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1. Introduction

There are a few assumptions in economics that have earned gold standard status. The

single-crossing property, also known as the Spence-Mirrlees condition, which is routinely

assumed in signaling (Spence, 1973) and screening (Mirrlees, 1971) models, is one of

them. In the context of the classic education signaling model of Spence (1973), for exam-

ple, the single-crossing property states that an indifference curve of a higher type (in the

space of education level and wages) crosses that of a lower type once and only once. This

assumption captures the idea that the marginal cost of education is relatively cheaper for

more able workers—as a result more able workers find it profitable to signal their abil-

ity through investing in education while less able workers do not choose to mimic—thus

making it possible to separate the two types by observing their education choices. Many

insights we learn from various analyses of signaling behavior, such as corporate financ-

ing decisions (Leland and Pyle, 1977), advertising (Milgrom and Roberts, 1986), or even

biological signals (Grafen, 1990), are rooted in this property.

While the single-crossing property has been widely accepted and used, economists do

not always think of it as an accurate reflection of reality; it is rather a convenient as-

sumption for analytical clarity and tractability. Although this property can be a good local

approximation for some range of signaling levels, Mailath (1987, p. 1355) notes that “in

many applications, it is difficult, if not impossible, to verify that the single crossing con-

dition is satisfied for all [signaling and reputation levels].” Moreover, as Hörner (2008)

remarks in an encyclopedic article on signaling and screening, “Little is known about equi-

libria when single-crossing fails, as may occur in applications.” There is no guarantee that

any insight gained from the class of models characterized by the single-crossing property

can be extended straightforwardly to a model with wider scope.

The possibility that the single-crossing property may fail to hold in some environments

has been acknowledged in the literature, and there are sporadic and independent attempts

to look into this situation in the analysis of signaling (Feltovich et al., 2002; Araujo et al.,

2007; Daley and Green, 2014; Bobtcheff and Levy, 2017; Chen et al., 2020; Frankel and

Kartik, 2019).1 Much of this literature considers either a small number of discrete types or

1 There are also some attempts to relax the single-crossing property in the analysis of screening. See

Smart (2000), Araujo and Moreira (2010) and Schottmüller (2015). Matthews and Moore (1987) introduce

double-crossing utility curves in a multi-dimensional screening problem, but their focus and formulation are

different from ours, which relies on double-crossing indifference curves.
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some specific payoff functions (or both). In this paper, we provide an analysis of a standard

signaling model with a continuum of types, except that the usual single-crossing property is

replaced by a double-crossing property—indifference curves of two types cross twice in the

relevant space. To the best of our knowledge, this is the first general analysis of signaling

under double-crossing preferences. The paper intends to make three contributions.

First, we show in Section 3 via examples that there are many situations of economic

interest that exhibit the double-crossing property. One factor which potentially breaks the

single-crossing property is that gains from signaling are typically not unbounded; beyond

some level the gains diminish as an agent invests more in signaling. Moreover, higher, more

productive, types may reach this point of diminishing returns at lower signaling levels than

do lower types. Thus, the benefit-cost ratio of signaling is greater initially for higher types

than for lower types, but the comparison is reversed past some signaling level, resulting

in the double-crossing property. We provide several examples to capture this principle

and show that the single-crossing property can be easily turned into the double-crossing

property with minor modifications of the underlying specification.

Second, we provide a characterization of equilibria in Section 4. We introduce Low

types Separate High types Pairwise-Pool (LSHPP) equilibrium, and show that any D1 equi-

librium under the double-crossing property is LSHPP. In such an equilibrium, there is a

threshold type above which two distinct types may pair up to choose the same signaling

action, or two distinct intervals of types pair up, with pairs that are farther apart choosing

lower actions than pairs that are closer to one another. Our notion of LSHPP is a general-

ized version of Low types Separate High types Pool (LSHP) introduced by Kartik (2009).

An important difference from Kartik’s (2009) model (and also from Bernheim (1994)) is

that we do not impose an exogenous bound on the signaling space. Instead, “pairwise-

pooling” is the result of endogenous constraints induced by the double-crossing property.

Finally, in Section 5, we provide an algorithm to find an LSHPP equilibrium and es-

tablish its existence by construction. Pairwise-pooling is related to a phenomenon known

as “counter-signaling,” where low and high types pool by refraining from costly signaling

while intermediate types separate from those types by signaling (Feltovich et al., 2002;

Araujo et al., 2007; Chung and Eso, 2013). When types are continuously distributed,

however, establishing a counter-signaling equilibrium is not straightforward, and our un-

derstanding of counter-signaling has been limited to specific contexts.2 Our equilibrium

2 Araujo et al. (2007) provide a form of counter-signaling with a continuum of types, but their analysis

relies on the assumption that an agent’s two-dimensional type can be identified up to a linear combination.
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construction generalizes the notion of counter-signaling to that of pairwise-pooling and en-

ables us to establish its existence under mild conditions, suggesting that counter-signaling

is not a pathological outcome that can occur only under a stringent set of circumstances.

2. Model

We consider a standard signaling model, except that the usual single-crossing property

is replaced by a double-crossing property, which we will define more precisely below. An

agent, characterized by his type θ ∈ [θ ,θ], chooses a publicly observable action (signaling

level) a ∈ R+. The type of an agent is his private information. The payoff to an agent is

u(a, t,θ ), where t is the market’s perception of his type, or his “reputation,” i.e., t = E[θ |
a]. We assume that the agent benefits from a higher reputation.

Assumption 1. u : R+ × [θ ,θ]2 → R is twice continuously differentiable, and is strictly
increasing in t.

In the subsequent analysis, we make heavy use of the marginal rate of substitution

between signaling action a and reputation t, defined as

m(a, t,θ ) := −
ua(a, t,θ )
ut(a, t,θ )

.

It measures the increase in reputation that is needed to compensate an increase in signaling

level. Loosely speaking, signaling is relatively cheap when the marginal rate of substitution

is low. If we let t = φ(a, u,θ ) represent the indifference curve for type θ at utility level

u in the (a, t)-space, then the marginal rate of substitution gives the slope of indifference

curves. Specifically, φa(a, u,θ ) = m(a,φ(a, u,θ ),θ ).

Preferences satisfy the single-crossing property if whenever a lower type θ ′′ is indif-

ferent between a higher signaling action a1 to a lower signaling action a2, a higher type

θ ′ strictly prefers the higher action a1. This is equivalent to requiring that m(a, t,θ ′) <
m(a, t,θ ′′) for any θ ′ > θ ′′ and any (a, t). It implies that an indifference curve of a higher

type crosses that of a lower type once and from above. We often refer to this case as the

“standard setup.”

We relax the standard setup to allow for “double-crossing preferences.” Our focus is

to study situations in which the single-crossing property holds when the signaling level is

low, but fails when the signaling level is high.
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Definition 1 (Double-crossing property). For any θ ′ > θ ′′, there exists a continuous function
D(·;θ ′,θ ′′) : [θ ,θ]→ R+ such that

(a) if a < a0 ≤ D(t0;θ ′,θ ′′), then

u(a, t,θ ′′)≤ u(a0, t0,θ ′′) =⇒ u(a, t,θ ′)< u(a0, t0,θ ′);

(b) if a > a0 ≥ D(t0;θ ′,θ ′′), then

u(a, t,θ ′′)≤ u(a0, t0,θ ′′) =⇒ u(a, t,θ ′)< u(a0, t0,θ ′).

The locus of points {(a, t) : a = D(t;θ ′,θ ′′)} partitions the (a, t)-space into two re-

gions. For signaling actions to the left of the “dividing line” D(·;θ ′,θ ′′), the standard

single-crossing property holds for types θ ′ and θ ′′. To the right of the dividing line, the

reverse single-crossing property holds: whenever the lower type θ ′′ is indifferent between a

higher action a1 and a lower action a2, the higher type θ ′ strictly prefers the lower action.

Note that the double-crossing property does not impose any specific restrictions on the

rankings between actions on opposite sides of the dividing line. It also does not require

D(t;θ ′,θ ′′) to be monotone in t.

Assumption 2. u(·) satisfies the double-crossing property.

For θ ′ > θ ′′, m(a, t,θ ′)−m(a, t,θ ′′) is negative in the standard sepup. Assumption 2,

on the other hand, implies that this difference is single-crossing from below, with crossing

point at a = D(t;θ ′,θ ′′). But the latter condition alone does not imply Assumption 2.

Suppose type θ ′′ is indifferent between (a1, t1) and (a2, t2). Parts (a) and (b) of Definition

1 together suggests that D(t2;θ ′,θ ′′)≤ a2 < a1 ≤ D(t1;θ ′,θ ′′) would lead to a contradic-

tion. To avoid this situation, if (a1, t1) is to the left of the dividing line D(·;θ ′,θ ′′), then

any combination (a2, t2) on the indifference curve of type θ ′′ passing through (a1, t1) with

a2 < a1 must remain on the left of the dividing line. Likewise, if (a2, t2) is to the right

of the dividing line D(·;θ ′,θ ′′), then any combination (a1, t1) on the indifference curve

passing through (a2, t2) with a1 > a2 must remain on the right of the dividing line.

Formally, suppose type θ ′′ attains utility level u0 at (a0, t0). We require that the dif-

ference in marginal rate of substitution between two types is single-crossing from below

along an indifference curve of one type (say, the lower type): for θ ′ > θ ′′,

m(a,φ(a, u0,θ ′′),θ ′)−m(a,φ(a, u0,θ ′′),θ ′′)

(

≤ 0 if a ≤ a0 ≤ D(t0;θ ′,θ ′′),

≥ 0 if a ≥ a0 ≥ D(t0;θ ′,θ ′′);
(1)
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Figure 1. Double-crossing property. The indifference curve of a higher type θ ′ crosses that of a lower

type θ ′′ from above to the left of the dividing line D(·;θ ′,θ ′′), and crosses it again from below to the

right of the dividing line. Along the dividing line, higher types have more convex indifference curves.

with strict inequality except when a = a0 = D(t0;θ ′,θ ′′). It is clear that Assumption 2 is

satisfied if and only if there exists D(·;θ ′,θ ′′) such that (1) holds; so (1) can be adopted

as an alternative definition of the double-crossing property.3

In Figure 1, we show the indifference curves of types θ ′′ and θ ′′ in the (a, t)-space. To

the left of the dividing line D(·;θ ′,θ ′′), the indifference curve of the higher type θ ′ must

cross φ(·, u0,θ ′′) from above. To the right, they must cross φ(·, u0,θ ′′) from below. At the

boundary, the indifference curves of the two types are tangent to each other, with the high

type having indifference curves that are “more convex.” Any indifference curve can cross

the dividing line D(·;θ ′,θ ′′) only once.4

Assumptions 1 and 2 are sufficient for an analysis of signaling under double-crossing

preferences when there are only two types. To allow for a general analysis with multiple

types, we need to make assumptions about how the dividing line D(·;θ ′,θ ′′) shifts with

respect to θ ′ and θ ′′.5

Assumption 3. For any t, D(t;θ ′,θ ′′) strictly decreases in θ ′ and in θ ′′.

3 For completeness, we provide a proof of this claim in Online Appendix C.
4 Otherwise, for a < a0, it is possible to have a0 ≤ D(t0;θ ′,θ ′′) and a > D(φ(a, u0,θ ′′);θ ′,θ ′′). This

would lead to a contradiction under condition (1).
5 With three types, for example, there would be three dividing lines (one for each pair of types) and six

possible rankings of these dividing lines for each value of t. Any analysis will become unmanageable without

further restrictions as the number of types increases.
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The dividing line D(·;θ ′,θ ′′) is defined for θ ′ > θ ′′. We will extend the domain of D
to allow for θ ′ ≥ θ ′′ by defining, for any t,

D(t;θ ,θ ) := lim
θ ′′→θ−

D(t;θ ,θ ′′) = lim
θ ′→θ+

D(t;θ ′,θ ).

Assumption 3 implies that D(t;θ ′,θ ′′) is monotone in θ ′′; so the limit is well defined.

Definition 2. (a, t) is in the SC-domain of type θ if it belongs to the set SC(θ ) := {(a, t) :

a < D(t;θ ,θ )}; and it is in the RSC-domain of type θ if it belongs to RSC(θ ) := {(a, t) :

a > D(t;θ ,θ )}.

Assumption 3 implies that for any θ ′ > θ ′′, SC(θ ′) ⊂ SC(θ ′′) and RSC(θ ′) ⊃ RSC(θ ′′).
When (a, t) is in the SC-domain of type θ , among any two types lower than θ , the higher

type has a smaller marginal rate of substitution at this point than the lower type. This

follows because a < D(t;θ ,θ ) < D(t;θ ′,θ ′′) for any θ ≥ θ ′ > θ ′′. When (a, t) is in the

RSC-domain of type θ , among any two types higher than θ , the higher type has a larger

marginal rate of substitution than the lower type. When (a, t) is on the boundary of the

SC-domain and RSC-domain of type θ , this type has a lower marginal rate of substitution

than any other type. In other words,

a = D(t;θ ,θ ) ⇐⇒ θ = argmin
θ ′

m(a, t,θ ′). (2)

Assumption 3 is not easy to interpret in terms of preferences. The following result is

useful for relating it to the marginal rate of substitution.

