided matching problem, first introduced by Gale and Shapley

(1962), involves forming pairs between agents from two disjoint groups. Real-life applica-

tions of the theory of two-sided matching include matching medical interns and hospitals,

matching schools and students. The key property for matchings that is highlighted in

the theory is the concept of stability. A matching is stable if no pair finds it prof-

itable to matching with each other than their current partners. We refer the reader to

Roth and Sotomayor (1990) for more details on the theory of two-sided matching markets.

One of the assumptions in the early matching literature is that a matching for a

given set of agents is decided once and never reconsidered thereafter. However, there

are important matching markets where a matching has to be made across multiple time

periods. For example, professional athletes in team sports sign possibly multiple contracts

throughout their career. Workers and firms may sign different contracts through wages

over time. More specific matching markets have been analyzed in the literature. For

example, Kennes et al. (2014) consider a dynamic matching model based on the children’s

daycare system in Denmark and analyze the performance of the allocation mechanism

in Aarhus. Pereyra (2013) constructs a model based on the assignments of overlapping

generations of teachers to schools in Mexico. In another market, Dimakopoulos and Heller

(2019) consider the matching of entry-level lawyers to regional courts in Germany and

analyze the performance of the Berlin matching mechanism.

Aside from research on dynamic matching markets that are primarily motivated by

real-life applications, there has been a growing literature on the general theory of dynamic

matching markets. The first theoretical paper on dynamic matching is Damiano and Lam

(2005), where many core concepts are defined as candidates for a stability concept. Sub-

sequent papers such as Kadam and Kotowski (2018a,b), Kotowski (2019), Kurino (2020),

and Doval (2021) also analyze a theoretical model of dynamic matching with each paper

introducing a stability concept. These papers consider a one-to-one dynamic matching

model, where an agent on one side is matched to at most one agent from the other side

for each period. The focus of these papers is on defining a suitable stability concept for

their models.

In this paper, we provide a theoretical analysis of many-to-many dynamic matching

markets using the matching with contracts model, formalized by Hatfield and Milgrom
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(2005) and Hatfield and Kominers (2017).1 These models incorporate additional contrac-

tual terms, such as salary or position, in describing a matching not just based on who

matches with whom, but under what terms these agents are matched. Thus, we can

embed dynamic matching markets into these models by including the time period in the

contract terms. Dimakopoulos and Heller (2019) also utilize the matching with contracts

model to include the time period in which a match is made. Because the objective of their

research is to investigate a specific matching market, their analysis mainly focuses on a

particular matching market, which is a many-to-one matching model, and not on building

a general theory of a dynamic matching market using the matching with contracts model.

In the model of matching with contracts, substitutability of preferences plays a crucial

role in guaranteeing the existence of a stable outcome as defined in Hatfield and Kominers

(2017). On the other hand, the preferences of agents in a dynamic matching market may

often exhibit complementarities across time periods. For example, a worker may want

to work for a foreign firm only after he has learned a skill in a domestic firm. Such

preferences may also cause the nonexistence of a stable outcome in our model.

In this paper, we define a new stability concept called temporal stability. Our concept

weakens the existing stability concept by imposing the condition that blocking agents can-

not change their past contracts. We also define a weaker version of the substitutability

condition called ordered substitutability, which requires that when a contract x is chosen

from some available contracts, it is still chosen even if contracts involving time periods

that are later than that of x become unavailable. This condition can include some plausi-

ble preferences that admit complementarities across time periods as described above. We

show that ordered substitutability guarantees the existence of a temporal stable outcome

for many-to-one dynamic matching markets. We also provide another sufficient condition

that is applicable to many-to-many dynamic matching markets. Our analysis adds to the

dynamic matching literature in proposing new stability and substitutability conditions

for the many-to-many version of the model. Our result also adds to the growing literature

on dynamic matching markets in that we show how tools from static matching markets

can be incorporated to analyze a many-to-many dynamic matching market. Our result

also exemplifies a new application of the many-to-many matching with contracts model

of Hatfield and Kominers (2017).

1Prototypes of the matching with contracts models can be found in Roth (1984) and Fleiner (2003).
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The rest of the paper is organized as follows. Section 2 surveys the related literature

and also explains the relationship between this paper and those in the literature. Section

3 defines the model of dynamic matching markets of this paper and other several concepts.

Section 4 contains our main result. Section 5 contains concluding remarks.

2 Literature

There now is a significant amount of theoretical research on the topic of dynamic matching

problems. The first paper that explicitly analyzes a dynamic model of the matching

problem is Damiano and Lam (2005). They define several core concepts to the dynamic

matching market model, some of which are adapted from other models. However, they

assume that preferences of agents are time separable in that they can be represented by a

utility function that is additively separable in time. Also, they only consider deviations by

a set of agents such that in the new matching that they induce, they are matched together

throughout. Under the same preference domain, Kurino (2020) relaxes this matching

constraint for a set of deviating agents, but instead imposes a credibility condition on a

deviation by a set of agents in defining a new stability concept called credible stability.

Doval (2021) considers a dynamic matching model in which matching agreements are

irreversible, so that agents essentially choose when to be made available to match. When

deciding whether to form a match or not, agents have to make predictions as to who will

be made available in later periods so that they do not want to forego their opportunities

of possibly matching with a more favorable partner.

The papers in the literature that are most closely related are those by Kadam and Kotowski

(2018a,b). Both of these papers do not assume time separable preferences for the agents.

Moreover, they define a stability that re-evaluates the stability of a matching at each time

period. Similarly, our stability also considers the stability of a matching period-by-period,

but there are some differences. Aside from the fact that we allow many-to-many match-

ings for each period instead of the one-to-one matching model of Kadam and Kotowski

(2018a,b) and allow for arbitrary sets of agents to deviate instead of just one pair, the

blocking conditions in the stability concepts differ slightly. Thus, there is no logical de-

pendence between their stability condition and our stability condition so that one cannot

necessarily say which one is stronger. In addition, Kadam and Kotowski (2018a) inves-
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tigate the existence problem of their stability concept by looking at preferences in which

agents are relatively reluctant to change their partners. We, instead, investigate substi-

tutability conditions, which are closely related to the static matching literature. On a

slightly different line of research, Kotowski (2019) defines a new robust concept of sta-

bility, called perfect α-stability, which is defined by a backwards induction method. In

the final period, the stability concept coincides with the usual stability concept for the

static matching problem. Supposing that perfect α-stability is defined for time periods

later than period t, a pair of agents deviates at period t only when it is worthwhile even

at the worst possible matching among the recursively defined stable matchings for peri-

ods t + 1 and beyond. Kotowski (2019) establishes the existence of a perfectly α-stable

matching without imposing any restrictions on the preferences. While universal existence

is quite desirable, the assumption of the deviating agents’ pessimistic outlook does play a

large role. We, instead, define our stability concept without agents having to conjecture

the worst possible outcome so that it is more closely related to the traditional stability

concept used in the literature as our starting point.

Our study also contributes the literature on matching with contracts. We propose

a weak substitutability condition, ordered substitutability, that is defined using the dy-

namic nature of the model. For the matching with contracts model, the substitutability

condition is sufficient for the existence of a stable matching outcome but not necessary.

Based on this observation, several papers propose weaker substitutability conditions for

the model of many-to-one matching with contracts (See Hatfield and Kojima (2010),

Hatfield and Kominers (2016), and Hatfield et al. (2021)). These studies show that sta-

ble outcomes are still guaranteed to exist under their weak substitutability conditions.

Yenmez (2018) and Bando et al. (2021) apply these conditions to the model of many-to-

many matching with contracts and provide sufficient conditions for the existence of stable

outcomes. Unlike their studies, we consider a weak stability concept since a stable out-

come may not exist in the domain of our problem. Ordered substitutability is introduced

to guarantee the existence of a temporal stable outcome and thus is a different concept

from the existing weak substitutability conditions. Thus, we offer a new approach to

analyzing a matching problem that may not satisfy substitutability.
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3 Model

We define our model of dynamic matching using the many-to-many matching with con-

tracts framework, formalized in Hatfield and Kominers (2017). Let D be a finite set of

doctors and H be a finite set of hospitals where D ∩H = ∅. We refer to I ≡ D ∪H as

the set of agents. Let T = {1, · · · , L} be a finite set of periods. Let X be a finite set of

contracts where each contract is associated with a doctor xD ∈ D, a hospital xH ∈ H,

and a period xT ∈ T . Typically, X is given by D ×H × T where (d, h, t) ∈ D ×H × T

means that doctor d matches with hospital h at period t.

For each Y ⊆ X, let YD = {yD | y ∈ Y } be the set of doctors that are associated with

some contract in Y , YH = {yH | y ∈ Y } be the set of hospitals that are associated with

some contract in Y , and YI = YD ∪ YH . For each Y ⊆ X, let Yi = {y ∈ Y | i ∈ {yD, yH}}

be the set of contracts that are associated with an agent i ∈ I.

