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Abstract

Diagnostic expectations have emerged as an important departure from rational expecta-

tions in macroeconomics and finance. We present a first treatment of diagnostic expectations

in linear macroeconomic models. To this end, we establish a strong additivity property for

diagnostic expectations. The solution method and stability properties are discussed in full

generality. Under some conditions, diagnostic expectations generate higher volatility than

rational expectations. We show that this is true in standard New Keynesian models, as in

medium-scale DSGE models; in real business cycle models output and investment are char-

acterized by dampening, instead. Finally, we discuss how the combination of diagnosticity

with imperfect information can rationalize under- and over-reaction in macroeconomics.
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1 Introduction

Diagnostic expectations have emerged as an important departure from rational ex-

pectations in macroeconomics and finance. The appeal of the use of diagnostic ex-

pectations is that it leads to a psychologically microfounded approach based on the

pioneering work by Kahneman and Tversky (1972). Moreover, it delivers a great deal

of tractability, as recent efforts in economics and finance have demonstrated (Bordalo,

Gennaioli, and Shleifer 2018; Bordalo, Gennaioli, La Porta, and Shleifer 2019; Bordalo,

Gennaioli, Ma, and Shleifer 2020).

In this paper, we seek to improve the portability of diagnostic expectations towards

macroeconomics. We extend the diagnosticity and representativeness approach to the

general class of linear models, which forms a cornerstone of macroeconomics. As a

result, we obtain a number of methodological and substantive results.

Specifically, we present five set of results.

First, we provide a general treatment of diagnostic expectations in linear recursive

models. To this end, we establish a strong additivity result for linear-Gaussian setups.

We use this result to obtain the solution to linear models with diagnostic expectations.

Our strategy consists in showing that one can obtain a rational expectations represen-

tation of the diagnostic expectations model. Once this is achieved, the model can be

solved using standard linear techniques. Importantly, we show that the stability prop-

erties are identical to those obtained under rational expectations. To our knowledge,

all of this has not been studied before in the literature.

Second, we point out that it is straightforward to look at the structure of the solu-

tion to linear models with diagnostic expectations and obtain conditions under which

this type of expectations lead to extra volatility of the endogenous variables over the

rational expectations benchmark. We show that the conditions for extra volatility are

typically verified in demand-determined economies, whereas these conditions typically

fail in supply-determined economies. We present a range of applications to quantita-

tively assess the degree of extra volatility case by case.

Third, we show how to loglinearize macroeconomic models under diagnostic ex-

pectations. Different from many other departures from the full-information rational

expectations case, as for example the introduction of imperfect information (Wood-

ford 2002), rational inattention (Mackowiak and Wiederholt 2009), or other behavioral

models (Garcia-Schmidt and Woodford 2019), it turns out that diagnostic expectations

change the structure of equilibrium conditions of the loglinear model, leading to novel
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implications in forward looking equations. For example, under diagnostic expectations,

we obtain the following Fisher equation, linking the real interest rate to the nominal

interest rates and the inflation rate:

r̂t = ît − Eθt [πt+1]− θ(πt − Et−1[πt])

So, the computation of real rate r̂t not only takes expected inflation into consideration,

but also the revision in inflation expectations, up to a factor equal to the diagnosticity

parameter θ. (See Section 3.)

Fourth, we show that in the simple New Keynesian model, diagnostic expectations

lead to contractions following a negative TFP shock, a feature that fits the evidence

regarding the Covid-19 recession. It is the subject of a growing literature discussed in

Section 3 (whereas the rational expectations benchmark fails in this regard.)

Fifth, we combine diagnosticity with imperfect information and attempt to con-

tribute to the recent literature on under/overreaction of macroeconomic expectations1

Our results illustrate two interesting cases: First, a case of aggregate overreaction

even in the presence of noisy information, and second, a case of a gradual buildup of

overreaction through a learning channel.

Related Literature. The paper is related to the emerging literature on diagnos-

tic expectations. See Gennaioli and Shleifer (2010), Bordalo, Gennaioli, and Shleifer

(2018), Bordalo, Gennaioli, La Porta, and Shleifer (2019), and Bordalo, Gennaioli, Ma,

and Shleifer (2020) for example, and Gennaioli and Shleifer (2020) for a review. These

are forward looking models of extrapolative expectations where agents over-weight fu-

ture states that are representative of recent news. Bordalo, Gennaioli, Shleifer, and

Terry (2020), and Maxted (2020) incorporate diagnostic expectations in macroeco-

nomic frameworks. Our contribution is to provide a general treatment of diagnostic

expectations in linear macroeconomic models. To our knowledge, our paper is the

first to evaluate diagnostic expectations for endogenous variables in a closed-economy

general equilibrium setup.

More broadly, our paper fits into the macroeconomics literature that models depar-

ture from rational expectations with various behavioral assumptions. Some references

for this literature include Howitt (1992), Evans and Honkapohja (2001), Woodford

(2002), Sims (2003), Mackowiak and Wiederholt (2009), Angeletos and La’O (2013),

1See Coibion and Gorodnichenko (2012), Bordalo et al. (2020), Kohlhas and Walther (2020), among others.
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Woodford (2013), and Eusepi and Preston (2018).

Some of the recent applications have focused on resolving puzzles in New Keynesian

models with behavioral assumptions. Angeletos and Lian (2018), Farhi and Werning

(2019), Gabaix (2020), and Garcia-Schmidt and Woodford (2019) are some of the pa-

pers that propose departures from rational expectations to attenuate the strength of

forward guidance. Iovino and Sergeyev (2020) study the effectiveness of central bank

balance sheet policies with level-k thinking. Farhi and Werning (2020) study the role

of monetary policy as a macro-prudential tool when agents form extrapolative expec-

tations. Malmendier and Nagel (2016) propose and test a framework where agents

overweight inflation experiences in their lifetimes. Fuster, Laibson, and Mendel (2010)

propose a framework where agents extrapolate from recent changes, which creates an

over-reaction to news, and excess volatility in consumption.

An active literature has consistently rejected the full-information rational expec-

tations (FIRE) hypothesis in the data. Mankiw and Reis (2002) resolve the delayed

response of inflation to monetary policy shocks via a sticky-information model of nom-

inal rigidities. Coibion and Gorodnichenko (2012) find that response of forecast errors

to structural shocks, in survey data, is inconsistent with FIRE models, but consistent

with models of informational rigidities. Using survey forecasts, Coibion and Gorod-

nichenko (2015) find evidence for a general property of models with informational

rigidities, namely revisions in forecasts systematically predict future forecast errors.

The correlation between future forecast errors and forecast revisions is found to be

positive in Coibion and Gorodnichenko (2015) when looking at consensus forecasts.

This result is referred to as under-reaction of forecasts relative to the FIRE bench-

mark. Bordalo, Gennaioli, La Porta, and Shleifer (2019), among others, find evidence

of a negative correlation between individual forecast errors and forecast revisions. Bor-

dalo, Gennaioli, Ma, and Shleifer (2020) propose a model of diagnostic expectations

with dispersed information to reconcile why there may be an over-reaction in forecasts

at the individual level, but under-reaction at the aggregate level. Angeletos, Huo, and

Sastry (2020) document that expectations of inflation and unemployment under-react

initially, and over-shoot gradually in response to business cycle shocks. In Section 4,

we propose a model of diagnostic expectations with learning that can generate under-

reaction, over-reaction or delayed over-reaction to shocks.

Because we explore the implications of combining diagnostic expectations with

imperfect information (as Bordalo, Gennaioli, Ma, and Shleifer 2020 do), our paper is

related to the seminal work of Lorenzoni (2009). Blanchard, L’Huillier, and Lorenzoni
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(2013) extend this work empirically and study how to fit a medium-scale DSGE to U.S.

business cycle data. Cao and L’Huillier (2018) apply a similar methodology to crisis

episodes. Melosi (2014) presents an important empirical application under dispersed

information.

Paper Organization. The paper is organized as follows. Section 2 presents our

solution procedure and general conditions for extra volatility. Section 3 presents the

applications. Section 4 introduces imperfect information with the objective of dis-

cussing related literature. Section 5 concludes. The Appendix provides supplementary

materials and collects all the proofs.

2 General Formulation, Solution Procedure, and

General Properties

We present a general linear model where agents use diagnostic expectations to form

beliefs about the future evolution of the exogenous drivers buffeting the economy and

all endogenous variables. We then show how one can obtain the solution to this class of

models. Our strategy consists in showing that one can obtain a rational expectations

(RE) representation of the diagnostic expectations (DE) model. Once this is achieved,

the model can be solved using standard techniques.2

The main technical difficulty in the context of DSGE models is the presence of

predetermined variables. We show how to obtain additivity in this case, an issue that

has not been addressed in previous literature. A key step is to appropriately specify

the reference distribution. To this end, we extend the “no-news” approach introduced

by Bordalo, Gennaioli, and Shleifer (2018) to predetermined variables. This delivers

tractability.

2For clarity, the model is set up in a perfect information context. It is straightforward to extend this to
an imperfect information environment by exploiting the relation between the diagnostic Kalman filter (Bordalo,
Gennaioli, Ma, and Shleifer 2020) and the rational or true Kalman filter. This is what we use in the imperfect
information extension presented in Section 4.
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2.1 Preliminary Considerations: Linearity Results for the Di-

agnostic Expectation Operator

Define the following two AR(1) processes for random variables xt and yt:

xt = ρxxt−1 + εt

yt = ρyyt−1 + ηt

where εt and ηt are Gaussian and orthogonal exogenous shocks:

εt ∼ N(0, σ2
ε), ηt ∼ N(0, σ2

η)

ρx and ρy are persistence parameters satisfying ρx, ρy ∈ [0, 1), and σ2
ε and σ2

η are the

shocks’ variances.

We now define the diagnostic expectation operator that agents in the model will use

to form beliefs about future realizations of these random variables. For the sake of the

argument, we first focus on xt. In an environment where agents have diagnostic beliefs,

agents will form these expectations based on a probability distribution function (pdf)

distorted by the representativeness heuristic (Kahneman and Tversky 1972; Kahne-

man, Slovic, and Tversky 1982), which following the language of Bordalo, Gennaioli,

and Shleifer (2018) (and earlier related work as Gennaioli and Shleifer 2010), leads to

‘diagnosticity’ in beliefs.

The true (or non-distorted) pdf of xt+1 is

f(xt+1|xt) ∝ ϕ

(
xt+1 − ρxxt

σε

)
where ϕ(x) is the density of a standard normal distribution:

ϕ(x) =
1√
2π
e−

1
2
x2

We follow the formulation by Bordalo et al. (2018) closely and make assumptions

such that, due to the representativeness, agents overweight the last realization of the xt

when forming beliefs about the future realization of xt+1.3 The diagnostic distribution

3A related, more complex approach, specifies this overweighting as a function not only on the last realization,
but also a number of previous ones as well. This is considered in the appendix of Bordalo et al. (2018) and also in
Maxted (2020) and Bordalo, Gennaioli, Ma, and Shleifer (2020). In the context of medium-scale DSGEs, extending
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is defined as

f θt (xt+1) = f(xt+1|G) ·
[
f(xt+1|G)

f(xt+1| −G)

]θ
· C

where G and −G are conditioning events. G encodes current conditions, and −G
encodes a reference group (i.e. a reference set of events). Accordingly, f(xt+1| − G)

is named the “reference distribution”. θ ≥ 0 is the diagnosticity parameter, and C

is a constant ensuring that f θt (xt+1) integrates to 1. Notice the role played by the

likelihood ratio f(xt+1|G)/f(xt+1| − G) in distorting beliefs to a degree parametrized

by θ.

In this dynamic setting, current conditions are the state at t, thus G ≡ {xt = x̄t}.4

Following Bordalo, Gennaioli, and Shleifer (2018), we shall impose that the event −G
carries “no news” about exogenous variables at time t (henceforth no-news assumption

or NNA). In this dynamic setting, this is interpreted as if agents did not learn anything

new at time t.

Assumption 1 (Univariate No-News Assumption)

f(xt+1| −G) = f(xt+1|xt = ρxx̄t−1)

This assumption imposes that beliefs about future xt+1 are formed conditional on

the event that the random variable xt, conditional on the past realization x̄t−1, is what

it was expected to be, so εt = E[εt] = 0, which is equivalent to xt = ρxx̄t−1. As we

shall see, this assumption ensures tractability. We make this assumption throughout

the paper.

Under the NNA, the diagnostic distribution is then written

f θt (xt+1) = f(xt+1|xt = x̄t) ·
[

f(xt+1|xt = x̄t)

f(xt+1|xt = ρxx̄t−1)

]θ
· C (1)

Notice that the distribution (1) is conditional on two elements: first, it is conditional on

the current realization of xt, because this enters the true distribution of xt+1; second, it

is conditional on the reference event −G ≡ {xt = ρxx̄t−1}, which defines the reference

the number of past realizations that are considered beyond the last presumably is not crucial given the complex,
sluggish, dynamics already embedded in this type of models via the common ’bells and whistles’, such as habit
formation, capital adjustment costs, and so on. Therefore, for simplicity, we only consider diagnosticity induced
by the only last realization.