Lemma 1. Suppose preferences satisfy the double-crossing property. Then Assumption 3 holds
if and only if m(a, t,θ ) is strictly quasi-convex in θ .

Proof. Take any (a, t) such that a = D(t;θ ′,θ ′′). Suppose D(t;θ ′, ·) is decreasing. For θ1 ∈
(θ ′′,θ ′), a > D(t;θ ′,θ1) implies m(a, t,θ1)< m(a, t,θ ′). For θ2 < θ

′′, a < D(t;θ ′,θ2) im-

plies m(a, t,θ ′′) = m(a, t,θ ′) < m(a, t,θ2). If D(t; ·,θ ′′) is decreasing, then for θ3 > θ
′,

a > D(t;θ3,θ ′′) implies m(a, t,θ ′) = m(a, t,θ ′′) < m(a, t,θ3). Thus Assumption 3 im-

plies that m(a, t, ·) is quasi-convex. If a > D(t;θ ,θ ) > D(t;θ ′,θ ′′), then m(a, t,θ ′) >
m(a, t,θ ′′) for any θ ′ > θ ′′; so m(a, t, ·) is strictly increasing. If a < D(t;θ ,θ )< D(t;θ ′,θ ′′),
then m(a, t,θ ′) < m(a, t,θ ′′) for any θ ′ > θ ′′; so m(a, t, ·) is strictly decreasing. In the

latter two cases, monotone functions are quasi-convex.
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Conversely, suppose m(a, t,θ ) is quasi-convex. Take any (a, t) such that a = D(t;θ ′,θ ′′).
For θ1 ∈ (θ ′′,θ ′), m(a, t,θ1)< m(a, t,θ ′) implies a > D(t;θ ′,θ1). For θ2 < θ

′′, m(a, t,θ2)>
m(a, t,θ ′) implies a < D(t;θ ′,θ2). This shows that D(t;θ ′, ·) is decreasing. A similar ar-

gument establishes that D(t; ·,θ ′′) is decreasing.

Given this result, an alternative way to state Definition 2 is that (a, t) belongs to the

SC-domain of type θ if m(a, t, ·) is locally decreasing at θ , and it belongs to the RSC-

domain of type θ if m(a, t, ·) is locally increasing at θ . In the standard setup, marginal

rate of substitution strictly decreases in type, reflecting the assumption that higher types

have lower signaling costs. The double-crossing property with Assumption 3 is relevant

for situations in which the marginal costs of signaling are lowest for intermediate types.

Finally, the probability distribution over types is given by a continuous function F with

full support. Signaling models typically exhibit a plethora of equilibria, and we adopt

the D1 criterion (Cho and Kreps, 1987) to restrict off-equilibrium beliefs. Under the

D1 criterion, the standard setup predicts the least-cost separating equilibrium, which is

distribution-free. This is not the case for our model, where D1 equilibria often entail some

pooling. As a consequence, the distribution of types has a nontrivial impact on the equi-

librium allocation.

3. Examples

While our specification is a natural way to define double-crossing preferences, the assump-

tions we adopt do impose economically meaningful restrictions on preferences, which may

or may not be reasonable depending on the context of application. Specifically, Assump-

tion 2 implies that indifference curves of higher types are more convex than those of lower

types. In the standard setup, the relevant issue is which type has a higher marginal rate

of substitution. Under double-crossing preferences, the issue is of higher order: we need

to determine how the slope of marginal rates of substitution is related to agent type, for

which there appears to be no a priori obvious specification.

To better motivate the modeling choices we make and to demonstrate the relevance of

our analysis, we provide four examples of economic applications that give rise to double-

crossing preferences. We argue through these examples that, despite its pervasive use

in signaling models, the single-crossing property is not as innocuous as it is generally

believed, and there are many situations of economic interest that are better characterized

by the double-crossing property. In the process, we attempt to justify our assumptions
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by showing that higher types naturally have more convex indifference curves in many

economic settings, and by explaining the logic behind such preferences.

3.1. Signaling with news

Several works have pointed out that the single-crossing property fails in signaling models

with additional information sources such as news or “grades” (Feltovich et al., 2002; Araujo

et al., 2007; Daley and Green, 2014). For illustration, we use a very simple formulation of

additional information; the literature has developed more complicated models.

Consider an environment where there are two sources of information: a signaling ac-

tion and a test outcome. The test outcome is binary, either pass or fail, and the agent

passes the test with probability β0 + βθ (where β > 0). If the agent passes the test, he

will be promoted and earn λV . If he fails, he will be fired and his outside payoff depends

on his reputation. Let the outside payoff be λt < λV . The agent’s utility is:

u(a, t,θ ) = (β0 + βθ )λV + [1− (β0 + βθ )]λt −
�

γa
θ
+

a2

2

�

,

where the last term in parentheses represents the cost of signaling, and γ > 0 is a cost

parameter. The marginal rate of substitution is

m(a, t,θ ) =
γ+ aθ

λθ[1− (β0 + βθ )]
.

For θ ′ > θ ′′, m(a, t,θ ′)/m(a, t,θ ′′) increases in a. This shows that m(a, t,θ ′)−m(a, t,θ ′′)
is single-crossing from below. Since m(a, t,θ ) is independent of t, this suffices for Assump-

tion 2 to hold. Assumption 3 also holds because m(a, t,θ ) is quasi-convex in θ .6

In this class of models, the single-crossing property breaks down because higher types

have less incentive to engage in costly signaling, knowing that their type will be partially

revealed by exogenous news anyway. Because of this, the marginal gain from signaling is

not necessarily higher for higher types. As Feltovich et al. (2002) illustrate, this type of

model often leads to a phenomenon known as “counter-signaling,” in which higher types

refrain from costly signaling.7 We will later show that the possibility of counter-signaling

is a common feature of equilibrium under double-crossing preferences.

6 We provide details of the relevant calculations for the examples in this section in Online Appendix D.
7 Araujo et al. (2007) also show the possibility of counter-signaling, but the underlying logic is different.

In Araujo et al. (2007), the agent’s unknown attributes are two dimensional, but there is a public observable

interview result which reveals this information up to some linear combination. Frankel and Kartik (2019)

discuss how two-dimensional types may lead to failure of the single-crossing property. See also Ball (2020).
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3.2. Reputation enhances the chances of success

In many facets of life a person’s chances of success depend not only on his true ability, but

on other people’s perception of his ability as well. Take the case of a startup entrepreneur.

His reputation in the market affects the availability of initial funding and the capacity to

attract talents to work in his firm. These factors, together with his true entrepreneurial

ability, determine the performance of his business and its chances of reaching the next

milestone (such as developing a prototype product, or attracting the next round of funding)

over the course of the project. In this example signaling incentive comes from the fact that

reputation matters for improving performance.

Suppose the performance of a startup entrepreneur is θ + β t + ε, where β > 0 is a

weight that determines the importance of reputation relative to true ability. The term ε

summarizes the random factors that may affect performance, and its distribution is given

by G(·) with a corresponding log-concave density g(·). The startup business can reach the

next milestone if its performance exceeds some exogenous threshold K , and the value of

reaching the milestone is V . Let a represent the level of signaling activity he chooses to

establish his reputation. The payoff to the entrepreneur is

u(a, t,θ ) = V (1− G(K − θ − β t))−
�

γa
θ
+

a2

2

�

,

where γ > 0 is a signaling cost parameter. This gives

m(a, t,θ ) =
γ+ θa

θβV g(K − θ − β t)
.

One can verify that m(a, t,θ ) is quasi-convex in θ . Moreover, for θ ′ > θ ′′, if φ(·, u0,θ ′′) is

an indifference curve of type θ ′′ at some utility level u0, then the ratio,

m(a,φ(a, u0,θ ′′),θ ′)
m(a,φ(a, u0,θ ′′),θ ′′)

=
�

θ ′′(γ+ θ ′a)
θ ′(γ+ θ ′′a)

��

g(K − θ ′′ − βφ(a, u0,θ ′′))
g(K − θ ′ − βφ(a, u0,θ ′′))

�

,

strictly increases in a by log-concavity of g(·). Thus, condition (1) holds and the double-

crossing property is satisfied.

In this example, the payoff from signaling to build a reputation is bounded from above

by V . Moreover, log-concavity of g(·) implies that the density function is unimodal. This

means that a higher reputation does not significantly improve the chances of success for

very low types or very high types. The marginal increase in probability of reaching the
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target K is greatest for intermediate types, and they tend to have the greatest incentives

to invest in signaling.8

3.3. Risky experimentation

This example is adapted from our previous work (Chen et al., 2020), extended to incor-

porate a continuum of types. The key question is whether an agent with superior ability,

modeled here by a higher Poisson arrival rate of success, will signal his type by staying

with a risky project for a longer duration (because his expected reward from success is

higher), or he will signal by quitting early (because he learns more quickly that the risky

project is not promising). Bobtcheff and Levy (2017) explore related incentives.

Suppose that an agent engages in risky experimentation with a hidden state of nature.

If the state is good, success arrives stochastically with Poisson rate θ ; if the state is bad,

success never arrives. The prior probability that the state is good is π. Neither the agent

nor the market knows the state, but the arrival rate θ is the agent’s private information.

The model is an optimal stopping problem with reputation concerns. If the agent

achieves success at some random time, he receives a payoff of V . If he abandons the

project at time a, the outside-option payoff depends on his reputation at the time of termi-

nation, which we capture by R(a, t). Here we measure reputation t by the market’s interim

belief about the agent’s type, i.e., the belief derived from observation on the agent’s choice

of a and its consistency with the equilibrium strategies.9 For further details, we encourage

the reader to refer to Chen et al. (2020).

The utility function of type θ can be written as

u(a, t,θ ) =

∫ a

0

e−ρτπg(a;θ )V da+ e−ρa(1−πG(a;θ ))R(a, t),

where ρ is the discount rate, and G(·;θ ) and g(·;θ ) represent the exponential distribution

and density with rate θ . It follows from this that

m(a, t,θ ) = −
g̃(a;θ )[V − R(a, t)]−ρR(a, t) + Ra(a, t)

Rt(a, t)
,

8 In different contexts, this non-monotonicity of the effect of investment to improve the chances of success

has been exploited in models of hiring standards (Coate and Loury, 1993) and contest selection (Morgan et

al., 2018).
9 In this setting, the equilibrium reputation depends on: (1) inference based on the agent’s choice and

its consistency with the equilibrium strategies; and (2) observation about the timing of success. The interim

belief t only captures (1) but not (2), i.e., the fact that the agent abandons the project before success arrives.
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where g̃(a;θ ) is the unconditional hazard rate of success, which is given by

g̃(a;θ ) =
πg(a;θ )

1−π+πG(a;θ )
=
πθ e−θa

1−πe−θa
.

The marginal rate of substitution depends on agent type only through the hazard rate

g̃(·;θ ). For θ ′ > θ ′′, the difference, m(a, t,θ ′)−m(a, t,θ ′′), has the same sign as g̃(a,θ ′′)−
g̃(a,θ ′), and is single-crossing from below in a. Note also that g̃(a;θ ) is quasi-concave in

θ , meaning that m(a, t,θ ) is quasi-convex in θ . Therefore, Assumptions 2 and 3 hold.

The reason why the double-crossing property emerges in this model is intuitive. Higher

types are more likely to achieve success if the state is good. This implies that they have

more incentive to persist with the risky project compared to lower types at early stages,

when the difference in their beliefs about the state is relatively small. As the game pro-

gresses, higher types become pessimistic more quickly than lower types do, because they

learn faster that their project is not promising. Past some point, therefore, they become

more reluctant to persist with the project. This structure suggests that signaling by per-

sisting with the risky project is relatively more attractive for higher types than for lower

types when a is small, but the comparison flips when a is large.

3.4. Productive signaling

Many signaling models assume away any positive benefit of signaling activity in order

to isolate its role in conveying hidden information. While this assumption may appear

innocuous, once we admit the possibility that signals can be directly productive, details

of the model specification can have substantial impact and yield qualitatively different

predictions for signaling outcomes.

Assume that education is directly productive in addition to serving as a signal about

private information. Specifically, let s = aθ represent an agent’s skill, which depend both

on his natural ability θ and on the level of education a. The labor-market benefit from

having skill s and reputation t is βs+ t, and the cost of acquiring skill through education is

C(a,θ ) = γ0a+ γ(aθ )2. This cost function is unconventional because Caθ > 0, indicating

that high-ability agents have higher marginal cost of investing in education—say, due to

opportunity cost reasons. However, we may also express the cost of acquiring skill as a

function of the target skill level, and write C̃(s,θ ) = γ0s/θ + γs2. This formulation shows

that the total cost of reaching skill level s, as well as the marginal cost of increasing skill,
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is lower for higher types. In this example, the utility function has the form:

u(a, t,θ ) = βaθ − γ0a− γ(aθ )2 + t,

and the marginal rate of substitution is

m(a, t,θ ) = 2γaθ 2 − βθ + γ0.