For each Y ⊆ X and t ∈ T , let Y t = {y ∈ Y | yT = t} be the set of contracts at

period t in Y , Y ≤t = {y ∈ Y | yT ≤ t} be the set of contracts up to period t in Y , and

Y ≥t = {y ∈ Y | yT ≥ t} be the set of contracts after period t in Y . We denote Y 0 ≡ ∅.

Each agent i ∈ I has a choice function Ci : 2Xi → 2Xi where Ci(A′) ⊆ A′ for all

A′ ⊆ Xi. We define Ri(A′) = A′ \ Ci(A′) for all A′ ⊆ Xi, which is called the rejection

function. For each A ⊆ X, we denote Ci(A) = Ci(Ai) and Ri(A) = Ri(Ai). When an

agent i has a strict preference ordering ≻i over 2
Xi , Ci(A′) is defined as the most preferred

contacts in A′ ⊆ Xi, that is, Ci(A′) is a subset of A′ that satisfies Ci(A′) ⪰i Â for all

Â ⊆ A′. In this case, Ci is called the choice function induced from ≻i. We do not assume

a unitarity condition of Kominers (2012) on the choice sets where each doctor-hospital

pair can appear in at most one contract in a choice set.2 In fact, because time is explicitly

included as a contract, a doctor-hospital pair would be included in multiple contracts if

a doctor is to be hired by the hospital for more than one period of time.

We say that A ⊆ X is an outcome. An outcome A is individually rational if Ci(A) = Ai

for all i ∈ I. An outcome A is blocked if there exists a nonempty Z ⊆ X \ A such that

Zi ⊆ Ci(A ∪ Z) for all i ∈ ZI . When |Z| = 1, we say that A is pairwise blocked. We say

that A is stable if it is individually rational and not blocked. We say that A is pairwise

stable if it is individually rational and not pairwise blocked.

2The unitarity condition is also assumed in Klaus and Walzl (2009) and Bando et al. (2021) for ex-

ample.
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We introduce the following standard conditions in the literature that guarantees the

existence of stable outcomes. The first of these conditions, irrelevance of rejected con-

tracts, is introduced by Aygün and Sönmez (2013) and is satisfied by choice functions

that are generated by preferences.

Definition 1. An agent i’s choice function Ci satisfies irrelevance of rejected contracts

(IRC) if for all A ⊆ X and all x ∈ X, if x /∈ Ci(A) and x ∈ Ai, then Ci(A) =

Ci(A \ {x}).3

Definition 2. An agent i’s choice function Ci satisfies substitutability (SUB) if for any

A ⊆ X and any distinct x, x′ ∈ Ci(A), x ∈ Ci(A \ {x′}).

If every agent’s choice function satisfies IRC and SUB, then a stable outcome exists

as shown by Hatfield and Kominers (2017).4 Moreover, under the same assumption, a

doctor-optimal stable outcome A and hospital optimal-outcome B exist in the sense that

for any stable outcome A′, Cd(A ∪ A′) = A for all d ∈ D and Ch(B ∪ A′) = B for all

h ∈ H.

3.1 Temporal stability

While the results in the literature show that substitutability is the essential condition

for the existence of a stable outcome, the condition of substitutability is quite strong, as

it prohibits any form of complementary between contracts. Indeed, substitutability may

be violated in certain situations including those motivated by real-life situations, and in

those situations, a stable outcome may not exist. In the following, we consider a weakened

version of stability which we call temporal stability that still satisfies meaningful stability

properties and exists even in matching problems with some complementarity.

To illustrate the concepts, consider the following example.

3IRC is equivalent to the following condition: for all A,A′ ⊆ X, Ci(A) ⊆ A′ ⊆ A implies Ci(A) =

Ci(A′). This condition is called consistency by Alkan (2002), which is first introduced by Blair (1988)

for a matching model.
4To be precise, Hatfield and Kominers (2017) assume that each agent has strict preferences over

contracts so that the choice function based on these preferences automatically satisfies IRC. In a frame-

work where choice functions are defined as a primitive, we can state their result equivalently by instead

assuming IRC on the choice functions. See Chambers and Yenmez (2017) for example.
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Example 1. Let D = {d1, d2} be the set of two consultants and H = {h1, h2} be the set

of two firms where h1 is a domestic firm and h2 is a foreign firm. The set of contracts is

given by D × H × T where T = {1, 2}. A domestic firm wants to hire a consultant at

period 1 and a foreign firm wants to hire one at period 2. Each firm has a strict preference

ordering defined as follows:

≻h1 :{(d2, 1)}, {(d1, 1)}, ∅, ≻h2 : {(d1, 2)}, {(d2, 2)}, ∅.

The above list denotes, for example, that h1 ranks {(d2, h1, 1)} first, {(d1, h1, 1)} second,

and ∅ third, where h1 is omitted from contracts in the list. Note also that the contracts

ranked below ∅ are also omitted.

Consultant d1 wants to work at the foreign firm only after he has worked at the

domestic firm and learned a skill. Such preferences can be represented by the following

ordering:

≻d1 :{(h1, 1), (h2, 2)}, {(h1, 1)}, ∅.

Consultant d2 wants to work at only one period since he wants to spend one period on a

vacation. The preferences of d2 are given by

≻d2 :{(h2, 2)}, {(h1, 1)}, ∅.

There is no stable outcome in this example. Specifically, {(d1, h1, 1), (d1, h2, 2)} is blocked

via {(d2, h1, 1)}, {(d2, h1, 1), (d1, h2, 2)} is not individually rational for d1, {(d2, h1, 1)} is

blocked via {(d2, h2, 2)}, {(d2, h2, 2)} is blocked via {(d1, h1, 1)}, and {(d1, h1, 1), (d2, h2, 1)}

is blocked via {(d1, h2, 2)}. The remaining individually rational outcomes (∅ and {(d1, h1, 1)})

are also blocked.

In the above example, the source of the nonexistence of a stable outcome is that

the preferences of consultant d1 admit complementarities while those of the other agents

satisfy substitutability by the assumption of unit demand, that is, each choice set is a

singleton. Indeed, consultant d1 wants to work at the foreign firm at period 2 only if he

has worked at the domestic firm at period 1, violating substitutability. In general, the

choice of an agent at certain period may depend on his/her past choice. In such a case,

substitutability is often violated, which may cause the nonexistence of a stable outcome.

To deal with this problem, we introduce a weaker concept of stability as follows.
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Definition 3. Let A ⊆ X be an outcome.

• We say that A is blocked at period t ∈ T if there exists a nonempty Z ⊆ X≥t\A such

that (i) Zt ̸= ∅, (ii) Zi ⊆ Ci(A∪Z) for all i ∈ ZI , and (iii) A≤t−1
i = Ci(A∪Z)≤t−1

for all i ∈ ZI .

• We say that A is temporally stable if it is individually rational and not blocked at

any period.

First, outcomes from period t− 1 or earlier cannot be used in blocking that outcome,

which is contained in the condition Z ⊆ X≥t \ A. For an outcome to be blocked at a

period t, it must include at least one contract that pertains to period t, which is condition

(i). Moreover, outcomes from period t − 1 or earlier cannot be reneged, which is what

condition (iii) states. Condition (iii) includes a restriction where contracts from period

t − 1 and before cannot be used to block in period t, which reflects the idea that past

contracts are bygones and cannot be changed. Condition (i) is also important, as without

this condition, temporal stability turns to be equivalent to stability.

We illustrate these differences in our stability concept using Example 1, where the

outcome A = {(d2, h2, 1)}, while not stable, can be shown to be temporally stable. Recall

that this outcome was blocked via {(d2, h2, 2)} in the definition of stability and this set

is the only set Z satisfying Zi ⊆ Ci(A∪Z) for all i ∈ ZI . This set Z does not satisfy the

conditions for blocking at period 1, since Z1 = ∅, that is, Z does not contain a contract

for period 1, and condition (i) is violated. This set Z also does not satisfy the conditions

for blocking at period 2, since Cd2(A ∪ Z)1 = ∅, while A1
d2

= {(d1, h2, 1)}, thus violating

condition (iii).

The concept of temporal stability is similar in spirit of Kadam and Kotowski (2018a,b)

in that the stability of an outcome is evaluated at each time period. However, there are

subtle differences to the blocking conditions. First, in the stability concept of Kadam and Kotowski

(2018a,b), only pairs of agents can block a matching, while in our temporal stability, any

group of agents can block a matching outcome. Second, according to the stability con-

cept in Kadam and Kotowski (2018a,b), the blocking pair at period t has to either be

matched to each other throughout all periods from t onwards or be unmatched, while for

temporal stability, we allow for deviations where a pair may be matched to each other

at period t but retain other matches from the original outcome A involving matches

9



with other agents in condition (ii). Third, in a period t block in the stability concept

of Kadam and Kotowski (2018a,b), the blocking pair can choose not to be matched in

period t, thus violating condition (i) of temporal stability. Because of these differences,

the concept defined by Kadam and Kotowski (2018a,b) is neither weaker nor stronger

than temporal stability.

3.2 Ordered substitutability

We have noted that complementarity in the dynamic matching market is not unusual.

