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Abstract

This paper analyzes panic buying of storable consumer goods, using a dynamic

inventory-adjustment model featuring search frictions in shopping. Even if consumers

are fully rational, an anticipated temporary increase in consumer shopping costs (caused

by a disaster itself or a state of emergency) can trigger an upward spiral of hoarding

demand and result in serious panic buying and misallocation of storable goods due to a

coordination failure. We demonstrate that price controls help in mitigating hoarding if

retail prices are rigid in nature. We propose several welfare-enhancing policy options,

such as taxes on purchases and direct distribution of basic necessities, and argue that

the timing of policy interventions crucially influences their effectiveness.
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1 Introduction

Panic buying, hoarding, and the scarcity of basic necessities, such as toilet paper, hy-

giene products, and canned foods, were widespread global phenomena during the COVID-19

pandemic crisis.1 Panic buying, defined here as consumers’ purchasing of unusually large

amounts of storable consumer goods, is not an occurrence peculiar to the pandemic. It has

often occurred historically in anticipation of and response to various types of emergencies,

including the 1973 oil crisis,2 the 2008 global rice crisis,3 the 2011 Christchurch earthquake,4

the 2011 East Japan earthquake and tsunami,5 and the 2017 Hurricane Irma.6 In every

case, panic buying makes shopping more time-consuming and costly than usual, distressing

all consumers, particularly those with reduced mobility. Therefore, it is an urgent matter for

policymakers to understand under what circumstances panic buying is likely to occur and

to institute measures to prevent or mitigate it.

Current economic theory cannot provide a satisfactory explanation for the global toilet-

paper shortage under the COVID-19 pandemic. Classical market theory does not apply well

to the paper product market because the pandemic caused neither a supply disruption nor

a surge in need for consumption of the paper products. Game theory gives insight into

why consumers’ buying decisions exhibit strategic complementarity—if some consumers buy

more, other consumers should also buy more before the store runs out of goods; Nevertheless,

simple coordination-game-like models have not unveiled what triggers the equilibrium shift

and provided little quantitative policy implications.

1According to Arafat, Kar, Menon, Kaliamoorthy, Mukherjee, Alradie-Mohamed, Sharma, Marthoenis,
and Kabir (2020b), who collected English-language media reports from 20 countries and regions, there were
214 news reports including the keyphrase panic buying published until May 22, 2020. They report that
the majority of media reporting on panic buying was from the United States (40.7%), the United Kingdom
(22%), and India (13.6%). See also Keane and Neal (2021), who develop a data set for measuring consumer
panic using Google search data from 54 countries.

2For example, Malcolm (1974) documents the experiences of panic buying in the United States and Japan.
3See Dawe and Slayton (2010) and Hansman, Hong, de Paula, and Singh (2020).
4See Lauder (2011). Forbes (2017) studies the short-term changes in consumer behavior.
5See Ozasa and Watanabe (2011).
6See Alvarez (2017). Note that, since the arrival of hurricanes is (somewhat) predictable, the extensive

stocking up that we have defined as “panic buying” occurred in anticipation of the disaster.
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The aim of this study is to provide a welfare-based analysis of panic buying of storable

necessities in times of disaster. To this end, we develop a novel dynamic consumer-inventory

adjustment model with a continuum of consumers. One of the features of our model is that,

in the equilibrium dynamics, optimal purchasing behaviors at the individual level can lead to

“panic” at the social level. In our model, while all the consumers form rational expectations

about the evolution of the market outcomes, a coordination problem among the consumers

results in excessive hoarding, leaving room for welfare improvement via government policies

to curb it. In this respect, our model shares the spirit of a coordination game, but it

differs from coordination-game models with equilibrium multiplicity in that our framework

can uncover fundamental shocks that trigger panic buying and quantitatively evaluate the

welfare costs of panic buying.

This study focuses on a change in non-pecuniary costs associated with shopping activities

(so-called shopping costs) as a fundamental driving force behind panic buying. In the event of

a large-scale disaster, it often becomes harder than usual to go out shopping. The COVID-19

pandemic was no exception, especially as movement restrictions imposed by various public

health policies (e.g., social distancing, lockdown, and travel restrictions) increased the time

and effort required to shop for daily use products in many areas. In fact, a recent empirical

study by Keane and Neal (2021) finds that announcements of movement restrictions in

response to the pandemic played an important role in amplifying panic buying.7 This study

provides a theoretical explanation for the evidence by exploring how a temporary increase

in shopping costs causes panic buying. Most importantly, we demonstrate that, even in

the absence of fundamental shocks that affect consumption or production as in the case of

the toilet-paper market during the COVID-19 pandemic, there can be serious panic buying

of storable consumer goods if consumers change their shopping patterns in response to the

increased shopping costs.

7Specifically, Keane and Neal (2021) measure the degree of movement restrictions using data on a federal
closure of primary and secondary schools, a ban on gatherings, encouragement of working from home,
restrictions on the use of public spaces, and the shut down of retail and entertainment businesses.
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In our dynamic model of the consumer goods, each consumer adjusts their household

inventory of daily necessities that are storable at the expense of holding costs. Consumers are

willing to consume the goods at a constant rate. Consumers are able to purchase the goods

from the marketplace, but purchase of the goods is not instantaneous; prior to a purchase,

consumers need to engage in costly shopping search to find the in-store stock. In the presence

of shopping costs and uncertainty about purchasing opportunities, consumers adjust their

household inventory infrequently and in a lumpy fashion. Specifically, they start a shopping

search once their current stock becomes smaller than a certain threshold, and purchase a

larger amount upon finding a seller. A salient feature is that the threshold and purchase

quantity are affected by the degree of market congestion: as the market becomes more

congested, they start shopping earlier (raise the threshold) and purchase a larger amount,

expecting that it will take longer to find the in-store stock.

We show that a temporary increase in shopping costs may produce catastrophic conse-

quences for the economy through an upward spiral of demand for hoarding. In response to

the shock, consumers attempt to save the cost of shopping searches by purchasing a larger

amount per purchase opportunity. The hoarding demand boosts the market demand and

sharply reduces the in-store stock available in the market. Expecting that the goods avail-

able in the market will be scarce, more consumers rush to the market to purchase the goods

before the scarcity takes place. This consumers’ action amplifies the market demand further

and exacerbates the scarcity of the goods in the market. As a result, consumers face a higher

risk of exhausting the goods, spend more time searching for them, and incur a higher holding

cost.

In the spiral, individual consumers escalate hoarding for fear of running out of necessities.

The individuals act in their own self-interest and fail to internalize the effect of their hoarding

behaviors on the market outcome and other consumers. Hence, the optimal decisions at the

individual level can result in excess hoarding at the level of society. In this paper, we develop

a new decomposition scheme to isolate the portion of the welfare costs that are attributable
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to the coordination problem. Using the scheme, we find that (i) the coordination problem

becomes drastically more serious when the shock is of a certain magnitude, and (ii) when

severe panic buying is occurring, the welfare costs attributable to the coordination problem

could be much larger than the direct impact of the underlying shock. With our simulation

setting, the effect from the coordination failure is over ten times as large as the direct impact.

We demonstrate that the timing of advance announcements for an emergency crucially

influences the severity of panic buying. In most countries, movement restrictions imposed

against the COVID-19 pandemic were announced in advance of implementation. We examine

the dynamic response to an anticipated increase in shopping costs. We find that, unless

the increase in shopping costs is announced well in advance of its onset, the anticipated

shock triggers much more severe panic buying than the unanticipated shock. This implies

that there is a non-monotone relation between the severity of panic buying and the lag

between announcement and implementation, and that announcing it a few days prior to the

implementation leads to the worst consequence.

We also study whether governments should introduce legal price controls on basic necessi-

ties in the wake of disasters and emergencies. As of 2021, more than half of the US states have

anti-price-gouging laws that restrict retailers from charging exorbitant prices on consumer

good during emergency situations to protect consumers from rising living costs.8 However,

there are considerable opposition to such legal price controls as they would exacerbate short-

ages. Contrary to these concerns, this study demonstrates that, if retail price adjustments

are rigid in nature, an increase in demand or a decrease in supply reminds consumers of

future price increases, which further accelerates hoarding, and thus, price controls are rather

effective in curbing panic buying by discouraging hoarding for fear of future price increases.

It is therefore suggested that whether price controls are beneficial in times of disaters relies

on the underlying market’s ability of price adjustments.

8In the United States, starting with the first state law prohibiting price gouging enacted in New York
in 1979 in response to rising winter heating oil prices in 1978-1979, these measures got adopted by other
states. During the COVID-19 pandemic, 42 states activated some form of price-gouging regulations. See
Bae (2009), Giberson (2011), and Chakraborti and Roberts (2021).
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Retail price adjustments of daily necessities in regular times are far from flexible (for mi-

crodata evidence, see, e.g., Bils and Klenow, 2004; Nakamura and Steinsson, 2008; Klenow

and Malin, 2010; Cavallo and Rigobon, 2016). Furthermore, recent empirical evidence has

suggested that retail prices do not rise instantaneously even when disasters cause spikes in

demand or disruptions in supply.9 In particular, Gagnon and López-Salido (2019) and Hans-

man et al. (2020) show that US retailers were hesitant to raise prices even to the extent not

prohibited by anti-price-gouging laws, emphasizing that reputable retailers maintained their

prices in times of emergency (see also Cabral and Xu (2021) for evidence on the reputation

effect observed in times of the COVID-19 pandemic).10 In light of these facts, retail prices

seem highly rigid in nature even under emergency situations. We, therefore, argue that legal

price controls, such as anti-price-gouging laws, play a certain role in preventing consumers

from accelerating hoarding.

Finally, we propose several policy options to curb panic buying. First, we consider a

short-term sales tax hike to temporarily raise the prices of the basic necessities. We find

that such a short-term tax hike is effective only if it is implemented immediately upon the

announcement of the restricted movement, and even a few days delay in its implementation

could result in exacerbating panic buying. Second, we consider a policy that the government

distributes the basic necessities to consumers through non-market rationing mechanisms.

We find that the distribution policy performs well in reducing the congestion of the market

even if the government is unable to distribute to the whole population; The distribution

policy indirectly makes everyone better off, including those who fail to receive the rationed

9For example, Cavallo, Cavallo, and Rigobon (2014) find that supermarket prices were relatively stable
after a sharp decline in product availability due to the 2010 earthquake in Chile and the 2011 earthquake in
Japan. Gagnon and López-Salido (2019) report modest effects on retail prices in United States supermarkets
in response to large swings in demand triggered by the labor conflicts in 2003 in St. Louis, MO and South-
ern California, Hurricane Katrina in 2005, and shopping sprees around major snowstorms and hurricanes.
Related to these empirical evidences, Nakamura and Zerom (2010) investigate the sources of the delayed and
incomplete pass-through of changes in costs to retail prices.

10Akerlof’s (1980) theory of social norms is one of the theories that suggests that reputable firms refrain
from price gouging for fear of damaging their reputation. Related to this theory, the questionnaire study
of Kahneman, Knetsch, and Thaler (1986) suggests that fairness considerations influence the price-setting
behaviors. Rotemberg (2005) develops the model of price adjustment that allows for customer’s reaction
based on fairness considerations.

6



goods.11 Third, we show that the purchase-quota policy, which is often implemented in

stores, is effective if it is enforced before panic buying arises.

The main technical challenge we tackled in this paper is computing the equilibrium

dynamic response to a temporal shopping-costs shock. Our model allows for heterogeneity

of consumers in quantity of the consumer goods held in their private inventory. In this paper,

we formulate the model in continuous time to employ a framework of mean-field games. We

solve the system of partial differential equations by customizing the numerical methods

established in Achdou, Han, Lasry, Lions, and Moll (2021), which was originally developed

for analyzing income and wealth distribution in dynamic general equilibrium models.

The paper proceeds as follows. Section 2 discusses the literature. Section 3 presents a

model of the market for storable consumer goods. Section 4 formally defines the rational-

expectations equilibrium of the model. Section 5 illustrates the stationary equilibrium of

the model. Section 6 studies the economy’s dynamic responses to disasters with various

scenarios and explores desirable policy interventions. Section 7 makes concluding remarks.

2 Related Literature

Several economic studies have provided empirical analyses for the markets for storable con-

sumption goods, such as laundry detergent (Hendel and Nevo, 2006) and soft drinks (Hendel

and Nevo, 2013), and articulated the practical importance of intertemporal demand effects.

Recent studies have emphasized the importance of intertemporal demand effects in explain-

ing panic buying. Using US supermarket scanner data covering the 2008 global rice crisis,

Hansman et al. (2020) find that, due to the rigidity in retail prices, a negative supply shock

produces an expected price rise, which leads consumers to buy early and stockpile. Using

online search data during the COVID-19 pandemic, Keane and Neal (2021) and Prentice,

11For example, in Japan, amid the spread of COVID-19 and a shortage of masks, the government dis-
tributed two washable masks to each of 50 million households. However, this rationing policy policy drew
criticism for its unfairness and slow delivery (Eguchi, Kamizawa, and Okazaki, 2020). Our results suggest
that, despite these shortcomings, this mask distribution policy might have mitigated panic buying.
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Chen, and Stantic (2020) emphasize that the announcement of government measures for

combating the pandemic triggered panic buying. Our study contributes to the literature in

providing a theoretical framework to explain how intertemporal demand effects lead to panic

buying and a formal welfare analysis of how panic buying harms consumers.