4Throughout this subsection it will be needed to differentiate, in our notation, between a random variable xt,
and a given realization, x̄t.
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distribution. In this dynamic setting, the reference event happens “between t− 1 and

t”.

Following previous literature, we denote the diagnostic expectation operator at time

t by Eθt [ · ]. The diagnostic expectation is formally defined as

Eθt [xt+1] =

∫ ∞
−∞

xf θt (x)dx

Thanks to the NNA (Assumption 1), the following result by Bordalo et al. (2018,

Proposition 1) follows, establishing a linear expression for the diagnostic expectation

in terms of the current and lagged true (or ‘rational’) expectations.

Lemma 1 (Univariate Rational Expectations Representation)

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1])

For completeness, a proof that closely follows Bordalo et al. (2018) is presented in

the appendix. In this formula, the lagged expectation Et−1[xt+1] is the expectation

conditional on information available at t − 1, that is, conditional on x̄t−1. Thus,

Et[xt+1] = ρxx̄t and Et−1[xt+1] = ρ2
xx̄t−1. For the processes above and a given realized

ε̄t, this implies the following:

Eθt [xt+1] = Et[xt+1] + θρxε̄t

such that Eθt [xt+1] > Et[xt+1] if and only if ε̄t > 0, that is diagnostic expectations

indeed extrapolate the past shock into future beliefs.

It is easy to extend this result to the sum xt+1 + yt+1. (See Appendix A.) In DSGE

models, a case of interest is the one of predetermined variables, i.e. when one of

the variables has been realized at t (and therefore it is degenerate.) Let us suppose,

momentarily, that this is yt. The question we are interested in is: What properties

does the diagnostic expectation of xt+1 + yt obey?

In order to answer this question, we recur to the Dirac delta function, defined as

follows.5 Suppose that ȳt is the realization of yt. Since yt is degenerate, it can be

5This is also pointed out in Bordalo et al. (2018, appendix).
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represented by a cumulative distribution function (cdf) with vanishing uncertainty:

Pr(yt ≤ ȳ|yt = ȳt) = lim
ση→0+

1

ση
Φ

(
ȳ − ȳt
ση

)
This is the probability that yt is below any given value ȳ, where Φ(x) is the cumulative

distribution function (cdf) of a standard normal random variable:

Φ (x̄) =

∫ x̄

−∞
ϕ(x)dx

This implies that Pr(yt = ȳt) = 1 and Pr(yt 6= ȳt) = 0, also denoted using the Dirac

delta function δ(x):

δ(x) = lim
a→0+

1

a
ϕ
(x
a

)
with the requirement that δ(x) is a pdf. Using this notation, δ(yt − ȳt) is the pdf of

yt, and thus

Pr(yt ≤ ȳ|yt = ȳt) =

∫ ȳ

−∞
δ(y − ȳt)dy

is equal to 1 for ȳ ≥ ȳt and equal to 0 otherwise.

Armed with these definitions, we discuss how to evaluate the time-t diagnostic

expectation of yt under the NNA. In this case, the reference distribution of yt is degen-

erate, with expectation ρyȳt−1, where ȳt−1 is the past realization. We represent this by

a cdf with vanishing uncertainty, as follows

Pr(yt ≤ ȳ|yt = ρyȳt−1) = lim
ση→0+

1

ση
Φ

(
ȳ − ρyȳt−1

ση

)
(2)

In this case the following lemma obtains.

Lemma 2

Eθt [yt] = ȳt + θ(ȳt − ρyȳt−1)

This lemma generalizes the diagnostic expectation representation obtained in Lemma

1 to degenerate variables. We highlight that the NNA is crucial for this result. As we

explain in Appendix A, alternative conditioning sets deliver a different result (a case

in which one loses tractability of DSGE models with predetermined variables.)

This appendix also derives the distribution of xt+1 + yt (Lemma 4), and computes

the diagnostic expectation of this expression (Proposition 5). These results are used
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to generalize the following additivity result by Bordalo et al. (2018, appendix p. 5):

Eθt [xt+r + yt+s] = Eθt [xt+r] + Eθt [yt+s], r, s ≥ 1 (3)

Indeed, by extending the NNA to degenerate variables, we are able to establish a

stronger version of additivity, as follows.

Proposition 1 (Strong Additivity of the Diagnostic Expectation)

Eθt [xt+r + yt+s] = Eθt [xt+r] + Eθt [yt+s], r, s ≥ 0

The proof is in the appendix. This stronger result, then, establishes additivity for

the cases in which either xt or yt are degenerate (r or s equal to 0.) This turns out

to be crucial in the application to linear DSGEs, since these models typically feature

predetermined variables.6 The next section will use this result to find the solution to

these models.

2.2 Linear Diagnostic Expectations Model

2.2.1 Exogenous Processes.

We start by specifying the exogenous drivers of the economy. Exogenous variables are

staked in a (n× 1) vector xt that is assumed to follow the AR(1) stochastic process

xt = Axt−1 + vt (4)

where vt is a (k × 1) vector of Gaussian and orthogonal exogenous shocks:

vt ∼ N(0,Σv)

and A is a diagonal matrix of persistence parameters.

Following Bordalo et al. (2018), we make a no-news assumption for this multivariate

setup.

Assumption 2 (Multivariate No-News Assumption)

f(xt+1| −G) = f(xt+1|xt = Axt−1)

6Examples include the capital stock, or past consumption (in the case of habit formation).
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2.2.2 Stochastic Difference Equation

The class of forward-looking models we analyze are written in form of a stochastic

difference equation. To this end, let yt denote a (m×1) vector of endogenous variables

(including jump variables and states) and xt, as above, denote the (n × 1) vector of

exogenous states. The model is:

Eθt [Fyt+1 + G1yt + Mxt+1 + N1xt] + G2yt + Hyt−1 + N2xt = 0 (5)

where F, G1, G2, M, N1, N2, and H, are matrices of parameters. F, G1, G2, and H

are (m×m) matrices, N1 and N2 are (m× n) matrices. Eθt [ · ], as above, denotes the

diagnostic expectation operator, which is now taken over endogenous and exogenous

variables.

Notice that in writing model (5), we were careful in allowing both the expectation

of time t variables (e.g. Eθt [N1xt]), and the variables themselves (e.g. N2xt). This is

necessary because diagnostic expectations depend on uncertainty between t− 1 and t

via the reference distribution. (Appendix A discusses this technical issue in detail.)

An open question is how to evaluate the expectation

Eθt [Fyt+1 + G1yt + Mxt+1 + N1xt]

in a manner consistent with a solution of the equation, and whether some form of

linearity is maintained with diagnostic expectations, so that equation (5) remains

linear after having taken this expectation.7 Relatedly, we want to know if this equation

admits a solution, under which conditions this solution is unique, and how stringent

these conditions are when compared to a benchmark of rational expectations.8

We tackle all of these issues in the next section.

7It is possible that the linear model, in its original form, is written with this expectation broken up into different
terms Eθt [Fyt+1 + G1yt + Mxt+1] + Eθt [N1xt], say, or with sums of expectations that involve the same variables,
i.e. Eθt [F1yt+1] + Eθt [F2yt+1], for example. As we will explain below, due to the structure of the solution, the
additivity property established earlier (Proposition 1) will render these issues moot.

8The seminal paper is by Blanchard and Kahn (1980), who refer to “existence and uniqueness” of a stable rational
expectations equilibrium. In linear monetary models these conditions are known as determinacy conditions. Uhlig
(1995) uses the language of “stability conditions”, who relates the concept to the mathematics of dynamical systems.
The idea is that they ensure the solution exists and is unique, ruling out sunspots. The DSGE models used for
policy analysis typically satisfy this requirement.
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2.3 Solution Procedure

Our procedure to obtain the solution to the model given by equations (4) and (5)

consists of first showing how to obtain a representation of the model in terms of rational

expectations. To this end, we use the strong additivity result above (Proposition 1)

which allows to write equation (5) in the more familiar form9

FEθt [yt+1] + G1Eθt [yt] + G2yt + Hyt−1 + MEθt [xt+1] + N1Eθt [xt] + N2xt = 0 (6)

Once this is achieved, the remaining steps are the following. First, postulate a

form for the solution, such that the endogenous variables follow a multivariate normal

distribution. Second, as a consequence this property, obtain a rational expectations

representation of the model. Third, solve for the model expressed in terms of rational

expectations using standard tools (as the method of undetermined coefficients, for

instance).

2.3.1 Form of the Solution

We look for a solution of the form

yt = Pyt−1 + Qxt + Rvt (7)

Notice the dependence of endogenous variables directly on the shocks vt (besides the

dependence through the exogenous variables xt as in RE models.) We make this guess

based on the extrapolative nature of DE.

2.3.2 Rational Expectations Representation

Notice that the above guess (7) implies that the endogenous variables of the model,

yt, are normally distributed. We obatin the following result.

Proposition 2 (Multivariate Rational Expectations Representation) Model (5)

9Together with the property of the diagnostic expectation that for any constant c and random variable Zt+1,
Eθt [cZt+1] = cEθt [Zt+1], which follows from the theorem of the expectation of a monotonic transformation of a
random variable.
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admits the following rational expectations representation:

F
(
Et[yt+1] + θ

(
Et[yt+1]− Et−1[yt+1]

))
+ Gyt + G1θ

(
Et[yt]− Et−1[yt]

)
+ Hyt−1

+M
(
Et[xt+1] + θ

(
Et[xt+1]− Et−1[xt+1]

))
+ Nxt + N1θ

(
Et[xt]− Et−1[xt]

)
= 0 (8)

where G = G1 + G2 and N = N1 + N2.

The proof is omitted, but it follows immediately from Lemma 1 and Lemma 2 pro-

vided in Appendix A, which allow to express the diagnostic expectation of all variables,

endogenous or exogenous, future and present, in terms of rational expectations.

2.3.3 Solution

Once the representation (8) has been obtained, it is straightforward to proceed by the

method of undetermined coefficients, looking for a solution of the form (7). Appendix

B shows that this leads to a system of three matrix equations. Specifically, the matrices

P,Q,R can be found solving

FP2 + GP + H = 0 (9)

FPQ + FQA + GQ + MA + N = 0 (10)

θFPQ + (1 + θ)FPR + θFQA + θG1Q + GR + θG1R + θMA + θN1 = 0 (11)

We can use the techniques discussed in Uhlig (1995) to solve the quadratic matrix

equation (9) in P. The solution of the other two equations is straightforward as they

are linear in Q and R: After vectorization, equation (10) becomes

(Im ⊗ FP)vec(Q) + (AT ⊗ F)vec(Q) + (Im ⊗G)vec(Q) + vec(MA) + vec(N) = 0

such that

vec(Q) = −
(

(Im ⊗ FP) + (AT ⊗ F) + (Im ⊗G)

)−1

× (vec(MA) + vec(N))

R can be found from (11):

R = −
(
(1 + θ)FP + G + θG1

)−1(
θFPQ + θFQA + θG1Q + θMA + θN1

)

13



2.3.4 Stability Conditions

It turns out that the model under DE is subject to the same stability conditions as the

model under RE. More precisely, consider the same model above, but under rational

expectations:

FEt[yt+1] + Gyt + Hyt−1 + MEt[xt+1] + Nxt = 0 (12)

where the matrices F, G, H, M and N are defined above. The following result holds.

Lemma 3 (Stability) The stability conditions for the model under diagnostic expec-

tations given by equations (4) and (5) are identical to the stability conditions for the

model under rational expectations given by (4) and (12).

The proof can be found in Appendix B.

2.4 Volatility

In the case of RE, the solution of model takes the form

yt = Pyt−1 + Qxt (13)

Comparing (13) and (7) immediately leads to conjecture that under DE there should

be extra volatility due to the presence of the extra term Rvt. This intuition is correct,

however, obviously, whether this is true for a given set of parameters will also depend

on the covariance of the matrix Q with the other matrices of parameters in the solution.

This is what the following proposition makes precise.

Proposition 3 (Extra Volatility) Let yDEit and yREit respectively denote the i-th com-

ponent of the vector of endogenous variables yDEt and yREt and V ar(yDEit ) and V ar(yREit )

denote the variance of the variable yDEit and of the variable yREit . Then, V ar(yDEit ) is

larger than V ar(yREit ) if and only if:

diag(RΣvR′ + 2QΣvR′)i > 0 (14)

where Σv is the variance-covariance matrix of vt.

The proof can be found in Appendix B. In the next section, we go through a few

applications to explore whether the set of conditions (14) is satisfied for a collection of

benchmark models.
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3 Applications

The aim of this section is to apply the solution method established above to a number

of benchmark models. We start by writing down a quantitative medium-scale dynamic

stochastic general equilibrium (DSGE) model. The model is quite standard and it is

based on the seminar work of Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007). We then look at the effect of diagnostic expectations by first

considering simpler, special cases of this model. At the end of the section we present

the results in the context of the full model.