The marginal rate of substitution is obviously quasi-convex, and m(a, t,θ ′)−m(a, t,θ ′′) is

single-crossing from below in a. Thus, both Assumptions 2 and 3 are satisfied. What ap-

pears to be a minor—and not totally unreasonable—modification in specification converts

the standard setup into a model that exhibits the double-crossing property.

4. Characterization

This section provides a characterization of perfect Bayesian equilibria that survive the D1

criterion. Let S : [θ ,θ]→ R+ denote the sender’s strategy, and let T : [θ ,θ]→ [θ ,θ] be

the equilibrium reputation. Let Q(a) := {θ : S(θ ) = a} denote the set of types who choose

a in equilibrium. We refer to Q(a) as a pooling set if it is not a singleton.

4.1. Full separation

Consider a fully separating strategy s∗(·) for some interval of types, where T (θ ) = θ in this

interval. Incentive compatibility requires type θ to have no incentive to mimic adjacent

types:

u(s∗(θ ),θ ,θ )≥ u(s∗(θ + ε),θ + ε,θ ).

In the limit, this condition can be written as

s∗′(θ ) =
1

m(s(θ ),θ ,θ )
. (3)

An equilibrium is fully separating if the whole type space [θ ,θ] is separating. In this case,

the initial condition must satisfy

s∗(θ ) = a∗ := argmax
a

u(a,θ ,θ ), (4)

if such an action exists.10 If indifference curves are single-crossing, the solution to the

differential equation (3) with initial condition (4) constitutes a fully separating equilibrium
10 Obviously, no equilibrium exists if there is no such a∗. We later assume that a unique optimal action

exists for each type.
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(Mailath, 1987). This solution is also known as the least cost separating equilibrium, or

the “Riley outcome” (Riley, 1979).

In our model, there is a dividing line D(·; ·, ·) which separates the (a, t)-space into two

distinct domains. No fully separating solution can extend beyond the dividing line.

Proposition 1. There is no fully separating equilibrium if there exists θ ′ < θ such that
s∗(θ ′) = D(θ ′;θ ′,θ ′).

Proof. Assume that (a∗,θ ) is in the SC-domain of type θ ; the case where it is in the RSC-

domain can be proved similarly. Let θ be a type that is slightly above θ ′, such that s∗(θ ′) =
D(θ ′;θ ′,θ ′). Recall from (2) that, at (s∗(θ ′),θ ′), type θ ′ has the lowest marginal rate

of substitution. Moreover, by the double-crossing property, an indifference curve of the

higher type θ that passes through (s∗(θ ′),θ ′) stays strictly above that of type θ ′ for all

a′ > s∗(θ ′). Therefore, if type θ ′ is indifferent between (a′, t ′) and (s∗(θ ′),θ ′), type θ

must strictly prefer (s∗(θ ′),θ ′). This shows that s∗(·) cannot extend beyond the dividing

line.

The remaining possibility is that s∗(·) jumps at some θ ≤ θ ′. Let s∗(θ−) denote the left

limit and s∗(θ+) the right limit at θ . Since (s∗(θ ),θ ) is in the SC-domain of type θ , s∗(·) is

positively sloped, and signaling must be costly at that point. This means that s∗(·) cannot

jump up because type θ would strictly prefer (s∗(θ−),θ ) to (s∗(θ+),θ ) if s∗(θ+) > s∗(θ−).
Observe also that s∗(·) cannot jump down either, because if type θ were indifferent between

(s∗(θ−),θ ) and (s∗(θ+),θ ) for any s∗(θ−) > s∗(θ+), types below θ would strictly prefer

(s∗(θ+),θ ) and have an incentive to deviate.

If (s∗(θ ),θ ) either belongs to SC(θ ) for all θ , or belongs to RSC(θ ) for all θ , the model

reduces to the standard setup. For double-crossing preferences to have any bite, therefore,

we need to look at the situation where s∗(·) hits the boundary before it reaches the highest

type θ . The remainder of the paper deals with this situation.

4.2. Pooling equilibria under D1

Under double-crossing preferences, some form of pooling can survive the D1 criterion. This

is a crucial difference from the standard setup, which generally predicts full separation
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when the D1 criterion is applied. For any (a, t) and any set of types Q(a), let

θmax(a, t;Q(a)) := argmax
θ∈Q(a)

m(a, t,θ ),

θmin(a, t;Q(a)) := argmin
θ∈Q(a)

m(a, t,θ ).

We write θmin(a, t) for short when Q(a) = [θ ,θ]. Consider a pooling set Q(a) of types who

choose a in equilibrium. Let t = E[θ | θ ∈Q(a)] be the reputation corresponding to action

a. Suppose further that there is an open neighborhood Nε(a) = (a − ε, a + ε) such that

no other type chooses a′ ∈ Nε(a) \ {a}. Then, under D1, a slight upward deviation from

(a, t) to the off-equilibrium action a′ is attributed to type θmin(a, t;Q(a)), while a slight

downward deviation is attributed to θmax(a, t;Q(a)). To satisfy D1, we need to make sure

that the equilibrium reputation is greater than these off-equilibrium beliefs, i.e.,

t ≥max {θmax(a, t;Q(a)),θmin(a, t;Q(a))} . (5)

If m(a, t,θ ) is monotone in θ for a given (a, t), then θmax(a, t;Q(a)) and θmin(a, t;Q(a))
must be at the extremal points of Q(a). Since t ∈ (minQ(a), maxQ(a)), (5) cannot be

satisfied for any pooling set Q(a). This is why no pooling equilibrium can survive D1 in

the standard setup. Under double-crossing preferences, on the other hand, m(a, t,θ )may

not be monotone in θ for some (a, t), thereby leaving some room for pooling equilibria.

4.3. Low types separate high types pairwise-pool

Below, we show that equilibrium under double-crossing preferences exhibits a particular

form of pooling, which can be seen as a generalized version of LSHP (Low types Separate

High types Pool) equilibrium introduced by Kartik (2009).

Definition 3. A sender’s strategy is LSHPP (Low types Separate High types Pairwise-Pool) if
there is some θ0 ∈ [θ ,θ] such that:

(a) S(θ ) = s∗(θ ) for θ ∈ [θ ,θ0);

(b) S(θ ) is discontinuous only at θ = θ0, with an upward (resp. downward) jump if s∗(·)
is increasing (resp. decreasing) on [θ ,θ0).

(c) S(θ ) is weakly quasi-concave for θ ∈ [θ0,θ], with S(θ0) = S(θ ).

An equilibrium is an LSHPP equilibrium if the sender’s strategy is LSHPP; the reason why

we call it pairwise-pooling is due to the way we construct an equilibrium and will become
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clear later. Our notion of LSHPP equilibrium includes full separation (θ0 = θ), full pooling

(θ0 = θ and S(·) is constant for θ ∈ [θ ,θ]), and LSHP equilibrium (θ0 ∈ (θ ,θ ) and S(·) is

constant for θ ∈ [θ0,θ]) as special cases. An important feature of LSHPP strategy is that

it can have at most one “gap” (i.e., discontinuity) at θ0.

Part (c) of Definition 3 describes what happens above the gap (i.e., among types above

θ0). Quasi-concavity of S(·)with S(θ0) = S(θ ) implies that for any action a ≥ S(θ0) chosen

in equilibrium, Q(a)must be a pooling set (except possibly for a =maxθ S(θ ), where Q(a)
may be a singleton or a pooling set). See Figure 2 for an illustration. An LSHPP equilib-

rium exhibits counter-signaling whenever S(·) is not constant above the gap. In Figure 2,

the highest type θ chooses a signaling action lower than that chosen by any other type in

(θ0,θ ). The highest equilibrium signaling action is chosen by some intermediate types.11

This suggests that counter-signaling that has been discussed in various contexts is a con-

sequence that pertains to double-crossing preferences. Also note that pairwise-pooling

among types in [θ0,θ] and full separation among types in [θ ,θ0) implies that the differ-

ence between T (θ0) and T (θ−0 ) (i.e., the left-limit of T (·) at θ0) must be bounded away

from zero. Because the utility function is continuous, the discontinuity of T (·) accounts

for the gap in S(·) at θ0.

The next statement is one of the main results of this paper.

Theorem 1. Any D1 equilibrium is LSHPP if Assumptions 1 to 3 are satisfied.

4.4. A sketch of proof

The proof of Theorem 1 is lengthy, and we relegate it to Appendix A. Here, we provide

the key steps and a heuristic argument to illustrate the underlying intuition of our char-

acterization. Since the properties of the fully separating region are tightly pinned down

by the differential equation (3) and the initial condition (4), we focus on restrictions on

equilibrium pooling patterns to see what can happen above the gap. The following result

is useful to narrow down possible forms of pooling.

Lemma 2. Suppose there is an interval (θ ′′,θ ′) such that S(θ ) is continuous and strictly
monotone, and Q(S(θ )) is a pooling set for some θ in this interval. Then, there exists p(·)

11 Pairwise-pooling does not exclude the possibility that all types above θ0 pool at the same action, in

which case there is no counter-signaling. Also, in our case of a continuum of types, the highest type θ pools

with a lower type θ0, rather than with the lowest type θ (except in the special case of θ0 = θ). This is

different from the model of Feltovich et al. (2002) with three discrete types, in which the highest type pools

with the lowest type.
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Figure 2. LSHPP strategy. Below the gap, S(·) coincide with the least cost separating strategy s∗(·).
Above the gap, S(·) is quasi-concave. There is mass pooling at a1 and at a2, and atomless pooling in

the neighborhood of a3.

such that, for all θ ∈ (θ ′′,θ ′), (a) Q(S(θ )) = {θ} ∪ {p(θ )}; and (b) m(S(θ ), T (θ ),θ ) =
m(S(θ ), T (θ ), p(θ )).

Proof. If there is pooling only at some points in the interval, T (·) must be discontinuous.

This necessarily violates incentive compatibility when S(·) is continuous. So there must be

pooling over the entire interval. Suppose some type θ ∈ (θ ′,θ ′′) chooses a pooling action

ap, and Q(ap) contains more than two types. By Lemma 1, we can find a type θ1 ∈ Q(ap)
such that m(ap, tp,θ ) 6= m(ap, tp,θ1) (where tp = T (θ )). Thus type θ1 has an incentive to

deviate to an action either slightly above or slightly below ap. This means that Q(S(θ )) can

contain only two types, θ and p(θ ). The fact that m(S(θ ), T (θ ),θ ) = m(S(θ ), T (θ ), p(θ ))
follows immediately.

In our model two different types of pooling can emerge in equilibrium. First, it is

possible to have pooling in the usual sense, where a positive measure of types choose the

same action. We refer to this pattern of pooling as mass pooling. Lemma 2 shows that

there can be a different kind of pooling, which we call atomless pooling, where exactly two

types paired together for each action level, and the pooling set Q(a) has measure zero. For

example, in Figure 2, the pooling set Q(a3) contains exactly two types, and S(·) is locally

increasing at one of these types and locally decreasing at the other type. Under atomless

pooling the marginal rate of substitution at (S(θ ), T (θ )) must be the same for the paired
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types. One implication is clear: (S(θ ), T (θ )) belongs to the SC-domain of type θ if and

only if it belongs to the RSC-domain of type p(θ ).

When there is mass pooling, the pooling set may be either connected or disconnected.

In Figure 2, Q(a1) is a connected pooling set, while Q(a2) is disconnected. It is straight-

forward to deal with connected pooling sets, because it must be an interval. The case of

disconnected pooling sets is more complicated, as they potentially admit infinitely many

different forms.

Lemma 3. Suppose there is pooling at (ap, tp) such that the pooling set Q(ap) is discon-
nected.

(a) Q(ap) = Q L(ap) ∪QR(ap), where Q L(ap) and QR(ap) are two disjoint intervals, with
(ap, tp) ∈ SC(θ ) for θ ∈Q L(ap) and (at , tp) ∈ RSC(θ ) for θ ∈QR(ap).

(b) S(θ )≥ ap for all θ ∈ [minQ(ap),maxQ(ap)].

(c) S(θ ) is continuous for all θ ∈ [minQ(ap),maxQ(ap)].

Consider the pooling set Q(a2) in Figure 2. This pooling set is the union of two disjoint

intervals. If t2 is the reputation corresponding to action a2, Lemma 3 shows that (a2, t2)
is in the SC-domain of all types in the left interval, and is in the RSC-domain of all types

in the right interval. All types between minQ(a2) and maxQ(a2) choose actions that are

weakly higher than a2. These two properties implies that S(·) is weakly quasi-concave on

[minQ(a2), maxQ(a2)]. Quasi-concavity of S(·) in turn implies that a pooling set Q(a1)
can be a connected set only if a1 =maxθ S(θ ).