However, we would still like to find a suitable substitutability condition which guaran-

tees the existence of a temporally stable outcome. We define a weaker substitutability

concept, called ordered substitutability, in the following way. Recall that SUB requires

the substitutability between any two contracts x and x′ regardless of the time periods

that these contracts are associated with. In contrast, our substitutability condition treats

past contracts as bygones so that when re-considering whether x belongs to the choice set

Ci(A \ {x′}), this hypothetical situation only makes sense when x is a contract of a time

period either earlier than that of x′ or in the same time period. If x′ is a contract that

is earlier than x, then when re-evaluating whether to include x, it is not meaningful to

consider a situation where x′ is removed, since the contract involving x′ has already been

enacted and cannot be removed by the time x is reconsidered. Below we give a formal

definition of ordered substitutability.

Definition 4. An agent i’s choice function Ci satisfies ordered substitutability if for any

A ⊆ X and any distinct x, x′ ∈ Ci(A) with xT ≤ x′
T , we have that x ∈ Ci(A \ {x′}).

Ordered substitutability serves as a starting point for our search for a suitable sufficient

condition for the existence of a temporally stable outcome. To consider further conditions,

we first decompose ordered substitutability into the following two conditions:

• for any A ⊆ X and any distinct x, x′ ∈ Ci(A) with xT = x′
T , x ∈ Ci(A \ {x′}).

• for any A ⊆ X and x′ ∈ Ci(A), Ci(A)t ⊆ Ci(A \ {x′})t for any t ∈ T with t < x′
T .

The first condition states the substitutability of contracts from the same time period. The

second condition considers the substitutability of contracts from different time periods.

We first coin the term period-wise substitutability (PS) for the first condition, which is

formally given below.

10



Definition 5. An agent i’s choice function Ci satisfies period-wise substitutability (PS)

if for any A ⊆ X and any distinct x, x′ ∈ Ci(A) with xT = x′
T , x ∈ Ci(A \ {x′}).

Next, we strengthen the second condition in the decomposition to require the inclusion

relation to hold with equality. We call this condition future-invariance (FI), as the choice

set for a particular period t is invariant to deletions of contracts of future time periods.

Definition 6. An agent i’s choice function Ci satisfies future-invariance (FI) if for any

A ⊆ X and any x′ ∈ Ci(A), Ci(A)t = Ci(A \ {x′})t for any t ∈ T with t < x′
T .

We provide examples of choice functions that satisfy ordered substitutability. For

simplicity, we assume that there are only two periods in the following examples.

Example 2. We introduce a slightly generalized version of time slot specific choice func-

tions introduced by Dimakopoulos and Heller (2019), which is a subclass of slot specific

choice functions introduced by Kominers and Sönmez (2016). Let H be the set of depart-

ments in a hospital where medical students rotate on departments within the hospital

for two periods. We assume that Xh = {h} × D × {1, 2} for all h ∈ H where D is the

set of medical students. Each department h has choice functions Ĉh and C̃h over 2X
1
h

and 2X
2
h , respectively, and needs to choose different doctors for each period. In such a

situation, we can consider a choice function in which h first chooses the most preferred

doctors from available doctors at period 1, and then chooses the most preferred doctors

from available doctors at period 2 who are not chosen at period 1. That is, for each

Y ⊆ Xh, C
h(Y ) = Ĉh(Y 1) ∪ C̃h({y ∈ Y 2 | yD /∈ Ĉh(Y 1)D}). Then, Ch satisfies IRC, PS,

and FI if Ĉh and C̃h satisfy IRC and SUB.5

Example 3. We introduce a more general class of choice functions than that in Example

2. Consider once again the setup in Example 1 where D represented the set of consultants

and H represented the set of firms. One of the consultants wanted to work for the foreign

firm after acquiring the necessary skills to work there. We can generalize this idea in the

following way.

Let Xd be the set of possible contracts for d. Suppose that the available contracts in

period 2 for d depend on what d has chosen in period 1. This constraint can be described

5In Dimakopoulos and Heller (2019) and Kominers and Sönmez (2016), Ĉh and C̃h are given by unit

demand choice functions or responsive choice functions.

11



by a function f : 2X
1
d → 2X

2
d where f(Y ) ⊆ X2

d is a set of available contracts at period 2

provided that d has chosen Y ⊆ X1
d at period 1. Let d have choice functions Ĉd and C̃d

over 2X
1
d and 2X

2
d , respectively. Given f , an overall choice function Cd is defined so that

d first chooses the most preferred contracts that are available in period 1, and then d

chooses the most preferred contracts from available contracts at period 2 given the choice

at period 1. That is, for each Y ⊆ Xd, C
d(Y ) = Ĉd(Y 1) ∪ C̃d(Y 2 ∩ f(Ĉd(Y 1))). Then,

Cd satisfies IRC, PS, and FI if Ĉd and C̃d satisfy IRC and SUB.

The following condition is a weaker condition than ordered substitutability which is

a useful concept for our analysis.

Definition 7. An agent i’s choice function Ci satisfies weak ordered substitutability if

for any A ⊆ X and any distinct x, x′ ∈ Ci(A) with x′ ∈ argmax{yT | y ∈ A}, we have

that x ∈ Ci(A \ {x′}).

It is well-known that substitutability is equivalent to the monotonicity of the rejection

function; that is, a choice function Ci satisfies substitutability if and only if Ri(A) ⊆

Ri(B) for any A,B ⊆ X with A ⊆ B, provided that Ci satisfies IRC. It is also well-

known that a choice function Ci satisfies substitutability and IRC if and only if it satisfies

path-independence, that is, Ci(A∪B) = Ci(Ci(A)∪B) for any A,B ⊆ X. The following

lemma shows that weak ordered substitutability is characterized by weaker versions of

the monotonicity and path-independence where the proof is given in Appendix A.

Lemma 1. Let Ci be a choice function that satisfies IRC. Then, the following three

statements are equivalent.

(a) Ci satisfies weak ordered substitutability.

(b) Ri(A) ⊆ Ri(B) for any A,B ⊆ X with A ⊆ B such that xT ≥ yT for all x ∈ B \A

and all y ∈ A.

(c) Ci(A∪B) = Ci(Ci(A)∪B)) for any A,B ⊆ X such that xT ≥ yT for all x ∈ B \A

and all y ∈ A.

It is well-known that pairwise stability and stability are equivalent under substitutabil-

ity. An analogous result holds under ordered substitutability. We say that A is pairwise

blocked at period t ∈ T if there exists z ∈ X t \ A such that (i) z ∈ Ci(A ∪ {z}) for all
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i ∈ {zD, zH} and (ii) A≤t−1
i = Ci(A∪{z})≤t−1 for all i ∈ {zD, zH}, and A is pairwise tem-

porally stable if it is individually rational and not pairwise blocked at any period. Indeed,

if every agent’s choice function satisfies ordered substitutability, we have that (i) when

an outcome A is blocked via Z, then it is blocked via a contract z ∈ argmin{zT | z ∈ Z},

and (ii) when an outcome A is blocked via Z at period t, then it is blocked at period t

via a contract z ∈ Zt. Thus, the following proposition holds.

Proposition 1. Suppose that every agent’s choice function satisfies ordered substitutabil-

ity.

(a) An outcome is stable if and only if it is pairwise stable.

(b) An outcome is temporally stable if and only if it is pairwise temporally stable.

Note that this result does not hold under weak ordered substitutability. The following

example illustrates this fact.

Example 4. Let X = {x, y, z} with xD = yD = zD = d, xH = yH = zH = h, and

xT = 1, yT = 2, zT = 3. We assume that Cd({x, y, z}) = {x, y, z}, Cd({x, y}) = {x, y},

Cd({x, z}) = {z}, Cd({y, z}) = {z}, and Cd({x′}) = {x′} for all x′ ∈ {x, y, z}. This

choice function does not satisfy ordered substitutability since x, y ∈ Cd({x, y, z}) =

{x, y, z} but x /∈ Cd({x, z}) = {z} while it satisfies weak ordered substitutability. More-

over, Cd satisfies IRC. Then, it is straightforward to see that {z} is not stable (or tem-

porally stable) but it is pairwise stable (or pairwise temporally stable) when Ch(Y ) = Y

for all Y ⊆ {x, y, z}.

4 Existence

We first provide a sufficient condition for the existence of stable outcomes.

Proposition 2. If every agent’s choice function satisfies IRC, PS, and FI, then a stable

outcome exists.

This proposition does not follow from the existence result of Hatfield and Kominers

(2017) since the combination of PS and FI is independent from SUB. However, we can

simply construct a stable outcome from period 1 inductively under the assumption of
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Proposition 2 by using their result. The formal proof is given in Appendix B. Note that

the assumption that every agent’s choice function satisfies IRC, PS, and FI is crucial to

obtain our result. Indeed, Example 1 shows that there may not exist a stable outcome

when the choice function of one agent satisfies IRC, PS, and FI, and the other choice

functions satisfy IRC and SUB. Note also that there may not exist a side-optimal stable

outcome under the assumption of Proposition 2 . Indeed, in Example 6, we will show

that there may not exist a hospital-optimal stable outcome even if every agent’s choice

function satisfies IRC, PS, and FI.