Panic buying is also analyzed in the literature of microeconomic theory. Awaya and

Krishna (2021) study a two-stage model of misinformation-driven panic buying. In contrast,

this paper studies purchasing behaviors of long-lived consumers in an infinite-horizon and

continuous-time environment. This formulation provides quantitative implications on the

severity of panic buying and the effectiveness of policies.

This study is also related to a large literature in macroeconomics that studies the role

of lumpiness in the propagation of aggregate shocks. Following the pioneering work by

Caplin (1985), Grossman and Laroque (1990), Caballero and Engel (1991), and Caballero

(1993), a number of studies have employed the (S, s) inventory model in analyzing demand

for durable or storable consumer goods. In recent years, several papers (e.g., Berger and

Vavra, 2015; Baker, Johnson, and Kueng, 2021; McKay and Wieland, 2019) have developed

rich (S, s) frameworks to quantitatively study how micro lumpiness translates into aggregate

consumption dynamics. Compared with these previous studies, the nature of the adjustment

costs in our model differs from that employed in theirs. Consumers in our model cannot

choose directly when to adjust their inventory due to search frictions in product markets.

Instead, they choose when to start searching for the opportunity to adjust their stock, taking

into account how long they have to spend on costly shopping searches.

Several studies have tried to explain panic buying as a consumer’s irrational behavior. In

particular, Sterman and Dogan (2015) demonstrate that panic buying may occur even in a

lab experiment in which panic buying is never rationalized. In contrast to theirs, our study

shows that panic buying of storable consumer goods may arise as a result of collective action

by fully rational individuals. We conjecture that the behavioral motivations for hoarding

can be additional forces that accelerate panic buying.
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3 Model

3.1 Overview

We present a model of the dynamic inventory adjustment of a storable consumer good (e.g.,

toilet paper). Time is continuous and infinite, t ∈ T := [0,∞). In this economy, there is a

unit mass of consumers. Non negative random variables ki(t) ≥ 0 denote the inventory of the

good held by consumer i ∈ [0, 1]. The cross-sectional distribution function of the consumer’s

inventory at time t is denoted by G(t, k) =
∫
i∈[0,1]

1{ki(t)≤k}di for k ∈ K = R+.

We assume, as in the model in Blanchard (1985), consumers stochastically exit from the

economy at a Poisson rate θ > 0 and a mass θ of new consumers enters per unit of time, so

that total population size is kept at one. We further assume that the consumers who exit

take their stock away. Newly-entered consumers start with initial stock ko > 0, which is

drawn from a (time-invariant) distribution function Gnew that has a density function gnew.

There is a marketplace in which a store sells storable goods. The store can hold the good

in its warehouse. S(t) ≥ 0 denotes the store’s stock in the warehouse at time t. The good is

replenished to the warehouse at an exogenous rate s ≥ 0 every time.

To purchase the good, the consumers have to travel to the marketplace and find a store.

However, due to search friction, they cannot find a store instantly and must search for it

for a period of time. These processes incur costs such as travel costs, costs of acquiring

product information, and opportunity costs of the time spent shopping. These costs are

collectively referred to as “shopping costs.”12 Hence, shopping is costly and time-consuming

to consumers.

We denote the unit sales price of the good in time t by p(t). We assume that, in the long-

run stationary equilibrium, the market price is established so that supply and demand flow

are balanced, but this is not the case for the short-term dynamics after a (disaster-induced)

shopping-costs shock. As emphasized in Su (2010), the intertemporal pricing policy for

12Note that shopping costs in our model are not one-time fixed costs but flow costs incurred while searching
in the market.
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storable goods is complex and beyond the scope of this study; thus, we instead treat the price

as an exogenous variable. However, our model determines market demand endogenously. The

flow demand and supply are not always balanced. In particular, when market demand is

extremely high, the store is likely to be in short supply. In such a case, the store will remain

open while supply lasts and will shut customers out when its stock is sold out.

3.2 The Consumer’s Problem

The individual consumer’s inventory ki(t) evolves over time as a result of consumption and

purchases from the store in the marketplace. Since the good is storable, the amount not

consumed today is kept as inventory for future consumption. Reselling of the good is not

alloa.13 Depreciation of the good is not explicitly considered, since we focus on the short-

term behavior of the economy. At every time t, a consumer chooses (i) the flow consumption

xi(t) ∈ R+, (ii) whether to do a shopping search Ai(t) ∈ {0, 1}, and (iii) how much to buy

upon finding available stock at the store, qi(t) ∈ R+.14

To purchase the good, a consumer has to engage in a costly shopping search (Ai(t) = 1).

We assume that, while searching, a consumer finds the store at a Poisson rate α > 0.

We describe the matching process by an idiosyncratic store-finding shock {Ni(t)}t∈T with

Prob(dNi(t) = 1) = 1− e−α·dt for all consumers.

At every time t, there is a mass of consumers who find a store. In what follows, we

refer to the consumers who find a store at time t as buyers at time t. Upon finding a store,

the buyers are randomly sorted into a queue for purchase, and then allowed to purchase

the desired quantity qi(t) ≥ 0 in order of the queue as long as the store is open. Here, we

emphasize that even if a buyer finds a store, she is not necessarily able to make a purchase

from the store—the store may be closed because it has run out of stock before her turn

comes. Consequently, only a fraction R(t) ∈ (0, 1] of the buyers are actually able to make a

13Hansman et al. (2020) in their empirical analysis find that hoarding during the 2008 Global Rice Crisis
was mostly for the consumer’s own use. They argue that this seemed to be the case for hoarding during the
COVID-19 pandemic as well, referring to media reports at the time.

14We assume that total spending on the good is relatively small compared to total expenditures.
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purchase. Hence, the individual buyer who has found a store (but before knowing her order

in the store’s queue) faces an idiosyncratic event of whether or not she is able to make a

purchase from the store. With assumptions made above, we can represent the idiosyncratic

event as an independent idiosyncratic shock zi(t) drawn from the Bernoulli distribution

Ber(R(t)).

In sum, a searching consumer faces two types of idiosyncratic risk: (i) whether she can find

a store, and (ii) whether she can make a purchase there after finding the store. Accordingly,

the time evolution equation of the consumer’s inventory is expressed as

dki(t) = −xi(t)dt+ Ai(t) · [dNi(t) · zi(t)] · qi(t). (1)

In the right-hand side of (1), the first term represents consumption, while the second term

represents purchase of the good. Note that ki(t) is a càdlàg process (right continuous with

left limit). In particular, when the consumer makes a purchase, the amount of her private

stock jumps to k̄i(t) = ki(t
−) + qi(t), where ki(t

−) := lims↑t ki(s) is the amount of the good

in her inventory she held just before purchasing the good.

We turn to the decision making faced by the consumers. Each consumer seeks to maxi-

mize the expected present value of her total payoff, discounting the future at a rate of ρ > 0.

The instantaneous payoff is given by

dπi(t) = [ui(t)− bi(t)− Ai(t) · c(t)] · dt− (Ai(t) · dNi(t) · zi(t)) · p(t) · qi(t),

where ui(t) is the flow utility from consumption, bi(t) is the flow holding cost, and c(t) is

the flow cost associated with shopping searches. Note that c(t) and p(t) are common to all

consumers.
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The flow utility from consumption ui(t) depends on the flow consumption xi(t):

ui(t) = u(xi(t)) =


0, xi(t) ≥ 1;

−a, xi(t) < 1.

Considering that the good is one of the daily necessities, we assume that the “need” is highly

inelastic because the good is not substitutable: a consumer needs a unit of the good for a

unit of time, but she receives a large disutility a� 0 if she fails to consume it. We assume

that a is sufficiently large so that consumers engage in shopping searches at least when they

are out of stock (See Assumption 2 presented in Section 5 for the formal condition).

Given this flow utility function u, it is clearly optimal to choose the flow consumption

xi(t) = 1 whenever the consumer has some stock of the good (i.e., ki(t) > 0).

xi(t) = x(ki(t)) =


1, ki(t) > 0;

0, ki(t) = 0.

Then, the indirect utility u(x(ki(t))) is a concave function of ki(t).

The holding cost is the cost associated with storing the good in her storage, which

therefore is increasing in ki(t). We assume that it takes a linear function bi(t) = b̄ ·ki(t) with

b̄ > 0. Then, we define a function h(ki(t)) := u(x(ki(t))) − b̄ · ki(t), which specifies a net

flow utility from holding inventory ki(t). Accordingly, each consumer uses ki(t) as a state

variable and decides when to start searching and how much to purchase upon finding the

store to maximize E
[∫∞
s=0

e−rsdπi(s)
]

with r = ρ+ θ being the effective time-discount rate.15

3.3 Aggregate Dynamics

Let dD(t) denote the total amount of the goods demanded by the consumers who arrived

at the store over the infinitesimal time interval [t, t + dt]. With notions introduced above,

15Recall that ρ is the subjective time-discount rate, while θ is the exogenous exit rate. Here, we assume
that the payoff after exiting from the economy is zero.
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dD(t) is given by

dD(t) =

∫
i∈[0,1]

Ai(t) · dNi(t) · qi(t)di = α

(∫
i∈[0,1]

Ai(t) · qi(t)di
)
dt = d(t)dt,

where d(t) := α
(∫

i∈[0,1]
Ai(t) · qi(t)di

)
is the flow rate of demand at time t.

Only the fraction R(t) of such consumers are able to make a purchase at the store.

We refer to R(t) as the availability (of the goods in the market) at time t. Hence, the

total amount of the good actually purchased over the infinitesimal time interval [t, t+ dt] is

R(t)dD(t) = R(t)d(t)dt. In this respect, we refer to d(t) as the potential demand flow for

the good, as distinguished from the amount purchased.

According to the store’s selling rules described above, the availability R(t) is determined

by the following rationing rule:

R(t) =


1, S(t) > 0;

min

{
s

d(t)
, 1

}
, S(t) = 0.

(2)

This rule shows that rationing (i.e., R(t) < 1) only occurs when the store is out of stock

(S(t) = 0) and the potential demand flow exceeds the flow of the store’s supply (d(t) > s).

When this occurs, the total amount purchased is limited by the store’s supply: R(t)d(t) = s.

Finally, we can write the time evolution equation of the store’s stock as follows:16

Ṡ(t) = s−R(t)d(t), (3)

with an initial condition S(0) = So > 0. That is, the store’s stock at time t is the amount

of goods left unsold by time t. Note that S(t) ≥ 0 for all t ∈ T since dS(t) ≥ 0 if S(t) = 0.

16Below, the dot above a variable denotes the derivative with respect to time.
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4 Equilibrium Definition

In this section, we formulate the optimization problem of a consumer and formally define a

rational-expectations equilibrium for the economy.

4.1 Consumers’ Optimization

Let Y (t) := (S(t), G(t, k))′ denote the set of endogenous aggregate state variables.17 Con-

sumers make decisions on when to start shopping searches, making a belief about the future

path of availability {R(τ)}τ≥t. We assume that their belief for {R(τ)}τ≥t is rational: the

perceived and actual laws of motion for availability is identical. To be more specific, they

use the following forecasting rule:

Ẏ (t) = ΓY (Y (t)), and R(t) = ΓR(Y (t)). (4)

That is, they forecast the evolution of the aggregate state variables {Y (τ)}τ≥t recursively,

using the current state Y (t) as an initial condition and then apply ΓR to forecast availability.

The other relevant state variable for the individual consumer is her stock of the good,

ki(t). Let V (Y (t), ki(t)) be the value function for a consumer who has stock ki(t) at time

t, and let V ∗(Y (t), ki(t)) be the expected value for her searching in the good market. The

consumer’s problem can be formulated as the following optimal stopping-time problem:

V (Y (t), ki(t)) = sup
T≥0

E
[∫ t+T

t

e−r(s−t)h(ki(s))ds+ e−r(T−t)V ∗(Y (t+ T ), ki(t+ T ))

]
, (5)

where V ∗ satisfies the Hamilton-Jacobi-Bellman (henceforth, HJB) equation:

rV ∗(Y (τ), ki(τ)) =h(ki(τ))− c(τ) + αR(τ)
[
V A(Y (τ), ki(τ))− V ∗(Y (τ), ki(τ))

]
+
∂V ∗(Y (τ), ki(τ))

∂Y
Ẏ (τ)− ∂V ∗(Y (τ), ki(τ))

∂k
x(ki(τ)),

(6)

17Throughout the analysis below, we do not consider aggregate uncertainty. Thus, take Y (t) to be the
deterministic path for a set of endogenous aggregate state variables.
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and V A(Y (τ), k) is the value right after purchasing at time τ ≥ t, which is given by

V A(Y (τ), k) = max
k̄≥k

V (Y (τ), k̄)− p(τ) · (k̄ − k), (7)

subject to ki(τ) = ki(t)−
∫ τ
t
x(ki(s))ds for τ ∈ [t, t+ T ) and the forecasting rule (4).18

The optimal stopping-time problem (5) induces the optimal stopping-time policy T (Y (t), k).