3.1 A Medium-Scale DSGE model

We evaluate the implications for macroeconomic volatility in a quantitative medium-

scale dynamic stochastic general equilibrium (DSGE) model. The model follows the

exposition in Gust, Herbst, López-Salido, and Smith (2017), henceforth referred to

as GHLS. The economy comprises of following agents: a continuum of households

supplying differentiated labor, a continuum of firms producing differentiated goods,

a perfectly competitive final goods firm, a perfectly competitive labor agency that

provides the composite labor input demanded by firms, and a government in charge of

fiscal and monetary policy.

3.1.1 Monopolistically competitive producers

Assume there is a continuum of differentiated intermediated good producers that sell

the intermediate good Yjt. A perfectly competitive firm aggregates intermediate goods

into a final composite good Yt =

[∫ 1

0
Y

εp−1

εp

jt dj

] εp
εp−1

, where εp > 1 is constant elasticity of

demand. The iso-elastic demand for intermediate good j is given by: Yjt =
(
Pjt
Pt

)−εp
Yt,

where Pt is the aggregate price index and Pjt is the price of intermediate goods j. Each

intermediate good j is produced by a price-setting monopolistically competitive firm

using labor Ljt and physical capital Kjt:

Yjt = At (ZtLjt)
1−α Kα

jt (15)

where Zt is the non-stationary aggregate TFP process, and At is the stationary aggre-

gate TFP process. The variable Zt denotes a non-stationary TFP series that evolves
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according to:

Zt
Zt−1

=

(
Zt−1

Zt−2

)ρZ
G1−ρZ
Z exp(εZ,t); εZ,t ∼ iid N(0, σ2

z)

where ρZ is the persistence of the shock process, and εZ,t is a random disturbance that

causes deviations of the TFP growth from its balanced growth rate GZ . Stationary

TFP evolves as follows:

logAt = ρA logAt−1 + εA,t; εA,t ∼ iid N(0, σ2
A) (16)

Firms choose inputs to minimize total cost each period. Marginal cost, independent

of firm-specific variables, is given by mct = 1
At

1
Z1−α
t

(
Rkt
α

)α (
Wt

1−α

)1−α
, where

Rkt
Pt

and Wt

Pt

denote aggregate rental rate of capital and real wage. A firm j pays a quadratic

adjustment cost in units of final good (Rotemberg 1982) to adjust its price Pjt. The

cost is given by ψp
2

(
Pjt

Π̃t−1Pjt−1
− 1
)2

PtYt, where ψp ≥ 0 regulates the adjustment costs.

Price change is indexed to Π̃t−1 = Π̄1−ιpΠ
ιp
t−1, where ιp governs indexation between

previous period inflation rate Πt−1 and steady state inflation rate Π̄. Firm’s per period

profits are given by: Γjt ≡ PjtYjt − PtmctYjt − ψp
2

(
Pjt

Π̃t−1Pjt−1
− 1
)2

PtYt. Each period,

the firm chooses Pjt to maximize present discounted value of real profits:

max
Pjt

{
ΛtΓjt
Pt

+ Eθt

[
∞∑
s=1

Λt+sΓjt+s
Pt+s

]}

where Λt is the marginal utility of consumption in period t, and Eθt [ · ] is the diagnostic

expectation operator regulated by parameter θ. Notice that we write dynamic maxi-

mization problems by explicitly separating time t choice variables from the expectation

of future choice variables. As explained below, this separation is crucial for solving the

model with diagnostic expectations.

3.1.2 Households

There is a continuum of monopolistically competitive households, indexed by i ∈ [0, 1],

supplying a differentiated labor input Li,t. A perfectly competitive employment agency

aggregates various labor types into a composite labor input Lt supplied to firms, in a

Dixit-Stiglitz aggregator: Lt =

[∫ 1

0
L
εw−1
εw

i,t di

] εw
εw−1

, where εw > 1 is constant elasticity
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of demand. The iso-elastic demand for labor input i is given by: Li,t =
(
Wi,t

Wt

)−εw
Lt,

where Wi,t is household i’s wage rate, and Wt is the aggregate wage rate that the

household takes as given.

The household i has following lifetime-utility at time t:(
log(Ci,t − hC̃t−1)− ω

1 + ν
L1+ν
i,t − ψwi,t

)
+Eθt

[
Σ∞s=t+1β

s−t
(

log(Ci,s − hC̃s−1)− ω

1 + ν
L1+ν
i,s − ψwi,s

)]
where h is the degree of habit formation on external habits over aggregate consumption

C̃t−1, which the household takes as given, ν > 0 is inverse of the Frisch elasticity of

labor supply, ω > 0 is a parameter that pins down the steady-state level of hours, and

the discount factor β satisfies 0 < β < 1. ψwi,t is the loss in utility in adjusting wages.

We assume a quadratic adjustment cost given by ψwi,t = ψw
2

[
Wit

Π̃wt−1Wit−1

]2

, where ψw ≥ 0

is a parameter, and wage contracts are indexed to productivity and price inflation. We

assume Π̃w
t−1 = GZΠ̄1−ιw (exp(εZ,t)Πt−1)ιw with 0 ≤ ιw < 1.

The household’s budget constraint in period t is given by

PtCi,t + PtIi,t +
Bi,t+1

(1 + it)ηt
= Bi,t +Wi,tLi,t + Γt + Tt +RK

t ui,tK
u
i,t − Pta(ui,t)K

u
i,t

where Ii,t is investment, Wi,tLi,t is labor income, and Bi,t is income from nominal

bonds paying nominal interest rate it. Households own an equal share of all firms,

and thus receive Γt dividends from profits. Finally, each household receives a lump-

sum government transfer Tt. Following Smets and Wouters (2007) and Christiano,

Eichenbaum, and Trabandt (2015), we assume a risk-premium shock process ηt:

log ηt = ρη log(ηt−1) + εη,t; εη,t ∼ iid N(0, σ2
η)

The households own capital, Ku
i,t, and choose the utilization rate, ui,t. The amount

of effective capital, Ki,t, that the households rent to the firms at nominal rate RK
t is

given by Ki,t = ui,tK
u
i,t. The (nominal) cost of capital utilization is Pta(ui,t) per unit

of physical capital. As in the literature, we assume a(1) = 0 in the steady state and

a′′ > 0. Following GHLS, we assume investment adjustment costs, S
(

Ii,t
GZIi,t−1

)
, in the

production of capital, where GZ is the steady state growth rate of Zt. Law of motion

for capital is as follows:

Ku
i,t+1 = µt

[
1− S

(
Ii,t

GZIi,t−1

)]
Ii,t + (1− δk)Ku

i,t
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where δk denotes depreciation rate, and µt is an exogenous disturbance to the marginal

efficiency of investment that follows:

log(µt) = ρµ log(µt−1) + εµ,t; εµ,t ∼ iid N(0, σ2
µ)

As in the literature, we assume that S(1) = S ′(1) = 0, and calibrate S ′′(1) > 0.

3.1.3 Government

The central bank follows a Taylor rule in setting the nominal interest rate it. It

responds to deviations in (gross) inflation rate Πt from its target rate Π̄, output gap,

and output growth rate.

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR [(Πt

Π̄

)φπ
Xφx
t

(
Yt

GZYt−1

)φdy]1−ρR

exp(εmp,t); εmp,t ∼ iid N(0, σ2
mp)

(17)

with 0 < ρR < 1, φπ ≥ 0, φx ≥ 0, and φdy ≥ 0. iss is the steady state nominal interest

rate, and εmp,t is the monetary policy shock. Output gap Xt ≡ Yt
Y ∗t

is measured as

deviations of output, Yt, from output under natural rate allocation, Y ∗t .10

We assume government balances budget every period PtTt = PtGt, where Gt is

the government spending. Gt is determined exogenously as as a fraction of GDP:

Gt =
(

1− 1
λgt

)
Yt where the government spending shock follows the process:

log λgt = (1− ρg) log λg + ρg log λgt−1 + εg,t; εg,t ∼ N(0, σ2
g)

λg is the steady state share of government spending in final output.

3.1.4 Market clearing

We focus on a symmetric equilibrium where all intermediate goods producing firms

and households make the same decisions. Therefore, we can drop subscripts i and

j. The aggregate production function, in the symmetric equilibrium, is then given by:

Yt = At (ZtLt)
1−αKα

t , since Kt = Ki,t = Kjt and Nt = Ni,t = Njt. The market clearing

10We define the natural rate allocation as the one where prices and wages are flexible from today onwards taking
as given the evolution of the state-variable.
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for the final good, in the symmetric equilibrium, requires that

Yt = Ct + It + a(ut)K
u
t +Gt +

ψp
2

[
Πt

Π̃t−1

− 1

]2

Yt

This completes the presentation of the full DSGE model.

3.1.5 Technical Remark

We make a technical remark, important for the loglinearization of the model above (and

any DSGE model that uses diagnostic expectations more generally.) In fact, because

the diagnostic distribution of a random variable realized at time t, say Xt, depends

on uncertainty between t− 1 and t (which enters through the reference distribution),

generally

Eθt [Xt] 6= Xt

In other words, one loses the usual property of the expectation conditional on time11

t:

Et[Xt] = Xt

As a consequence, care needs to be exercised when loglinearizing the model under

diagnostic expectations. The naive in approach in which one would proceed to “sub-

stitute” the rational expectations operator by the diagnostic expectations operator for

the loglinear equations is unfortunately not correct. To see this, consider for instance

the Euler equation for the optimal household choice in a standard simple monetary

economy:
u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
where we follow the notation of the DSGE model above. Because Eθt [ · ] is not con-

ditional on t, but on t − 1, then one cannot proceed by arranging the equation to

have all variables on the right-hand side, then introducing all time-t variables into the

expectation, with the goal of obtaining an expression for gross inflation at t and then

proceed by loglinearization. Appendix C shows which procedure to adopt to handle

the diagnostic expectation. It also shows that this changes the resulting loglinear ap-

proximation. (This fact is a major complication in the loglinearization of the model

11Under DE however, we know that
Eθt [Xt−1] = Xt−1

when the agent uses a reference distribution back to t− 1.
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above, and we present the loglinearized model in Appendix E.)

The reader may wonder at this point whether these issues introduce time incon-

sistency in agents’ choices. It turns out that this is not the case in the loglinear

approximation. By the law of iterated expectations (which holds for the diagnostic ex-

pectation in linear-Gaussian settings), time t + 1 policy functions are consistent with

agents’ expectations (about their time t+ 1 policy functions.)

3.1.6 Calibration

Table 3 in Appendix F displays the calibrated parameters. These are the parameters

estimated in the linearized model of GHLS. The only difference with respect to GHLS

is that we model external habits, as opposed to internal habits. Subsequently, we

calibrate h = 0.5 as a standard value in the literature.12

In addition, we set the diagnosticity parameter θ = 1, which is broadly consistent

with the evidence presented by Bordalo, Gennaioli, Ma, and Shleifer (2020). This

choice is also close to what is used by Bordalo, Gennaioli, Shleifer, and Terry (2020).

(Using a different value does not qualitatively change our conclusions.)

3.2 Inspecting the Effects of Diagnostic Expectations Through

Special Cases

In principle, expectational errors induced by diagnostic expectations have the poten-

tial to propagate through model economies and generate novel dynamics of endogenous

variables. Intuitively, diagnostic expectations ought to generate extrapolation in be-

liefs, together with sharp reversals towards rational expectations. One may conclude

that diagnostic expectations can generate extra volatility relative to rational expecta-

tions framework.

In order to study these questions, we consider two special cases of the full model to

illustrate that, even though this intuition is correct, the way in which diagnostic expec-

tations interact with equilibrium models paints a nuanced answer in terms of the exact

implications for equilibrium variables such as output, consumption, or employment. In-

deed, the errors in expectations interact with the frictions present in benchmark models

and have powerful effects, or—on the contrary—might be muted by general equilib-

12GHLS estimate five shock processes: monetary policy shocks, risk-premium shocks, investment quality shocks,
government spending shocks and TFP non-stationary shocks. We have added a stationary TFP shock to the model
above to be used in the special cases below. This shock is calibrated using standard values.
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rium forces. Thus, in order to exposit the potential of these errors to propagate in a

given economy, we resort to two polar opposites: a prototypical demand-determined

economy as the New Keynesian model, and a prototypical supply-determined economy

as the Real Business Cycle (RBC) model. In both models, diagnostic expectations will

generate volatility in beliefs impacting the intertemporal consumer problem, and lead

to higher volatility in consumption compared to a rational expectations benchmark.