We now provide sufficient conditions for the existence of temporally stable outcomes.

We say that an agent i’s choice function Ci satisfies period-wise unit demand if |Ci(A)t| ≤

1 for all t ∈ T and all A ⊆ X.

Theorem 1. Suppose that every hospital’s choice function satisfies IRC and weak ordered

substitutability.

(a) If every doctor’s choice function satisfies IRC, weak ordered substitutability, and

period-wise unit demand, then a temporally stable outcome exists.

(b) If every doctor’s choice function satisfies IRC, PS, and FI, then a temporally stable

outcome exists.

In this theorem, every agent’s choice function is assumed to satisfy IRC and weak

ordered substitutability while additional assumptions are imposed on the choice functions

of doctors. The assumption of Theorem 1(a) requires that a many-to-one matching

between doctors and hospitals is formed for each period. On the other hand, Theorem

1(b) shows that a many-to-many matching between doctors and hospitals is allowed for

each period under the assumption that every doctor’s choice function satisfies IRC, PS,

and FI. It should be remarked that the additional assumptions on the choice functions

of doctors are crucial to guarantee the existence of temporally stable outcomes. Indeed,

in Example 7, we will show that a temporally stable outcome may not exist even if every

agent’s choice function satisfies IRC and ordered substitutability. We also note that a

side-optimal temporally stable outcome may not exist under the assumption of Theorem

1 (See Example 6).

We explain an outline of the proof of Theorem 1(a) since Theorem 1(b) can be proved

in a similar way. The formal proof is given in Appendix C. We will inductively construct
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a temporally stable outcome from period 1. For any given t ∈ T , we say that an outcome

A is t-temporally stable if (i) A ⊆ X≤t, and (ii) A is individually rational and not blocked

at any period t′ = 1, · · · , t. Note that an outcome is L-temporally stable if and only if it is

temporally stable where L is the last period. In addition, the existence of a 1-temporally

stable outcome follows from the existence result of Hatfield and Kominers (2017).

In the following, we show how to construct a t-temporally stable outcome from a

(t−1)-temporally stable outcome. Thus, we assume that there exists a (t−1)-temporally

stable outcome A ⊆ X≤(t−1) where t ≥ 2. We construct a t-temporally stable outcome

by using the following procedure which is a modification of the DA algorithm.

• Let Y [0] = X t be the initial set of available contracts for doctors and B[0] = ∅ be

the initial outcome for period t. For each step k, Y [k] represents the set of contracts

for period t that have not been rejected, and B[k] represents the set of contracts

for period t that are tentatively accepted by some hospital.

These sets are updated by the following procedure where Y [k] and B[k] are subsets

of X t for each step k.

• Step k(≥ 0): For each d ∈ D, let

Od[k] = {x ∈ Y [k] \B[k] | Cd(A ∪ {x}) = Ad ∪ {x}}

be the set of possible proposals for d at step k. Thus, each doctor can propose a

new contract only if she wants to keep the past contracts with it. If there exists no

d ∈ D such that Od[k] ̸= ∅ and B[k]d = ∅, then this procedure terminates at this

step. Otherwise, pick an arbitrary doctor d ∈ D such that Od[k] ̸= ∅ and B[k]d = ∅.

Note that Cd(A∪Od[k])∩Od[k] is a singleton by IRC and period-wise unit demand.

Then, doctor d proposes the contract

x(k) ∈ Cd(A ∪Od[k]) ∩Od[k]

to hospital h = x(k)H . Hospital h can accept the new contract only if the past

contracts are never dropped by doing so. If x(k) ∈ Ch(A ∪ B[k] ∪ {x(k)}) and

Ah ⊆ Ch(A ∪ B[k] ∪ {x(k)}), then h accepts Ch(A ∪ B[k] ∪ {x(k)}) and rejects

Rh(A ∪ B[k] ∪ {x(k)}), and define the sets B[k + 1] and Y [k + 1] by B[k + 1] =

(B[k]∪{x(k)})\Rh(A∪B[k]∪{x(k)}) and Y [k+1] = Y [k]\Rh(A∪B[k]∪{x(k)}).

Otherwise, x(k) is rejected, and let B[k + 1] = B[k] and Y [k + 1] = Y [k] \ {x(k)}.
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In the following, we explain the procedure for a given time period t. Note that

Y [k+1] ⊆ Y [k] holds for each step k. Moreover, either Y [k+1] ⊊ Y [k] or B[k+1] ⊋ B[k]

holds for each step k, implying that Od[k + 1] ⊊ Od[k] where d = x(k)D. Therefore, the

procedure for a given time period t must terminate in a finite number of steps k∗. Under

the assumption of Theorem 1(a), we can show that A ∪ B[k∗] is a t-temporally stable

outcome provided that A is a (t − 1)-temporally stable outcome. Thus, we can find a

temporally stable outcome by repeating the above steps for each t until period L.

The most significant difference of this procedure with respect to the DA algorithm is

that a hospital h may reject proposal x(k) even if its choice set dictates that it should

accept x(k), or equivalently, when x(k) ∈ Ch(A ∪ B[k] ∪ {x(k)}). This happens when

its choice set leaves out some contract from Ah, which is precisely when the condition

Ah ⊆ Ch(A ∪ B[k] ∪ {x(k)}) is violated. However, a hospital in period t cannot cut a

contract involving those of periods before t, and therefore, hospital h has no choice but

to reject x(k). Because of this difference, the particular choice of the proposing doctor d

influences the final outcome that results from this procedure. In other words, the order

in which the doctors propose in period t do matter, unlike the DA algorithm.6

To illustrate how the procedure depends on the order of proposals, consider the fol-

lowing situation with two doctors d1 and d2 and a hospital h with choice functions Cd1 ,

Cd2 , and Ch induced from the following preferences:

≻d1 : {x, y}, {x}, {y}, ∅ ≻d2 : {z}, ∅,

≻h: {y, z}, {x, y}, {x, z}, {y}, {z}, {x}, ∅,

where {x, y}I = {d1, h}, {z}I = {d2, h}, xT = 1, and yT = zT = 2. We consider the

procedure for period 2 given {x} which is a 1-temporally stable outcome. Then, the sets

of possible proposals at step 0 are given by Od1 [0] = {y} and Od2 [0] = {z}. If d1 proposes

y to h at step 0, then it is accepted by h since Ch({x, y}) = {x, y}. In the next step,

d2 proposes z to h, but it is rejected since x /∈ Ch({x, y, z}) = {y, z}. Thus, the above

procedure outputs {x, y} when d1 proposes first. On the other hand, it outputs {x, z}

when d2 proposes first. Thus, an output of the procedure may depend on the order of

6Under IRC and SUB, the standard DA algorithm finds a doctor-optimal stable outcome regardless

of the order of proposals. In many-to-one matching with contracts, Hirata and Kasuya (2014) show the

order-independence of the cumulative offer process, which is a generalization of the DA algorithm, under

a weak substitutability condition.
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proposals.

Despite the procedure seemingly forcing hospitals to reject desirable contracts, the

resulting matching satisfies our stability condition, regardless of the order of proposals.

To see this, consider a step k at which x(k) ∈ Ch(A ∪ B[k] ∪ {x(k)}) but Ah ⊈ Ch(A ∪

B[k] ∪ {x(k)}). Thus, there exists x′ ∈ Ah such that x′ /∈ Ch(A ∪ B[k] ∪ {x(k)}). By

the definition of the procedure, every hospital is weakly better off after each iteration.

Together with weak ordered substitutability, we can show that h would also drop x′ from

A ∪B[k∗] ∪ {x(k)} where k∗ is a step at which the procedure terminates. This property

guarantees that an output of the procedure cannot be blocked at period t using any

rejected contracts.

A more subtle remark involves why only one doctor proposes in each step. When we

allow multiple doctors to make offers simultaneously, it is not unambiguously clear which

doctors should be assigned to a hospital when its choice set cuts out a contract from a

past period. Without some tie-breaking method, the hospital cannot make a decision on

which of the new contracts to keep based only on its choice set. One solution for the

hospital in this case is to reject all the contracts it received in that step. In the previous

example, if both doctors d1 and d2 simultaneously offer y and z, respectively, under this

rule, hospital h would have to reject both y and z. However, the resulting matching

would violate stability, as either doctor and hospital pair would prefer to be matched in

period 2. One way to avoid this would be to introduce tie-breaking rules in each step,

but instead of introducing these artificial rules, we define the procedure with only one

doctor proposing at a time as a more straightforward procedure.