We define the action region as A(Y (t)) = {k ∈ K | T (Y (t), k) = 0}, which is the set of

the states k at which the consumer engages in a shopping search. Since consumers have

a stronger incentive to go shopping when they have smaller stocks in their inventory, the

action region clearly takes an interval structure: A(Y (t)) = [0, k∗(Y (t))]. We refer to k∗ as

the go-shopping threshold.

The maximization problem (7) derives the decision rule on the purchase quantity. Let

k̄(Y (t), k) be the solution of (7). It is clear that, if k̄(Y (t), k) ≥ k, then k̄(Y (t), k) satisfies

∂V (Y (t), k̄(Y (t), k))

∂k
= p(t).

Hence, independent of the current stock ki(t), all searching consumers desire to increase their

stock to the same level k̄(Y (t)).19 In what follows, we refer to k̄(Y (t)) as the target stock.

In the end, the consumers’ decision rule can be characterized by two variables: the go-

shopping threshold k∗(Y (t)) and the target stock k̄(Y (t)). As illustrated in Figure 1, they

engage in a shopping search if and only if their inventory stock is smaller than k∗(Y (t)):

once they find an open store, they stock up to k̄(Y (t)).

4.2 Law of Motion for the Aggregate State

Given the consumers’ decision, we derive the (actual) law of motion for the aggregate vari-

ables. First, the consumers’ optimal strategy induces a mapping Ψd from the aggregate state

18See, for example, Stokey (2009) for the formulation of the Bellman equation for optimal stopping-time
problems.

19The consumers who choose k̄(Y (t), k) = k clearly do not search since there is no gain from searching.
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Figure 1: The dynamics of a consumer’s stock k, which is characterized by the go-shopping
threshold k∗ and the target stock k̄. For every k > 0, the rate of consumption is 1.

Y (t) to the potential demand d(t) as

d(t) = Ψd(Y (t)) := α

(∫
k∈[0,k∗(Y (t))]

q(Y (t), k)g(t, k)dk

)
,

where q(Y (t), k) is the optimal purchase quantity, defined as q(Y (t), k) := max{k̄(Y (t)) −

k, 0}, and g(t, ·) is a generalized probability density function of the distribution function

G(t, ·).20 Recall that the availability R(t) is determined by d(t) and S(t) according to (2).

Therefore, R(t) can also be written with a mapping ΨR as R(t) = ΨR(Y (t)).

Then, given the consumer’s decisions, the Kolmogorov forward (henceforth, KF) equation

for the measure of consumers g can be written as

∂g(t, k)

∂t
=



∂g(t, k)

∂k
x(k) + θ [gnew(k)− g(t, k)]− αΨR(Y (t))g(t, k), k ∈ A(Y (t)),

∂g(t, k)

∂k
x(k) + θ [gnew(k)− g(t, k)]

+ αΨR(Y (t))G(t, k∗(Y (t)))δ(k − k̄(Y (t))),
k /∈ A(Y (t)).

(8)

From (3), the law of motion for S(t) can be written as: Ṡ(t) = (s − Ψd(Y (t))ΨR(Y (t))).

20Note that G may have mass points at the boundary (k = 0) or in the interior. Thus, we define a
generalized probability density function g that satisfies (i)

∫
k′∈K g(t, k′)dk′ = G(t, k) and (ii) g(t, k) =

ĝ(t, k) +
∑
i=1,...,I m(t, κi)δ(k−κi), where ĝ(t, ·) is a probability density function (a Lebesgue-integrable real

valued function), m(t, κi) is the probability mass at κi ∈ K, and δ(·) is the Dirac delta function.
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Therefore, we can write the law of motion for Y (t) as: Ẏ (t) = ΨY (Y (t)). Accordingly, the

consumer’s decision rules and the aggregation formulas induce a mapping from the perceived

law of motion for the aggregate state variables to an actual law of motion for them.

4.3 Rational-Expectations Equilibrium

In a rational-expectations equilibrium, given the path of exogenous variables {c(t), p(t)}t∈T,

(i) consumers make optimal decisions based on the perceived law of motion, and (ii) the

perceived law of motion is consistent with the actual one.

Definition 1 (Rational-Expectations Equilibrium). A rational-expectations equilibrium is

defined by a path of the aggregate state variables Y = (S,G), a perceived law of motion ΓY ,

ΓR, and consumer’s decision rules {k∗, k̄} with associated value functions {V, V ∗} such that

the following conditions hold:

(i) Consumer’s optimization: for every t ∈ T, k ∈ K, and Y (t), the decision rules {k∗, k̄}

and the value functions {V, V ∗} solve the consumer’s optimization problem along with

the consumer’s beliefs ΓR and ΓY .

(ii) Aggregates are determined by individual actions and the aggregate state variables:

d(t) = Ψd(Y (t)), R(t) = ΨR(Y (t)), and Ẏ (t) = ΨY (Y (t)), for all Y (t).

(iii) Consumers’ beliefs are rational expectations: ΓY = ΨY and ΓR = ΨR.

5 Stationary Equilibrium

As a benchmark of “normal times,” we first look at a stationary equilibrium of the economy

where all exogenous variables—the flow shopping cost and the price—are constant, i.e.,

c(t) = c > 0 and p(t) = p for all t. We say that an equilibrium is stationary if the market

demand is constant and the store never runs out of stock. The formal definition is as follows:
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Definition 2 (Stationary Equilibrium). A rational-expectations equilibrium is stationary if

the following conditions are satisfied:

(i) Full availability; Rationing never happens, i.e., R(t) = 1.

(ii) The consumer’s distribution of the stock is time-invariant; i.e., G(t, k) = Go(k).

It is clear that in the stationary equilibrium, the value functions and the associated policy

functions are all time-invariant, i.e., V (Y (t), k) = Vo(k); V ∗(Y (t), k) = V ∗o (k); k∗(Y (t)) =

k∗o ; k̄(Y (t)) = k̄o. Specifically, the Bellman equations (5) and (6) imply that Vo solves the

Hamilton-Jacobi-Bellman variational inequality (HJBVI, henceforth):

rVo(k) = max
{
h(k)− V ′o (k)x(k), rV ∗o (k)

}
, (9)

where V ∗o solves the HJB equation:

rV ∗o (k) = h(k)− c− V ∗′o (k)x(k) + α

[(
max
q>0

Vo(k + q)− pq
)
− V ∗o (k)

]
.

The measure of the consumer satisfies the KF equation

0 =


g′o(k)x(k) + θ [gnew(k)− go(k)]− αgo(k), k ∈ Ao = [0, k∗o ],

g′o(k)x(k) + θ [gnew(k)− go(k)] + αGo(k
∗
o)δ(k − k̄o), k /∈ Ao = [0, k∗o ].

(10)

With the notations above, the market demand d(t) in the stationary-equilibrium can be

written as do = α
∫
k∈[0,k∗o ]

max{k̄o − k, 0}dGo(k).

5.1 Characterization of the Stationary Equilibrium

We impose the following assumptions, ensuring that the consumers have a threshold k∗o ∈

(0,∞) to start a shopping search when their stock falls below that level.
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Assumption 1 (Sufficient Supply). In the stationary equilibrium, the suppliers of the good

adjust their supply so that the flow supply and the flow demand are balanced (s = do).

Assumption 1 ensures that full availability in the stationary equilibrium (condition (i) of

Definition 2).

Assumption 2 (Large Out-of-Stock Disutility). The flow disutility from running out of

stock, a, is sufficiently large to satisfy

max
q≥0

V N(q)− pq +
a

r
>
c

α
, (11)

where V N : K → R is the value function for the consumers that would be achieved if no

control is exercised: V N(k) :=
∫∞

0
e−rsh (max{k − s, 0}) ds.

Assumption 2 requires that the flow disutility from failing to consume the good is so

large that consumers cannot forgo shopping. If the disutility is small (for example, because

the good is substitutable), then consumers may optimally choose not to consume it. Since

we consider the market of an unsubstitutable necessity good, we exclude such a situation.

Assumption 3 (Large Matching Rate). The matching rate α is sufficiently large such that

αp > b̄.

Assumption 3 requires that search friction is not too strict. Recalling that the matching

rate α captures the easiness of shopping during normal times, it is natural to assume that α

is large since shopping is an easy task during normal times.

Assumptions 2 and 3 ensure that a stationary equilibrium exists in which all consumers

go shopping periodically. Proposition 1 characterizes such a stationary equilibrium.21

Proposition 1. Suppose Assumptions 1, 2 and 3 hold. Then, the stationary rational-

expectations equilibrium satisfies the following properties:

21Proofs are in Online Appendix A.
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Table 1: Parameter values

Parameters Value Target

ρ Weekly discount rate 0.01/52 The annual discount rate is 1%
θ Weekly exit rate 0.04/52 The annual replacement rate is 4%
a Flow disutility from zero consumption 10,000 Normalization
b̄ Scale parameter in the holding cost 1.0 Normalization
p Market price of the good 10.0 Normalization
α Matching rate 3.5 2 days/month is spent on shopping.
c Flow shopping-search cost 25 Shopping frequency: once a month

(i) Consumers engage in shopping periodically; i.e., 0 < k∗o < k̄o < +∞ is satisfied.

(ii) The consumer’s go-shopping threshold k∗o satisfies α
[
V A
o (k∗o)− V ∗o (k∗o)

]
= c.

(iii) The consumer’s target stock k̄o satisfies

k̄o = k∗o +
1

r
log

1 +

αp− b̄
α + r

(
1− e−(α+r)k∗o

)
+ e−(α+r)k∗oa− p

b̄

r
+ p

 .

(iv) The value function Vo(k) satisfies

rVo(k) = 1{k≥k∗o}

[
e−r(k−k

∗
o)

(
b̄k∗o −

b̄

r
+ rV ∗o (k∗o)

)
+

(
b̄

r
− b̄k

)]
+ 1{k<k∗o}rV

∗
o (k),

where the value of exercising a control V ∗(k) satisfies

V ∗o (k) = αΛ(k) +
1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b̄k − e−(α+r)ka− c

]
,

with Λ(k) =
∫ k

0
e−(α+r)(k−s)V A

o (s)ds+ e−(α+r)kQ, Q = −[(p+ b̄k̄o)/r+pk̄o]/(α+ r), and

V A(k) = 1{k≤k̄o} [(α + r)Q+ pk] + 1{k>k̄o}Vo(k).
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5.2 Illustration of the Stationary Equilibrium

In this subsection, we illustrate a stationary equilibrium using a concrete numerical example.

In Table 1, we list the parameter values employed in the numerical exercises. A unit of time

is equal to one week. We set the weekly time-discount rate ρ = 0.01/52 (the corresponding

annual discount rate of 1%) and the weekly exit rate θ = 0.04/52. We consider a market of

daily necessities that are hardly substitutable, assuming that the disutility from failing to

consume it is large: a = 10, 000. Note that this specification satisfies Assumption 2. The

market price of the good is normalized to p = 10. The matching rate α is set to 3.5, implying

that it takes two days for searching consumers to find a store. Under these parameter values,

in the stationary equilibrium, each consumer goes shopping (roughly) once a month and

spends two days per month searching on average. These consumer behaviors are in line with

the evidence, drawn from the American Time Use Survey in Petrosky-Nadeau, Wasmer,

and Zeng (2016), which documents that the average total shopping time for shoppers in the

United States during the years from 2003 to 2012 is 40-50 minutes per day.

In the numerical exercises, we employ the algorithm developed by Achdou et al. (2021).

This algorithm is applicable to computing not only the stationary equilibrium but also the

equilibrium transition path in response to an unexpected change in model parameters.22

Specifically, we apply the finite difference method to the HJBVI in (9) and the KF equation

in (10) in order to reduce the partial differential equations to a linear complementarity

problem, and then solve it iteratively (see Online Appendix B for a detailed description of

the computational algorithm we employed).23

Figure 2 illustrates a consumer’s policy (Panel (a)) and the distribution of the consumer’s

stock (Panel (b)) in the stationary equilibrium under the parameter values given in Table 1.

22The greatest advantage of this algorithm is that it simultaneously solves the HJB equation for the value
function and the KF equation for the distribution, using the fact that the HJB operator and the KF operator
are adjoints to each other. In recent years, this method has been intensively applied for various continuous-
time heterogeneous-agent models in the macroeconomics literature (e.g., Kaplan, Moll, and Violante, 2018;
Ahn, Kaplan, Moll, Winberry, and Wolf, 2018; Fernández-Villaverde, Hurtado, and Nuno, 2019).

23We employed the algorithm to solve a linear complementarity problem, building on the routines available
from Benjamin Moll’s personal website https://benjaminmoll.com/codes/.
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(a) Policy for purchase quantity: A(k) ·qo(k)
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(b) Consumers’ distribution: go(k)

Note: The horizontal axis represents the amount of the existing consumer’s stock. The generalized density
function go(k) has a mass point at k = 0 actually. However, since the mass is very small
(Go(0) = Go(k

∗
o)e−αk

∗
o ≈ 0.3× 10−5), we do not display the math point in Panel (b).