In the former, diagnostic expectations will rely on nominal frictions to propagate this

volatility towards output and other quantities. In the later, general equilibrium ad-

justment in prices will, instead, lead to a limited propagation, with output volatility

almost unchanged. Furthermore, another interesting result we found is that, by the

presence of diagnostic expectations in the NK model, the output gap falls of the output

gap following a contractionary TFP shock.13

3.2.1 The Simple New Keynesian Model

We consider a textbook New Keynesian model (Woodford 2003; Gaĺı 2015). This

simple New Keynesian (NK) model is the special case of the medium-scale DSGE

model described above, when there is no capital (α = 0), zero trend inflation (Π̄ = 1),

no price or wage indexation (ιp = ιw = 0), zero trend growth rate (log(GZ) = 0),

no habits (h = 0), flexible wages (ψw = 0) without any labor market power, zero

government spending (λg = 1), and a few coefficients of the interest rate rule are

set to zero (ρR = φdy = 0). To keep our discussion focused, we assume there is

one exogenous shock process, namely shocks to stationary TFP (At). We present the

detailed derivation of this model in Appendix C.

Under diagnostic expectations, the equilibrium conditions of the simple new Key-

nesian model are as follows:

ŷt = Eθt [ŷt+1]− (̂it − Eθt [πt+1]) + θ(πt − Et−1[πt])

πt = βEθt [πt+1] + κ(ŷt − ât)

ît = φππt + φx(ŷt − ât)

where β is the discount factor, κ ≡ εp−1

ψp
(1+ν), εp is the elasticity of substitution across

intermediate goods’ varieties, ψp is a Rotemberg price-adjustment cost parameter, and

ν is the inverse of Frisch elasticity of labor supply. Variables ŷt, ît, πt, ât denote

13There is a growing interest in this type of result in macroeconomic models due to the Covid-19 pandemic. See
the discussion below for how it relates to recent works.
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log-deviations of output, nominal interest rate, inflation rate, and TFP from their

respective steady state values. The shock process is given by (16).

Note that the equations depart from the rational-expectations formulation in that

forward-looking terms bear a diagnostic expectations operator instead of a rational-

expectations operator, Et[ · ]. Moreover, the Euler-equation carries an additional term

that captures the time-t rational forecast error of inflation. In particular, the log-

linear Fisher relationship between nominal interest and real interest rate is altered

under diagnostic expectations, and it is given by:

r̂t = ît − Eθt [πt+1]− θ(πt − Et−1[πt])

Time-t rational forecast errors about inflation, and not just expected inflation, links

the two interest rates with diagnostic expectations. When θ = 0, the diagnostic

expectations equilibrium is equivalent to the rational expectations equilibrium.

In the following proposition, we establish some key properties of the diagnostic

expectations equilibrium when prices are completely rigid, that is ψp → ∞. The

details are presented in Appendix D.

Proposition 4 (Output Gap Characterization) Assume that ψp → ∞ and that

the diagnosticity parameter is high enough, that is, θ > 2(1 − ρA)(1 + φx)/(φxρA).

Then,

1. The output gap positively co-moves with the unanticipated component of TFP.

That is, ∂x̂t
∂εA,t

> 0.

2. The output gap under diagnostic expectations is more volatile than that under

rational expectations. That is, V ar(x̂t)DE > V ar(x̂t)RE.

The volatility condition in Proposition 4 is a special case of the more general con-

dition presented in Proposition 3.14 For standard parameter values, this condition is

satisfied. For example, when ρA = 0.9 and φx = 0.5, this condition requires that θ be

greater than 0.67 for diagnostic expectations to generate extra volatility.

The analytical results noted in the case of completely rigid prices also hold when

prices are sticky (not-completely rigid), i.e. 0 < ψp <∞. To numerically demonstrate

this, we use the calibration discussed above in the context of the full model. The

only difference is in the calibration of the stationary TFP process, which is calibrated

14Let R ≡ φx

1+φx−ρA and Q ≡ θρφx

(1+φx)(1+φx−ρA) . Propositions 3 state that the output gap is more volatile under

diagnostic expectations when R2 + 2QR > 0, consistent with the condition provided in Proposition 4.
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Table 1: Model-Implied Volatilities with Stationary TFP Shocks

(a) Simple New Keynesian Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0048 0.0085 77%
Consumption 0.0048 0.0085 77%
Investment – – –

(b) Real Business Cycle Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0064 0.0059 -7%
Consumption 0.0015 0.0030 100%
Investment 0.0533 0.0503 -6%

Notes: The table reports the standard deviations of output growth, consumption growth and investment growth in the simple NK
model and the RBC model in Panels (a) and (b) respectively. Final column titled “Percentage Increase” shows the percentage increase
in standard deviation under the diagnostic expectations model relative to the rational expectations benchmark. There is one shock
process in the two models. Stationary TFP follows an AR(1) process with persistence 0.9 and standard deviation 0.0050, as shown in
equation 16.

with persistence 0.90 and standard deviation of 0.0050. Panel a) in Table 1 shows

unconditional volatilities of output growth, and consumption growth under diagnostic

and rational expectations. Since there is no government spending or investment, output

growth and consumption growth are equivalent in the simple NK model. Table 1 shows

that the output gap under diagnostic expectations exhibits 77 percent higher standard

deviation relative to the output gap under rational expectations.15

Furthermore, the condition in Proposition 4 also implies that the output gap can

be negative with negative unanticipated productivity shocks. A recent literature,

following the Covid-19 pandemic, focuses on generating this positive co-movement.

Some of the alternate explanations include the use of input-output networks (Baqaee

and Farhi 2020), endogenous firm-entry (Bilbiie and Melitz 2020), heterogenous risk-

tolerance (Caballero and Simsek 2020), endogenous productivity growth (Fornaro and

Wolf 2020), multiple consumption goods (Guerrieri, Lorenzoni, Straub, and Werning

2020), among others.

Figure 1 plots the evolution of TFP and the output gap in the case of the NK

model. Following a negative TFP shock, with diagnostic beliefs the economy enters a

recession: the output gap and employment falls.

Thus, diagnostic expectations present a behavioral mechanism by which the output

gap correlates positively with productivity in the short-run. This result is in contrast to

15We also compared results with a textbook calibration (Gaĺı 2015; Woodford 2003): β = 0.99, κ = 0.025,
φπ = 1.50, φx = 0.5, and θ = 1. This calibration implies 68% higher standard deviation under diagnostic
expectations relative to rational expectations.
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Figure 1: Impulse Responses to a Stationary TFP Shock in the Simple NK Model

(a) TFP
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Notes: The left and right panels depict the impulse responses of TFP and output gap to a one unit negative shock to TFP. TFP shock
process is given by equation 16. The blue solid lines denote impulses responses with diagnostic expectations, whereas the red dotted
lines denote responses with rational expectations. The dynamics of employment are exactly the same as the output gap.

the well-known result under rational-expectations going back at least to Blanchard and

Quah (1989) and Gaĺı (1999): the fall of productivity, for the same level of aggregate

demand, increases the demand for labor; this generates a boom in the labor market,

together with a rise in the output gap.

Next, we turn to the describe what happens, following the same economic shock,

in the RBC model.

3.2.2 The Real Business Cycles Model

The baseline real business cycle (RBC) model is the special case of the full model

for flexible prices and wages (ψp = ψw = 0), no indexation, (ιw = ιp = 0), zero

capital adjustment costs (S ′′(1) = 0), full capacity utilization, zero trend growth rate

(log(GZ) = 0), no habits (h = 0), no product market or labor market power, and zero

government spending (λg = 1), The remaining parameters are same as calibrated in

the case of full model, except for the TFP process which is calibrated as in the NK

model to allow for a clean comparison.

Panel b) in Table 1 shows unconditional volatilities of output growth, consumption

growth, and investment growth, both under diagnostic and rational expectations. Con-

sumption growth is twice as volatile under diagnostic expectations than under rational

expectations. On the other hand, investment growth and output growth are damp-

ened under diagnostic expectations due to the general equilibrium adjustment of the
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interest rate.16 Diagnosticity, therefore, does not always generate extra amplification.

3.3 Results for the Full DSGE Model

We simulate the model based on the five shocks estimated by GHLS: monetary policy

shocks, risk-premium shocks, investment quality shocks, government spending shocks

and TFP growth rate shocks. We gauge how much extra volatility diagnostic expec-

tations can generate in the quantitative medium-scale DSGE model presented above.

(We present the full set of impulse response functions in Appendix F.) The interest

of this exercise is that this model contains a set of more realistic ingredients that the

previous two simple models did not contain.

Table 2 shows unconditional volatilities of output growth, consumption growth,

investment growth, employment, capacity utilization, capital stock growth, inflation,

and the nominal interest rate both under diagnostic and rational expectations. Con-

sistent with our analysis of the simple NK, diagnostic expectations generate higher

volatility for all these variables. This is because of the presence of nominal rigidities

(for prices and wages), which dampen the general equilibrium adjustment of prices,

which could offset the extrapolation of beliefs induced by diagnostic expectations. The

variable for which the introduction of diagnosticity is most impactful is consumption.

Looking at the previous results for the simple models indicates that this is due to

the forward looking nature of consumption through the Euler equation. Expectations

of future marginal utility are impacted by diagnosticity, leading to high consumption

volatility. As a by-product, output volatility is much higher with diagnosticity as well.

Figure 4 in Appendix F looks at the degree of extra output volatility generated

by diagnosticity by varying θ from 0 to 1.5. The figure shows that this relation is

monotonic.

The overarching conclusion is that the impact of diagnostic expectations in this

more realistic model resemble more the NK model than the RBC model. Given that

this model is considered a realistic building block for empirical analyses of the business

cycle and for policy analysis, this result suggests great promise for the incorporation of

representativeness into monetary economics and business cycle analysis in the presence

16Indeed, Figure 3 in Appendix F plots the impulse response of the exogenous TFP, consumption, output,
investment, capital stock, and real interest rate to a one standard deviation shock to TFP. The greater reduction in
real-interest rate under diagnostic expectations attenuates the fall in investment, and explains why there is lower
volatility in output and investment with diagnostic beliefs, compared to the corresponding variables under rational
expectations.
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Table 2: Model-Implied Volatilities in the Medium-Scale DSGE Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0139 0.0192 38%
Consumption 0.0113 0.0180 59%
Investment 0.0626 0.0751 20%
Employment 0.0558 0.0599 7%
Capacity Utilization 0.0154 0.0165 7%
Capital Stock 0.0101 0.0108 7%
Inflation 0.0032 0.0039 22%
Nominal Interest Rate 0.0089 0.0100 12%

Notes: The table reports the standard deviations of output growth, consumption growth, investment growth, employment, capacity
utilization, capital stock growth, inflation, and the nominal interest rate in the medium-scale DSGE model. Final column titled
“Percentage Increase” shows the percentage increase in standard deviation under the diagnostic expectations model relative to the
rational expectations benchmark. There are five shock processes in the model, as estimated by Gust, Herbst, López-Salido, and Smith
(2017): monetary policy shocks, risk-premium shocks, investment quality shocks, government spending shocks and TFP growth rate
shocks. The parameters of the shock processes are reported in Table 3.

of frictions. For example, one immediate implication is that diagnosticity could allow

fitting the data with a lower size of underlying disturbances. Generally, previous

research has strived to find mechanisms to generate amplification,17 and thus this

appears to be a potentially important implication of our analysis. While we have not

yet estimated the model to verify this conjecture, we plan to do so in future work.

4 Introducing Imperfect Information: Under- and

Overreaction

Whether beliefs as measured by surveys feature under- or overreaction appears to be

the subject of an important debate in recent literature. Indeed, Coibion and Gorod-

nichenko (2012) provide evidence of underreaction of consensus forecasts, whereas Bor-

dalo, Gennaioli, Ma, and Shleifer (2020) provide evidence of overreaction at the level of

the individual forecaster. Kohlhas and Walther (2020) claim that there is overreaction,

in some cases, even at the aggregate level. In a complementary way, Angeletos, Huo,

and Sastry (2020) stress that at the aggregate level one can observe both under- and

17See, for instance, the comments by Chari, Kehoe, and McGrattan (2009), who write “Our critique focuses
heavily on the dubiously structural shocks. That includes four of the shocks in the New Keynesian Smets-Wouters
model: shocks to wage markups, price markups, exogenous spending, and risk premia. As it appears in the Smets-
Wouters model, the wage markup shock is highly questionable. This shock is modeled by Smets and Wouters (2007)
as arising from fluctuations in the elasticity of substitution across different types of labor. That interpretation makes
little sense. When expressed in units of a markup, the shock has a mean of 50 percent and a standard deviation
of over 2,500 percent. Clearly, this level of volatility is absurd when it is interpreted as reflecting variations in the
elasticity of substitution between workers such as carpenters, plumbers, neurosurgeons, and economists.”

26



overreation. According to them, what matters is the horizon: there is underreaction in

the short run, whereas overreaction dominates in the medium run. These authors ar-

rive at this conclusion by looking at inflation and unemployment, but their theoretical

argument can be applied more broadly.

The importance of the horizon at which one observes the dynamics of forecasts

has also been stressed in an application to stock returns by Bordalo, Gennaioli, La

Porta, and Shleifer (2019). The authors stress that the key is to look at the medium-

term forecast errors to find evidence of overreaction to news. The explanation is the

following. A gradual arrival of news can happen some time after an anticipated event,

and a buildup of the overreaction can move forecasts away from the underreaction

generated by imperfect information on impact.