Period-wise unit demand (or FI) is required due to the constraint that each doctor

can make a new proposal only if she wants to keep the past contracts with it. Indeed,

doctors may want to withdraw currently accepted contracts in the procedure without

period-wise unit demand (or FI). This never happens under the standard DA algorithm

when the choice functions of agents satisfy SUB. To see this, consider the following choice

function that violates period-wise unit demand:

Cd({x, y, z, w}) = {y, z}, Cd({x, z, w}) = {x, z, w}, Cd({x, y, w}) = {x, y},

Cd({x, y}) = {x, y}, Cd({x, z}) = {x, z}, Cd({x,w}) = {x,w},

where xT = 1 and yT = zT = wT = 2. Such a choice function is compatible with IRC and

weak ordered substitutability (See Example 7). We assume that {x} is a 1-temporally
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stable outcome. Consider the procedure for period 2 given {x}. Then, the set of possible

proposals for d at step 0 is given by Od[0] = {y, z, w} since Cd({x, x′}) = {x, x′} for

all x′ ∈ {y, z, w}. We assume that d proposes z and it is accepted at step 0. In the

next step, d can propose w but cannot propose y since Cd({x, z, w}) = {x, z, w} and

x /∈ Cd({x, y, z}) = {y, z}. Thus, we assume that d proposes w and it is accepted at

step 1. In addition, we assume that z is rejected by zH at step 2 since another doctor

proposes a contract to zH . Then, d wants to withdraw the currently accepted contract w

by proposing y since Cd({x, y, w}) = {x, y}. This causes the failure of the procedure. The

assumption of period-wise unit demand (or FI) rules out the possibility that doctors may

want to withdraw their currently accepted contracts, and thus, the procedure generates

a temporally stable outcome.

In the rest of this section, we provide examples that show the limitation of Theorem

1. Example 7, which is given in Appendix D, shows that period-wise unit demand or

FI is a crucial assumption in Theorem 1. Specifically, there may not exist a pairwise

temporally stable outcome without these conditions even if every agent’s choice function

satisfies IRC and ordered substitutability. The following example shows that ordered

substitutability is a crucial assumption in Theorem 1. Specifically, there may not exist

a pairwise temporally stable outcome even if every doctor’s choice function satisfies IRC

and period-wise unit demand, and every hospital’s choice function satisfies IRC, SUB,

and period-wise unit demand.

Example 5. Let D = {d1, d2}, H = {h1, h2}, and T = {1, 2}. The set of contracts is

given by D × H × T . Each agent i ∈ I has a choice function Ci induced from a strict

preference ordering ≻i over 2
Xi , which is defined as follows:

≻d1 :{(h1, 2), (h2, 1)}, {(h1, 2)}, ∅, ≻d2 : {(h2, 1)}, {(h1, 2)}, ∅,

≻h1 :{(d2, 2)}, {(d1, 2)}, ∅, ≻h2 : {(d1, 1)}, {(d2, 1)}, ∅.

Note that Cd1 does not satisfy ordered substitutability while the choice functions of

the other agents satisfy SUB. Every agent’s choice function satisfies period-wise unit

demand and period-wise SUB. We can confirm the nonexistence of a pairwise temporally

stable outcome by the same argument as that in Example 1.

The following example shows that a hospital-optimal stable outcome (or a hospital-

optimal temporally stable outcome) may not exist even if every agent’s choice function
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satisfies IRC, PS, and FI.

Example 6. Let D = {d1, d2}, H = {h1, h2}, and T = {1, 2}. The set of contracts is

given by D × H × T . We first define choice functions of hospitals. For each Y ⊆ X,

let Ch1(Y ) = Ĉh1(Y 1
h1
) ∪ C̃h1(Y 2

h1
) where Ĉh1 is the choice function over 2X

1
h1 induced

from ≻̂h1 : {(d1, 1)}, {(d2, 1)}, ∅ and C̃h1 is the choice function over 2X
2
h1 induced from

≻̃h1 : {(d1, 2)}, {(d2, 2)}, ∅. For each Y ⊆ X, let Ch2(Y ) = Ĉh2(Y 1
h2
) ∪ C̃h2(Y 2

h2
) where

Ĉh2 is the choice function over 2X
1
h2 induced from ≻̂h2 : {(d2, 1)}, {(d1, 1)}, ∅ and C̃h2

is the choice function over 2X
2
h2 induced from ≻̃h2 : {(d2, 2)}, {(d1, 2)}, ∅. Then, it is

straightforward to see that Ch1 and Ch2 satisfy IRC, SUB, and FI.

Each doctor d ∈ D has a choice function Cd induced from ≻d, which is defined as

follows:

≻d1 : {(h2, 1)}, {(h1, 1), (h1, 2)}, {(h1, 1)}, ∅; ≻d2 : {(h1, 1), (h2, 2)}, {(h1, 1)}, {(h2, 1)}, ∅.

Then, Cd1 and Cd2 satisfy IRC and FI while they do not satisfy SUB.

Let A be a stable outcome. Then, |A1
d| = 1 for all d ∈ D since otherwise A is not indi-

vidually rational or A is blocked at period 1. Thus, we have that {(d1, h1, 1), (d2, h2, 1)} ⊆

A or {(d1, h2, 1), (d2, h1, 1)} ⊆ A. If {(d1, h1, 1), (d2, h2, 1)} ⊆ A, then A2
d2

= ∅ by

individual rationality of A, which implies A = {(d1, h1, 1), (d2, h2, 1), (d1, h1, 2)}. If

{(d1, h2, 1), (d2, h1, 1)} ⊆ A, then A2
d1

= ∅ by individual rationality of A, which im-

plies A = {(d1, h2, 1), (d2, h1, 1), (d2, h2, 2)}. Moreover, it is straightforward to see that

{(d1, h1, 1), (d2, h2, 1), (d1, h1, 2)} and {(d1, h2, 1), (d2, h1, 1), (d2, h2, 2)} are stable. Thus,

only these two outcomes are stable. However,

Ch2({(d2, h2, 1)} ∪ {(d2, h2, 1), (d1, h2, 2)}) = {(d2, h2, 1), (d2, h2, 2)}.

Therefore, there exists no hospital-optimal stable outcome. Note that the set of stable

outcomes coincides with the set of temporally stable outcomes when every agent’s choice

function satisfies FI. Thus, there exists no hospital-optimal temporally stable outcome in

this example.

5 Conclusion

In this paper, we have formulated the many-to-many dynamic matching market using

the many-to-many matching with contracts model of Hatfield and Kominers (2017). The
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stability concept defined in Hatfield and Kominers (2017) is quite strong in that when

substitutability is violated, a stable outcome may not exist. This violation is not uncom-

mon in the dynamic matching market. We have instead defined a weaker stability concept,

temporal stability, that is similar in spirit to the stability concept of Kadam and Kotowski

(2018a), but with some subtle differences. We have also defined a corresponding substi-

tutability concept as a sufficient condition that guarantees the existence of a temporally

stable outcome. We also have provided a procedure that constructs a temporally stable

outcome, using a procedure similar to the DA algorithm of Gale and Shapley (1962).

One possible direction of further research is to consider analogues of other stability

concepts defined for the dynamic matching model. For example, some stability concepts

are defined recursively as justification of the set of outcomes used to block a certain

outcome. Other stability concepts, when considering a block, may consider outcomes of

other agents to change as well. It may be interesting to consider these additional stability

concepts in the many-to-many setting.

Another direction of further research would be to consider choice functions which also

depend on the history of previous matching outcomes. In particular, in a model where

preferences are given, the preferences of agents may depend on whom they were matched

to previous periods. For example, firms may take into account the past experiences of

workers. This extension is particularly important in dynamic matching markets as agents

may take into account these changes in preferences when considering earlier matching

outcomes.

Appendix A. Proof of Lemma 1

We can show this lemma by the same argument as that of Blair (1988). We show (a) ⇒

(b), (b) ⇒ (c), and (c) ⇒ (a) as follows.

(a) ⇒ (b): Let A,B ⊆ X with A ⊆ B such that xT ≥ yT for all x ∈ B \ A and

all y ∈ A. Let x1 ∈ argmin{xT | x ∈ B \ A}. Then, Ri(A) ⊆ Ri(A ∪ {x1}) by weak

ordered substitutability and IRC. Moreover, xT ≥ yT for all x ∈ B \ (A ∪ {x1}) and all

y ∈ A ∪ {x1}. Thus, by repeating this argument, we have that Ri(A) ⊆ Ri(B).

(b) ⇒ (c): Let A,B ⊆ X such that xT ≥ yT for all x ∈ B \A and all y ∈ A. Pick any

x ∈ Ci(A ∪ B). When x /∈ B, we have x ∈ Ci(A) since otherwise x /∈ Ci(A ∪ B) holds
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by (b). Thus, Ci(A ∪ B) ⊆ Ci(A) ∪ B ⊆ A ∪ B. By IRC, we have that Ci(A ∪ B) =

Ci(Ci(A) ∪B).

(c) ⇒ (a): Let A ⊆ X. Consider any distinct x, x′ ∈ Ci(A) with x′ ∈ argmax{yT |

y ∈ A}. By (c), we have x ∈ Ci(A) = Ci(Ci(A \ {x′}) ∪ {x′}). Thus, x ∈ Ci(A \ {x′}).