The formal proof of Lemma 3 is part of the proof of Theorem 1 in Appendix A. Suppose

there is pooling at (ap, tp). Let θ p := minQ(ap) and θ p := maxQ(ap). Suppose further

that Q(ap) is disconnected. Then we can define an open set,

J(ap) := {θ : θ /∈Q(ap), θ ∈ (θ p,θ p)},

to be the set of types in (θ p,θ p) that do not choose ap. Let θ j := inf J(ap) and θ j :=
sup J(ap). For any given θ ′, also define

Mh(a, t,θ ′) := {θ : m(a, t,θ )≥ m(a, t,θ ′)},

M`(a, t,θ ′) := {θ : m(a, t,θ )< m(a, t,θ ′)}.

In words, M`(a, t,θ ′) is the set of types whose marginal rate of substitution at (a, t) is

lower than that of type θ ′. By quasi-convexity of m(a, t, ·), M`(a, t,θ ′)must be an interval

and it must contain θmin(a, t). See Figure 3 for an illustration.
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Figure 3. The marginal rate of substitution is quasi-convex in θ . The set M`(a, t,θ ′) is an interval.

Consider two on-path choices (a1, t1) and (a2, t2), where a1 > a2. When a1 and a2 are

arbitrarily close to each other, preference ranking between these two choices depends only

on the marginal rate of substitution. If a type θ ′ is indifferent between the two choices,

then no type in Mh(a1, t1,θ ′) would choose (a1, t1), and no type in M`(a2, t2,θ ′) would

choose (a2, t2).

Suppose that S(·) is continuous on [θ0,θ], and there is a disconnected pooling set

Q(ap) in the interior of this interval. Given that S(·) is continuous, there must be a path

S(·) converging to ap as θ approaches θ p from below. Lemma 2 suggests that there must

be a paired type p(·) and another path S(p(·)) converging to ap as θ approaches θ p from

above. Since m(ap, tp,θ p) = m(ap, tp,θ p) by Lemma 2, we have

M`(ap, tp,θ p) = M`(ap, tp,θ p) = (θ p,θ p).

This means that we must have S(θ ) < ap = S(θ p) for θ ∈ (θ p − ε,θ p), because otherwise

types θ p and θ p cannot choose (ap, tp), a contradiction. Similarly, we must have S(p(θ ))<

ap for θ ∈ (θ p,θ p + ε). This implies that when S(·) approaches a pooling action ap from

outside the interval [θ p,θ p], it must be increasing on the left and decreasing on the right.

If the pooling set Q(ap) is disconnected and S(·) is continuous, there must be two more

paths, S(·) and S(p(·)), converging to ap as θ approaches θ j and as p(θ ) approaches θ j.

Again, we must have m(ap, tp,θ j) = m(ap, tp,θ j) and hence

Mh(ap, tp,θ j) = Mh(ap, tp,θ j) = [θ ,θ j]∪ [θ j,θ].
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Then, for θ ∈ (θ j,θ j +ε), we must have S(θ )> ap because otherwise no type in [θ ,θ j]∪
[θ j,θ] would choose (ap, tp), a contradiction. We conclude that when S(·) approaches a

pooling action ap from inside the interval [θ p,θ p], it must be increasing on the left and

decreasing on the right.

The above argument shows that types outside [θ p,θ p] must take actions lower than

ap while types inside (θ j,θ j) must take actions higher than ap. This means that S(·) is

weakly quasi-concave, with Q(ap) = [θ p,θ j]∪ [θ j,θ p]. Since S(·) is locally increasing at

the endpoints of one of these intervals and locally decreasing at the endpoints of the other

interval, (ap, tp) is in the SC-domain for types in the former set and is in the RSC-domain

for types in the latter set. The quasi-concavity of S(·) stems from the fact that m(a, t, ·)
decreases at first and then increases, so that middle types tend to have more incentive

to choose higher actions. In other words, quasi-convexity of m(a, t, ·) strongly suggests

quasi-concavity of S(·) above the gap.

5. Existence

This section provides an algorithm to find an LSHPP equilibrium and exploits this algorithm

to establish equilibrium existence by construction. To this end, we need to add more

structure to the model.

Assumption 4. For any θ , u(·,θ ,θ ) is quasi-concave, with a unique optimal action a∗(θ )
such that (a∗(θ ),θ ) ∈ SC(θ ).

Assumption 5. F : [θ ,θ]→ [0, 1] is continuously differentiable and strictly increasing.

Assumption 4 allows the possibility that signaling is always costly (as is often assumed

in standard signaling models), in which case u(·,θ ,θ ) is strictly decreasing, and the opti-

mal action is a∗(θ ) = 0 for any type θ . It excludes the possibility that u(·,θ ,θ ) is strictly

increasing, in which case an optimal action does not exist. When (a∗(θ ),θ ) ∈ SC(θ ), to-

gether with quasi-concavity of u(·,θ ,θ ), the marginal rate of substitution is positive (sig-

naling is locally costly) at any point (a, t) on the border or in the RSC-domain of type θ .

Assumption 5 is a purely technical condition to ensure that the density function of types,

denoted f (·), is well defined and positive everywhere.

The equilibrium signaling pattern for θ < θ0 is pinned down by the least-cost separating

solution S(θ ) = s∗(θ ) and T (θ ) = θ . Above the gap, there are three objects that need to

be determined. Let θ∗ ∈ argmaxθ∈[θ0,θ] S(θ ) denote the boundary type (to be made more
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precise below). Let σ : [θ0,θ∗]→ R+ represent the signaling action taken by type θ , and

τ : [θ0,θ∗]→ [θ0,θ] represent the reputation of type θ . Also, let the (decreasing) function

p : [θ0,θ∗]→ [θ∗,θ] represent the type that is “paired with” type θ in choosing the same

signaling action: this function means that each type in [θ0,θ∗] has a counterpart in [θ∗,θ],
thereby giving rise to the term pairwise-pooling. Once we pin down these three functions,

we can determine:
(

S(θ ) = σ(θ ) and T (θ ) = τ(θ ) if θ ∈ [θ0,θ∗],

S(θ ) = σ(p(θ )) and T (θ ) = τ(p(θ )) if θ ∈ (θ∗,θ].

These objects are defined this way because Lemmas 2 and 3 require that any pooling action

is chosen either by exactly two types, or by two intervals of types.12 When there is atomless

pooling, σ(·) and τ(·) are strictly increasing; when there is mass pooling, σ(·) and τ(·)
are locally flat.

Perfect Bayesian equilibrium requires a set of equilibrium conditions to be satisfied

above the gap, and an indifference condition for type θ0.

Bayes’ rule. The equilibrium belief τ(·) must be consistent with equilibrium strategies

and Bayes’ rule on the path of play. The consistency of beliefs requires that for any interval

[θE,θB] ⊆ [θ0,θ∗],
∫ θB

θE

τ(θ )dF(θ ) +

∫ p(θE)

p(θB)

τ(θ )dF(θ ) =

∫ θB

θE

θ dF(θ ) +

∫ p(θE)

p(θB)

θ dF(θ ).

In the limit as θB → θE, we have

τ(θE) =
f (θE)

f (θE) + f (p(θE)) |p′(θE)|
θE +

f (p(θE)) |p′(θE)|
f (θE) + f (p(θE)) |p′(θE)|

p(θE),

which gives us a “pointwise” belief. This pointwise belief is relevant when the pooling set

has measure zero, as in atomless pooling. It is often more convenient to solve for p′(θ )
and write

p′(θ ) =
f (θ )

f (p(θ ))
θ −τ(θ )

p(θ )−τ(θ )
. (6)

If there is mass pooling for [θE,θB), then for all θ ′ ∈ [θE,θB), τ(θ ′) is constant and we

have

τ(θ ′) =

∫ θB

θE
θ dF(θ ) +

∫ p(θE)

p(θB)
θ dF(θ )

F(θB)− F(θE) + F(p(θB))− F(p(θE))
,

12 If the pooling set is connected, we can arbitrarily partition it into two intervals.
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Incentive compatibility. In equilibrium, no type has an incentive to mimic adjacent

types. The incentive constraint for separation is

u(σ(θ ),τ(θ ),θ )≥ u(σ(θ + ε),τ(θ + ε),θ ),

for θ ∈ [θ0,θ∗).13 In the limit, we obtain

σ′(θ ) =
τ′(θ )

m(σ(θ ),τ(θ ),θ )
, (7)

Note that σ′(θ )> 0 if and only if τ′(θ ) 6= 0. This corresponds to atomless pooling. In the

case of mass pooling, we have σ′(θ ) = τ′(θ ) = 0.

Pairwise matching. When there is atomless pooling, incentive compatibility must be

satisfied for both θ and p(θ ). This boils down to the restriction (Lemma 2) that the two

paired types must have the same marginal rate of substitution:

m(σ(θ ),τ(θ ), p(θ ))−m(σ(θ ),τ(θ ),θ ) = 0.

For ease of notation, we sometimes use m(·) to represent the marginal rate of substitution

evaluated at (σ(θ ),τ(θ ),θ ) and m̂(·) to represent the value evaluated at (σ(θ ),τ(θ ), p(θ )).
Taking derivative with respect to θ then gives

[m̂a(·)−ma(·)]σ′(·) + [m̂t(·)−mt(·)]τ′(·) = mθ (·)− m̂θ (·)p′(·). (8)

The left-hand side is strictly positive by condition (1).14 Furthermore, mθ (·) < 0 and

m̂θ (·) > 0 because (σ(θ ),τ(θ )) is in the SC-domain of type θ and in the RSC-domain of

type p(θ ).

Indifference at the gap. The conditions mentioned above allow us to obtain a candidate

equilibrium strategy above some threshold θ0. Below the threshold, there must be full

separation, i.e., S(θ ) = s∗(θ ). To pin down an equilibrium for the whole type space, type

θ0 must be indifferent between choosing s∗(θ0) and jumping to σ(θ0) if there is an interior

solution (i.e., if θ0 > θ). Since θ0 depends on the choice of θ∗, we define

∆u(θ∗) := u(s∗(θ0),θ0,θ0)− u(σ(θ0),τ(θ0),θ0), (9)
13 The incentive constraint for type θ∗ is slightly irregular, as he can mimic either type θ−ε or type p(θ−ε).

Since S(·) attains local maximum at θ∗, incentive compatibility requires σ′(θ∗) = 0.
14 Substituting (7) into the left-hand side shows that it has the same sign as m̂a(·)−ma(·) + m̂(·)(m̂t(·)−

mt(·)). Under atomless pooling, types θ and p(θ ) have the same marginal rate of substitution at

(σ(θ ),τ(θ )). Letting a = σ(θ ) and ε > 0, condition (1) implies m(a + ε,φ(a + ε, u,θ ), p(θ )) >
m(a+ε,φ(a+ε, u,θ ), u),θ ). Taking the limit gives m̂a(·)+ m̂t(·)φa(·)> ma(·)+mt(·)φa(·). The conclusion

follows since m̂(·) = φa(·).
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where θ0 is taken as an implicit function of θ∗.
15 Equilibrium requires ∆u(θ∗) ≤ 0, with

strict inequality only if θ0 = θ .

5.1. Atomless pooling

Our characterization establishes that there can be two different types of pooling, which

we call atomless pooling and mass pooling. The question is when each type of pooling

obtains and how the transition between them occurs. We start with the case of atomless

pooling.

If we begin with the initial condition σ(θB) = aB, τ(θB) = tB, p(θB) = θ̂B, we can

summarize the initial state by a 4-tuple, cB = (θB, θ̂B, aB, tB). For this to be a legitimate

initial state, we require

tB ∈ (θB, θ̂B) and m(aB, tB,θB) = m(aB, tB, θ̂B). (10)

Suppose there is a well defined solution to the differential equations (6), (7), and (8)

for θ ∈ [θE,θB]. We can then obtain the end state summarized by the 4-tuple, cE =
(θE, p(θE),σ(θE),τ(θE)). Obviously the end state will depend on the initial state and on

the value of θE at which we choose to evaluate the solution functions, we denote this

mapping by cE = ZA(θE;cB). By construction, if the initial state cB satisfies condition (10),

then the output cE of this mapping also satisfies (10).

The main constraint for pairwise matching is that σ(·) must be strictly increasing on

(θE,θB), reflecting the requirement that S(·) is quasi-concave above the gap. Combining

(7) and (8), this restriction can be expressed as

mθ (·)− m̂θ (·)p′(·)> 0, (11)

which is a necessary condition for atomless pooling to be supported in equilibrium. There-

fore, once mθ (·) − m̂θ (·)p′(·) turns from positive to zero, the solution to the differential

equation cannot be extended further back. Let

χA(cB) =
¦

θE : constraint (11) holds for all θ ∈ (θE,θB] and p(θE)≤ θ
©

.