Figure 2: An Illustration of the Stationary Equilibrium

In the stationary equilibrium, as in our daily life, consumers consume the good in their private

inventory a constant rate (normalized to 1) and start a shopping search when the stock goes

down to k∗o ≈ 2.3 (weeks). The searching consumer, upon finding a store, purchases the good

to stock up to the target stock, k̄o ≈ 6. That is, the amount purchased is qo(k) = k̄o − k ≈

6 − k. Therefore, no consumer has more than k̄o in stock, and the fraction Go(k
∗
o) of the

consumers engage in shopping searches every time. Since the searching consumer can find

an available store with an arrival rate α, the density exponentially increases as k increases

for k ∈ (0, k∗o ]. For the inaction region k ∈ [k∗o , k̄o], the density is flat. Although extremely

rare, there are consumers who unfortunately continue to fail to find a store and then exhaust

the good. With our parameter choice, the share of such stockless consumers (Go(k
∗
o)e
−αk∗o )

is less than 0.01%. So, the risk of exhausting the good is very low.

6 Dynamics in an Emergency

In this section, we explore the impacts of an emergency that temporarily increases the flow

shopping cost c(t) due to various scenarios. Here, we analyze the dynamic response of the
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economy to an unpredictable (one-time and deterministic) change in c(t), starting from the

stationary equilibrium of the model economy. More specifically, until t = 0, all the model

agents believe that the flow shopping cost is permanently constant, but at time t = 0, they

are aware of the (future) exogenous change in the flow shopping cost. Below, X(t) denotes

the value of a variable X after t time (weeks) after the awareness of the shopping-cost shock.

At time 0, the economy is on the stationary equilibrium: G(0, k) = Go(k). Our definition

of the stationary equilibrium does not determine the initial store stock. In our simulations,

we set S(0) = So = 1, assuming that, in normal times, the store always holds one unit of

the goods (which can accommodate the entire population for a week) as a buffer.

In the subsequent sections, we first describe the specification of the shopping-costs shock

in Section 6.1 and how we evaluate the welfare impacts in Section 6.2. In Section 6.3, we

report the simulation results of various scenarios. In Section 6.4, we investigate the effective-

ness of various policy measures, such as increasing the sales tax (Section 6.4.1), nonmarket

distribution of basic necessities (Section 6.4.2), and quotas on purchases (Section 6.4.3).

6.1 The Fundamental Shock and the Phases of the Emergency

We specify the path of c(t) using the four parameters (c̄, T Sc , T
L
c , T

E
c ) with c̄ > c and 0 ≤

T Sc < TLc < TEc < ∞. As illustrated in Figure 3, we consider the following phases of the

emergency:

Pre-Disaster Phase (t < 0) Prior to time 0, all consumers believe that all the exogenous

parameters are stationary, i.e., (c(t), p(t)) = (c, p) for all t. Accordingly, all consumers behave

following the stationary-equilibrium strategy, believing that R(t) = 1 forever.

Announcement (t = 0) At time 0, consumers are aware of unpredictable events that

(will) increase flow shopping cost c(t).24 All consumers are assumed to be fully informed

24In some simulation scenarios, the exogenous shift in the sales price p(t) is considered as well.
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Figure 3: An Illustration of the Phases of the Emergency

about the future path of the economy and thus, at time 0, they immediately react to the

change in their beliefs about the path of {c(t), p(t)} and endogenous state variables.

Preparation Phase (0 ≤ t < T Sc ) Although consumers know that the flow shopping cost

c(t) will be increased later, c(t) has not yet increased (c(t) = c). The anticipation of the

increase in c(t) could change consumers’ behavior even in this phase.

Restricted-Movement Phase (T Sc ≤ t < TLc ) Movements are restricted due to either

the disaster itself or the government’s measures. The flow shopping cost c(t) jumps up to c̄

at time T Sc , and it stays at that level until time TLc .

Restriction-Lifting Phase (TLc ≤ t < TEc ) The restrictions are gradually relaxed. The

flow shopping cost c(t) linearly decreases from the maximum level c̄ to the normal level c.
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Post-Disaster Phase (TEc ≤ t) The “lifting” is completed at time t = TEc , and then the

flow shopping cost c(t) is returned to the normal level (c(t) = c) permanently.

To summarize, the dynamics of the flow shopping cost c(t) is given by

c(t) =



c, t < T Sc ,

c̄, T Sc ≤ t < TLc ,

c̄

(
t− TLc
TEc − TLc

)
+ c

(
1− t− TLc

TEc − TLc

)
, TLc ≤ t < TEc ,

c, TEc ≤ t.

6.2 Welfare Evaluation

Here, we describe how we evaluate the impact on social welfare. We define the social welfare

of the economy, denoted by SW , as

SW = CS +GR−GE,

where CS denotes the (normalized) consumer surplus, GR denotes the government’s revenue,

and GE denotes the government’s expenditure. We define each component as follows.

First, CS measures the average of the changes in the consumers’ values at time 0

(V (0, k)− Vo(k)) weighted by their measure (g(0, k)), i.e.,

CS =

∫
k∈K

[V (0, k)− Vo(k)] g(0, k)dk.

This captures how the consumers value the surprise at time 0 on average.

Second, GR measures the present value of the government’s revenue. In Subsection 6.4.1,

we introduce a sales tax as a measure against panic buying. We denote the after-tax price

by p̂(t). With this notation, the total government tax revenue at time t is given by [p̂(t) −
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p(t)]R(t)d(t). Hence, GR is given by

GR =

∫ ∞
0

e−rt [p̂(t)− p(t)]R(t)d(t)dt.

Third, GE measures the present value of the government’s expenditure. In Subsec-

tion 6.4.2, we consider the governmental distribution of the goods, that is, a policy accord-

ing to which the government buys out SG units of the goods from the market at time t and

distributes them directly to consumers immediately. Hence, GE is given by

GE =

∫ ∞
0

e−rt [p(t)SG] dt.

In this study, we examine the economy’s response against adverse shocks, and thus,

because of the increased shopping costs, CS is negative regardless of the efficiency of the

equilibrium allocation. We want to isolate the welfare costs attributable to misallocation of

the goods due to the coordination failure in consumer’s shopping behavior. For that purpose,

we consider the following counterfactual. While the shopping cost c(t) is changed by the

shock, all consumers (counterfactually) keep taking their stationary-equilibrium strategies.

In this case, even after the shock is realized, the availability R(t) would remain one and the

same allocation would be achieved as in the stationary equilibrium.25 This implies that the

mass of searching consumers is fixed to Go(k
∗
o) and, therefore, the consumer surplus in the

counterfactual becomes

LF = Go(k
∗
o)

∫ ∞
0

e−rt [− (c(t)− c)] dt.

The term we labeled LF measures (the negative of) the welfare loss from the fundamental

shock. The difference SW − LF captures the welfare costs attributable to misallocation of

25The stationary equilibrium allocation is not the first-best one that maximizes the consumer surplus. By
distributing the store stock So to consumers efficiently, they could be better off. However, we expect that
the welfare difference between the first-best allocation and the stationary equilibrium allocation is small. We
also conjecture that when So = 0, the stationary-equilibrium strategy coincides with the first-best one.
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Table 2: Summary of Simulation Settings and Results

Shorthand Benchmark
Magnitude Announcement Inflation

Large Small No Prep Early Low High

Simulation number 1 2 3 4 5 6 7

Simulation Settings
(c̄− c)/c 100% 120% 80% 100% 100% 100% 100%
T Sc 1 1 1 0 2 1 1
TLc − T Sc 4 4 4 4 4 4 4
TEc − TLc 3 3 3 3 3 3 3
p(t) p p p p p ∆2.5% ∆10%

Results
Figure 4 5a 5b 6a 6b 7 7
CS -130.8 -385.7 -9.0 -8.2 -11.3 -263.1 -744.7
GR 0 0 0 0 0 0 0
GE 0 0 0 0 0 0 0
SW = CS +GR−GE -130.8 -385.7 -9.0 -8.2 -11.3 -263.1 -744.7
LF -9.7 -11.6 -7.7 -9.7 -9.7 -9.7 -9.7
SW − LF -121.1 -374.1 -1.3 1.5 -1.6 -253.3 -735.0
(Rel. to Benchmark) (1.0) (3.09) (0.01) (-0.01) (0.01) (2.09) (6.07)

Note: The ”No Prep” stands for no preparation phase. See Section 6.1 for the detail descriptions of the
four parameters: c̄; TSc ; TLc ; TEc . See Section 6.2 for the definitions of CS, GE, GR, SW , and LF .

the goods due to the coordination failure.

6.3 Simulation Results

In Section 6.3, we report the simulation results for the benchmark scenario (Section 6.3.1),

and the alternative scenarios with different magnitudes of the emergency (Section 6.3.2),

different duration of the preparation phase (Section 6.3.3), and different underlying price

dynamics (Section 6.3.4). Table 2 lists a summary of the settings in each simulation, the

corresponding figure, and the results of the welfare analysis.

6.3.1 The Benchmark Case

In this paper, we refer to the following scenario as the benchmark case.

Simulation 1 (Benchmark). At time t = 0, there is an announcement that movement

restriction will be implemented in one week (i.e., T sc = 1). During the restricted-movement
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Note: In all charts, the horizontal axis represents the number of weeks after the announcement (t). The
background color of the graph area illustrates the phase of the emergency: the pre-disaster phase (white),
the preparation phase (light gray), the restricted-movement phase (dark gray), the restriction-lifting phase
(medium gray), and the post-disaster phase (white).

Figure 4: Simulation 1 (Benchmark). S0 = 1, c̄ = 50, T Sc = 1, TLc −T Sc = 4, and TEc −TLc = 3.

phase, the shopping cost is c̄ = 50; thus, its percentage increase is (c̄ − c)/c = 100%. The

restricted-movement phase will continue for four weeks (TLc − T Sc = 4), and then will be

lifted in phases over three weeks (TEc − TLc = 3).

The top-left chart in Figure 4 displays the exogenous path of c(t) used in Simulation 1,

where t is the number of weeks after the announcement.26 The top-middle chart (“R(t):

Availability”) displays the availability R(t). The top-right chart (“Consumer’s Policy”) dis-

plays the time evolution of the two key variables that characterize the consumers’ optimal

strategy: the target stock k̄(t) and the go-shopping threshold k∗(t). The lower-left chart

(“Searching Consumers (%)”) displays the percentage of consumers engaging in a shopping

search, 100 · G(t, k∗(t)). In the lower-middle chart (“Misallocation”), we report the two

important moments relevant for the efficiency of the allocation of the goods: (i) the percent-

26(We use the same layouts for all figures that exhibit the simulation results.
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age of consumers who have a larger stock than the maximum level held in the stationary

equilibrium, 100(1 − G(t, k̄o)), whom we call “hoarders”; (ii) the percentage of consumers

who run out of stock, 100 · G(t, 0), whom we call “stockless” consumers. Note that the

welfare loss becomes larger as the number of hoarders and stockless consumers increases

because hoarders bear unusually high holding costs and stockless consumers suffer large

disutility (a = 10, 000) from not being able to consume.27 Finally, the lower-right chart

(“S(t): Store’s Stock”) displays in-store stock S(t).

We turn to the result of Simulation 1. Panic buying starts when the announcement is

made. Consumers change their purchase policy immediately at t = 0: the target stock k̄(t)

jumps from 6.0 to 8.3 to avoid shopping during the restricted-movement phase and the go-

shopping threshold k∗(t) jumps from 2.2 to 4.5 to start shopping earlier than usual. This

sharply increases the fraction of searching consumers from the pre-disaster level of 7% to

64%. The increased demand for the good rapidly reduces and depletes the store’s stock. As

a result, the availability R(t) decreases to less than 20% at its worst.

What is worse, the low availability persists in the restricted-movement phase because the

initial stockpiling demand is so large that many consumers who start searching during the

preparation phase cannot finish their shopping by the end of the phase. Such consumers

are desperate to shop even during the restricted-movement phase at a higher shopping cost.

As a result, there are unusually many consumers who urgently need the good—as can be

seen from the lower-middle chart, the fraction of stockless consumers reaches about 0.6%,

which is more than 100 times the normal level. The increase in stockless consumers is

purely due to a coordination failure among the consumers: Since the shock considered here

has no impact on neither aggregate consumption nor aggregate supply of the good, the

full availability would be maintained if all consumers followed the stationary-equilibrium

shopping strategy. Nevertheless, selfish consumers fail to internalize the congestion effect on

the market, thereby causing a shortage of the goods in the market and an increased number

27Stockless consumers exist even in stationary equilibrium, albeit in very small numbers.
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of stockless consumers.

After week 4, the consumer’s purchase policies return to their normal level and the avail-

ability returns to one. This is natural because, at week 4, consumers know that the shopping

cost gets back to the normal level in another four weeks (in week 8). Since consumers in our

model go shopping roughly once in four weeks in normal times (i.e., k̄o− k∗o ≈ 4), after week

4, there is no need to excessively hoard.