Appendix B. Proof of Proposition 2

We show Proposition 2 by induction. Given t ∈ T , we say that an outcome A is t-stable

if A ⊆ X≤t, A is individually rational, and there exists no Z ⊆ X≤t \A such that Z ̸= ∅

and Zi ⊆ Ci(A ∪ Z) for all i ∈ ZI . Suppose that every agent’s choice function satisfies

IRC, PS, and FI. By the existence result of Hatfield and Kominers (2017), there exists a

1-stable outcome. Suppose that there exists a (t− 1)-stable outcome A ⊆ X≤(t−1) where

t ≥ 2. For each i ∈ I, we define Ĉi over 2X
t
i by Ĉi(Y ) = Ci(A ∪ Y ) \ A for all Y ⊆ X t

i .

Then, Ĉi satisfies IRC and SUB since Ci satisfies IRC and PS. By the existence result of

Hatfield and Kominers (2017), there exists a stable outcome B withinX t, that is, B ⊆ X t

such that Ĉi(B) = Bi for all i ∈ I and there exists no Z ⊆ X t \ B such that Z ̸= ∅

and Zi ⊆ Ĉi(B ∪ Z) for all i ∈ ZI . Note that Ci(A ∪ Y )≤(t−1) = Ai for all i ∈ I and all

Y ⊆ X t
i since C

i satisfies IRC and FI, and Ci(A) = Ai holds. This implies that A∪B is

individually rational. Suppose that A∪B is not t-stable. Then, there exists a nonempty

Z ⊆ X≤t\(A∪B) such that Zi ⊆ Ci(A∪B∪Z) for all i ∈ ZI . When Z≤(t−1) ̸= ∅, we have

that Z
≤(t−1)
i ⊆ Ci(A ∪ Z≤(t−1)) for all i ∈ Z

≤(t−1)
I by FI, contradicting the assumption

that A is (t − 1)-stable. Thus, Z ⊆ X t. Then, Zi ⊆ Ĉi(B ∪ Z) for all i ∈ ZI since

Zi ⊆ Ci(A ∪ B ∪ Z) for all i ∈ ZI , contradicting the fact that B is a stable outcome

within X t. Thus, A ∪B is t-stable. Therefore, there exists a stable outcome.

Appendix C. Proof of Theorem 1

We provide proofs of Theorem 1 (a) and (b) as follows. We assume that every agent’s

choice function satisfies IRC and weak ordered substitutability. We first show that there

exists a 1-temporally stable outcome. By the existence result of Hatfield and Kominers

(2017), there exists a stable outcome within X1; that is, A ⊆ X1 such that A is individ-

ually rational and there exists no Z ⊆ X1 \ A satisfying Z ̸= ∅ and Zi ⊆ Ci(A ∪ Z) for
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all i ∈ ZI . By weak ordered substitutability, this implies that A is a 1-temporally stable

outcome. We now prove Theorem 1(a) and (b) below.

Proof of Theorem 1(a). We assume that every doctor’s choice function satisfies IRC,

weak ordered substitutability, and period-wise unit demand. We show Theorem 1 by

induction. We have already shown that there exists a 1-temporally stable outcome.

Suppose that there exists a (t− 1)-temporally stable outcome A ⊆ X≤(t−1) where t ≥ 2.

We assume that the procedure described in Section 4 terminates at step k∗. We show

that A ∪B[k∗] is a t-temporally stable outcome.

We first show that A∪B[k∗] is individually rational by induction. Clearly, A∪B[0] = A

is individually rational. Suppose that A ∪ B[k] is individually rational for some step

k = 0, · · · , k∗ − 1. Let d = x(k)D and h = x(k)H . If B[k] = B[k + 1], then the proof

is complete. Thus, we assume that B[k] ̸= B[k + 1], that is, x(k) is accepted by h.

Then, B[k + 1] = (B[k] ∪ {x(k)}) \ Rh(A ∪ B[k] ∪ {x(k)}). By B[k]d = ∅, we have

that (A ∪ B[k + 1])d = Ad ∪ {x(k)}. By x(k) ∈ Od[k], Cd(A ∪ {x(k)}) = Ad ∪ {x(k)}.

Thus, A ∪ B[k + 1] is individually rational for d. Since x(k) is accepted by h, Ah ⊆

Ch(A ∪ B[k] ∪ {x(k)}). This implies that (A ∪ B[k + 1])h = Ch(A ∪ B[k] ∪ {x(k)}).

Thus, Ch(A ∪ B[k + 1]) = (A ∪ B[k + 1])h by IRC. Thus, A ∪ B[k + 1] is individually

rational for h. Note that A ∪ B[k + 1] is individually rational for all h′ ∈ H \ {h} by

B[k + 1]h′ = B[k]h′ and the induction hypothesis. Note also that B[k + 1]d′ ⊆ B[k]d′ for

all d′ ∈ D \{d}. This implies that Cd′(A∪B[k+1]) = (A∪B[k+1])d′ for all d
′ ∈ D \{d}

by weak ordered substitutability and the induction hypothesis. Thus, A ∪ B[k + 1] is

individually rational.

We next show that that for all h ∈ H,

Ch(A ∪B[k] ∪B[k∗]) = Ch(A ∪B[k∗]) for all k = 0, · · · , k∗. (1)

Let h ∈ H. By the definition of the procedure and IRC, we have that Ch(A∪B[k− 1]∪
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B[k]) = Ch(A ∪B[k]) for all k = 1, · · · , k∗. By Lemma 1(c), we have that

Ch(A ∪B[k∗ − 2] ∪B[k∗]) = Ch(Ch(A ∪B[k∗]) ∪B[k∗ − 2])

= Ch(A ∪B[k∗ − 1] ∪B[k∗] ∪B[k∗ − 2]))

= Ch(Ch(A ∪B[k∗ − 2] ∪B[k∗ − 1]) ∪B[k∗]))

= Ch(A ∪B[k∗ − 1] ∪B[k∗]))

= Ch(A ∪B[k∗]).

Thus, Ch(A ∪ B[k∗ − 2] ∪ B[k∗]) = Ch(A ∪ B[k∗]). Together with Ch(A ∪ B[k∗ − 3] ∪

B[k∗ − 2]) = Ch(A∪B[k∗ − 2]), we have that Ch(A∪B[k∗ − 3]∪B[k∗]) = Ch(A∪B[k∗])

by the same argument above. By repeating this argument, we obtain (1).

We now show that A∪B[k∗] is a t-temporally stable outcome. Suppose that A∪B[k∗]

is not t-temporally stable. Then, A∪B[k∗] is blocked at some period t̂ = 1, · · · , t since we

have already shown that A∪B[k∗] is individually rational. Thus, there exists a nonempty

Z ⊆ X≥t̂ \ (A ∪ B[k∗]) such that (i) Z t̂ ̸= ∅, (ii) Zi ⊆ Ci(A ∪ B[k∗] ∪ Z) for all i ∈ ZI ,

and (iii) A
≤(t̂−1)
i = Ci(A ∪B[k∗] ∪ Z)≤(t̂−1) for all i ∈ ZI .

We first consider the case with t̂ < t. Note that Z≤(t−1) is nonempty by Z t̂ ⊆ Z≤(t−1).

By weak ordered substitutability, we have that Z
≤(t−1)
i ⊆ Ci(A ∪ Z≤(t−1)) and A

≤(t̂−1)
i =

Ci(A∪Z≤(t−1))≤(t̂−1) for all i ∈ Z
≤(t−1)
I . This means that A is blocked at period t̂(≤ t−1)

contradicting the assumption that A is (t− 1)-temporally stable.

It remains to consider the case with t̂ = t. Then, Z ⊆ X≥t and Zt is nonempty. Pick

any z ∈ Zt. By weak ordered substitutability, we have that z ∈ Ci(A ∪B[k∗] ∪ {z}) and

Ai = Ci(A∪B[k∗]∪{z})≤(t−1) for all i ∈ {zD, zH}. Hence, A∪B[k∗] is blocked at period

t via {z}. Let d = zD and h = zH .

We claim that z /∈ Y [k∗]. Suppose that z ∈ Y [k∗]. Note that Cd(A∪ {z}) = Ad ∪ {z}

by weak ordered substitutability since z ∈ Cd(A∪B[k∗]∪{z}) and Ad = Cd(A∪B[k∗]∪

{z})≤(t−1). If B[k∗]d = ∅, then z ∈ Od[k∗] = {x ∈ Y [k∗]\B[k∗] | Cd(A∪{x}) = Ad∪{x}},

contradicting that the procedure terminates at step k∗. Thus, B[k∗]d ̸= ∅. By period-wise

unit demand, |B[k∗]d| = 1. By the definition of the procedure, B[k∗]d = {x(k′)} for some

k′ ≤ k∗. Thus, d has proposed x(k′) at step k′. This means that x(k′) ∈ Od[k′] and

B[k′]d = ∅. Moreover, z ∈ Od[k′] = {x ∈ Y [k′] \ B[k′] | Cd(A ∪ {x}) = Ad ∪ {x}} since

Cd(A ∪ {z}) = Ad ∪ {z} and z ∈ Y [k∗] ⊆ Y [k′]. Recall that z ∈ Ci(A ∪ B[k∗] ∪ {z}) =

Ci(A∪{x(k′), z}). By period-wise unit demand, x(k′) /∈ Ci(A∪{x(k′), z}). Thus, x(k′) /∈
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Ci(A ∪ Od[k′]) by weak ordered substitutability, contradicting x(k′) ∈ Ci(A ∪ Od[k′]).