For any cB satisfying (10) and any θE ∈ χA(cB), the mapping ZA(θE;cB) is well defined and

produces a valid solution satisfying the monotonicity requirement on the domain (θE,θB].
15 For any given θ∗, there may be multiple solutions that satisfy the equilibrium conditions, so that the

mapping from θ∗ to θ0 is in general a correspondence. For the purpose of showing equilibrium existence,

we pick a particular solution even when there are others. We let θ0 denote this particular solution produced

by our algorithm and hence take it as a function of θ∗.
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5.2. Mass pooling

Begin with an initial condition, summarized by cB = (θB, θ̂B, aB, tB), that satisfies (10). To

construct an equilibrium in which all types in [θE,θB] ∪ [θ̂B, θ̂E] pool to choose (aB, tB),
the equilibrium conditions require:

m(aB, tB, θ̂E)−m(aB, tB,θE) = 0, (12)

E
�

θ | θ ∈ [θE,θB]∪ [θ̂B, θ̂E]
�

− tB = 0. (13)

Let ψ(·; aB, tB) represent the implicit function that gives the θ̂E satisfying (12) for each

θE. Similarly, let η(·;θB, θ̂B, tB) give the θ̂E satisfying (13) for each θE. Both functions are

defined on the domain [b,θB], such that b solves η(b;θB, θ̂B, tB) = θ . If no such b exists,

we set b = θ . Wheneverψ(θE) is undefined for θE ∈ [b,θB], we setψ(θE) = θ . According

to this extended definition, ψ(b; aB, tB) = θ if and only if m(aB, tB, b)≥ m(aB, tB,θ ).

A solution to the equation system (12) and (13) exists if there is a θE such thatψ(θE) =
η(θE). By implicit differentiation, the slopes of these functions are:

ψ′(θ ; aB, tB) =
mθ (aB, tB,θ )

mθ (aB, tB,ψ(θ ))
,

η′(θ ;θB, θ̂B, tB) =
f (θ )

f (η(θ ))
θ − tB

η(θ )− tB
.

Both functions are decreasing for any cB satisfying (10). The condition that mθ (·) −
m̂θ (·)p′(·) is non-negative corresponds to ψ′(·) ≥ η′(·). To satisfy the conditions for mass

pooling at (aB, tB), θE and θ̂E have to satisfy (12) and (13). Further, for any interior cross-

ing point (i.e., θE > b), we require that ψ′(θE) ≥ η′(θE). This would allow the end point

of mass pooling θE to serve as an initial starting point for atomless pooling immediately to

the left of θE.

Figure 4 illustrates this situation where we fix (aB, tB) in the background. At (aB, tB),
η′(θB) =ψ′(θB). For θ slightly smaller than θB, we have ψ′(·)< η′(·), and it is hence not

feasible to extend atomless pooling any further. We instead have mass pooling starting

from θB. In general, the two-equation system may produce multiple termination points

(as in the left panel), in which case we may terminate mass pooling at any one of them,

subject to the constraint that φ′(θE)≥ η′(θE) at the termination point.

To summarize, we let

χM(cB) =
�

θE :ψ(θE) = η(θE) and φ′(θE)≥ η′(θE), or θE = b and ψ(b)≥ η(b)
	

.
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Figure 4. The figures showψ(·) and η(·)with (aB, tB) fixed. In the left panel, mass pooling starts from

θB with two possible termination points marked by the red dots. In the right panel,ψ(·) is consistently

above η(·), and mass pooling continues all the way to θ .

Given an initial state cB, and for any θE ∈ χM(cB), we can obtain an end state cE =
(θE,ψ(θE), aB, tB). We denote this mapping by cE = ZM(θE;cB). By construction, the

output of this mapping satisfies (10) except possibly at θE = b. But in this case, the

pairwise-pooling region is [b,θ], and m(aE, tE, b) ≥ m(aE, tE,θ ) ensures that there is no

incentive for downward deviation below aE.

5.3. Algorithm and equilibrium existence

If S(·) attains a maximum at a unique θ∗, there is atomless pooling in a neighborhood of θ∗.

In this neighborhood, (σ(θ ),τ(θ )) is in the SC-domain of type θ and in the RSC-domian

of type p(θ ). This means that (σ(θ∗),θ∗) must be on the boundary of the SC-domain and

RSC-domain of type θ∗. Therefore, a boundary condition that satisfies (10) in the limit is:

σ(θ∗) = D(θ∗;θ∗,θ∗), τ(θ∗) = θ∗, p(θ∗) = θ∗.

If there is mass pooling in the neighborhood of θ∗, using this boundary condition ensures

that the off-equilibrium belief for an upward deviation above σ(θ∗) is weakly lower than

θ∗, which does not exceed the equilibrium belief θ∗.

For any given θ∗, we go through the following iterative procedure to ensure that the

equilibrium conditions for pairwise-pooling are satisfied:

1. Initialize k = 1. Set ck = (θ∗,θ∗, D(θ∗;θ∗,θ∗),θ∗), and set θBk = θ∗. If infχA(ck)< θ∗,
go to step 2; otherwise go to step 3.

2. Let θE = infχA(ck). Construct the atomless-pooling solution for θ ∈ (θE;θBk]. If

p(θE) = θ , stop. Otherwise, let ck+1 = ZA(θE,ck) and θBk+1 = θE, increment k and
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go to step 3.

3. Let θE = maxχM(ck). Construct the mass-pooling solution for θ ∈ (θE;θBk]. If

θE = b, stop. Otherwise, let ck+1 = ZM(θE,ck) and θBk+1 = θE, increment k and go

to step 2.

Once θ∗ is fixed, this algorithm yields a well defined θE such that p(θE) = θ at the end

of the procedure, along with σ(θ ), τ(θ ), and p(θ ) for θ ∈ [θE,θ∗]. By construction, these

objects satisfy Bayes’ rule, incentive compatibility, and pairwise matching. Let ζ : [θ ,θ]→
[θ ,θ] denote this mapping, where ζ(θ∗) is the θE obtained at the end of the procedure

starting from θ∗. If we let θ0 equal ζ(θ∗), then ∆u(θ∗) defined in (9) is a well defined

function of θ∗.

Given this construction, we can establish existence of an LSHPP equilibrium. The proof

of Theorem 2 is relegated to Appendix B. In the proof, we first show that ζ(·) is continuous

with respect to boundary condition θ∗. This implies that ∆u(·) is also continuous with

respect to θ∗, which ensures existence of θ0 = ζ(θ∗) such that ∆u(θ∗) ≤ 0 (with strict

inequality only if θ0 = θ). By construction, the candidate solution so obtained satisfies all

the local incentive compatibility constraints. In the final step, we check global incentive

compatibility to make sure that the candidate solution constitutes an equilibrium.

The highest action chosen above the gap is σ(θ∗) = D(θ∗;θ∗,θ∗). Since type θ∗ has

the lowest marginal rate of substitution among all types at that point, an upward devia-

tion slightly above σ(θ∗) is attributed to type θ∗ under D1, meaning that the equilibrium

reputation for action σ(θ∗) is the same as the off-equilibrium reputation for an action

above σ(θ∗). If there is a type that prefers higher action to lower action (signaling is not

costly) at that point, such a deviation may be profitable. Assumption 4 guarantees that

m(D(θ∗;θ∗,θ∗),θ∗,θ∗)> 0, and hence m(D(θ∗;θ∗,θ∗),θ∗,θ )> 0 for all θ . Since signaling

is locally costly, no type has an incentive to deviate to an off-equilibrium action higher than

σ(θ∗).

Theorem 2. An LSHPP equilibrium exists if Assumptions 1 to 5 are satisfied.

6. Discussion

6.1. Multiplicity of equilibria

We establish equilibrium existence by construction. The algorithm in Section 5 consistently

picks the infimum from the feasible set χA(ck), or the maximum from the feasible set
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χM(ck), at each round k. It is possible to obtain other candidate solutions that may also

satisfy all the equilibrium restrictions if we adopt a different algorithm.

To see the possibility of multiple equilibria, it is easiest to consider the case of full

pooling equilibria. Let µ represent the unconditional mean of θ . Suppose all types pool at

(ap,µ). To prevent off-equilibrium deviation, D1 requires that condition (5) hold. In the

context of full pooling, this requirement is equivalent to

D(µ;θ ,θ )≥ ap ≥ D(µ;µ,µ).

Of course, we also require that type θ should have no incentive to deviate to his optimal

action:

u(ap,µ,θ )≥ u(a∗,θ ,θ ).

When both of these conditions hold, there is a full pooling equilibrium, but these two

conditions do not pin down a unique value of ap.

For an explicit numerical example, consider the “signaling with news” application of

Section 3.1. We choose parameters so that

u(a, t,θ ) = λ (θ + (1− θ )t)−
�

a
θ
+

a2

2

�

,

and let θ be uniformly distributed on [0.1,0.5]. The mean of θ is µ= 0.3, and

m(a, t,θ ) =
1+ aθ
λθ (1− θ )

.

Let aP represent a pooling action in a full pooling equilibrium. To prevent downward

deviation requires m(aP , t, 0.1) ≥ m(aP , t, 0.5). Since the marginal rate of substitution

does not depend on t, this requirement reduces to aP ≤ 8. To prevent upward deviation

requires θmin(aP , t) ≤ 0.3, which reduces to aP ≥ 40/9. Furthermore, u(aP , 0.3, 0.1) ≥
u(0,0.1, 0.1) for any aP ≤ 8 if λ ≥ 5600/9. We can conclude that for λ ≥ 5600/9, any

action aP ∈ [40/9, 8] can constitute part of a full pooling equilibrium.

6.2. Comparative statics

To further illustrate the properties of equilibria under double-crossing preferences, we

continue to work with the same example as in the previous subsection and examine how

equilibrium varies with changes in some key parameters of the model. Although compar-

ative statics is cumbersome when there are multiple equilibria, this exercise still allows us

to elucidate some general tendencies and important insights.
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Figure 5. Equilibrium actions for different returns to signaling (parameter λ) and different type

distributions (parameter κ). Larger values of λ corresponds to larger returns to signaling. The type

distribution has density f (θ ) = 2.5+ κ(θ − 0.3) on the support [0.1, 0.5], and κ is the slope of the

density. The red line shows that locus of (S(θ ), T (θ )) in the (a, t)-space above the gap.

The first observation is that we have less separation and more pooling as the returns

to signaling become larger (i.e., θ0 decreases towards θ as λ increases). As λ gets larger,

higher types need to take even higher actions to separate because lower types now have

more incentive to mimic. The equilibrium action taken by higher types cannot be un-

bounded, however, because of the double-crossing property: as the equilibrium action

increases, it will inevitably enter the RSC-domain where it is more costly for higher types

to choose higher actions. As we have seen above, we can always construct a fully pooling

equilibrium when λ≥ 5600/9. In short, the double-crossing property imposes an endoge-

nous upper bound for actions, which must bind at some point as λ increases. Figure 5

further illustrates this tendency: when λ increases from 50 to 100, where the range of the

fully separating region shrinks (i.e., θ0 decreases), with an increase in equilibrium actions

for all types. This is different from the standard setup, where an increase in the returns

to signaling only stretches out equilibrium actions but yields no qualitative impact on the

form of equilibrium.

In the left and middle panels of Figure 5, S(·) is flat above the gap (i.e., LSHP equi-

librium); this example thus shows that counter-signaling is not a necessary consequence

of the double-crossing property. To construct an equilibrium with atomless pooling (and

counter-signaling), we manipulate the type distribution by letting f (θ ) = 2.5+κ(θ −0.3)
for θ ∈ [0.1,0.5]. Atomless pooling is more likely to emerge as the slope parameter κ

becomes smaller. Figure 5 shows that for λ = 100, the equilibrium is LSHP when b = 0

(uniform distribution) but exhibits atomless pooling when κ= −12.5.16 To see why, recall

16 For intermediate values of κ, we can find equilibria in which both atomless and mass pooling coexist.
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that η(·) solves

E
�

θ | θ ∈ [θE,θB]∪ [θ̂B,η(θE)]
�

− tB = 0,

for given tB, θB and θ̂B. For a given θE, η(θE) must go up to keep the mean constant at

tB as the distribution becomes more skewed to the right. Since ψ(·) is independent of the

type distribution, a decrease in κ makes atomless pooling more likely to emerge.

6.3. Other variants of double-crossing preferences

The structure of preferences in our model is essentially determined by Assumptions 2 and

3. Our Assumption 2 (A2) requires that, for θ ′ > θ ′′, the difference m(a,φ(a, u0,θ ′′),θ ′)−
m(a,φ(a, u0,θ ′′),θ ′′) be single-crossing from below in a. One may imagine an alternative

assumption (A2′) which requires the same difference to be single-crossing from above. As-

sumption 3 (A3) in our specification requires D(t;θ ′,θ ′′) to be decreasing in θ ′ and θ ′′.