Based on the premise by Bordalo et al. (2019), our broad aim in this section is

to contribute to this debate by presenting a simple model about long-term beliefs

guided by the diagnostic Kalman filter. The key innovation of our setup compared to

previous exercises in the literature is that agents form beliefs about a hidden component

that features both sizeable persistence, and is also permanent (in the sense that the

underlying process has a unit root.) To model the long-term nature of this hidden

object, we calibrate this persistence to a high value, which conceptually connects our

exercise to the long-run risks approach (Bansal and Yaron 2004). However, ours is a

general equilibrium representative-agent macroeconomic model where consumers are

concerned with the long run path of income.

The model is based on Blanchard, L’Huillier, and Lorenzoni (2013). The model

features imperfect information. The innovation here is the addition of diagnosticity to

this model.

We have two specific goals. First, we show that when the representative agent’s

signal is precise enough, diagnosticity can dominate imperfect information, leading to

aggregate overreaction in the short run. Second, we show that, on the other hand, for

an imprecise signal, learning can lead to a gradual buildup of overreaction over the

medium term, even though there is short-term underreaction. This second delayed-

learning result has been found to be empirically relevant in related study (Cao and

L’Huillier 2018), where the learning process is estimated via maximum likelihood for

different macroeconomic episodes surrounding boom-bust cycles.

A point that is ex-post straightforward, but perhaps not so obvious at first, is

that the diagnostic Kalman filter implies rich dynamics of beliefs. Many patterns can

emerge depending on the parameters that govern the underlying hidden process, its
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exact specification, and the parameters governing the signal-to-noise ratio. As a matter

of fact, the model we present (and other models previously employed in the literature)

can be thought of as capturing a “horse race” between two competing mechanisms:

imperfect information (which pushes towards underreaction compared to the full infor-

mation rational expectations benchmark, henceforth FIRE), and diagnosticity (which

pushes towards overreaction both compared to FIRE and the true, non-diagnostic,

Kalman filter).

We start by presenting the model, and then plot the responses of output (beliefs)

for selected calibrations.

4.1 The Model

The bare-bones model we use (absent the information structure) is equivalent to the

simple New Keynesian model in which prices are completely rigid, as in Appendix D.

Consumption is pinned down solely by beliefs about long-run income.18

The information structure is as follows. As in the DSGE model above, TFP has

both a permanent component (Zt) and a temporary component (At).
19 Agents do not

observe these components separately. Instead, they observe realized TFP and a noisy

signal st about the permanent component.20 This is written (in logs):

st = logZt + εS,t

where εS,t ∼ iid N(0, σ2
S), and form beliefs using the diagnostic Kalman filter intro-

duced by Bordalo et al. (2020).21

The model is calibrated as follows. In order to capture the idea that the agent

is forming beliefs about a very long-run object, we calibrate the persistence of the

permanent component to a high value, ρZ = 0.98. This is also broadly consistent

with estimates obtained in Blanchard et al. (2013), Cao and L’Huillier (2018), and

Flemming, L’Huillier, and Piguillem (2019), which use a similar model and estimate it

18We take the limit φx → 0 and ψp → ∞. For brevity we do not write down the equations more explicitly, but
this conclusion can be reached by iterating forward the Euler equation. Forward iteration is possible because in
linear-Gaussian contexts as ours the law of iterated expectations for DE holds.

19In order for the specification in the full model to be equivalent to the one in Blanchard et al. (2013), the
temporary component needs to be scaled by 1− α.

20Even though the model does not explicitly have dispersed information as in Coibion and Gorodnichenko (2012),
we follow Lorenzoni (2009) by using a simple representative agent model with aggregate noisy signals.

21The filter needs to be adapted to the particular information structure here, but the ideas are the same.
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Figure 2: Impulse Responses: Beliefs About the Long-Run

(a) Precise Signal
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Notes: The panels depict the impulse responses of beliefs about long-run productivity to a one unit positive shock to the permanent
component of TFP. The left-hand side panel presents the case of a precise signal (σS = 0.01 and θ = 1.0); the right-hand side panel
with the case of an imprecise signal (σS = 0.03 and θ = 1.0).

by maximum likelihood.22 We normalize the standard deviation of TFP to 1, implying

a standard deviation permanent shocks of 0.02.23 We consider two values of the stan-

dard deviation of the signal: a relatively precise signal (of standard deviation 0.01), or

a relatively imprecise signal (of standard deviation 0.03). Our baseline diagnosticity

parameter θ is fixed at 1 (as in the previous section).

4.2 Results

Figure 2 presents the dynamics for beliefs about long-run productivity in response to a

one standard deviation permanent shock. We show three cases: FIRE, the diagnostic

Kalman filter (DKF), and the rational Kalman filter (RKF). Figure 2a presents the

case of a precise signal, and Figure 2b presents the case of an imprecise signal.

Under FIRE, long-run beliefs jump to 1 on impact and stay there. This is because

the standard deviation of TFP innovations has been normalized to 1, and beliefs im-

mediately adjust to the long-run value of TFP after the shock. In the case of a precise

signal (Figure 2a), beliefs under the RKF underreact on impact, starting off at 0.70.

As learning happens over time, these beliefs rise, gradually converging to 1 in the long

run.24 Instead, beliefs under the DKF strongly overreact on impact. This because the

22Following previous work, we set the persistence of the transitory component to the same value, implying a
random walk process for TFP.

23See Cao and L’Huillier (2018), p. 99, for how to compute this value.
24There is a light overreaction in period 3 even in the case of the RKF. This is simply a mechanical implication

of the persistence of beliefs inherited from the highly persistent permanent component.
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signal is so precise that diagnosticity overwhelms imperfect information.

Turning to the case of an imprecise signal (Figure 2b), beliefs under the RKF

underreact significantly, starting off at 0.41. Given that now imperfect information

is more severe, DKF beliefs also slightly underreact on impact, starting off at 0.84.

However, because agents receive a new signal every period, there is gradual learning.

Therefore, as they gather more information, DKF implies a sizeable overreaction over

periods 2 to 6, with a peak at 1.16. Notice, the RKF also slightly overreacts around

period 5. This is due to a mechanical effect induced by the persistence of beliefs.

However, diagnosticity induces overreaction above and beyond this mechanical effect.

We conclude this brief section by noting that we reported results only varying the

precision of the signal. By varying the degree of diagnosticity one modifies the degree

of overreaction independently. For instance, increasing θ to 1.5 (which is within the

range of estimates reported by Bordalo, Gennaioli, Ma, and Shleifer 2020) can generate

a slight overreaction in the short run and a stronger overreaction in the medium run,

leading to a hump-shaped pattern of beliefs.

5 Conclusion

In this paper, we presented a general treatment of diagnostic expectations in linear

recursive models. To our knowledge, this has not been studied before. Using our

characterization, we provide conditions under which diagnostic expectations imply ex-

tra volatility for variables relative to the rational expectations benchmark. We assess

the validity of this claim in the simple new Keynesian model, the real business cycle

model, and a quantitative medium-scale DSGE model. Analytically, we show that

output gap co-moves positively with unanticipated productivity shocks under diagnos-

tic expectations in the simple new Keynesian model; in contrast to the conventional

result obtained with rational expectations. Finally, we show that variations in preci-

sion of signal can generate under-reaction, over-reaction or delayed over-reaction when

diagnostic expectations are modeled along with imperfect information.

Our focus in this paper has been primarily to provide a general framework to incor-

porate diagnostic expectations in linear models. A number of important applications

and extensions have not been studied in this paper. These include characterizing op-

timal monetary policy when agents form expectations with diagnosticity, modeling

occasionally binding constraints such as the zero lower bound on short-term nominal

interest, and incorporating diagnostic expectations in heterogeneous agent frameworks,
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among others. We hope to pursue some of these directions in future work.
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A Supplementary Material to Linearity Results, Sec-

tion 2.1

This appendix significantly expands Section 2.1 by providing all missing proofs, by

writing out some of the expressions in detail, and discussing some of the intuition for

the results. In particular, we present the proof of Lemma 2, and describe in detail how

it relates to the comments in the appendix of Bordalo, Gennaioli, and Shleifer (2018).

Explicit Expression for Diagnostic Distribution Under the NNA, and Tractabil-

ity Intuition. Given (realized) states x̄t and x̄t−1, the diagnostic probability distri-

bution function of xt+1 is

f θt (xt+1) = f(xt+1|xt = x̄t) ·
[

f(xt+1|xt = x̄t)

f(xt+1|xt = ρxx̄t−1)

]θ
· C (18)

When looking at equation (18), it is important to notice that, generically, x̄t 6=
ρxx̄t−1 (due to the realization of the shock εt.) However, since εt is fixed at 0 in

expectation, then, the NNA implies that

f(xt+1|xt = ρxx̄t−1) ∝ ϕ

(
xt+1 − ρ2

xx̄t−1

σε

)
Thanks to the NNA, the variance of this pdf is σ2

ε , which is the same as the variance

of the true pdf of xt+1. Thus, the true and the reference distributions have the same

variance. This allows for tractability, implying that the diagnostic distribution is

normally distributed.

We now prove that the diagnostic expectation of a univariate variable can be ex-

pressed in terms of rational expectations.

Proof (Lemma 1). The diagnostic expectation of xt+1 is given by

Eθt [xt+1] =

∫ ∞
−∞

xf θt (x)dx
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The diagnostic pdf is given by

f θt (x) =

[
1
σε
ϕ

(
x−ρxx̄t
σε

)]1+θ

[
1
σε
ϕ

(
x−ρ2

xx̄t−1

σε

)]θ C
where C is a normalizing constant given by

exp

{
− 1

2

(
θ(1 + θ)ρ2

xx̄
2
t + θ(θ + 1)ρ4

xx̄
2
t−1 − 2(1 + θ)θρ3

xx̄tx̄t−1

σ2
ε

)}
in which case

Eθt [xt+1] =

∫ ∞
−∞

xf θt (x)dx

=

∫ ∞
−∞

x
1

σε
ϕ

(
x− (ρxx̄t + θ(ρxx̄t − ρ2

xx̄t−1))

σε

)
dx

Thus, the diagnostic distribution f θt (xt+1) is normal with variance σ2
ε and mean

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1])

�

More on Obtaining the Additivity Result. The following is a corollary of the

previous lemma, which follows from the fact that the sum xt+1 + yt+1 is a normal

random variable.

Corollary 1

Eθt [xt+1 + yt+1] = Et[xt+1 + yt+1] + θ(Et[xt+1 + yt+1]− Et−1[xt+1 + yt+1])

It is useful to first record the following lemma, showing that the sum xt+1 + yt

follows a normal distribution.

Lemma 4

xt+1 + yt ∼ N(ρxx̄t + ȳt, σ
2
ε)
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Proof. We know that

xt+1 ∼ N(ρxx̄t, σ
2
ε)

To derive the pdf of zt+1 ≡ xt+1 + yt, we evaluate the convolution

fzt+1(z) =

∫ ∞
−∞

fxt+1(x)fyt(z − x)dx =

∫ ∞
−∞

1

σε
ϕ

(
x− ρxx̄t

σε

)
δ(z − x− ȳt)dx

where fzt+1 is the pdf of zt+1, fxt+1 is the pdf of xt+1, and fyt is the pdf of yt, and the

second equality follows from the fact that xt+1 is normally distributed and yt follows

a Dirac delta distribution centered at ȳt.

By the symmetry of the Dirac delta function,

fzt+1(z) =

∫ ∞
−∞

1

σε
ϕ

(
x− ρxx̄t

σε

)
δ(x− z + ȳt)dx

and by the sifting property of the Dirac delta function:25

fzt+1(z) =
1

σε
ϕ

(
z − ȳt − ρxx̄t

σε

)
which is what we wanted to show. �

Using the previous result Lemma 4, it is easy to obtain the following representation,

contained in the appendix of Bordalo, Gennaioli, and Shleifer (2018).