The bottom parts of Table 2 report the welfare costs of the shopping-costs shock. For

the benchmark case, the total welfare costs (SW ) are approximately 131, while the welfare

costs that are attributable to the fundamental shock (LF ) are less than 10—even if the flow

shopping cost c(t) is increased by 100% for several weeks, its direct effect is limited since only

7% of consumers are searching in the stationary equilibrium. This result implies that the

coordination problem amplifies the disaster damage thirteen times more than the original

fundamental shock in the benchmark case.

6.3.2 The Magnitude of the Shopping-Cost Shock

In the benchmark case, we considered the case in which the flow shopping cost is increased by

100%. Below, by tuning the parameter c̄, we investigate how the tightness of the movement

restrictions would affect the market outcomes. Specifically, we consider the cases where the

movement restrictions are 20% more strict and 20% looser than in the benchmark case.

Simulation 2 (Large Shock). During the restricted-movement phase, the shopping cost is

increased to c̄ = 55. Hence, its percentage increase is (c̄− c)/c = 120%.

Simulation 3 (Small Shock). During the restricted-movement phase, the shopping cost is

increased to c̄ = 45. Hence, its percentage increase is (c̄− c)/c = 80%.

Figure 5a displays the result for Simulation 2 (Large Shock). Overall, the behavior of the

economy looks qualitatively similar to the benchmark case, but the economic impact is much

larger. The availability R(t) declines in the preparation phase about 9 percentage points
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(a) Simulation 2: The movement restrictions are 20% more strict than in the benchmark case.
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(b) Simulation 3: The movement restrictions are 20% looser than in the benchmark case.

Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure 5: Different Tightness of the Movement Restrictions
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more, and the lower availability continues more persistently than in the benchmark case. As

a result, at the peak, 2.4% of consumers are out of stock (the numbers of stockless consumers

are 0.6% in the benchmark case and less than 0.01% in the stationary equilibrium). This

results in substantially large welfare costs: the total welfare costs are 385.7 (CS = −385.7),

while the welfare costs from the fundamental shock are 11.6 (LF = −11.6). This implies

that as the magnitude of the disaster (i.e., the size of the shock) is large, the total economic

impact becomes sharply larger: compared with the benchmark case, the total welfare costs

increase by 295%, while the welfare costs from the fundamental shock increase only by 20%.

We turn to Simulation 3 (Small Shock). As shown in Figure 5b, rationing (R(t) < 1)

happens during the preparation phase. Nevertheless, the availability returns to the normal

level earlier than the benchmark case. Therefore, consumers are hardly concerned with

becoming stockless (see the red line in the lower-middle chart) and more consumers are

willing to wait for a little while until the availability recovers. This results in a much smaller

initial demand surge. Specifically, 40% of the consumers attempt to shop upon hearing the

news (t = 0) in Simulation 3, while 60% of the consumers do in Simulation 1. As a result,

the welfare costs and the degree of misallocation are quite small (SW = −9 and LF = −8).

The analyses in Section 6.3.2 imply that the impact of the shock size (c̄) on social welfare

is highly nonlinear. The overall impact of a shopping-costs shock becomes drastically larger

when its size is greater than a certain level.

6.3.3 Timing of Announcements

We examine how the duration of the preparation phase T Sc influences the severity of the

panic. In practice, the length of the preparation phase depends on the forecastability of the

emergency is considered to vary depending on the types of disasters. For example, landfall

of a major hurricane can be forecast in advance, while earthquakes, massive blackouts, and

terrorist attacks are virtually unpredictable. Hence, the following simulations are helpful in

understanding which disasters are likely to trigger panic buying.
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The following simulations also have valuable implications for government decision-making.

In some cases, the government can partly control the length of the preparation phase by se-

lecting the timing of announcements and implementation. For example, at the onset of the

global spread of COVID-19, many governments placed movement restrictions on their resi-

dents after announcing their implementation in advance. Then, in such areas, they suffered

from the panic buying that occurred immediately after the announcement of movement re-

strictions.28 We believe that the following simulations suggest, in terms of reducing the risk

of panic buying, how far in advance it would be desirable for the government to announce

such restrictions.

We begin with the case in which the movement restrictions are enforced immediately.

Simulation 4 (Immediate). There is no preparation phase. When the unanticipated shock

is announced, the economy immediately shifts to the restricted-movement phase: T Sc = 0.

In Figure 6a, we present the simulation result for Simulation 4. In the absence of any

preparation phase, the store’s stock S(t) declines more slowly than in the benchmark case,

and the availability R(t) remains at one, implying that the store is always in stock. Note that

consumers increase their target stock k̄(t) for stockpiling but do not increase the go-shopping

threshold k∗(t) (see the top-right chart). Therefore, the number of searching consumers does

not increase upon announcement (see the bottom-left chart).

The comparison between Simulations 1 and 4 implies that the very existence of a prepa-

ration phase plays an important role in amplifying panic buying. If there is a preparation

phase (as in Simulation 1), consumers desperately attempt to shop before the restricted-

movement phase begins and shopping costs rise. As a result, more consumers attempt to

hoard the good during the preparation phase, causing a scarcity of the good at once. By

contrast, if there is no preparation phase (as in Simulation 4), when consumers become aware

28For example, in New York City, an epicenter of COVID-19 infections, after confirming the state’s first
case of COVID-19 on March 1, New York Governor Andrew Cuomo declared a state of emergency on March
7 and issued stay-at-home order on March 14. Wallace (2020) reports that panic buying of toilet paper
already became serious during the week that ended March 14.
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(a) Simulation 4: There is no preparation phase: TSc = 0.
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(b) Simulation 5: There is a two-week preparation phase: TSc = 2.

Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure 6: Different Timing of the Emergency Announcement
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of the increase in their shopping costs, it is too late to rush to the market since movement

restrictions are already in effect. Thus, the increase in market demand is mild.

It is somewhat difficult to find historical evidence of a situation with “no panic buying.”

Nevertheless, Burney and Jones (2005) report that panic buying was not observed in London

after the terrorist bombing incident in 2005, even though (i) this terrorist attack disrupted

the transportation system of London, and (ii) there were security alerts at many locations

throughout the United Kingdom. Likewise, we found no newspaper article that reports panic

buying after the September 11, 2001 terrorist attacks in New York City. Considering that

these terrorist attacks restricted the daily lives of the residents there but were not predicted

in advance, these experiences are consistent with the result of Simulation 4.

Next, we turn to the case with a longer preparation phase than in the benchmark case.

Simulation 5 (Early Notice). The movement restrictions are announced two weeks before

being implemented: T Sc = 2.

As shown in Figure 6b, in Simulation 5, consumers who visited the store within several

days after hearing the news do not hoard so much (see the top-right chart), and rationing does

not occur immediately after the news is announced (see top-middle chart). Since consumers

do not sharply increase the go-shopping threshold, the number of consumers who attempt

to shop right after hearing the news is less than one-third of the number observed in the

benchmark case (at most 20% in Simulation 5 versus more than 60% in Simulation 1). On

the whole, the shortage of the good is not as serious as in the benchmark case.

The simulation demonstrates that the extended duration of the preparation phase results

in diversifying the timing of shopping, thereby mitigating panic buying. Viewed from time

t = 0, in Simulation 5, the movement restrictions are set to be lifted one week later than

in the benchmark case (TLc = 6 and TEc = 9 in Simulation 5, while TLc = 5 and TEc = 8

in the benchmark case). Thus, consumers are indeed eager to stockpile more than in the

benchmark case, but this is not optimal in the light of holding costs. As a result, those

who go shopping within the first couple of days after hearing the news purchase their usual
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quantity, and then conduct further shopping searches one month later when the shortage

of the good is nearly eliminated. On the other hand, consumers who visited the store just

before the restricted-movement phase begins purchase a larger quantity than usual and do

not search during the restricted-movement phase. In this manner, the timing of shopping is

not as concentrated as in the benchmark case.

It should be emphasized that the duration of the preparation phase has a non-monotonic

effect on the severity of panic buying. Among Simulations 1 (with T Sc = 1), 4 (with T Sc = 0),

and 5 (with T Sc = 2), the most severe panic buying occurs in Simulation 1. In Simulation 1,

the preparation phase has only one week and therefore the shopping is concentrated during

that time. In contrast, in Simulation 5, the preparation phase has two weeks, consumers

have relatively more time to choose when to shop.

6.3.4 Price Dynamics: Are Price Controls Necessarily Bad?

Thus far, we fixed the market price p(t) at the stationary-equilibrium level, on the grounds

of the anti-price gouging laws. Although price controls on daily necessities during emer-

gency situations have become common, many scholars criticize such measures for encourag-

ing hoarding and exacerbating shortages (e.g., Avoy, 1971; Brewer, 2007; Chakraborti and

Roberts, 2020). In the following simulations, in order to study whether legal price controls

indeed lead to escalating panic buying, we allow the market price to react in response to the

increase in demand. Of course, in the absence of any regulations, it is reasonable to assume

that market price would rise in response to the increased demand. However, whether the

market mechanism would flexibly raise the retail price in the event of a disaster is nontrivial.

In fact, there is growing empirical evidence suggesting that stores tend to hesitate to increase

the price in order to maintain their reputation particularly in times of emergency situations

(e.g., Cavallo, Cavallo, and Rigobon, 2014; Gagnon and López-Salido, 2019; Hansman et al.,

2020; Cabral and Xu, 2021). In light of the evidence, it would be realistic to consider that the

retail prices in times of emergency situations are highly rigid in nature because of reputation
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Note: The horizontal axis represents the number of weeks after the announcement. The solid, dash-dotted,
dotted lines show the results for Simulation 7 (10% inflation), 6 (2% inflation), and the benchmark case,
respectively.

Figure 7: With and Without Anti-Price Gouging Regulations

effects.

We therefore consider the following two scenarios where the market price gradually rises

in response to the spike of demand:

Simulation 6 (Low Inflation). During the first four weeks after time 0, the market price

increases at a monthly rate of 2.5%.

Simulation 7 (High Inflation). During the first four weeks after time 0, the market price

increases at a monthly rate of 10%.

Figure 7 displays the simulation results. The greater the increase in the market price

is, the more severe the shortage is and the more serious the impact on the welfare is (e.g.,

SW = −744.7 in Simulation 7, while SW = −130.8 in the benchmark case). The intuition

is straightforward: an expectation of a gradual rise in the price encourages consumers to

buy storable goods earlier and hoard more. This channel is emphasized by Hansman et al.
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Table 3: Summary of Simulation Settings and Results: With Policy Interventions

Shorthand Benchmark
Sales Tax Governmental Distribution

Quota
Immediate Delayed All Half

Simulation number 1 8 9 10 11 12

Simulation Settings
(c̄− c)/c 100% 100% 100% 100% 100% 100%
T Sc 1 1 1 1 1 1
TLc − T Sc 4 4 4 4 4 4
TEc − TLc 3 3 3 3 3 3
Sales Tax 0 5%: t ∈ [0, 1] 5%: t ∈ [0.5, 1.5] 0 0 0
Rationing 0 0 0 1/2 unit to all ppl 1 unit to half of ppl 0
Purchase quota 0 0 0 0 0 q ≤ 4

Results
Figure 4 8a 8b 9a 9b 10
CS -130.8 -10.6 -68.2 -9.5 -9.3 -9.4
GR 0 0.1 0.1 0 0 0
GE 0 0 0 5.0 5.0 0
SW = CS +GR−GE -130.8 -10.6 -68.2 -14.5 -14.3 -9.4
LF -9.7 -9.7 -9.7 -9.7 -9.7 -9.7
SW − LF -121.1 -0.98 -58.5 -4.9 -4.6 0.3
(Rel. to Benchmark) (1.0) (0.01) (0.48) (0.04) (0.04) (-0.00)

Note: Throughout the simulations in Section 6.4, the fundamental shock (the path of c(t) and p(t)) is fixed
to the one used in the benchmark case (Simulation 1). See Section 6.1 for the detail descriptions of the four
parameters: c̄; TSc ; TLc ; TEc . See Section 6.2 for the definitions of CS, GE, GR, SW , and LF .

(2020), who empirically analyze the 2008 global rice crisis and point out that the gradual

price increase played a central role in causing the panic buying. In our simulation setting, an

introduction of the anti-price-gouging law moderates panic buying by reducing this effect.29

6.4 Policy Interventions

In this section, we turn to policy options for curbing panic buying. Our analyses thus far

have demonstrated that panic buying is an upward spiral of demand for hoarding. We can

naturally infer that breaking this upward spiral is essential to curb panic buying. In the

subsequent subsections, we evaluate the performance of the following three types of policy:

a short-term sales tax increase, nonmarket distribution of the good, and quotas on purchases.

Table 3 shows the simulation settings and the summary of the main results.

29Awaya and Krishna (2021) provide a two-period model framework in which the price of a storable
good is endogenously determined by the market clearing price. In their model, when consumers purchase
a large amount in the first period, the second-period price increases and becomes even higher than the
first-period price. This situation resembles Simulations 6 and 7 in the sense that the price does not increase
instantaneously in the beginning of the game. Awaya and Krishna (2021) also show that price controls
mitigate panic buying and enhance social welfare.
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6.4.1 A Short-Term Sales Tax Increase

The first policy option we analyze is a temporary increase in the sales tax. This policy is

expected to disincentivize consumers from buying a large quantity. We consider a 5% sales

tax increase for one week. We examine the following two scenarios regarding its implemen-

tation period. For the first scenario, we assume that the government can increase the tax

rate as soon as the news is known:

Simulation 8 (Immediate Sales Tax Increase). The government imposes a special sales tax

of 5% during the preparation phase (t ∈ [0, T Sc ] = [0, 1]). The after-tax price is given by30

p̂(t) =


1.05 · p(t) if t ∈ [0, T Sc ];

p(t) otherwise.