An alternative assumption (A3′) may require that it is increasing in these two arguments.

Assumptions 2 and 3 capture independent aspects of double-crossing preferences and can

be altered separately, leading to four different specifications. We argue through the ex-

amples in Section 3 that our specification is the most natural and useful one for applied

economic analysis. It turns out that it is also much more tractable than the alternatives.

To make the exposition simple, assume for the moment that signaling is always costly

(i.e., ua(·)< 0). We will return to this latter assumption at the end of this discussion.

Consider first a model in which we assume (A3′) while maintaining (A2). These two

assumptions imply that m(a, t, ·) is quasi-concave. Since middle types have the highest

marginal signaling costs, equilibrium cannot exhibit counter-signaling. Indeed, local in-

centive compatibility requires that if two types θ ′ and θ ′′ pool at some action ap, then

S(θ ) ≤ ap for θ ∈ (θ ′′,θ ′)—a result opposite to Lemma 3(b). This may seem to suggest

that pairwise-pooling would take the form in which S(·) is quasi-convex above the gap.

However, a model with (A3′) and (A2) is not well-behaved because, unlike our model, lo-

cal incentive compatibility does not imply global incentive compatibility. If type θ ′ chooses

(a′, t ′) and type θ ′′ chooses (a′′, t ′′) (with a′ > a′′), it is possible that (a′, t ′) lies to the right

of the dividing line D(·;θ ′,θ ′′) while (a′′, t ′′) lies to the left of it, even though both points

are to the left of D(·;θ ′,θ ′). The concept of “SC-domain,” as defined in Definition 2, loses

its force under (A3′) and (A2). There is no tractable way of ensuring the types θ ′ and

θ ′′ have no incentive to mimic each other, even though local incentive compatibility con-

straints are satisfied at those two points.
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In a model with (A2′) and (A3′), m(a, t, ·) is quasi-convex (contrary to Lemma 1, which

relies on (A2)). Because the reverse single-crossing property prevails at low levels of sig-

naling action, generally such a model cannot support an LSHPP equilibrium. In principle, it

may support an equilibrium in which types lower than some θ0 pairwise-pool, while types

higher than θ0 separate with actions in the “SC-domain” of type θ0. However, as in the

previous case, when two types θ ′ and θ ′′ (with θ ′ > θ ′′ ≥ θ0) choose two actions (a′, t ′)
and (a′′, t ′′) both in SC(θ0), these two points may lie on opposite sides of the dividing line

D(·;θ ′,θ ′′), making global incentive compatibility difficult to ascertain.

Finally, suppose we impose (A2′) and (A3). In this case, m(a, t, ·) is quasi-concave,

so S(·) would be quasi-convex when there is pairwise-pooling. If there is an equilibrium

in which low types pairwise-pool while high types separate, the main problem is that it

may not satisfy the D1 criterion. Specifically, suppose types in [θ ′′,θ ′] pool to choose the

lowest on-path action-reputation pair (ap, tp), such that ap = D(tp;θ∗,θ∗). Because type

θ∗ has the steepest indifference curve, D1 requires tp > θ∗ to prevent a small downward

deviation. Moreover, under (A2′), since large downward deviations would occur in the

RSC-domain of type θ∗ (where signaling is more costly for higher types), D1 may attribute

large downward deviations to types even higher than θ∗, making the conditions for equi-

librium existence more stringent and difficult to specify in a tractable way.

We will now provide a brief discussion of the situation when signaling is not always

costly. Of course, signaling cannot be always beneficial because the optimal signaling ac-

tion would then be unbounded. Therefore, we consider an alternative assumption (A4′) to

replace Assumption 4. It requires that, for all θ , u(·,θ ,θ ) is quasi-concave and (a∗(θ ),θ )
belongs to RSC(θ ), Suppose we maintain (A3′) and (A4′), together with Assumptions 1,

2, and 5. There is an equilibrium which is the “mirror image” of our LSHPP equilibrium.

In such an equilibrium, types θ < θ0 separate with S(θ ) = s∗(θ ) and s∗(θ ) = a∗ ∈ RSC(θ ).
Under (A4′), because separation occurs in the RSC-domain of type θ0 and signaling is lo-

cally beneficial, s∗(·) is strictly decreasing—signaling occurs by choosing inefficiently low

levels of action. The equilibrium signaling action jumps down from s∗(θ0) to S(θ0), and

pairwise-pooling occurs for types above θ0. Under (A3′) and (A4′), m(a, t, ·) is quasi-
concave and negative, meaning that middle types have the most incentive to signal by

choosing inefficiently low actions. Thus, S(·) is quasi-convex below the gap. Finally, this

combination of assumptions ensures that local incentive compatibility implies global incen-

tive compatibility. It is also straightforward to verify that such a “mirror image” equilibrium

survives the D1 refinement.
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7. Conclusion

Despite its widespread use in economic analysis, the single-crossing property imposes

strong restrictions on the structure of preferences, and its validity and robustness are not

necessarily always evident in economic applications. Because many insights about sig-

naling behavior we learn from standard models depend on this property, it is important

to extend the scope of analysis to circumstances that are not constrained by the single-

crossing property. We take a step in this direction by providing a formal framework to

capture double-crossing preferences in signaling models. Our characterization shows that

equilibrium under double-crossing preferences exhibits a particular form of pooling at the

higher end of types, which we label as pairwise-pooling. Pairwise-pooling generalizes a

phenomenon known as counter-signaling in the literature: double-crossing preferences of-

ten induce middle types to invest more in signaling whereas higher types are content with

pooling with lower types. Our model identifies the assumptions on preferences that tend

to produce pairwise-pooling, as well as the constraints that affect the form it takes (i.e.,

atomless or mass pooling). We provide a simple algorithm to find an LSHPP equilibrium

and show that it exists under fairly weak conditions.

From the theoretical point of view, it is perhaps not so controversial to say that the

single-crossing property may fail in some situations. The problem is rather that this can

happen in many different ways. Section 6.3 touches upon this issue, but even that does

not exhaust all the possible ways through which the single-crossing property breaks down.

Although we argue that our framework covers a broad range of economically relevant sit-

uations, and this framework turns out to be relatively tractable, it does not by any means

exclude other variations of non-single-crossing preferences. We hope to see more work

along these lines, in order to gain a more comprehensive understanding of signaling be-

havior that goes beyond the single-crossing property.
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Appendix

A. Proof of Theorem 1

A.1. Preliminaries

Denote the set of types that choose action a in equilibrium by Q(a) = {θ : S(θ ) = a}. If

there is some action ap such that Q(ap) is not a singleton, we refer to ap as a pooling action

and to Q(ap) as a pooling set. We assume that a pooling set is closed. Recall that we define

θ p :=maxQ(ap) and θ p :=minQ(ap).

To apply D1, it is crucial whether actions slightly above or below a pooling action are

chosen in equilibrium. Consider some pooling action ap. We say that actions below ap are

on-path if there exists a small ε > 0 such that Q(a) 6= ; for all a ∈ (ap − ε, ap); otherwise,

actions below ap are off-path. Similarly, actions above ap are on-path if there exists a small

ε > 0 such that Q(a) 6= ; for all a ∈ (ap, ap + ε); otherwise, actions above ap are off-path.

For any θ , we use S(θ−) and T (θ−) to denote the left limit and S(θ+) and T (θ+) to

denote the right limit at θ . If there exists a sequence θ n → θ ′ for some θ ′ such that

S(θ n)→ ap, with either S(θ n)> ap or S(θ n)< ap for all n, we call θ ′ a limit type.

The following lemma is a crucial property which we exploit repeatedly. To this end, it is

convenient to define q(a, t,θ ) such that m(a, t, q(a, t,θ )) = m(a, t,θ ), with q(a, t,θ ) = θ
if θ = θmin(a, t). This mapping gives a counterpart type that has the same marginal rate of

substitution at (a, t). If no such counterpart type exists, let q(a, t,θ ) = θ if θ < θmin(a, t)
and q(a, t,θ ) = θ if θ > θmin(a, t).

Lemma 4. Consider two choices (a1, t1) and (a2, t2) where a1 > a2, and some type θ ′.

(a) Suppose θ ′ < θmin(a1, t1) and u(a1, t1,θ ′) ≥ u(a2, t2,θ ′). Then, there exists some
δ(a2)≥ 0 such that u(a1, t1,θ )> u(a2, t2,θ ) for all θ ∈ (θ ′, q(a1, t1,θ ′) +δ(a2)).

(b) Suppose θ ′ > θmin(a2, t2) and u(a1, t1,θ ′) ≥ u(a2, t2,θ ′). Then, there exists some
δ(a1)≥ 0 such that u(a1, t1,θ )> u(a2, t2,θ ) for all θ ∈ (q(a2, t2,θ ′)−δ(a1),θ ′).

(c) δ(ai)→ 0 for i = 1, 2 as a2 − a1→ 0.

Proof. (a) If θ ′ < θmin(a1, t1), m(a1, t1,θ ′) > m(a1, t1,θ ) for all θ ∈ (θ ′, q(a1, t1,θ ′)).
Moreover, the indifference curve of type θ ′ that passes through (a1, t1) stays strictly below

the indifference curve of any type θ ∈ (θ ′, q(a1, t1,θ ′)] to the left of a1. If a2 is bounded
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from a1 and is lower than a1, type q(a1, t1,θ ′) strictly prefers (a1, t1) to (a2, t2). By conti-

nuity, we can find a type slightly above q(a1, t1,θ ′) who strictly prefers (a1, t1).

(b) If θ ′ > θmin(a2, t2), m(a2, t2,θ ′) > m(a2, t2,θ ) for all θ ∈ (q(a2, t2,θ ′),θ ′). More-

over, the indifference curve of type θ ′ that passes through (a2, t2) stay strictly above the

indifference curve of any type θ ∈ [q(a2, t2,θ ′),θ ′) to the right of a2. If a1 is bounded from

a2 and is higher than a2, type q(a2, t2,θ ′) strictly prefers (a1, t1) to (a2, t2). By continuity,

we can find a type slightly below q(a2, t2,θ ′) who strictly prefers (a1, t1).

(c) If a2 is arbitrarily close to a1, preferences depend only on the marginal rate of sub-

stitution at (a1, t1). If type θ ′ is indifferent between (a1, t1) and (a2, t2), type q(a1, t1,θ ′)
is also indifferent.

Lemma 4 simply states that a type with a lower marginal rate of substitution has more

incentive to choose a higher action. In particular, when a1 and a2 are arbitrarily close to

each other, preference ranking between (a1, t1) and (a2, t2) depends only on the marginal

rate of substitution at that point.

A.2. Connected pooling sets

There are two forms of pooling, depending on whether a pooling set is connected or not.

We start with connected pooling sets.

Lemma 5. In any D1 equilibrium, if there is a connected pooling set at (ap, tp), it is in the
SC-domain for type θ p and in the RSC-domain for type θ p.

Proof. Suppose Q(ap) is connected and actions below and above ap are off-path. In this

case, D1 requires that

m(ap, tp,θ p)≥ m(ap, tp,θ p)> m(ap, tp,θmin(ap, tp)).

This is possible only if m(ap, tp, ·) is decreasing at θ p (in the SC-domain) and increasing

at θ p (in the RSC-domain).

If Q(ap) is connected, and there is a path S(·) that converges to ap, we must have two

limit types θ p and θ p. Suppose to the contrary that there is only one limit type, either

θ p or θ p. Then, we have either T (θ p
−) = θ p or T (θ p

+
) = θ p, but since tp ∈ (θ p,θ p),

it necessarily violates incentive compatibility. This means that there must be some p(·)
and ε > 0 such that S(θ ) = S(p(θ )) for all θ ∈ (θ p − ε,θ p). Lemma 2 then ensures
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m(ap, tp,θ p) = m(ap, tp,θ p), which in turn implies that (ap, tp) is in the SC-domain of

type θ p and in the RSC-domain of type θ p.

A.3. Disconnected pooling sets

The case of disconnected pooling sets is much more complicated. We begin with a prelim-

inary result.

Lemma 6. If actions above ap are on-path with limit type θ1 ∈ [θ p,θ p], no type between θ1

and q(ap, tp,θ1) chooses ap. If actions below ap are on-path with limit type θ1, only types
between θ1 and q(ap, tp,θ1) may choose ap.

Proof. When there is a continuous path S(·) to ap, preferences are determined entirely by

the marginal rate of substitution at (ap, tp). Since all types between θ1 and q(ap, tp,θ1)
have a lower marginal rate of substitution than type θ1, they strictly prefer an action

slightly above ap. For the second statement, let θ1 < θmin(ap, tp) (the opposite case fol-

lows by the same argument). Then, all types below θ1 and above q(ap, tp,θ1) have a

higher marginal rate of substitution than type θ1; they strictly prefer an action slightly

below ap.