Proposition 5

Eθt [xt+1 + yt] = Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

Proof. First, we need the reference distribution of xt+1 + yt. Under no news, εt =

ηt = 0 and so,

xt+1 + yt = ρ2
xxt−1 + ρyyt−1 + εt+1

Then, by an easy extension of Lemma 4,

(xt+1 + yt)|εt = ηt = 0 ∼ N(ρ2
xx̄t−1 + ρyȳt−1, σ

2
ε)

25The Dirac delta function’s sifting property is the following. For a continuous function f(x) over (−∞,∞),∫ ∞
−∞

f(x)δ(x− x0)dx = f(x0)
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It follows that both the reference and representative distributions are normal and have

variance σ2
ε . We then conclude that

Eθt [xt+1 + yt] = Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

�

We can in fact use this last proposition to compute the expectation of the linear

combination for the processes presented in the body. The calculation is as follows:

Eθt [xt+1 + yt] = Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

= ρx̄t + ȳt + θ(ρxx̄t + ȳt − ρ2
xx̄t−1 − ρyȳt−1)

= ρx̄t + ȳt + θρxεt + θηt

= ρx̄t + ȳt + θ(ρxεt + ηt)

Proof (Lemma 2). The diagnostic expectation of yt is given by

Eθt [yt] =

∫ ∞
−∞

yf θt (y)dy

In order to get the diagnostic pdf of yt, we start by looking at the diagnostic cdf, which

by virtue of the NNA is

Prθt (yt ≤ ȳ) = lim
ση→0+

∫ ȳ

−∞

[
1
ση
ϕ
(
y−ȳt
ση

)]1+θ

[
1
ση
ϕ
(
y−ρy ȳt−1

ση

)]θ C dy

First, note that[
1
ση
ϕ

(
y−ȳt
ση

)]1+θ

[
1
ση
ϕ

(
y−ρy ȳt−1

ση

)]θ =
1√

2πση
exp

{
−1

2

[
(1 + θ)

(
y − ȳt
ση

)2

− θ
(
y − ρyȳt−1

ση

)2]}

=
1√

2πση
exp

{
−1

2

[
y −

(
(1 + θ)ȳt − θρtȳt−1

)]2
σ2
η

}
× 1

C
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where the value of C must be

C = exp

{
−1

2

[
θ(1 + θ)ȳ2

t + θ(1 + θ)ρ2
yȳ

2
t−1 − 2θ(1 + θ)ρyȳtȳt−1

σ2
η

]}
Hence, we can write

Eθt [yt] = lim
ση→0+

lim
u→∞

∫ u

−∞
y

[
1
ση
ϕ

(
y−ȳt
ση

)]1+θ

[
1
ση
ϕ

(
y−ρtȳt−1

ση

)]θ Cdy
= lim

ση→0+
lim
u→∞

∫ u

−∞
y

1

ση
ϕ

(
y −

(
(1 + θ)ȳt − θρyȳt−1

)
ση

)
dy

= lim
ση→0+

lim
u→∞

{∫ u

−∞

y −
(
(1 + θ)ȳt − θρyȳt−1

)
ση

ϕ

(
y −

(
(1 + θ)ȳt − θρyȳt−1

)
ση

)
dy

+
(
(1 + θ)ȳt − θρyȳt−1

) ∫ u

−∞

1

ση
ϕ

(
y −

(
(1 + θ)ȳt − θρyȳt−1

)
ση

)
dy

}
We will evaluate the integral by change of variables. To this end, define z ≡

y−((1+θ)ȳt−θρy ȳt−1)

ση
such that

Eθt [yt] = lim
ση→0+

lim
u→∞

{
ση

∫ u−((1+θ)ȳt−θρyȳt−1)

ση

−∞
zϕ(z)dz + ((1 + θ)ȳt − θρyȳt−1)

∫ u−((1+θ)ȳt−θρyȳt−1)

ση

−∞
ϕ(z)dz

}

Since limση→0+
u−((1+θ)ȳt−θρy ȳt−1)

ση
= +∞ when u > (1 + θ)ȳt − θρyȳt−1, we have

lim
ση→0+

∫ u−((1+θ)ȳt−θρyȳt−1)

ση

−∞
zϕ(z)dz = 0 and lim

ση→0+

∫ u−((1+θ)ȳt−θρyȳt−1)

ση

−∞
ϕ(z)dz = 1

and

Prθt (yt ≤ ȳ) = lim
ση→0+

1

ση
Φ

(
ȳ − (ȳt + θ(ȳt − ρyȳt−1))

ση

)
Thus,

f θt (yt) = δ(yt − (ȳt + θ(ȳt − ρyȳt−1)))

and

Eθt [yt] = ȳt + θ(ȳt − ρyȳt−1)

�
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Proof (Proposition 1). There are two cases:

• The case s = r = 1 follows from the fact that both xt+1 and yt+1 are normal and

therefore Lemma 1 and Corollary 1 apply.

• The case of s = 0 or r = 0 follows from Lemma 2. (Equivalently, when only one

of s or r is not 0, this follows from Proposition 5.)

�

Alternative Assumption for Degenerate Variables. Instead of the NNA (As-

sumption 1), let us suppose that the reference distribution of yt is the (non-degenerate)

normal distribution:

f(yt|yt−1 = ȳt−1) ∝ ϕ

(
yt − ρyȳt−1

ση

)
which corresponds to replacing the NNA by the assumption that the conditioning set

is {yt−1 = ȳt−1}. This is the alternative discussed in Bordalo, Gennaioli, and Shleifer

(2018), footnote 8. We highlight that this is an assumption about past yt−1 instead of

current yt. Indeed, the NNA embeds an assumption about the shock εt, on top of the

conditioning on the realization ȳt−1, resulting in the reference cdf (2) above. In this

alternative case, the following lemma obtains.

Lemma 5 Replace Assumption 1 by {yt−1 = ȳt−1}. Then,

Eθt [yt] = ȳt

Proof. The diagnostic expectation of yt is given by

Eθt [yt] =

∫
yf θt (y|yt = ȳt, yt−1 = ȳt−1)dy

Notice that in this notation, since we are not using the NNA, we explicitly write the

two conditioning events G = {yt = ȳt} and −G = {yt−1 = ȳt−1}. In order to get the

diagnostic pdf of yt, we start by looking at the diagnostic cdf:

Prθt (yt ≤ ȳ|yt = ȳt, yt−1 = ȳt−1) = lim
a→0+

∫ ȳ

−∞

[
1
a
ϕ
(
y−ȳt
a

)]1+θ[
1
ση
ϕ
(
y−ρy ȳt−1

ση

)]θ C dy
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Notice that this time it is only the uncertainty in the numerator that vanishes. First,

note that[
1
a
ϕ

(
y−ȳt
a

)]1+θ

[
1
ση
ϕ

(
y−ρy ȳt−1

ση

)]θ =
1√

2π a
1+θ

σθη

exp

{
−1

2

[
(1 + θ)

(
y − ȳt
a

)2

− θ
(
y − ρyȳt−1

ση

)2]}

=
1√

2πσa
exp

{
−1

2

(y − µa)2

σ2
a

}
× 1

C

where

µa =
σ2
η(1 + θ)ȳt − a2θρyȳt−1

σ2
η(1 + θ)− a2θ

, σ2
a =

a2σ2
η

σ2
η(1 + θ)− a2θ

and the value of C must be

C = exp

{
−1

2

(
µ2
a − ka
σ2
a

)}
a1+θ

σaσθη

where

ka =
σ2
η(1 + θ)ȳ2

t − a2θρ2
yȳ

2
t−1

σ2
η(1 + θ)− a2θ

Hence, we can write

Eθt [yt] = lim
a→0+

lim
u→∞

∫ u

−∞
y

[
1
a
ϕ
(
y−ȳt
a

)]1+θ[
1
ση
ϕ
(
y−ρy ȳt−1

ση

)]θ C dy

= lim
a→0+

lim
u→∞

∫ u

−∞
y

1

σa
ϕ

(
y − µa
σa

)
dy

= lim
a→0+

lim
u→∞

{∫ u

−∞

y − µa
σa

ϕ

(
y − µa
σa

)
dy + µa

∫ x

−∞

1

σa
ϕ

(
y − µa
σa

)
dy

}
We will evaluate the integral by change of variables. To this end, define z ≡ y−µa

σa

such that

Eθt [yt] = lim
a→0+

lim
u→∞

{
σa

∫ u−µa
σa

−∞
zϕ(z)dz + µa

∫ u−µa
σa

−∞
ϕ(z)dz

}
Notice that

lim
a→0+

µa = ȳt
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and

lim
a→0+

σa = 0

Since lima→0+
u−µa
σa

= +∞ when u > µa, we have

lim
a→0+

∫ u−µa
σa

−∞
zϕ(z)dz = 0 and lim

a→0+

∫ u−µa
σa

−∞
ϕ(z)dz = 1

and

Prθt (yt ≤ ȳ|yt = ȳt, yt−1 = ȳt−1) = lim
a→0+

1

a
Φ

(
ȳ − ȳt
a

)
Thus,

f θt (y) = δ(yt − ȳt)

As a consequence,

Eθt [yt] = ȳt

as we wanted to show. �
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B Supplementary Materials and Proofs for Results

in Sections 2.2, 2.3, and 2.4

This appendix significantly expands Sections 2.2, 2.3, and 2.4 by providing missing

proofs and by writing out some of the expressions in detail.

Detailed Solution Procedure. We solve for the recursive equilibrium law of motion

of a linear diagnostic-expectations DSGE model using the method of undetermined

coefficients.

With the strong additivity result from Proposition 1, the class of forward-looking

models of our interest is written in the following form:

FEθt [yt+1] + G1Eθt [yt] + G2yt + Hyt−1 + MEθt [xt+1] + N1Eθt [xt] + N2xt = 0

Suppose that there is a unique stable solution of the model:

yt = Pyt−1 + Qxt + Rvt (19)

we can rewrite the above stochastic difference equation as follows:

FEθt
[
Pyt + Qxt+1 + Rvt+1] + G1Eθt

[
Pyt−1 + Qxt + Rvt] + G2Pyt−1

+G2Qxt + G2Rvt + MEθt
[
Axt + vt+1

]
+ N1Eθt

[
xt
]

+ Hyt−1 + N2xt = 0

Applying the strong additivity property, diagnostic expectations can be represented

as a linear combination of the rational expectations held at t and t− 1:

FEθt
[
Pyt + Qxt+1 + Rvt+1] = (1 + θ)FEt

[
P2yt−1 + PQxt + PRvt + QAxt + Qvt+1 + Rvt+1

]
− θFEt−1

[
P2yt−1 + PQAxt−1 + PQvt + PRvt + QA2xt−1 + QAvt + Qvt+1 + Rvt+1

]
= FP2yt−1 + FPQxt + θFPQvt + (1 + θ)FPRvt + FQAxt + θFQAvt

G1Eθt
[
Pyt−1 + Qxt + Rvt] = (1 + θ)G1Et[Pyt−1 + Qxt + Rvt]− θG1Et−1[Pyt−1 + Qxt + Rvt]

= G1Pyt−1 + G1Qxt + θG1Qvt + (1 + θ)G1Rvt
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MEθt
[
Axt + vt+1

]
= (1 + θ)MEt[Axt + vt+1]− θMEt−1[Axt + vt+1]

= MAxt + θMAvt

N1Eθt
[
xt
]

= (1 + θ)N1Et[xt]− θN1Et−1[xt] = N1xt + θN1vt

We write the model in the rational expectations representations as

0 = FP2yt−1 + FPQxt + θFPQvt + (1 + θ)FPRvt + FQAxt + θFQAvt + G1Pyt−1 + ...

+ G1Qxt + θG1Qvt + (1 + θ)G1Rvt + G2Pyt−1 + G2Qxt + G2Rvt + MAxt + ...

+ θMAvt + N1xt + θN1vt + Hyt−1 + N2xt

It is now straightforward to proceed by the method of undetermined coefficients to

find a solution of the form (19), and the matrices P,Q,R can be found solving the

following matrix equations.

FP2 + GP + H = 0 (20)

FPQ + FQA + GQ + MA + N = 0

θFPQ + (1 + θ)FPR + θFQA + θG1Q + GR + θG1R + θMA + θN1 = 0

where G = G1 + G2 and N = N1 + N2.

See Section 2.3.3 for the detailed procedure to obtain solution matrices.

The Solution under Rational Expectations. Consider the model under rational

expectations:

FEt[yt+1] + Gyt + Hyt−1 + MEt[xt+1] + Nxt = 0 (21)

where G = G1 + G2 and N = N1 + N2 and, as above, yt and xt denote vectors of

endogenous variables (including controls and states) (m× 1) and of exogenous states

(n × 1). Et denotes the rational expectation operator, and the exogenous process is

given by (4).

Suppose that there is a unique stable solution of the model:

yt = P̃yt−1 + Q̃xt
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then, we can rewrite the stochastic difference equation (21) as follows:

FEt
[
P̃yt + Q̃xt+1

]
+ GP̃yt−1 + GQ̃xt + Hyt−1 + MAxt + Nxt = 0

We can simplify the above equation to

FP̃2yt−1 + FP̃Q̃xt + FQ̃Axt + GP̃yt−1 + GQ̃xt + Hyt−1 + MAxt + Nxt = 0

and can solve similarly for the recursive equilibrium law of motion via the method of

undetermined coefficients. Specifically, the matrices P̃ and Q̃ can be found solving the

following matrix equations.

FP̃2 + GP̃ + H = 0

FP̃Q̃ + FQ̃A + GQ̃ + MA + N = 0

Comparison of these equations with their counterpart under DE immediately shows

that P = P̃ and Q = Q̃.

Stability Conditions. Given the quadratic matrix equation (20)

FP2 + GP + H = 0

for the m×m matrix P and m×m matrices G and H, define the 2m× 2m matrices

Ξ and ∆:

Ξ =

[
−G −H

Im 0m

]
and

∆ =

[
−F 0m

0m Im

]
where Im is the identity matrix of size m and 0m is the m×m matrix with only zero

entries.