However, such a flexible taxation system seems to be unrealistic in practice at least as

of this writing.31 Then, as a more realistic “best-case scenario,” we consider a case in which

the government increases the tax rate half a week after realizing the shock:

Simulation 9 (Delayed Sales Tax Increase). Half a week after realizing the shock, the

government imposes the special sales tax for a week:

p̂(t) =


1.05 · p(t) if t ∈ [0.5, T Sc + 0.5];

p(t) otherwise.

We first look at the result of Simulation 8. As shown in Figure 8a, the (immediate)

short-term tax increase effectively mitigates shortages of the good in the market.32 Even

30In this simulation, the market price is fixed at p(t) = p for all times.
31As pointed out in Nielsen Holdings PLC (2020), the growth of electronic commerce retail sales has been

changing consumer’s shopping behavior and efficiency of the supply chain, which played some roles in panic
buying during the COVID-19 pandemic. Further widespread use of electronic commerce could facilitate
flexible adjustments to the sales tax rate in the future.

32Of course, we confirm the policy is not very effective if the tax increase is small. See Figure A.1 in Online
Appendix A.2 for the simulation result with an immediate sales tax increase of 2%.
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(a) Simulation 8: Immediate Sales Tax. The price p(t) is raised by 5% for t ∈ [0, TSc ].
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(b) Simulation 9: Delayed Sales Tax. The price p(t) is raised by 5% for t ∈ [0.5, TSc + 0.5].

Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure 8: A Short-Term Sales Tax Increase
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though the tax increase is not so large compared with the magnitude of the increase in the

flow shopping cost, the immediate sales tax increase encourages consumers to do shopping

after the tax increase ends, thereby mitigating the market congestion during the preparation

phase. As a result, this policy is successful in enhancing the social welfare (SW = −10.6 in

Simulation 8, while SW = −130.8 in the benchmark).

In contrast, as can be seen from Figure 8b, if its implementation is delayed even a few

days, the short-term tax increase has a much more limited effect. In fact, with the delayed tax

increase as in Simulation 9, the availability R(t) declines to about 20% as in the benchmark

case. The sharp difference between the effects of immediate and delayed tax increases is

due to the intertemporal demand effect. In the case of the delayed tax increase, at t = 0,

consumers become aware that not only the shopping costs but also the (after-tax) price

will increase in the very near term. This further encourages consumers to shop early and

amplifies the stockpiling motive.

We therefore conclude that raising the sales tax is a double-edged sword. It is an effective

policy measure if the tax is raised immediately after news of the emergency comes out.

However, if it is delayed even a little, raising the sales tax has little effect on curbing hoarding;

on the contrary, it could exacerbate hoarding.

6.4.2 Governmental Distribution

The second policy option is government rationing of basic necessities. Concretely, we assume

that the government can purchase the good from the market at the market price p and

distribute it to consumers instantaneously. However, in the conduct of this policy, the

government cannot target specific consumers, for example, consumers who need the goods

urgently, since it can observe neither individual consumers’ stock level (each consumer’s k)

nor their behaviors (e.g., whether they are searching or not).33

33This sort of rationing policy has been implemented in Japan and Taiwan during the COVID-19 pandemic.
In Japan, the government distributed reusable cloth masks, dubbed the “Abenomask,” in April 2020. In Tai-
wan, the government began to distribute face masks by allowing each resident to purchase two masks in seven
days in February 2020 (see https://www.nhi.gov.tw/english/Content_List.aspx?n=022B9D97EF66C076
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In Simulation 10, we first consider a case in which the government distributes the good

to all consumers. Since fairness is an important policy concern, the government often wants

to accommodate the whole population, when it cannot observe specific consumers’ needs.

Simulation 10 (Governmental Distribution to All Consumers). The government distributes

one-half unit of the good to all consumers at t = 0: The initial condition is set to S(0) =

So − 1/2 and G(0, k) = Go(k − 1/2) for all k.

As shown in Figure 9a, the distribution policy considered in Simulation 10 effectively

mitigates the risk of the good becoming scarce. Specifically, the number of consumers who

attempt to shop upon the news becomes less than half the number that would be seen in

the absence of the government intervention. Hence, governmental distribution is helpful in

relaxing the market congestion and substantially enhances social welfare.

Next, we consider a different distribution rule. Indeed many real-world governments want

to fairly distribute scarce goods, but accommodating the entire population equally is often

costly and time-consuming in practice. Simulation 11 analyzes whether the government can

make the entire population better off by distributing to only a part of the population.

Simulation 11 (Governmental Distribution to One Half of Consumers). The government

distributes one unit of the good to one half of consumers at t = 0: the initial condition is

set to S(0) = So − 1/2 = 1/2 and G(0, k) = 1/2Go(k) + 1/2Go(k − 1) for all k.

Figure 9b displays the result of Simulation 11. Surprisingly, the economy’s dynamics in

Simulation 11 is very similar to those in Simulation 10, implying that distributing to half

the population performs as well as distributing to the entire population. This is because

the distribution policy is able to reduce excessive congestion in the market even when only

half of the consumers can receive the rationed good. The consumers who failed to receive

the rationed good are also better off because the policy indirectly reduces the shopping

cost. This result suggests that the government should not hesitate to support only “easy-

to-support people” in implementing the distribution policy. Even when the government can

for the detailed rationing procedure).
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(a) Simulation 10: The government distributes 1/2 unit to all the consumers at time 0: S(0) = 1/2
and G(0, k) = Go(k − 1/2) for all k.
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(b) Simulation 11: The government distributes one unit to 1/2 of consumers at time 0: S(0) = 1/2
and G(0, k) = 1/2Go(k) + 1/2Go(k − 1) for all k.

Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure 9: Governmental Distribution
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neither reach all the consumers nor observe consumers’ individual stock, the governmental

distribution would improve social welfare during times of disaster.

Remark 1. In Online Appendix A.2, we conduct an additional simulation regarding the gov-

ernmental distribution (Figure A.3). It indicates that even when the government distributes

one unit of the good to one-fourth of the consumers at time 0, such policy decreases the

searching consumers at t = 0 by about 14 percentage points (from 64% to 50%).

6.4.3 Quotas on Purchases

The third option is to impose a restriction on the quantity purchased. When faced with a

sudden increase in demand, stores often limit the number of items that can be purchased

by each shopper. In this section, we evaluate the performance of the purchase-quota policy,

assuming that such a quota is perfectly enforceable (we briefly discuss this issue later).

Here, we look at the case where the government imposes the following restriction:

Simulation 12 (Quota). Consumers are not allowed to purchase more than 4 units until

the restricted-movement phase ends; i.e., qi(t) ≤ 4 for t ≤ TLc = 5.

Under this restriction, consumers are allowed to purchase only up to four units of the

goods during the preparation and restricted-movement phases. Those who want to purchase

more must restart a shopping search again.

As shown in Figure 10, the purchase-quota policy effectively prevents panic buying.34

Although the measure of searching consumers increases at time 0, each consumer is not

allowed to stock up to the optimal level k̄(t) at a time. As a result, the shortages of the

goods do not become serious, and consumers rarely exhaust their individual stock.

Remark 2. It is arguable whether this form of a purchase-quota policy is enforceable in

practice. As of this writing, it is difficult for stores (and the government) to track who have

34Note that, in a stationary equilibrium, the minimum amount of the good a consumer purchases at a
time is (roughly) 4 units: qo(k) = k̄o − k ≥ k̄o − k∗o ≈ 4. Hence, even when a consumer expects that the
good will be always available (R(t) = 1 for all t), a consumer would purchase at least 4 units. Accordingly,
the purchase-quota qi(t) ≤ 4 is almost always binding.
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Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure 10: Simulation 12 (Quota). The quota qi(t) ≤ 4 is imposed until the end of the
restricted-movement phase (for t ∈ [0, TLc ] = [0, 5]).

already made purchases. If stores cannot track this information, consumers can easily violate

the quota policy.35

7 Concluding Remarks

This paper has studied the fundamental causes and the welfare costs of the panic buying of

storable consumer goods that have repeatedly been observed during times of disaster. We

developed a dynamic model of the market for the storable daily necessities, in which a mass

of consumers adjusts the stock of their daily necessities by infrequent and lumpy purchases

in the presence of search frictions. We highlighted the following features of our model and

the implications derived from our simulation analyses:

35Nowadays, due to the growth of digital payments, many stores track their customers’ purchasing history
for their marketing strategies. Nevertheless, consumers can easily create multiple accounts (e.g., store cards)
and violate the quota in practice.
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1. Panic buying could occur even when (i) all consumers are fully rational and there is no

misinformation, and (ii) neither consumption nor production of the goods is affected

by the disaster. A shock to the flow shopping cost influences the optimal strategies of

selfish consumers, and it could cause a surge in hoarding-driven demand.

2. The welfare costs of panic buying could be large. When panic buying causes a shortage

of the goods, consumers are forced to (i) bear a higher holding cost, (ii) engage in longer

costly shopping searches, and (iii) face a higher risk of exhausting all stock.

3. The severity of panic buying is nonlinear in the shock size. Due to strategic comple-

mentarity, once the shock size exceeds a certain value, shortages become drastically

severe.

4. Anticipated shopping-costs shocks produce more severe panic buying than unantici-

pated ones because consumers stockpile the goods before the shopping cost increases.

Hence, an announcement immediately triggers a shortage, and it tends to persist be-

cause of strategic complementarity. The government can avoid this by either (i) imple-

menting immediately movement restrictions, or (ii) announcing them well in advance.

5. A temporary sales tax increase discourages consumers from stockpiling and prevents

panic buying if it is implemented before panic buying takes place. Governmental dis-

tribution of consumer goods can be an effective policy option to lighten the congestion

of the market. It is effective even when (i) the government cannot observe consumers’

existing inventory, and (ii) the government cannot reach all consumers.
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Gagnon, Etienne and David López-Salido. 2019. “Small Price Responses to Large Demand

Shocks.” Journal of the European Economic Association 18 (2):792–828.

Giberson, Michael. 2011. “The Problem with Price Gouging Laws.” Regulation 34:48.

Grossman, Sanford and Guy Laroque. 1990. “Asset Pricing and Optimal Portfolio Choice

in the Presence of Illiquid Durable Consumption Goods.” Econometrica 58 (1):25–51.

Hansman, Christopher, Harrison Hong, Aureo de Paula, and Vishal Singh. 2020. “A Sticky-

Price View of Hoarding.” NBER Working Paper.

Hendel, Igal and Aviv Nevo. 2006. “Measuring the Implications of Sales and Consumer

Inventory Behavior.” Econometrica 74 (6):1637–1673.

———. 2013. “Intertemporal Price Discrimination in Storable Goods Markets.” American

Economic Review 103 (7):2722–51.

Kahneman, Daniel, Jack L. Knetsch, and Richard Thaler. 1986. “Fairness as a Constraint

on Profit Seeking: Entitlements in the Market.” American Economic Review :728–741.

Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante. 2018. “Monetary Policy According

to HANK.” American Economic Review 108 (3):697–743.

Keane, Michael and Timothy Neal. 2021. “Consumer Panic in the COVID-19 Pandemic.”

Journal of econometrics 220 (1):86–105.

Klenow, Peter J. and Benjamin A. Malin. 2010. “Microeconomic Evidence on Price-Setting.”

In Handbook of Monetary Economics, vol. 3. Elsevier, 231–284.

McKay, Alisdair and Johannes F Wieland. 2019. “Lumpy Durable Consumption Demand

and the Limited Ammunition of Monetary Policy.” NBER Working Paper.

Nakamura, Emi and Jón Steinsson. 2008. “Five Facts about Prices: A Reevaluation of Menu

Cost Models.” The Quarterly Journal of Economics 123 (4):1415–1464.

49



Nakamura, Emi and Dawit Zerom. 2010. “Accounting for Incomplete Pass-Through.” The

Review of Economic Studies 77 (3):1192–1230.

Petrosky-Nadeau, Nicolas, Etienne Wasmer, and Shutian Zeng. 2016. “Shopping Time.”

Economics Letters 143:52–60.

Prentice, Catherine, Jinyan Chen, and Bela Stantic. 2020. “Timed Intervention in COVID-19

and Panic Buying.” Journal of Retailing and Consumer Services 57:102203.

Rotemberg, Julio J. 2005. “Customer Anger at Price Increases, Changes in the Frequency of

Price Adjustment and Monetary Policy.” Journal of Monetary Economics 52 (4):829–852.

Sterman, John D. and Gokhan Dogan. 2015. ““I’m not Hoarding, I’m Just Stocking up Before

the Hoarders Get Here.”: Behavioral Causes of Phantom Ordering in Supply Chains.”