Therefore, z /∈ Y [k∗].

By z /∈ Y [k∗], there exists some step k̂ < k∗ at which z is rejected; that is, z ∈ Y [k̂]

but z /∈ Y [k̂ + 1]. We consider the following two cases.

Case 1. Suppose that z ̸= x[k̂]. Then, x(k̂) is accepted at step k̂ and z ∈ Rh(A∪B[k̂]∪

{x(k̂)}). This implies that z /∈ Ch(A∪B[k̂+ 1]∪ {z}) by the definition of the procedure

and IRC. By weak ordered substitutability, z /∈ Ch(A∪B[k̂+1]∪B[k∗]∪{z}). By Lemma

1(c) and (1), Ch(A ∪ B[k̂ + 1] ∪ B[k∗] ∪ {z}) = Ch(Ch(A ∪ B[k̂ + 1] ∪ B[k∗]) ∪ {z}) =

Ch(A∪B[k∗]∪{z}). Thus, z /∈ Ch(A∪B[k∗]∪{z}), contradicting the fact that A∪B[k∗]

is blocked at period t via {z}.

Case 2. Suppose that z = x[k̂]. Then, there are two possibilities.

Case 2-1. Suppose that z /∈ Ch(A ∪ B[k̂] ∪ {z}). By weak ordered substitutability,

z /∈ Ch(A ∪ B[k̂] ∪ B[k∗] ∪ {z}). By Lemma 1(c) and (1), this implies that z /∈ Ch(A ∪

B[k∗] ∪ {z}), contradicting the fact that A ∪B[k∗] is blocked at period t via {z}.

Case 2-2. Suppose that Ah ⊈ Ch(A ∪B[k̂] ∪ {z}). Then, there exists y ∈ Ah such that

y /∈ Ch(A ∪ B[k̂] ∪ {z}). By weak ordered substitutability, we have y /∈ Ch(A ∪ B[k̂] ∪

B[k∗] ∪ {z}). By Lemma 1(c) and (1), this implies that y /∈ Ch(A ∪ B[k∗] ∪ {z}) and

thus Ah ̸= Ch(A ∪B[k∗] ∪ {z})≤(t−1), contradicting the fact that A ∪B[k∗] is blocked at

period t via {z}.

Therefore, every case yields a contradiction. Thus, A ∪B[k∗] is t-temporally stable.

Proof of Theorem 1(b). We assume that every doctor’s choice function satisfies IRC,

PS, and FI. We show Theorem 1(b) by induction. We have already shown that there

exists a 1-temporally stable outcome. Suppose that there exists a (t − 1)-temporally

stable outcome A ⊆ X≤(t−1) where t ≥ 2. For each d ∈ D, we define a choice function

Ĉd over 2X
t
d by Ĉd(Y ) = Cd(A ∪ Y ) \ A for all Y ⊆ X t

d. Note that Ĉd satisfies IRC and

SUB for all d ∈ D. Consider the following procedure which is a variation of the one in

Section 4.

• Let Y [0] = X t be the initial set of available contracts for doctors and B[0] = ∅ be

the initial outcome for period t. For each step k, Y [k] represents the set of contracts
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for period t that have not been rejected, and B[k] represents the set of contracts

for period t that are tentatively accepted by some hospital. These sets are updated

by the following procedure where Y [k] and B[k] are subsets of X t for each step k.

• Step k(≥ 0): For each d ∈ D, Ĉd(Y [k]) \ B[k]d is the set of possible proposals for

d at step k. If Ĉd(Y [k]) \ B[k]d = ∅ for all d ∈ D, then this procedure terminates

at this step. Otherwise, pick an arbitrary d ∈ D such that Ĉd(Y [k]) \ B[k]d ̸= ∅.

Then, doctor d proposes a contract

x(k) ∈ Ĉd(Y [k]) \B[k]d

to hospital h = x(k)H . For hospitals, this procedure works in the same way as that

of Section 4. If x(k) ∈ Ch(A∪B[k]∪{x(k)}) and Ah ⊆ Ch(A∪B[k]∪{x(k)}), then

h accepts Ch(A∪B[k]∪ {x(k)}) and rejects Rh(A∪B[k]∪ {x(k)}), and define the

sets B[k + 1] and Y [k + 1] by B[k + 1] = (B[k] ∪ {x(k)}) \ Rh(A ∪ B[k] ∪ {x(k)})

and Y [k + 1] = Y [k] \ Rh(A ∪ B[k] ∪ {x(k)}). Otherwise, x(k) is rejected, and let

B[k + 1] = B[k] and Y [k + 1] = Y [k] \ {x(k)}.

This procedure also terminates at a finite step. Let k∗ be a step at which the above

procedure terminates. Note that for all h ∈ H, Ch(A ∪ B[k] ∪ B[k∗]) = Ch(A ∪ B[k∗])

holds for all k = 0, · · · , k∗ by the same argument as the proof of Theorem 1(a).

For doctors, the procedure works in the same way as in the standard DA algorithm.

This implies that B[k∗]d = Ĉd(Y [k∗]) for all d ∈ D. To see this, let d ∈ D and x ∈ B[k∗]d.

Then, x = x(k′) for some k′ ≤ k∗ and x(k′) ∈ Ĉd(Y [k′]). Note that B[k] ⊆ Y [k] for any

k = 0, · · · , k∗ by the definition of the procedure. Thus, x ∈ Y [k∗] ⊆ Y [k′]. By SUB of

Ĉd, x ∈ Ĉd(Y [k∗]). Thus, B[k∗]d ⊆ Ĉd(Y [k∗]). Since the procedure terminates at step

k∗, Ĉd(Y [k∗]) ⊆ B[k∗]d and hence B[k∗]d = Ĉd(Y [k∗]).

We next show that A ∪ B[k∗] is individually rational. For all d ∈ D, Ĉd(B[k∗]d) =

B[k∗]d by B[k∗]d = Ĉd(Y [k∗]) and IRC. Since the choice functions of doctors satisfy FI,

this implies that Cd(A ∪ B[k∗]) = (A ∪ B[k∗])d for all d ∈ D. By the same argument as

the proof of Theorem 1(a), A∪B[k∗] is individually rational for all hospitals. Therefore,

A∪B[k∗] is individually rational. Moreover, for any z ∈ X t \B[k∗], z ∈ ĈzD(B[k∗]∪{z})

implies z /∈ Y [k∗] by IRC and B[k∗]d = Ĉd(Y [k∗]). Then, we can show that A ∪ B[k∗] is

a t-temporally stable outcome by the same argument as the proof of Theorem 1(a).
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Appendix D. Example 7

Example 7. Let D = {d1, d2, d3}, H = {h1, h2, h3}, and T = {1, 2}. The set of contracts

at period 1 is given by {(d1, h1, 1), (d1, h2, 1)}. The set of contracts at period 2 is given

by

(D \ {d1})×H × {2} ∪ {(d1, h1, 2), (d1, h2, 2, α), (d1, h2, 2, β), (d1, h3, 2)}.

Note that there are two contracts between d1 and h2 at period 2.

We first construct d1’s choice function. Note that X1
d1

= {(d1, h1, 1), (d1, h2, 1)} and

X2
d1

= {(d1, h1, 2), (d1, h2, 2, α), (d1, h2, 2, β), (d1, h3, 2)}. If d1 matches with h2 at period

1, then d1’s preferences at period 2 (strict preferences over 2X
2
d1 ) are given as follows:

≻̂d1 :{(h1, 2), (h3, 2)}, {(h1, 2), (h2, 2, α)}, {(h3, 2), (h2, 2, β)},

{(h2, 2, α), (h2, 2, β)}, {(h1, 2)}, {(h3, 2)}, {(h2, 2, α)}, {(h2, 2, β)}, ∅.

If d1 does not matches with h2 at period 1, then d1 never wants to sign (d1, h2, 2, α) and

(d1, h2, 2, β), and d1’s preferences at period 2 (strict preferences over 2X
2
d1 ) are given as

follows:

≻̃d1 :{(h1, 2), (h3, 2)}, {(h1, 2)}, {(h3, 2)}, ∅.