Consider a disconnected pooling set Q(ap). Recall that we define J(ap) = {θ : θ /∈
Q(ap), θ ∈ (θ p,θ p)}, and let θ j = inf J(ap) and θ j = sup J(ap). If there is a disconnected

pooling set at (ap, tp), Lemma 3 in the text states that:

(a) Q(ap) = Q L(ap) ∪QR(ap), where Q L(ap) and QR(ap) are two disjoint intervals, and

(ap, tp) is in the SC-domain for all types in Q L(ap) and in the RSC-domain for all

types in QR(ap).

(b) S(θ )≥ ap for all θ ∈ [θ p,θ p].

(c) S(θ ) is continuous for all θ ∈ [θ p,θ p].

Proof of Lemma 3. Part (b). Suppose otherwise, i.e., there is some type θ1 ∈ (θ p,θ p) who

chooses (a1, t1) with a1 < ap.

If m(ap, tp,θ p)≥ m(ap, tp,θ p), then q(ap, tp,θ p)> θ p. By Lemma 4(a), whenever type

θ p weakly prefers (ap, tp) to (a1, t1), type θ1 would strictly prefer (ap, tp).

If m(ap, tp,θ p) < m(ap, tp,θ p), some type θ1 above q(ap, tp,θ p) may choose a1 < ap.

Let a1 → ap. In this case, all types above θ1, including type θ p, strictly prefer (a1, t1) to
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(ap, tp), a contradiction. This means that a1 must be bounded away from ap. If actions

below ap are off-path, and m(ap, tp,θ p)< m(ap, tp,θ p), then the highest type would have

an incentive to deviate downward under D1. If actions below ap are on-path with limit

type θ2, Lemma 4(a) requires that θ2 > θmin(ap, tp). But Lemma 6 implies that no type

above θ2 can choose ap, so we must have θ2 = θ p. Since tp ∈ (θ p,θ p), this type must pool

with some type θ3 < θmin(ap, tp). Then, Lemma 6 again implies that no type below θ3 can

choose ap, and so we must have θ3 = θ p. This contradicts Lemma 2, which requires that

m(ap, tp,θ p) = m(ap, tp,θ p).

Part (c). Suppose S(·) is discontinuous on [θ p,θ p]. There are two cases, one in which

S(·) jumps up and the other in which it jumps down.

Case 1. Suppose that S(·) jumps up at some θ1 ∈ (θ p,θ p). Let (S(θ+1 ), T (θ+1 )) = (a1, t1).
Also, let θ2 be the type such that S(θ2) = ap and S(θ ) > ap for all θ ∈ (θ1,θ2). By part

(b), only types in (θ1,θ2) can choose a1. We further argue that there cannot be pooling at

(a1, t1).

Suppose that there is some pooling at (a1, t1) instead. Then, actions below a1 must be

off-path. To see this, suppose that there is some type θ ′ who chooses an action slightly

below a1. By continuity, type θ ′ must weakly prefer (a1, t1) to (ap, tp). If θ ′ ≤ θmin(a1, t1),
no type below θ ′ chooses a1 by Lemma 6, so it must be that θ ′ < θ1. Note also that since

S(·) jumps up at θ1, θ ′ must be bounded away from θ1. Since t1 > θ1, there must be

another type θ2 > θ1 who pools with type θ ′, with m(a1, t1,θ ′) = m(a1, t1,θ2). However,

if type θ ′ weakly prefers (a1, t1) to (ap, tp), all types below θ2 strictly prefer (a1, t1), a

contradiction. If θ ′ > θmin(a1, t1), again no type above θ ′ can choose a1 and there must

be another limit type θ2 who pools with θ ′. We can derive a contradiction by applying the

same argument.

Moreover, if there is some pooling at (a1, t1), and if actions above a1 are off-path, D1

requires t1 ≥ θmin(a1, t1), which in turn implies maxQ(a1) > θmin(a1, t1). If actions above

a1 are on-path with some limit type θ ′, Lemma 6 suggests that no type between θ ′ and

q(a1, t1,θ1) can choose a1 and hence maxQ(a1)> θmin(a1, t1). In either case, (a1, t1)must

be in the RSC-domain for type maxQ(a1). This means that a type slightly above maxQ(a1)
must choose some (a′′, t ′′) such that a′′ < a1. Since we have shown that actions below

a1 are off-path, D1 requires m(a1, t1,θ1) ≥ m(a1, t1,maxQ(a1)) to prevent a downward

deviation from a1. But then this implies that type θ1 must strictly prefer (a′′, t ′′) to (a1, t1),
a contradiction. This shows that there cannot be any pooling at (a1, t1).
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This argument establishes that S(·) must be fully separating in a right neighborhood

of θ1. As long as S(·) is continuous, there cannot be any pooling along the way because

otherwise T (·) would be discontinuous. If there is a jump, the same argument as above

applies, and there cannot be any pooling immediately after the jump. But if S(·) is fully

separating after the jump, T (·) must be continuous and incentive compatibility cannot be

satisfied. This shows that S(θ ) must be fully separating for all θ ∈ (θ1,θ2)

Because S(·) is fully separating for all θ ∈ (θ1,θ2), there are two possibilities. One

possibility is that S(·) jumps up at θ1, strictly increases on (θ1,θ2), and jumps down to

ap at θ2. If S(·) is increasing, however, (S(θ−2 ), T (θ−2 )) must be in the SC-domain of type

θ2. Then, S(·) cannot jump down to ap because a type slightly above θ2 would have an

incentive to deviate to S(θ−2 ).

The only remaining possibility is that S(·) jumps up at θ1 and strictly decreases for

θ ∈ (θ1,θ2). Since S(·) decreases while T (·) increases, the indifference curve of type θ1

must be downward sloping at (a1, t1), and (a1, t1) ∈ RSC(θ1). Now consider an action a′

slightly above a1 with corresponding reputation t ′. Suppose there is some type θ ′ > θ2

who chooses (a′, t ′). Then, by continuity, type θ ′ must weakly prefer (a1, t1) to (ap, tp).
However, since (a1, t1) ∈ RSC(θ ) for all θ ≥ θ1, all types in [θ1,θ ′), including type θ2,

must strictly prefer (a1, t1) to (ap, tp), a contradiction. If any type below θ1 chooses a′,
then t ′ < θ1 = t1, which cannot be incentive compatible. We thus conclude that actions

slightly above a1 are off-path. Given this, if there is a deviation to a′, D1 assigns belief

t ′ = θ1. But then type θ1 would have an incentive to deviate upward, because t ′ = t1 and

a′ > a1, and the indifference curve of θ1 is downward-sloping at that point.

Case 2. Now suppose that S(·) jumps down at some θ2 ∈ (θ p,θ p). As above, let

(S(θ−2 ), T (θ−2 )) = (a2, t2), and let θ1 be the type such that S(θ1) = ap and S(θ ) > ap for

all θ ∈ (θ1,θ2). Case 1 establishes that S(·) cannot jump up, so S(·) must be continuous

at θ1. Lemma 6 requires that θ2 ≥ q(ap, tp,θ1). Note also that for this to be an equilib-

rium, type θ2 weakly prefers (a2, t2) to (ap, tp), while type θ1 weakly prefers (ap, tp) to

(a2, t2). However, θ2 ≥ q(ap, tp,θ1) implies that θ2 > θmin(ap, tp). This would lead to a

contradiction, because Lemma 4(b) requires that whenever type θ2 weakly prefers (a2, t2)
to (ap, tp), type θ1 must strictly prefer (a2, t2).

Part (a). By part (b) and part (c), if J(ap) is not empty, we must have S′(θ j) > 0 and

S′(θ j) < 0. Therefore, there exists ε > 0 such that for any a ∈ (ap, ap + ε), Q(a) is a

pooling set. Using part (b) again, all types in [minQ(a), maxQ(a)] choose actions higher
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than or equal to a and cannot choose ap. This establishes that Q(ap) = Q L(ap) ∪ HR(ap),
with Q L(ap) = [θ p,θ j] and QR(ap) = [θ j,θ p]. Further, S′(θ j) > 0 implies that (ap, tp) ∈
SC(θ j). By Assumption 3, (ap, tp) is in the SC-domain for all types in Q L(ap). Similarly,

S′(θ j) < 0 implies that (ap, tp) ∈ RSC(θ j). So it must be in the RSC-domain for all types

in QR(ap).

Lemma 3 also implies that for any disconnected pooling set Q(ap), there are two limit

types that approaches ap from inside the interval (θ p,θ p), given by θ j and θ j, with θ j >

θmin(ap, tp) > θ j such that S(θ j
+) = S(θ j

−
) = ap. Moreover, m(ap, tp,θ j) = m(ap, tp,θ j).

Both θ j and θ j belong to Q(ap), and types in J(ap) choose actions higher than ap.

To obtain an LSHPP strategy, we need to ensure that maxQ(ap) = θ for some ap.

Lemma 7. If actions below any pooling action ap are off-path, then Q(ap) must include θ .

Proof. Lemma 3(a) and Lemma 5 establish that, regardless of whether Q(ap) is connected

or not, (ap, tp) ∈ RSC(θ p). Suppose θ p < θ , and let (S(θ p
+
), T (θ p

+
)) = (a1, t1). The

reverse single-crossing property implies a1 < ap. By continuity, type θ p must be indiffer-

ent between (ap, tp) and (a1, t1). But to prevent downward deviation from ap under D1

requires m(ap, tp,θ p)≥ m(ap, tp,θ p), which means that ap ≤ D(tp;θ p,θ p). By the double-

crossing property, whenever the higher type θ p is indifferent between (ap, tp) and (a1, t1),
the lower type θ p strictly prefers the lower action (a1, t1), a contradiction.

A.4. Below the gap

The argument thus far characterizes equilibrium above the gap. Below we deal with the

situation below the gap.

Lemma 8. Suppose S(θ ) = s∗(θ ) for θ ∈ (θ1,θ2). If S(·) jumps at θ2,

(a) Q(S(θ+2 )) is not a singleton.

(b) If m(s∗(θ−2 ),θ2,θ2) > 0, then S(θ+2 ) > s∗(θ−2 ); if m(s∗(θ−2 ),θ2,θ2) < 0, then S(θ+2 ) <
s∗(θ−2 ).

Proof. (a) If (s∗(θ ),θ ) ∈ SC(θ ), incentive compatibility requires s∗
′
(θ )> 0. Since T (θ ) =

θ under full separation, any incentive compatible solution must have m(s∗(θ ),θ ,θ ) > 0.

Suppose there is a jump at θ2 to S(θ+2 ) which is larger than S(θ−2 ). If Q(S(θ+2 )) is also a
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singleton, this cannot be incentive compatible because T (θ+2 ) = T (θ−2 ) = θ2 while S(θ+2 )>
S(θ−2 ). The same argument follows for the case where (s∗(θ ),θ ) ∈ RSC(θ ) and s∗

′
(θ )< 0.

(b) Suppose m(s∗(θ−2 ),θ2,θ2)> 0. In this case s∗(·) must be upward sloping at θ2, and

a type sightly below θ2 must have a higher marginal rate of substitution. By the double-

crossing property, their indifference curves never cross to the left of s∗(θ−2 ). Therefore, if

there exists S(θ+2 ) such that type θ2 is indifferent between (s∗(θ−2 ),θ2) and (S(θ+2 ), T (θ+2 )),
a type slightly below θ2 strictly prefers (S(θ+2 ), T (θ+2 )) and has an incentive to deviate. The

other case can be proved similarly.

Suppose there is some pooling at (a0, t0) where a0 = min{a : Q(a) is not a sigleton}.
Lemma 8 suggests that once an equilibrium starts from a fully separating segment s∗(·),
there are only two possibilities. First, there could be some θ0 such that s∗(θ0) = a0. Second,

s∗(·) could jump at θ0 to S(θ+0 ) = a0. The first possibility is ruled out because T (θ−0 ) = θ0

while t0 > θ0. This means that if there is an equilibrium in which full separation and

pooling coexist, there must be a jump at the point of transition between separation and

pooling.

Part (b) of the lemma states that if there is a jump when s∗(·) is upward sloping, the

jump must also be an upward jump. In other words, any jump must be in the same direction

as s∗(·) points to.

A.5. Equilibrium characterization

With all the preceding lemmas, we are now ready to complete the proof that any D1

equilibrium must be LSHPP.

First, if there is no fully separating region, i.e., θ0 = θ , then Q(S(θ ))must be a pooling

set. Let a0 = S(θ ) and t0 = T (θ ). By Lemma 3, no type in [θ0, maxQ(a0)] can choose

an action lower than a0. If there is any type who chooses an action slightly lower than

a0, it must be types above maxQ(a0), but this cannot be incentive compatible because

t0 <maxQ(a0). Since actions below a0 are off-path, Lemma 7 suggests θ ∈ Q(a0). Other

properties of LSHPP equilibrium follow directly from the lemmas, suggesting that if a0 is

in a pooling set, the equilibrium must LSHPP.