Journal of Operations Management 39:6–22.

Stokey, Nancy L. 2009. The Economics of Inaction: Stochastic Control Models with Fixed

Costs. Princeton University Press.

Su, Xuanming. 2010. “Intertemporal Pricing and Consumer Stockpiling.” Operations Re-

search 58 (4-part-2):1133–1147.

News Articles

Alvarez, Lizette. 2017. “In Florida, Searching for Gas and Water, and Watching

Irma.” The New York Times, https://www.nytimes.com/2017/09/07/us/florida-

irma-hurricane-supplies.html, accessed on 08/25/2020.

Burney, Ellen and Nina Jones. 2005. “No ‘Panic Buying’ after Attacks.” Super-

market News, https://www.supermarketnews.com/archive/no-panic-buying-after-

attacks, accessed on 10/22/2020.

50

https://www.nytimes.com/2017/09/07/us/florida-irma-hurricane-supplies.html
https://www.nytimes.com/2017/09/07/us/florida-irma-hurricane-supplies.html
https://www.supermarketnews.com/archive/no-panic-buying-after-attacks
https://www.supermarketnews.com/archive/no-panic-buying-after-attacks


Eguchi, Eisuke, Kazutaka Kamizawa, and Akiko Okazaki. 2020. “Critics Doubt Abe’s Face

Mask Giveaway Will Solve Shortages.” The Asahi Shimbun, http://www.asahi.com/

ajw/articles/13266170, accessed on 10/22/2020.

Lauder, Simon. 2011. “Christchurch Residents Rush Supermarkets.” ABC

News, https://www.abc.net.au/news/2011-02-25/christchurch-residents-rush-

supermarkets/1958246, accessed on 08/25/2020.

Malcolm, Andrew M. 1974. “The ‘Shortage’ of Bathroom Tissue: Classic Study in Ru-

mor.” The New York Times, https://www.nytimes.com/1974/02/03/archives/the-

shortage-of-bathroom-tissue-a-classic-study-in-rumor-shortage.html, ac-

cessed on 08/25/2020.

Nielsen Holdings PLC. 2020. “Nielsen Investigation: “Pandemic Pantries” Pressure

Supply Chain Amid COVID-19 Fears.” https://www.nielsen.com/us/en/insights/

article/2020/nielsen-investigation-pandemic-pantries-pressure-supply-

chain-amidst-covid-19-fears/, accessed on 08/25/2020.

Ozasa, Shunichi and Chiaki Watanabe. 2011. “Tokyo Rice Store Urges Calm as Nuclear Risk

Sparks Panic Buying.” Bloomberg, https://www.bloomberg.com/news/articles/2011-

03-15/japanese-consumers-empty-supermarket-shelves-as-soon-as-supplies-

arrive, accessed on 08/25/2020.

Wallace, Alicia. 2020. “Walmart CEO Says We’re in the ’Hair Color’ Phase of Panic Buy-

ing.” CNN, https://www.cnn.com/2020/04/11/business/panic-buying-walmart-

hair-color-coronavirus/index.html, accessed on 08/25/2020.

51

http://www.asahi.com/ajw/articles/13266170
http://www.asahi.com/ajw/articles/13266170
https://www.abc.net.au/news/2011-02-25/christchurch-residents-rush-supermarkets/1958246
https://www.abc.net.au/news/2011-02-25/christchurch-residents-rush-supermarkets/1958246
https://www.nytimes.com/1974/02/03/archives/the-shortage-of-bathroom-tissue-a-classic-study-in-rumor-shortage.html
https://www.nytimes.com/1974/02/03/archives/the-shortage-of-bathroom-tissue-a-classic-study-in-rumor-shortage.html
https://www.nielsen.com/us/en/insights/article/2020/nielsen-investigation-pandemic-pantries-pressure-supply-chain-amidst-covid-19-fears/
https://www.nielsen.com/us/en/insights/article/2020/nielsen-investigation-pandemic-pantries-pressure-supply-chain-amidst-covid-19-fears/
https://www.nielsen.com/us/en/insights/article/2020/nielsen-investigation-pandemic-pantries-pressure-supply-chain-amidst-covid-19-fears/
https://www.bloomberg.com/news/articles/2011-03-15/japanese-consumers-empty-supermarket-shelves-as-soon-as-supplies-arrive
https://www.bloomberg.com/news/articles/2011-03-15/japanese-consumers-empty-supermarket-shelves-as-soon-as-supplies-arrive
https://www.bloomberg.com/news/articles/2011-03-15/japanese-consumers-empty-supermarket-shelves-as-soon-as-supplies-arrive
https://www.cnn.com/2020/04/11/business/panic-buying-walmart-hair-color-coronavirus/index.html
https://www.cnn.com/2020/04/11/business/panic-buying-walmart-hair-color-coronavirus/index.html


Appendices

APPENDIX A Supplemental Figures

A.1 Figures for Section 1

Figure A.1: Prices of Paper Products

CPI: Household paper products in U.S. city average
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PPI: Sanitary paper products, including stock
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Note: The top chart displays “Household paper products in US city average, all urban consumers (Not
seasonally adjusted, Dec 1997=100).” The bottom chart displays “the producer price index for sanitary
paper products, including stock (Not Seasonally Adjusted, Index Dec 1999=100).” Both series are
collected by the US Bureau of Labor Statistics. Shaded areas correspond to NBER recessions.

A.2 Additional Simulation Results
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Figure A.1: 2% Tax on Purchase for t ∈ [0, 1].
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Figure A.2: 5% Tax on Purchase for t ∈ [1, 2].
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Figure A.3: The Governmental Distribution of One Unit of the Goods to One Fourth of
Consumers: S(0) = 3/4 and G(0, k) = G(k − 1/4) for all k.
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Online Appendix (Not for Publication)

A Proof of Proposition 1

Proof. We prove the proposition in five steps.

Step 1. We first prove 0 ∈ A and

α
(
V A(0)− V ∗(0)

)
− c > 0 (A.1)

by contradiction. Suppose 0 /∈ A, we must have

V (0) = −a
r

= V N(0) > V ∗(0), (A.2)

where

V N(k) :=

∫ ∞
0

e−rsh (max{k − s, 0}) ds =
1

r

[
1− (1 + a)e−rk − b̄

[
e−rk

(
1

r
+ k

)
− 1

r

]]
.

By definition of V ∗,

V ∗(0) =− a+ c

r
+ α

V A(0)− V ∗(0)

r

>− a+ c

r
+ α

supq≥0 V N(q)− pq − V (0)

r

=− a+ c

r
+ α

supq≥0 V N(q)− pq + a/r

r
,

where the second line used the fact V A(k) = supq≥0 V (k+ q)− pq ≥ supq≥0 V N(k+ q)− pq

and the third line used V N(0) = −a/r. Then, using (A.2), we have

−a
r
> −a+ c

r
+ α

supq≥0 V N(q)− pq + a/r

r
,
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or

c > α

[
sup
q≥0

V N(k + q)− pq + a/r

]
.

This clearly contradicts (11). Then, we must have 0 ∈ A, which implies

V (0) = V ∗(0) = −a+ c

r
+ α

V A(0)− V ∗(0)

r
> −a

r
.

This immediately implies (A.1).

Step 2. We next prove [0, ε] ∈ A for sufficiently small ε > 0 by contradiction. Suppose that

A = {0}, that is V ∗o (k) < Vo(k) for all k > 0.

By construction of Vo and V ∗o , we have Vo(ε) = max{Ṽo(ε), V ∗o (ε)}, where

Ṽo(ε) = h(ε)dt+ (1− rdt)Vo(ε− dt) (A.3)

and

V ∗o (ε) =
[
h(ε)− c+ αV A(ε)

]
dt+ (1− (α + r)dt)V ∗o (ε− dt) (A.4)

for any ε > 0. Take ε = dt > 0. Then, taking difference (A.3) from (A.4), we have

V ∗o (ε)− Ṽo(ε) =
[
α
(
V A(ε)− V ∗o (0)

)
− c
]
ε. (A.5)

Since

V A(ε) = sup
q≥0

Vo(ε+ q)− pq = sup
q′≥ε

Vo(q
′)− p(q′ − ε) =

(
sup
q′≥ε

Vo(q
′)− pq′

)
+ pε,

we have, for a sufficiently small ε,

V A(ε) = V A(0) + pε. (A.6)
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Substituting (A.6) into (A.5), we have

V ∗o (ε)− Ṽo(ε)
ε

= α
(
V A(0)− V ∗(0)

)
− c+ pε.

Rearranging the terms yields

α
(
V A(0)− V ∗(0)

)
− c = − Ṽo(ε)− V

∗
o (ε)

ε
− pε < 0. (A.7)

where the last inequality comes from the assumption Vo(ε) = Ṽo(ε) > V ∗o (ε). Here, (A.7)

contradicts to (A.1).

Step 3. Using the same arguments as Step 2, we can show that if [0, k̂] ∈ A such that

α
(
V A(k̂)− V ∗o (k̂)

)
−c > 0, then [0, k̂+ε′] ∈ A for a small ε′ > 0. Then, continuity of V ∗o and

the instantaneous payoff function h(k) show that [0, k∗] ∈ A with α
(
V A(k∗)− V ∗o (k∗)

)
= c.

Step 4. We show that the interval A is connected. That is, A = [0, k∗]. This is almost

obvious. Because h(k) is strictly decreasing for k ≥ k∗, there is no reason to increase k at

the cost of shopping search.

Step 5. Finally, given that optimal policy, we derive V and V ∗ satisfying:

Vo(k) = 1{k≥k∗}

[∫ k−k∗

0

e−rs
′
h(k − s′)ds′ + e−r(k−k

∗)V ∗o (k∗)

]
+ 1{k<k∗}V

∗
o (k), (A.8)

and

V ∗o (k) =

∫ ∞
0

e−(α+r)s′
[
h(max{k − s′, 0}) + αV A(max{k − s′, 0})− c

]
ds′,

where

V A(k) = max
q≥0

Vo(k + q)− pq.

It is, therefore, confirmed that

rVo(k) = 1{k≥k∗}

[
h(k)− ∂Vo(k)

∂k
x(k)

]
+ 1{k<k∗}V

∗
o (k) (A.9)
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and

rV ∗(k) = h(k)− c− ∂V ∗(k)

∂k
x(k) + α

[
V A(k)− V ∗(k)

]
. (A.10)

Lemma 1. Vo(k) and V ∗o (k) are, respectively, expressed as follows:

Vo(k) = 1{k≥k∗}

[
1

r
e−r(k−k

∗)

(
b(k∗)− b̄

r
+ rV ∗o (k∗)

)
+

1

r

(
b̄

r
− b(k)

)]
+ 1{k<k∗}V

∗
o (k),

(A.11)

and

V ∗o (k) = αΛ(k) +
1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b(k)− e−(α+r)ka− c

]
, (A.12)

where

Λ(k) :=

∫ k

0

e−(α+r)(k−s)V A(s)ds+ e−(α+r)kV
A(0)

α + r
.

They satisfy the value matching condition

Vo(k
∗) = V ∗o (k∗) = lim

k↑k∗
V ∗o (k) = lim

k↑k∗
Vo(k), (A.13)

and the smooth pasting condition

V ′o(k
∗) = V ∗

′

o (k∗) = lim
k↑k∗

V ∗
′

o (k) = lim
k↑k∗

V
′

o (k). (A.14)

Proof of Lemma 1. First, we derive (A.11). The first term of the right-hand side of (A.8) is

∫ k−k∗

0

e−rs
′
h(k − s′)ds′ + e−r(k−k

∗)V ∗o (k∗) =−
∫ k∗

k

e−r(k−s)h(s)ds+ e−r(k−k
∗)V ∗o (k∗)

=

∫ k∗

k

e−r(k−s)b(s)ds+ e−r(k−k
∗)V ∗o (k∗).
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Then, use b(k) = b̄k and then apply integration by part to obtain

∫ k∗

k

e−r(k−s)b(s)ds =b̄

∫ k∗

k

e−r(k−s)sds

=b̄

[
1

r

[
e−r(k−s)s

]k∗
k
− 1

r

∫ k∗

k

e−r(k−s)ds

]
=
b̄

r

[
e−r(k−s)

(
s− 1

r

)]k∗
k

=
1

r

[
e−r(k−k

∗)

(
b(k∗)− b̄

r

)
+
b̄

r
− b(k)

]
.

Then, we derive (A.13) and (A.14). Given (A.8), it is immediate to derive the value

matching condition (A.13). Then, (A.10) and the fact α
(
V A(k∗)− V ∗o (k∗)

)
= c implies

rV ∗(k∗) = −b(k∗)− V ∗′(k∗). (A.15)

Then, the value matching condition and (A.9) yield the smooth pasting condition (A.14).

Finally, we derive (A.12).