Uhlig (1995) shows that if (a) s is a generalized eigenvector and λ is the corre-

sponding generalized eigenvalue of Ξ with respect to ∆, then s can be written as

s′ =
[
λx
′
, x
′]

for some x ∈ Rm, and (b) there are m generalized eigenvalues λ1, ..., λm

together with generalized eigenvectors s1, ..., sm of Ξ with respect to ∆, written as
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s
′
i = [λix

′
i, x

′
i] for some xi ∈ Rm, and if (x1, ..., xm) is linearly dependent, then

P = ΩΛΩ
′

is a solution to the matrix quadratic equation, where Ω = [x1, ..., xm] and Λ =

diag(λ1, ..., λm).

The stability conditions are given as follows.26

Theorem 1 The solution P is stable if |λi| < 1 for all i = 1, ...,m.

Thus, we can easily show that the stability conditions for both models are the same.

Proof (Lemma 3). The solutions P and P̃ are the same since they involve identical

matrices F, G, and H. Thus, the stability conditions stated in Theorem 1 are the

same for both solutions. �

Volatility. We show the condition under which a model with DE delivers a larger

volatility than its counterpart with RE.

Proof (Proposition 3). We have already shown that P and P̃ are the same and

that Q and Q̃ are the same.

Thus, given the exogenous process xt, the solution for the model with diagnostic

expectations and for the model with rational expectations can be formulated as

yDEt = Pyt−1 + Qxt + Rvt

yREt = Pyt−1 + Qxt

such that the variance of the vector of endogenous variables under diagnostic expecta-

tions, yDEt , is given by

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt)

+ 2 Cov(Pyt−1,Qxt) + 2 Cov(Pyt−1,Rvt) + 2 Cov(Qxt,Rvt) (22)

Similarly, the variance of the vector of endogenous variables under rational expec-

26See Section 6.3 of Uhlig (1995) for a detailed discussion.
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tations, yREt is given by

V ar(yREt ) = V ar(Pyt−1) + V ar(Qxt) + 2 Cov(Pyt−1,Qxt)

Since cov(Pyt−1,Rvt) = 0, (22) is simplified to

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt) + 2 Cov(Pyt−1,Qxt) + 2 Cov(Qxt,Rvt)

such that by taking the difference of the two variances, we have

V ar(yDEt )− V ar(yREt ) = V ar(Rvt) + 2 Cov(Qxt,Rvt)

= V ar(Rvt) + 2 Cov(QAxt−1 + Qvt,Rvt)

= RΣvR′ + 2QΣvR′

Thus, for an endogenous variable yit to have extra volatility with diagnostic expec-

tations, the i-th diagonal component of the matrix RΣvR′+ 2QΣvR′ must be greater

than zero. �
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C New Keynesian Model with Diagnostic Expec-

tations: Detailed Derivation

There are three sets of agents in the economy: households, firms and government.

Total output produced is equal to consumption expenditure made by the households

and adjustment costs spent in adjusting prices. There is no government spending.

C.1 Households

Households have the following lifetime utility

logCt − ω
L1+ν
t

1 + ν
+ Eθt

[
Σ∞s=t+1β

s−t
[
log(Cs)−

ω

1 + ν
L1+ν
s

]]
subject to budget constraint:

PtCt +
Bt+1

(1 + it)
= Bt +WtLt + Γt + Tt ,

PtCt is nominal expenditure on final consumption good, Bt+1 denotes purchase of nom-

inal bonds that pay off 1 + it interest rate in the following period, WtLt denotes labor

income, Γt and Tt denote dividends from firm-ownership and lumpsum government

transfers respectively. Eθt is the diagnostic expectations operator with diagnosticity

parameter θ.

Let logCt ≡ u(Ct). The consumption Euler equation is given by:

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
Multiplying with Pt−1 on both sides:

u′(Ct)Pt−1

Pt
= β(1 + it)Eθt

[
u′(Ct+1)Pt−1

Pt+1

]
Let Πt = Pt

Pt−1
be the gross inflation rate. We can rewrite the Euler equation as:

u′(Ct)

Πt

= β(1 + it)Eθt
[
u′(Ct+1)

Πt Πt+1

]
substitute the functional form for u(Ct) and log-linearize the equation around the
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deterministic steady state (Π = 1, β(1 + i) = 1). Hat-variables in small-cases denote

log-deviation from steady state, except for inflation where we denote log-deviations

with πt

−πt − ĉt = ît + Eθt [−ĉt+1 − πt − πt+1]

Use the resource constraint: ŷt = ĉt, to get

ŷt = Eθt [ŷt+1 + πt+1 + πt]− πt − ît

Using additivity, rearranging, and using the fact that

Eθt [πt] = Et[πt] + θ(Et[πt]− Et−1[πt]) = πt + θ(πt − Et−1[πt])

which follows from Lemma 2, we obtain the equation in the body:

ŷt = Eθt [ŷt+1]− (̂it − Eθt [πt+1]) + θ(πt − Et−1[πt])

C.2 Firms

Monopolistically competitive firms, indexed by j ∈ [0, 1], produce a differentiated good,

Yt(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Yt. Intermediate goods demand given by:

Yt(j) =

(
Pt(j)

Pt

)−εp
Yt

where εp > 1 is the elasticity of substitution across intermediate goods’ varieties, Pt(j)

is price of intermediate good j, and Pt is the price of final good Yt. Each intermediate

good is produced using the technology:

Yt(j) = AtLt(j)

where log(At) is an aggregate TFP process that follows an AR(1) process with persis-

tence coefficient ρA:

logAt = ρA logAt−1 + εA,t
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where εA,t ∼ iid N(0, σ2
A). Firm pays a quadratic adjustment cost in units of final

good (Rotemberg 1982) to adjust prices:

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt

Firm’s per period profits are given by:

Γt ≡ Pt(j)Yt(j)−WtLt(j)−
ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt

Firm’s profit maximization problem

max
Pt(j)

{
Pt(j)Yt(j)−WtLt(j)−

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sΓt+s

]}

where Qt,t+s is the nominal stochastic discount factor of the household. Substitute in

the demand for intermediate goods to get:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−εp
Yt −

Wt

At

(
Pt(j)

Pt

)−εp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sΓt+s

]}

Notice that Pt(j) appears in period t profits and period t + 1 adjustment costs. It

doesn’t appear anywhere else in the problem. So we can “ignore” the remaining terms

as we take the first-order condition. The monopolistically competitive firm solves the

following problem:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−εp
Yt −

Wt

At

(
Pt(j)

Pt

)−εp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt − Eθt

[
βQt,t+1

ψp
2

(
Pt+1(j)

Pt(j)
− 1

)2

Pt+1Yt+1

]}
+ other terms

First order condition:

(1− εp)
(
Pt(j)

Pt

)−εp
Yt + εp

Wt

AtPt

(
Pt(j)

Pt

)−εp−1

Yt − ψp
(

Pt(j)

Pt−1(j)
− 1

)
Pt

Pt−1(j)
Yt

−ψpβEθt
[
u′(Ct+1

u′(Ct)

(
Pt+1(j)

Pt(j)
− 1

)
Pt+1(j)

Pt(j)

Pt
Pt(j)

Yt+1

]
= 0

Symmetry across all firms implies that reset price equals the aggregate price level.
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Define Πt = Pt
Pt−1

(1− εp)Yt + εp
Wt

AtPt
Yt − ψp(Πt − 1)ΠtYt + ψpβEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0

Divide by Yt:

(1− εp) + εp
Wt

AtPt
− ψp(Πt − 1)Πt +

ψp
Yt
βEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0

Log-linearize around the deterministic steady state such that A = 1, w = W
P

=

ωCY ν = εp−1

εp
, Π = 1, and Yt = Y . Let wt = Wt

Pt

εpw(ŵt − ât)− ψpπt + ψpβEθtπt+1 = 0

Re arrange to get

πt = βEθt [πt+1] +
εp w

ψp
(ŵt − ât)

From the intra-temporal labor supply first order condition, we have:

ŵt = ĉt + ν(ŷt − ât)

Use the resource constraint ĉt = ŷt, to rewrite the new Keynesian Phillips Curve

(NKPC):

πt = βEθt [πt+1] +
εp w

ψp
(1 + ν)ŷt

Note that εp w

ψp
= εp−1

ψp
. Then, the NKPC is given by

πt = βEθt [πt+1] + κ(ŷt − ât)

where κ ≡ εp−1

ψp
(1 + ν).

C.3 Policy Rule

The government sets nominal interest rate with the following rule:

1 + it
1 + iss

= Πφπ
t

(
Yt
Y ∗t

)φx
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where Y ∗t = At is the natural rate allocation, iss = 1
β
− 1 is the steady state nominal

interest rate, φπ ≥ 0, φx ≥ 0, and steady state inflation Π = 1. Log-linearized policy

rule is given by:

ît = φππt + φx(ŷt − ât)

There is no government spending, and nominal bonds are in net zero supply.

C.4 Equilibrium

The log-linearized equilibrium in the simple new Keynesian model with diagnostic

expectations is given by following three equations in three unknowns {ŷt, πt, ît} for a

given shock process {ât}.

ŷt = Eθt [ŷt+1]− (̂it − Eθt [πt+1]) + θ(πt − Et−1[πt]) (23)

πt = βEθt [πt+1] + κ(ŷt − ât) (24)

ît = φππt + φx(ŷt − ât) (25)

where κ ≡ εp−1

ψp
(1 + ν), and the shock process is given by:

ât = ρAât−1 + εA,t

where εA,t ∼ iid N(0, σ2
A).
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D Proof of Proposition 4

The equilibrium with completely rigid prices, i.e. ψp →∞, given by:

ŷt = Eθt [ŷt+1]− ît (26)

ît = φx(ŷt − ât) (27)

where ât = ρAât−1 + εt, ρA ∈ [0, 1), and εA,t ∼ iid N(0, σ2
A). Substituting the policy

rule into the Euler equation, we get:

ŷt =
1

1 + φx
Eθt [ŷt+1] +

φx
1 + φx

ât

By forward iteration, and using the law of iterated expectations under the no-news

assumption,

ŷt = lim
T→∞

Eθt [ŷT+1]

(1 + φx)T+1
+
∞∑
i=1

φxEθt [ât+i]

(1 + φx)i+1
+

φx
1 + φx

ât

The system is locally determinate if and only if φx > 0. Let φx > 0. Then,

ŷt =
∞∑
i=1

φxEθt [ât+i]

(1 + φx)i+1
+

φx
1 + φx

ât

From the definition of the shock process, we know that, ∀ i > 0

Eθt [ât+i] = ρiA(1 + θ)ât − θρi+1
A ât−1 = ρiA ((1 + θ)ât − θρAât−1)

We can then derive the solution for output:

ŷt =
φxρA(1 + θ) + φx(1 + φx − ρA)

(1 + φx)(1 + φx − ρA)
ât −

φxθρ
2
A

(1 + φx)(1 + φx − ρA)
ât−1

The solution for output gap x̂t ≡ ŷt − ât is given by:

x̂t =
−ρA(1− ρA)(1 + φx)

(1 + φx)(1 + φx − ρA)
ât−1 +

θφxρA − (1− ρA)(1 + φx)

(1 + φx)(1 + φx − ρA)
εt

In response to an unanticipated improvement in productivity, output gap can be pos-

itive on impact if and only

θφxρA − (1− ρA)(1 + φx) > 0
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When θ = 0, that is rational expectations, output gap negatively co-moves with pro-

ductivity shock. Under diagnostic expectations, productivity improvements can be

expansionary on impact.

Volatility of output gap is given by:

V ar(x̂t) =

(
ρA(1− ρA)(1 + φx)

(1 + φx)(1 + φx − ρA)

)2

V ar(ât−1) +

(
θφxρA − (1− ρA)(1 + φx)

(1 + φx)(1 + φx − ρA)

)2

σ2

The first coefficient is same under rational and diagnostic expectations. Volatility is

higher under diagnostic expectations relative to rational expectations if and only if

(θφxρA − (1− ρA)(1 + φx))
2 > (1− ρA)2(1 + φx)

2

⇐⇒ (θφxρA)2 + (1− ρA)2(1 + φx)
2 − 2θφxρA(1− ρA)(1 + φx) > (1− ρA)2(1 + φx)

2

⇐⇒ (θφxρA)2 > 2θφxρA(1− ρA)(1 + φx)

⇐⇒ θφxρA > 2(1− ρA)(1 + φx)

⇐⇒ θ >
2(1− ρA)(1 + φx)

φxρA

�

In this model, the condition for amplification also implies that output gap is positive

on impact from an unanticipated productivity improvement. When ρA = 0.9, and

φx = 0.5, the RHS is equal to 0.67. That is, for values of θ > 0.67, the completely-

rigid prices model yields amplification under diagnostic expectations.
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E Equilibrium Conditions for the Medium-Scale DSGE

Model

We summarize the equilibrium conditions for the medium-scale DSGE model presented

in Section 3.1.