Now suppose that S(θ ) is a singleton and T (θ ) = θ , in which case S(·) = s∗(·) in a right

neighborhood of θ . Lemma 8 implies that S(·) = s∗(·) for all θ ∈ [θ ,θ] (the case of a fully

separating equilibrium), or S(·) must jump at some point. Note that the fully separating
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equilibrium is a special case of LSHPP equilibrium. If S(·) jumps at θ0 to a0 = S(θ+0 ), we

can apply the same argument as above to show that actions slightly below a0 are off-path.

This in turn implies that the equilibrium must be LSHPP.

B. Proof of Theorem 2

The existence proof consists of three parts. Let ζ(θ∗) represent the θE obtained at the end

of our algorithm starting from an initial state θ∗. We first establish continuity of ζ(·), which

in turn implies that ∆u(·) is also continuous. The second part establishes the existence of

θ∗ such that ∆u(θ∗) ≤ 0 (with strict inequality only if ζ(θ∗) = θ). The candidate solution

obtained from such θ∗ satisfies all the local incentive compatibility constraints. In the

final step, we show that the candidate solution satisfies global incentive compatibility and

constitutes an equilibrium.

B.1. Continuity

Under our algorithm, the solution switches from atomless pooling to mass pooling when

mθ (·)− m̂θ (·)p′(·) switches from positive to negative, and it switches back from mass pool-

ing to atomless pooling as soon as m(·)− m̂(·) turns from positive to zero. We can rewrite

equation (8) as

[m̂a(·)−ma(·)]σ′ + [m̂t(·)−mt(·)]τ′ =max
��

mθ (·)− m̂θ (·)p′
�

I (m (·) = m̂ (·)) , 0
	

,

which incorporates both atomless pooling and mass pooling. Let x = (p,σ,τ). For ease

of notation, we write

h̃(θ , x) := mθ (σ,τ,θ )− m̂θ (σ,τ, p)
f (θ )
f (p)

θ −τ
p−τ

,

h(θ , x) :=max
�

h̃ (θ , x) I (∆m(θ , x) = 0) , 0
	

.

where∆m(θ , x) := m(σ,τ,θ )− m̂(σ,τ, p). Together with (6) and (7), we obtain a system

of differential equations of the form x ′ = H(θ , x), where














p′ = f (θ )
f (p)

θ−τ
p−τ ,

σ′ = h(θ ,x)
m̂a(σ,τ,p)−ma(σ,τ,θ )+m(σ,τ,θ )[m̂t (σ,τ,p)−mt (σ,τ,θ )] ,

τ′ = m(σ,τ,θ )h(θ ,x)
m̂a(σ,τ,p)−ma(σ,τ,θ )+m(σ,τ,θ )[m̂t (σ,τ,p)−mt (σ,τ,θ )] .

We solve this system backwards from c1 = (θ∗, x∗(θ∗)), where x∗(θ∗) = (θ∗, D(θ∗;θ∗,θ∗),θ∗).

38



The initial value problem we consider is as follows:
(

x ′ = H(θ , x),

x(θB) = xB := (pB,τB,σB),

where (θB, xB) is an arbitrary initial state. Let y(·;θB, xB) denote the solution to this prob-

lem. By standard argument, y(·;θB, xB) is continuous with respect to the initial state in a

neighborhood of (θB, xB) if h(·, ·) is locally Lipschitz at (θB, xB).17

Suppose first that there is either mass pooling or atomless pooling in a neighborhood

of (θB, xB). If there is mass pooling, we have h(·, ·) = 0; if there is atomless pooling, we

have h(·, ·) = h̃(·, ·). In either case, h(·, ·) is locally Lipschitz at (θB, xB).

If there is a transition from atomless pooling to mass pooling at (θB, xB), we have

both h̃(θB, xB) = 0 and ∆m(θB, xB) = 0 by construction. In this case, h(·, ·) is still locally

Lipschitz at (θB, xB).

When there is a transition from mass pooling to atomless pooling, the indicator function

turns from 0 to 1, and h(·, ·) is discontinuous at (θB, xB) if h̃(θB, xB)> 0. To deal with this

case, consider an initial state (θB, xB) such that

∆m(θB, xB) = 0, h̃(θB, xB)> 0,

which represents a point of transition from mass pooling to atomless pooling.18 Pick an

arbitrary state x from a set X (θB) such that

X (θB) := {x :∆m(θB, x) = 0}.

By this definition, there is mass pooling in a neighborhood of (θB, x) if x ∈ X (θB). Define

θT (x) :=max {θ :∆m(θ , y(θ ;θB, x)) = 0}< θB,

for x ∈ X (θB) if it exists, and let Nδ(xB) := {x : ‖x − xB‖< δ}.

Lemma 9. For any ε > 0, there is a δ such that θT (x) exists and θB − θT (x) < ε for
x ∈ Nδ(xB)∩ X (θB).

17 The system is well defined except at θ∗ where p(θ∗) = τ(θ∗) = θ∗ is imposed by construction. In this

case, however, we can show p′(θ∗) = −1 and τ′(θ∗) = σ′(θ∗) = 0 for any θ∗. See Online Appendix E.
18 We can have a (non-generic) case with h̃(θB, xB) = 0 even when there is a transition from mass pooling

to atomless pooling. This occurs if ψ(·) and η(·) are tangent to each other at θB (and possibly over some

interval that contains θB). We can disregard this possibility because h(·, ·) is continuous in this case.
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Proof. We writeψ(·; x) andη(·; x) to denote their dependence on x . Recall that∆m(θB, x)>
0 is equivalent to ψ(θB; x) > η(θB; x), so that we consider a change in x which makes

ψ(·; x) go above η(·; x) evaluated at θB. Note also that h(θB, xB) > 0 is equivalent to

ψ′(θB; xB)> η′(θB; xB) and therefore thatψ(·; xB)< η(·; xB) in a left neighborhood of θB.

Then, since bothψ(·; x) and η(·; x) are continuous in x , for any ε > 0, we can find a δ > 0

such that ψ(θB − ε; x)< η(θB − ε; x) and ψ(θB; x)> η(θB; x) for x ∈ Nδ(xB)∩ X (θB). By

continuity of ψ(·) and η(·), θT (x) must lie in (θB − ε,θB).

The lemma shows that θT (x) converges to θB as x gets arbitrarily close to xB. Therefore,

the solution induced from (θB, x) also converges pointwise to the solution induced from

(θB, xB) as x → xB.

This completes the proof that the solution from our algorithm is continuous with re-

spect to the initial state. Suppose that (θB, xB) represents the first point of transition from

mass pooling to atomless pooling, so that continuity up to that point is ensured. This means

that x = y(θB;θ∗, x∗(θ∗)) is continuous in θ∗. Since y(·;θB, x) is also continuous in x , we

can ensure that the mapping ζ(·) consistently produces a θ0 which varies continuously

with θ∗.

B.2. Indifference at the gap

Recall that ∆u(·) is defined as

∆u(θ∗) = u(s∗(ζ(θ∗)),ζ(θ∗),ζ(θ∗))− u(σ(ζ(θ∗);θ∗),τ(ζ(θ∗);θ∗),ζ(θ∗)),

where for clarity we use (σ(·;θ∗),τ(·;θ∗)) to indicate the action-reputation pair induced

from boundary type θ∗. Since ζ(·) is continuous, ∆u(·) is also continuous.

Define z to be the boundary type such that ζ(z) = θ ; such type exists dues to continuity

of ζ(·). If ∆u(z)≤ 0, then (σ(·; z),τ(·; z)) with θ0 = θ constitute a candidate solution.

Now suppose ∆u(z) > 0. Note that ζ(θ ) = θ , and therefore σ(θ ;θ ) = D(θ ;θ ,θ ) <
s∗(θ ) (otherwise we can have a fully separating equilibrium) and τ(θ ;θ ) = θ . Assumption

4 implies that m(D(θ ;θ ,θ ),θ ,θ )> 0, and hence ((σ(θ ;θ ),τ(θ ;θ )) is strictly preferred to

(s∗(θ ),θ ). We therefore have ∆u(θ ) < 0. It then follows that there exists θ∗ ∈ (z,θ ) such

that ∆u(θ∗) = 0. For such θ∗, the solution (σ(·;θ∗),τ(·;θ∗)) with θ0 = ζ(θ∗) constitute a

candidate solution.
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B.3. Global incentive compatibility

Actions in [a∗, s∗(θ0)) ∪ [σ(θ0),σ(θ∗)] are on-path actions chosen by some types in equi-

librium. We first show that no type has an incentive to deviate to any on-path action.

Since (S(θ ), T (θ )) ∈ SC(θ ) for all θ ∈ [θ ,θ∗), local incentive compatibility implies

global incentive compatibility for types in [θ ,θ∗]. Consider next types in (θ∗,θ]. Any

action-reputation pair (σ(θ ),τ(θ )) belongs to RSC(p(θ )) for all p(θ ) ∈ (θ∗,θ]. According

to the reverse single-crossing property, local incentive compatibility implies global incen-

tive compatibility for action-reputation pairs in the RSC-domain, meaning that any type

p(θ ) ∈ (θ∗,θ] has no incentive to deviate to any action a ∈ [σ(θ0),σ(θ∗)]. For deviation

to (a, t) = (s∗(θ ′),θ ′) for some θ ′ < θ0, our earlier argument establishes that, for type

θ ∈ [θ0,θ∗],
u(a, t,θ )< u(σ(θ ),τ(θ ),θ )).

But m(σ(θ ),τ(θ ),θ ) = m(σ(θ ),τ(θ ), p(θ )) and the fact that the higher type p(θ ) has

more convex indifference curve than that of the lower type θ along the dividing line

D(·; p(θ ),θ ) means that the indifference curve of type p(θ ) passing through (σ(θ ),τ(θ ))
is everywhere above the indifference curve of type θ . Therefore, the above inequality

implies

u(a, t, p(θ ))< u(σ(θ ),τ(θ ), p(θ )).

In other words type p(θ ) ∈ (θ∗,θ] has no incentive to deviate to (a, t).

The remaining issue is deviation to some off-path action. For the following argument,

we refer to the indifference curve of type θ that passes through his equilibrium choice

(S(θ ), T (θ )) as the equilibrium indifference curve of type θ for brevity.

Case 1: Deviation to a < a∗. This case is relevant only when a∗ > 0, which implies

m(a∗,θ ,θ ) = 0. We have already shown that all types above θ strictly prefer their equilib-

rium choice to (a∗,θ ). So the equilibrium indifference curve of any type θ can cross that

of type θ at a point to the right of a∗ and from above. By condition (1) and Assumption

4, this implies that, for all a < a∗,

m(a,φ(a, u,θ ),θ )< m(a,φ(a, u,θ ),θ )< 0,

where u is the equilibrium utility of type θ . This means that any deviation to a < a∗ is at-

tributed to the lowest type under D1. Furthermore, since the marginal rate of substitution

is negative, if type θ prefers his equilibrium choice to (a∗,θ ), he will prefer his equilibrium

choice to (a,θ ) for a < a∗.
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Case 2: Deviation to a > σ(θ∗). At (σ(θ∗),θ∗), all types above θ∗ have a higher marginal

rate of substitution and moreover that their equilibrium indifference curves stay strictly

above that of type θ∗ for all a > σ(θ∗). This means that the belief assigned to any deviation

to an action higher than σ(θ∗) must be lower than θ∗. Since σ(θ∗) = D(θ∗;θ∗,θ∗) by

construction, Assumption 4 implies that, for all θ ,

m(σ(θ∗),θ∗,θ )≥ m(σ(θ∗),θ∗,θ∗)> 0,

and m(a,θ∗,θ ) > 0 for a > σ(θ∗). Thus no type can benefit from deviating to an action

higher than σ(θ∗).

Case 3: Deviation to a ∈ [s∗(θ0),σ(θ0)). Global incentive compatibility for on-path

actions means that the equilibrium indifference curve of any type (other than type θ0) is

strictly above the points (s∗(θ0),θ0) and (σ(θ0),τ(θ0)). For a type θ ∈ [θ ,θ∗], both points

are in SC(θ ), and therefore his equilibrium indifference curve must be entirely above that

of type θ0 for all a ∈ [s∗(θ0),σ(θ0)]. For a type p(θ ) ∈ (θ∗,θ], his equilibrium indifference

curve is entirely above that of type θ ∈ [θ0,θ∗], and is therefore also above that of type

θ0 for all a ∈ [s∗(θ0),σ(θ0)]. This means that any deviation to an action between s∗(θ0)
and σ(θ0) is attributed to type θ0 under D1. Moreover, incentive compatibility in the

SC-domain implies that s∗(·) is increasing at θ0. Together with the quasi-concavity of

u(·,θ0,θ0), this implies that m(a,θ0,θ0) > 0 for all a ∈ (s∗(θ0),σ(θ0)). Thus type θ0 has

no incentive to deviate to such a for no gain in reputation. It follows that no other type

has an incentive to deviate to such a either.
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