V ∗(k) =

∫ ∞
0

e−(α+r)s′
[
h(max{k − s′, 0}) + αV A((max{k − s′, 0})− c

]
ds′

=

∫ k

0

e−(α+r)(k−s) [h(s) + αV A(s)
]
ds+

1

α + r

[
e−(α+r)k

(
h(0) + αV A(0)

)
− c
]

= αΛ(k) +
1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b(k)

]
− 1

α + r

(
e−(α+r)ka+ c

)
= αΛ(k) +

1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b(k)− e−(α+r)ka− c

]
,

where

Λ(k) =

∫ k

0

e−(α+r)(k−s)V A(s)ds+ e−(α+r)kV
A(0)

α + r
.
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Note that Lemma 1 implies that, for k ≥ k∗,

V
′

o (k) = −e−r(k−k
∗)

[
b(k∗)− b̄

r
+ rV ∗o (k∗)

]
− b̄

r
,

and

V
′′

o (k) =re−r(k−k
∗)

[
b(k∗)− b̄

r
+ rV ∗(k∗)

]
=− re−r(k−k∗)

[
b̄

r
+ V ∗

′

o (k∗)

]
,

where the second line used (A.15) and (A.14).

Here, we postulate V ∗
′

o (k∗) > 0 and therefore V
′′
o (k) < 0 for k ≥ k∗, implying that Vo(k)

is strictly concave for k ≥ k∗. Under this, V A(0) = maxq≥0 Vo(q)−pq has a unique solution.

We denote the solution by k̄, which must be (i) k̄ = k∗ if V ′o(k
∗) ≤ p or (ii) k̄ > k∗ if

V ′o(k
∗) > p. But it is clear that the case (i) contradicts to the fact that k∗ ∈ A. Hence, it

must be true that V ′o(k
∗) > p. So, the case (ii) must be held, and therefore k̄ solves

V ′o(k̄) = −e−r(k̄−k
∗)

(
b(k∗)− b̄

r
+ rV ∗(k∗)

)
− b̄

r
= p,

or

k̄ = k∗ − 1

r
log

(
− b̄/r + p

b(k∗)− b̄/r + rV ∗o (k∗)

)
= k∗ +

1

r
log

(
1 +

V ′o(k
∗)− p

b̄/r + p

)
︸ ︷︷ ︸

>1

.

As a consequence, (when postulating V ∗
′

o (k∗) > 0), we must have

V A(k) = max
q≥0

Vo(k + q)− pq =


Vo(k̄)− p(k̄ − k), for k ∈ [0, k̄],

Vo(k), for k ∈ (k̄,∞).

(A.16)
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Furthermore, use (A.9) to derive the following

Vo(k̄) = −b(k̄) + V ′o(k̄)

r
= −b(k̄) + p

r
.

Plugging this into (A.16) yields

V A(k) =


−p+ b(k̄)

r
− p(k̄ − k) for k ∈ [0, k̄],

1

r

[
e−r(k−k

∗)

(
b(k∗)− b̄

r
+ rV ∗(k∗)

)
+

(
b̄

r
− b(k)

)]
for k ∈ (k̄,∞).

Finally, we verify that our postulation was true. Using (A.12), we have

V ∗
′
(k) = αΛ′(k)−

(
1− e−(α+r)k

) b̄

α + r
+ e−(α+r)ka.

We then show that, for k ∈ [0, k̄]

Λ′(k) = −(α + r)Λ(k) + V A(k) =
(
1− e−(α+r)k

) p

α + r
.

since

Λ′(k) = −(α + r)

[∫ k

0

e−(α+r)(k−s) (V A(0) + ps
)
ds+ e−(α+r)kV

A(0)

α + r

]
+ (V A(0) + pk)

= −
(
1− e−(α+r)k

)
V A(0)− e−(α+r)kV A(0) + (V A(0) + pk)− p(α + r)

∫ k

0

e−(α+r)(k−s)sds

= pk − pk +
(
1− e−(α+r)k

) p

α + r

for k ∈ [0, k̄]. Hence, we have

V ∗
′
(k) =

(
1− e−(α+r)k

) αp− b̄
α + r

+ e−(α+r)ka.
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for k < k̄. Assumption 3 ensures αp > b̄ and thus V ∗
′
(k) > 0 for all k < k̄. Since k∗ < k̄, we

have shown V ∗
′
(k∗) > 0.
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B Algorithm description

We define a differential operator (or an infinitesimal generator of the process) K as

(K V )(t, k) = −∂kV (t, k)x(k) + ∂tV (t, k).

Then, the value function V (t, k) can be written as a viscosity of the solution of the Hamilton-

Jacobi-Bellman variational inequality (HJBVI, henceforth):

min {rV (t, k)− h(k)− (K V )(t, k), V ∗(t, k)} = 0, (B.1)

where V ∗(t, k) is the function that satisfies the HJB equation:

(r + αR(t))V ∗(t, k) = h(k)− c(t) + (K V ∗)(t, k) + αR(t)V A(t, k).

Here, solving the HJB variational inequality is equivalent to finding the function V (t, k) that

satisfies complementary slackness:

V (t, k) ≥ V ∗(t, k) if rV (t, k) = h(k) + (K V )(t, k)

V (t, k) = V ∗(t, k) if rV (t, k) ≥ h(k) + (K V )(t, k)

.

We will find an approximated solutions of (B.1) in a discretized space. We begin with

the description of our notations. Set an equidistant grid over the consumer’s stock level,

k1, k2, . . . kL with ∆k = k` − k`−1 for all ` = 2, . . . , L. Below, we use the bold letters to

denote vectors, such as h = [h(k1), . . . , h(kL)]′, v(t) = [V (t, k1), . . . , V (t, kL)]′, and v∗(t) =

[V ∗(t, k1), . . . , V ∗(t, kL)]′. We use the subscript ` to denote the `-th element of a vector, for

example u` and v`(t) denote the `-th element of u and v(t), respectively.

We discretize the differential operator K . Recall that an operator is the infinite-

dimensional analogue of a matrix, so we approximate the operator by a matrix K. To this
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end, we approximate the partial derivative based on the following finite difference scheme:

∂kV (t, k`) =
V (t, k`)− V (t, k`−1)

∆k

.

Using the above scheme along with the boundary condition, we can write

−∂kV (t, k`)x(k`) =


0, ` = 1

−V (t, k`)− V (t, k`−1)

∆k

µ = v`−1(t)ω+ + v`(t)ω−, ` = 2, . . . , L

where ω+ = µ/∆k and ω− = −µ/∆k. Then, we can build a L × L sparse matrix K such

that

Kv(t) = [0, v1(t)ω+ + v2(t)ω−, . . . , vL−1(t)ω+ + vL(t)ω−]′ ,

that is

K =



0 0 0 · · · · · · · · · 0

ω+ ω− 0 0 · · · · · · 0

0 ω+ ω− 0 0 · · · 0

...
. . . . . . . . . . . . . . .

...

0 · · · · · · 0 ω+ ω− 0

0 · · · · · · · · · 0 ω+ ω−


. (B.2)

Then, the approximation of (B.1) in the discretized space is given by

min

{
rv(t)− h−Kv(t)− v(t+ dt)− v(t)

dt
,v(t)− v∗(t)

}
= 0,

In the similar way, we can find the expression for v∗(t) in the discretized space as follows:

(α + rR(t))v∗(t) = h− c(t)1L + Kv∗(t) +

(
v∗(t+ dt)− v∗(t)

dt

)
+ αR(t)vA(t). (B.3)

where vA(t) is the approximation of V A(t, k) in the discretized space.
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For the later use, we define a L×L sparse matrix M (t) that captures the rate of transition

of the consumer’s stock associated with the market activity.36 The (`, n) elements are given

by

M `,n(t) =


−αR(t), for n = ` if k` ∈ A(t)

αR(t), for n = k̄(t) if k` ∈ A(t)

0, otherwise

The sum of each row equals to zero. Furthermore, we define a L×L diagonal matrix D all of

whose on-diagonal elements are −θ, which captures the rate of transition of the consumer’s

stock associated with exit.

We turn to the time evolution of the cross-sectional distribution of the stock level. We

denote g(t) = [g(t, k1), . . . , g(t, kL)]′ and gnew = [gnew(k1), . . . , gnew(kL)]′. Since the KF

operator is the adjoint operator of the HJB operator, in the discretized space, the KF

equation (8) can be written as

ġ(t) =
(
KT + M(t)T + DT

)
g(t) + θgnew.

where ġ(t) = [∂g(t, k1)/∂t, . . . , ∂g(t, kL)/∂t]′ and AT , M (t)T , and DT are the transpose of

the intensity matrices A, M(t), and D, respectively.

B.1 Stationary distribution

1. Set a concave function v0 as an initial guess for the value function. Here, we use v0

such that rv0 = h + Kv0.

2. Given vn, find vn+1 by solving

min

{
vn+1 − vn

∆
+ rvn+1 − h−Kvn+1,vn+1 − v∗(vn)

}
= 0, (B.4)

36The matrix K, which is given by (B.2), can be interpreted as the rate of transition of the consumer’s
stock associated with consumption.
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where

v∗(vn) = Ba
−1
(
h + αvA(vn)

)
with Ba = (α + r)IL −K.

2-1. Define matrix B as

B =

(
r +

1

∆

)
IL −K.

Then, rewrite (B.4) into

min

{
Bvn+1 − 1

∆
vn − h,vn+1 − v∗ (vn)

}
= 0. (B.5)

Now, find that that solving (B.5) is equivalent to solving the following problem:

(
vn+1 − v∗(vn)

)′(
Bvn+1 − 1

∆
vn − h

)
= 0

vn+1 − v∗(vn) ≥ 0

Bvn+1 − 1

∆
vn − h ≥ 0

(B.6)

2-2. Define

zn+1 = vn+1 − v∗(vn) and yn = B (v∗(vn)− c1)− vn/∆− (u− h) .

Then, (B.6) is reduced to the following Linear Complementarity Problem (LCP):

(zn+1)′(Bzn+1 + yn) = 0

zn+1 ≥ 0

Bzn+1 + yn ≥ 0

Then, given vn (equivalently yn), the above problem solves zn+1 and therefore

vn+1.
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3. Repeat the step 2 until vn+1 is sufficiently close to vn.

4. Find g

4-1. Set M . The (`, n) elements are given by

M `,n =


−α, for n = ` if k` ∈ A

α, for n = k̄ if k` ∈ A

0, otherwise

4-2. Find g such that

0 =
(
KT + MT + DT

)
g + θgnew,

or

g = −
(
KT + MT + DT

)−1
θgnew.

B.2 Transitional dynamics

Here, we describe the algorithm to find the transitional dynamics over a time period T =

{t0, . . . , tτ , . . . , tT} for τ = 0, . . . , T with a large integer T . We take equi-distance grid points

for time with ∆t = ∆k (i.e., ∆t = tτ−tτ−1 for all τ = 1, . . . , T ). Below, let v, v∗ and g denote

the value functions and the density function for the consumer in the stationary equilibrium

(in the discretized space), respectively. We use the following notation: x(tτ ) = xτ .

1. Set vT = v, v∗T = v∗, g0 = g, and S0 = So > 0.

2. Set initial guess {R̃τ}Tτ=0 for {R(tτ )}Tτ=0
.

3. Given {R̃τ}Tτ=0
, find the paths {vτ}Tτ=0 and {M τ}Tτ=0 backward.

3-A. Set τ = T .
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3-B. Given vτ , find ṽτ−1 such that

rṽτ−1 = h + Kṽτ−1 +
vτ − ṽτ−1

∆t

.

3-C. Given v∗τ and ṽτ−1, find v∗τ−1 such that

(α + rR̃τ−1)v∗τ−1 = h− cτ−11L + Kv∗τ−1 +
v∗τ − v∗τ−1

∆t

+ αR̃τ−1v
A(ṽτ−1).

3-D. Find vτ−1 such that

vτ−1 = max{ṽτ−1,v
∗
τ−1}

that is, vτ−1 is the element-wise maximum of ṽτ−1 and v∗τ−1.

3-E. Set the transition intensity matrix M τ as in (B.3)

3-F. The optimal policy is denoted by k∗τ and k̄τ

3-G. Repeat until τ = 1

4. Given {M τ}Tτ=0, find the paths {gτ}Tτ=0 and {Rτ}Tτ=0 forward.

4-A. Set τ = 0

4-B. Given gτ and the optimal policy, find Dτ as follows:

Dτ = gTτ
[
1k∗ �

(
k̄τ − k

)]
where k = {k1, . . . , k`, . . . , kL}′, � represents the element-wise product of vectors,

and 1k∗ is a L× 1 vector whose the `-th element 1k∗(`) satisfies

1k∗(`) =


1 if k` ≤ k∗τ

0 otherwise
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4-C. Given gτ and Sτ , find Rτ using the following rule:

Rτ = min

{
Sτ + s ·∆t

Dτ

, 1

}
.

4-D. Given gτ , find gτ+1 using an implicit method:

gτ+1 − gτ
∆t

= (A + M τ + D)T gτ+1 + θgnew.

4-E. Given Rτ and Sτ , find Sτ+1 using the following rule:

Sτ+1 = Sτ + (s ·∆t −RτDτ ).

4-F. Repeat until τ = T − 1

5. Update the guess {R̃τ}Tτ=0
until {R̃τ}Tτ=0

and {Rτ}Tτ=0
become close enough, based on

the following rule:

R̃τ = λR̃τ + (1− λ)Rτ
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