E.1 Stationary allocation

We normalize the following variables :

yt = Yt/Zt ,

ct = Ct/Zt ,

kt = Kt/Zt ,

kut = Ku
t /Zt−1 ,

It = It/Zt , capital investment ,

wt = Wt/(ZtPt) ,

rkt = Rk
t /Pt ,

λt = ΛtZt ,

Definition 1 (Normalized equilibrium) 17 endogenous variables {λt, it, ct, yt, Πt,

mct, Π̃t−1, Πw
t , Π̃w

t−1, wt, Lt, k
u
t+1, r

K
t , It, qt, ut, kt}, 5 endogenous shock processes {GZ,t,

At, λ
g
t , µt, ηt}, 6 exogenous shocks {εg,t, εA,t, εmp,t, εZ,t, εµ,t, εη,t} given initial values of

kut−1, and natural rate allocation {y∗t }.

Consumption Euler equation

λt
GZ,tΠt

= β(1 + it)ηtEθt
[

λt+1

GZ,tGZ,t+1

1

ΠtΠt+1

]
, (28)

λt =
1

ct − hct−1

GZ,t

, (29)
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Price-setting

(1−εp)+εp mct−ψp
(

Πt

Π̃t−1

− 1

)
Πt

Π̃t−1

+ψp
βΠt

ΛtYt
Eθt
[
Λt+1

(
Πt+1

Π̃t

− 1

)
Πt+1

Π̃t

Yt+1

Πt

]
= 0

(30)

Π̃t−1 = Π̄1−ιpΠ
ιp
t−1 (31)

Wage-setting

ψw

[
Πw
t

Π̃w
t−1

− 1

]
Πw
t

Π̃w
t−1

= ψwβEθt
[

Πw
t+1

Π̃w
t

− 1

]
Πw
t+1

Π̃w
t

+ Ltλtεw

[
ω
Lνt
λt
− εw − 1

εw
wt

]
(32)

Π̃w
t−1 = GZΠ̄1−ιw (exp(εZ,t)Πt−1)ιw (33)

ΠW,t =
wt
wt−1

ΠtGZ,t , (34)

Capital investment

kut+1 = µt

[
1− S

(
It
It−1

GZ,t

GZ

)]
It + (1− δk)

kut
GZ,t

, (35)

qt =
βGZ,t

λt
Eθt
[

λt+1

GZ,tGZ,t+1

(
rKt+1ut+1 − a(ut+1) + qt+1(1− δk)

)]
, (36)

qtµt

[
1− S

(
It
It−1

GZ,t

GZ

)
− S ′

(
It
It−1

GZ,t

GZ

)
It
It−1

GZ,t

GZ

]
+
βGZ,t

λt
Eθt

[
µt+1

λt+1

GZ,t

qt+1
GZ,t+1

GZ

(
It+1

It

)2

S ′
(
It+1

It
GZ,t+1

GZ

)]
= 1 (37)

Capital utilization rate

kt = ut
kut
GZ,t

, (38)

rKt = a′(ut) , (39)

Production technologies

yt = kαt (AtLt)
1−α , (40)

Kt

Lt
=
wt
rkt

α

1− α
, (41)
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mct =
1

αα(1− α)1−α
(rkt )

αw1−α
t

A1−α
t

, (42)

Government

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR [(Πt

Π̄

)φπ ( yt
y∗t

)φx ( ytGZ,t

GZyt−1

)φdy]1−ρR

exp(εmp,t) , (43)

Market clearing

yt = ct + It + a(ut)
kut
GZ,t

+

(
1− 1

λgt

)
yt , (44)

Law of motion of Shocks

log λgt = (1− ρg) log λg + ρg log λgt−1 + εg,t, (45)

log ηt = ρη log(ηt−1) + εη,t, (46)

GZ,t = Zt/Zt−1 = GZ exp(εZ,t), (47)

log µt = ρµ log(µt−1) + εµ,t, (48)

Disturbances

Monetary Policy εmp,t ∼ iid N(0, σ2
mp) (49)

TFP growth εZ,t ∼ iid N(0, σ2
Z), (50)

Stationary TFP εA,t ∼ iid N(0, σ2
A), (51)

Risk Premium εη,t ∼ iid N(0, σ2
η) (52)

MEI shock εµ,t ∼ iid N(0, σ2
µ) (53)

Govt Spending εg,t ∼ iid N(0, σ2
g) (54)

E.2 Steady state

1 = β
1

GZ

1 + i

Π
,

λ =
GZ

c(GZ − h)
,
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mc =
εp

εp − 1
,

ωLν

λ
=
εw − 1

εw
w ,

Πw = ΠGZ ,

Π = Π̄

q = 1 ,

u = 1 ,

(1− 1− δk
GZ

)ku = I ,

1 = β

[
1

GZ

(
rK + (1− δk)

)]
,

k =
ku

GZ

,

rK = a′(1) ,

y = kαL1−α ,

rk =
εp

εp − 1
α
y

k
,

w =
εp

εp − 1
(1− α)

y

L
,

y = c+ I +

(
1− 1

λg

)
y ,

S(1) = S ′(1) = 0;S” > 0

A = 1.

E.3 Log-linearized model

Consumption Euler equation

λ̂t − ĜZ,t − πt = ît + η̂t + Eθt
[
λ̂t+1 − ĜZ,t − ĜZ,t+1 − πt − πt+1

]
(55)
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λ̂t +
GZ

Gz − h
ĉt −

h

Gz − h

(
ĉt−1 − ĜZ,t

)
= 0 (56)

Price-setting

πt = βEθt [πt+1]− ιpβ
[
Eθtπt

]
+ ιpπt−1 +

ε− 1

ψp
m̂ct (57)

Wage-setting

πwt = βEθt
[
πwt+1

]
−ιwβEθt [πt]−ιwβEθt

[
ĜZ,t+1

]
+ιwπt−1+ιwĜZ,t+

εwωL
1+ν

ψw

[
νL̂t − ŵt − λ̂t

]
(58)

πwt = ŵt − ŵt−1 + πt + ĜZ,t (59)

Capital investment

k̂ut+1 =
I
ku

(
Ît + µ̂t

)
+

1− δk
GZ

(
k̂ut − ĜZ,t

)
(60)

q̂t − ĜZ,t + λ̂t = Eθt
[
λ̂t+1 − ĜZ,t − ĜZ,t+1 +

rK

rK + 1− δk
r̂Kt+1 +

1− δk
rK + 1− δk

q̂t+1

]
(61)

q̂t + µ̂t − S”(1)
(
Ît − Ît−1 + ĜZ,t

)
+ βS”(1)Eθt

[
Ît+1 − Ît + ĜZ,t+1

]
= 0 (62)

Capital utilization rate

k̂t = ût + k̂ut − ĜZ,t (63)

r̂Kt =
a”(1)

a′(1)
ût , (64)

Production technologies

ŷt = αk̂t + (1− α)(Ât + L̂t) (65)

r̂Kt = ŵt + L̂t − k̂t (66)

m̂ct = αr̂Kt + (1− α)(ŵt − Ât) (67)

Government

ît = ρRît−1 + (1− ρR)
(
φππt + φx(ŷt − ŷ∗t ) + φdy(ŷt − ŷt−1 + ĜZ,t)

)
+ εmp,t , (68)
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Market clearing
1

λg
ŷt =

c

y
ĉt +

I
y
Ît +

a′(1)k

y
ût +

1

λg
λ̂gt (69)

Law of motion of shocks

λ̂gt = ρgλ̂
g
t−1 + εg,t, (70)

η̂t = ρηη̂t−1 + εη,t, (71)

ĜZ,t = εZ,t, (72)

Ât = ρAÂt−1 + εA,t (73)

µ̂t = ρµµ̂t−1 + εµ,t, (74)

Disturbances

Monetary Policy εmp,t ∼ iid N(0, σ2
mp) (75)

TFP growth εZ,t ∼ iid N(0, σ2
Z), (76)

Stationary TFP εA,t ∼ iid N(0, σ2
A), (77)

Risk Premium εη,t ∼ iid N(0, σ2
η) (78)

MEI shock εµ,t ∼ iid N(0, σ2
µ) (79)

Govt Spending εg,t ∼ iid N(0, σ2
g) (80)
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F Extra Tables and Figures

Table 3: Parameters

β δk α 100 log(GZ) 1− 1
λg

ω
Discount

factor
Capital

depreciation rate
Capital
share

Trend
growth rate

Government
spending share

Labor
preference

0.9984 0.025 0.20 0.50 0.20 1

ν εp εw ψp ψw h
Inverse of

Frisch elasticity
Elast of

goods demand
Elast of

labor demand
Price

adjustment
Wage

adjustment
(External)

habit

2.05 6 6 102.25 5102.38 0.5

a′′(1)
a′(1) S”(1) φπ φx φdy 100(Π̄− 1)

Capital
utilization cost

Investment
adjustment cost

inflation coef
Taylor rule

output gap coef
Taylor rule

output growth coef
Taylor rule

Inflation
Target

5.27 3.51 1.78 0.07 0.57 0.64

ιp ιw θ
Price

indexation
Wage

indexation
Diagnosticity

parameter

0.64 0.55 1

Standard Deviation and Persistence of Shock Processes

ρR ρη ρµ ρg ρZ ρA
Persistence
Taylor rule

Persistence
η shock

Persistence
µ shock

Persistence
λg shock

Persistence
Z shock

Persistence
A shock

0.77 0.85 0.73 0.70 0 0.90

100σmp 100ση 100σµ 100σg 100σZ 100σA
Std dev

MP shock
Std dev
η shock

Std dev
µ shock

Std dev
λg shock

Std dev
Z shock

Std dev
A shock

0.17 0.50 9.12 0.15 0.50 0.5
Notes: The table shows the parameter values of the model for the baseline calibration. Most parameters taken from Gust, Herbst,
López-Salido, and Smith (2017). See Section 3.1 for details.
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Figure 3: Impulse responses to a stationary TFP shock in the RBC model
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Notes: The panels depict the impulse responses of GDP, consumption, investment, hours worked, real interest rate and TFP shock (â)
to a unit shock to TFP, εa,t. TFP shock process is given by equation 16. The blue solid lines denote impulses responses with diagnostic
expectations, whereas the red dashed lines denote responses with rational expectations. See Table 3 for parameters corresponding to
the RBC model, presented in Section 3.2.2.
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Figure 4: The Degree of Extra Output Volatility and Diagnosticity
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Notes: The panel depicts the relationship between extra output volatility and the diagnostic parameter θ. Extra output volatility
is given by a percentage change in the standard deviation of output growth from the rational expectations benchmark to diagnostic
expectations with given θ. We use the parameters in Table 3 and vary the parameter value θ from 0 to 1.5.
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Figure 5: Impulse responses to a monetary policy shock (εmp,t) in the DSGE model
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Notes: The panels depict the impulse responses of GDP, consumption, investment, hours worked, capital utilization rate, monetary
policy shock (εmp,t), annualized nominal interest rate, and annualized inflation rate to a one standard deviation shock to monetary
policy (εmp,t). The blue solid lines denote impulses responses with diagnostic expectations, whereas the red dashed lines denote
responses with rational expectations. See Table 3 for parameters. See Section 3.1 for details.
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Figure 6: Impulse responses to a TFP growth rate shock (ĜZ,t) in the DSGE model
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Notes: The panels depict the impulse responses of GDP, consumption, investment, hours worked, capital utilization rate, TFP growth
rate shock ĜZ,t, annualized nominal interest rate, and annualized inflation rate to a one standard deviation shock to TFP growth rate,

ĜZ,t. The blue solid lines denote impulses responses with diagnostic expectations, whereas the red dashed lines denote responses with
rational expectations. See Table 3 for parameters. See Section 3.1 for details.
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Figure 7: Impulse responses to a risk-premium shock (η̂) in the DSGE model
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Notes: The panels depict the impulse responses of GDP, consumption, investment, hours worked, capital utilization rate, risk-premium
shock η̂, annualized nominal interest rate, and annualized inflation rate to a one standard deviation shock to risk-premium, εη,t. The
blue solid lines denote impulses responses with diagnostic expectations, whereas the red dashed lines denote responses with rational
expectations. See Table 3 for parameters. See Section 3.1 for details.
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Figure 8: Impulse responses to a marginal efficiency of investment (MEI) shock (µ̂) in the DSGE
model
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Notes: The panels depict the impulse responses of GDP, consumption, investment, hours worked, capital utilization rate, marginal
efficiency of investment (MEI) shock (µ̂) , annualized nominal interest rate, and annualized inflation rate to a one standard deviation
shock to MEI, εµ,t. The blue solid lines denote impulses responses with diagnostic expectations, whereas the red dashed lines denote
responses with rational expectations. See Table 3 for parameters. See Section 3.1 for details.
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Figure 9: Impulse responses to a govt spending shock (λ̂g) in the DSGE model
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Notes: The panels depict the impulse responses of GDP, consumption, investment, hours worked, capital utilization rate, govt spending
shock (λ̂g) , annualized nominal interest rate, and annualized inflation rate to a one standard deviation shock to govt spending, εg,t.
The blue solid lines denote impulses responses with diagnostic expectations, whereas the red dashed lines denote responses with rational
expectations. See Table 3 for parameters. See Section 3.1 for details.
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