Let Ĉd1 and C̃d1 be the choice functions over 2X
2
d1 that are induced from ≻̂d1 and ≻̃d1 ,

respectively. Then, it can be confirmed that Ĉd1 and C̃d1 satisfy IRC and SUB. We define

choice functions Ĉd1 and C̃d1 over 2{(d1,h1,1)}∪X2
d1 as follows: for all Y ⊆ {(d1, h1, 1)} ∪X2

d1

Ĉd1(Y ) =

{(d1, h1, 2), (d1, h3, 2)}(= Ĉd1(Y \ {(d1, h1, 1)})) if {(d1, h1, 2), (d1, h3, 2)} ⊆ Y,

Ĉd1(Y \ {(d1, h1, 1)}) ∪ [Y ∩ {(d1, h1, 1)}] if {(d1, h1, 2), (d1, h3, 2)} ⊈ Y,

C̃d1(Y ) =

{(d1, h1, 2), (d1, h3, 2)}(= C̃d1(Y \ {(d1, h1, 1)})) if {(d1, h1, 2), (d1, h3, 2)} ⊆ Y,

C̃d1(Y \ {(d1, h1, 1)}) ∪ [Y ∩ {(d1, h1, 1)}] if {(d1, h1, 2), (d1, h3, 2)} ⊈ Y.

Then, it is straightforward to see that Ĉd1 and C̃d1 satisfy IRC and SUB since Ĉd1 and

C̃d1 satisfy them. We now define a choice function Cd1 over 2Xd1 as follows: for all

Y ⊆ Xd1 = {(d1, h1, 1), (d1, h2, 1)} ∪X2
d1
,

Cd1(Y ) =

Ĉd1(Y \ {(d1, h2, 1)}) ∪ {(d1, h2, 1)} if (d1, h2, 1) ∈ Y,

C̃d1(Y ) if (d1, h2, 1) /∈ Y.
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Then, Cd1 satisfies IRC since Ĉd1 and C̃d1 satisfy it. In addition, Cd1 satisfies ordered

substitutability. To see this, consider any Y ⊆ Xd1 and any distinct x, x′ ∈ Cd1(Y ) with

xT ≤ x′
T . When x = (d1, h2, 1), clearly x ∈ Cd1(Y \ {x′}). Suppose that x = (d1, h1, 1).

By (d1, h1, 1) ∈ Cd1(Y ), {(d1, h1, 2), (d1, h3, 2)} ⊈ Y . Thus, {(d1, h1, 2), (d1, h3, 2)} ⊈

Y \ {x′}. This implies that (d1, h1, 1) ∈ Cd1(Y \ {x′}) by the constructions of Ĉd1 and

C̃d1 . Hence, we assume that xT = 2. By xT ≤ x′
T , we must have x′

T = 2. Then, it is

straightforward to see that x ∈ Cd1(Y \{x′}) since Ĉd1 and C̃d1 satisfy SUB. Therefore, Cd1

satisfies ordered substitutability. Note that Cd1 does not satisfy SUB since (d1, h2, 2, α) ∈

Cd1({(d1, h2, 2, α), (d1, h2, 1)}) but (d1, h2, 2, α) /∈ Cd1({(d1, h2, 2, α)}) for example.

We next construct h2’s choice function. Note that X1
h2

= {(d1, h2, 1)} and X2
h2

=

{(d1, h2, 2, α), (d1, h2, 2, β), (d2, h2, 2), (d3, h2, 2)}. We assume that h2 has a strict prefer-

ence ordering over 2X
2
h2 defined by

≻̂h2 :{(d1, 2, α), (d1, 2, β)}, {(d1, 2, α), (d3, 2)}, {(d1, 2, β), (d2, 2)},

{(d3, 2), (d2, 2)}, {(d1, 2, α)}, {(d1, 2, β)}, {(d3, 2)}, {(d2, 2)}, ∅.

Let Ĉh2 be the choice function over 2X
2
h2 induced from ≻̂h2 . Then, Ĉ

h2 satisfies IRC and

SUB. We define a choice function Ch2 over 2Xh2 as follows: for any Y ⊆ {(d1, h2, 1)}∪X2
h2
,

Ch2(Y ) =

{(d1, h2, 2, α), (d1, h2, 2, β)}(= Ĉh2(Y \ {(d1, h2, 1)})) if {(d1, h2, 2, α), (d1, h2, 2, β)} ⊆ Y,

Ĉh2(Y \ {(d1, h2, 1)}) ∪ [Y ∩ {(d1, h2, 1)}] if {(d1, h2, 2, α), (d1, h2, 2, β)} ⊈ Y.

Then, Ch2 satisfies IRC and SUB since Ĉh2 satisfies them.

Every agent i ∈ I \ {d1, h2} has a choice function Ci over 2Xi that is induced from a

strict preference ordering ≻i over 2
Xi which is defined as follows:

≻d2 :{(h2, 2)}, {(h1, 2)}, ∅,

≻d3 :{(h2, 2)}, {(h3, 2)}, ∅,

≻h1 :{(d1, 1), (d2, 2)}, {(d1, 1), (d1, 2)}, {(d1, 1)}, ∅,

≻h3 :{(d3, 2)}, {(d1, 2)}, ∅.

Note that Ch1 does not satisfy SUB while it satisfies PS and FI. The choice functions of

the other agents satisfy IRC and SUB.

We show that there exists no pairwise temporally stable outcome. Let A be an individ-

ually rational outcome. Suppose that (d1, h1, 1) /∈ A. Then, (d1, h1, 2) /∈ A since A is in-

dividually rational for h1. Thus, {(d1, h1, 2), (d1, h3, 2)} ⊈ A. Thus, (d1, h1, 1) ∈ Cd1(A ∪
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{(d1, h1, 1)}) by the definition of Cd1 . Clearly, (d1, h1, 1) ∈ Ch1(A∪{(d1, h1, 1)}). Thus A

is blocked at period 1 via {(d1, h1, 1)}. Suppose that (d1, h2, 1) /∈ A. Then, (d1, h2, 2, α) /∈

A since A is individually rational for d1. Thus, {(d1, h2, 2, α), (d1, h2, 2, β)} ⊈ A. Thus,

(d1, h2, 1) ∈ Ch2(A ∪ {(d1, h2, 1)}) by the definition of Ch2 . Clearly, (d1, h2, 1) ∈ Cd1(A ∪

{(d1, h2, 1)}). Thus, A is blocked at period 1 via {(d1, h2, 1)}. Therefore, if (d1, h1, 1) /∈ A

or (d1, h2, 1) /∈ A, then A is not temporally stable.

We assume that {(d1, h1, 1), (d1, h2, 1)} ⊆ A and show that A is not temporally

stable. If A2
h2

= ∅, then A is blocked at period 2 by {(d2, h2, 2)} since A1
d2

= ∅, d2

ranks {(d2, h1, 2)} first, and Ch2({(d1, h2, 1), (d2, h2, 2)}) = {(d1, h2, 1), (d2, h2, 2)}. When

|A2
h2
| = 1, then A is blocked at period 2 (if A2

h2
= {(d1, h2, 2, α)}, A is blocked at period 2

via {(d3, h2, 2)}, if A2
h2

= {(d1, h2, 2, β)}, A is blocked at period 2 via {(d2, h2, 2}, if A2
h2

=

{(d2, h2, 2)}, A is blocked at period 2 via {(d3, h2, 2)}, and if A2
h2

= {(d3, h2, 2)}, A is

blocked at period 2 via {(d2, h2, 2)}). Thus, we assume that |A2
h2
| = 2. Note that individ-

ual rationality of A implies that A2
h2

̸= {(d1, h2, 2, α), (d1, h2, 2, β)} by (d1, h2, 1) ∈ A and

A2
d1

̸= {(d1, h1, 2), (d1, h3, 2)} by (d1, h1, 1) ∈ A. By A2
h2

̸= {(d1, h2, 2, α), (d1, h2, 2, β)}, it

remains to consider the following three cases.

(1) Suppose that A2
h2

= {(d2, h2, 2), (d3, h2, 2)}. By individual rationality of A, A2 is

either

{(d2, h2, 2), (d3, h2, 2)},

{(d1, h1, 2), (d2, h2, 2), (d3, h2, 2)}, or

{(d1, h3, 2), (d2, h2, 2), (d3, h2, 2)}.

The former two are blocked at period 2 via {(d1, h2, 2, α)}. The last one is blocked

at period 2 via {(d1, h2, 2, β)}.

(2) Suppose that A2
h2

= {(d1, h2, 2, α), (d3, h2, 2)}. By individual rationality of A, A2 is

either

{(d1, h2, 2, α), (d3, h2, 2)},

{(d1, h1, 2), (d1, h2, 2, α), (d3, h2, 2)}, or

{(d2, h1, 2), (d1, h2, 2, α), (d3, h2, 2)}.

The former two are blocked at period 2 via {(d2, h1, 2)}. The last one is blocked at

period 2 via {(d1, h3, 2)}.
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(3) Suppose that A2
h2

= {(d1, h2, 2, β), (d2, h2, 2)}. By individual rationality of A, A2 is

either

{(d1, h2, 2, β), (d2, h2, 2)},

{(d1, h3, 2), (d1, h2, 2, β), (d2, h2, 2)}, or

{(d3, h3, 2), (d1, h2, 2, β), (d2, h2, 2)}.

The former two are blocked at period 2 via {(d3, h3, 2)}. The last one is blocked at

period 2 via {(d1, h1, 2)}.

The above argument shows that every individually rational outcome is pairwise blocked at

period 1 or 2. Thus, there exists no pairwise temporally stable outcome in this example.
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