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Abstract

In this paper, we show that if every consumer in a pure exchange
economy has a quasi-linear utility function, then the normalized equi-
librium price is unique, and it is locally stable with respect to the
tâtonnement process. If the dimension of the consumption space is
two, then this result can be expressed by the corresponding partial
equilibrium model. Our study can be seen as that extends the re-
sults in partial equilibrium theory to economies with more than two
dimensional consumption space.
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1 Introduction

How many competitive equilibrium prices are there? Since Arrow and Debreu
(1954) showed that there is at least one equilibrium price, this issue had
become of great interest to economists. If the equilibrium price is unique,
then it would greatly increase the predictive accuracy of the model. However,
even in textbook-level examples, the economy can have multiple equilibria
(e.g., see exercise 15.B.6 of Mas-Colell, Whinston, and Green (1995)). In this
issue, economists had devided into two positions. The first position is one
that tries to guarantee the uniqueness of the equilibrium price by making
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strong assumptions about the economy, and the second position is one that
gives up the uniqueness of equilibrium prices. In particular, the position of
Arrow and Debreu were clearly divided on this matter.

Gerard Debreu took the latter position. He said that all the known condi-
tions for guaranteeing the uniqueness of equilibrium prices are “exceedingly
strong” (Debreu, 1972). On the other hand, he proved the Sonnenschein-
Mantel-Debreu theorem (Debreu, 1974). This theorem implies that any com-
pact set in positive orthant could be included in the set of equilibrium prices
when only the usual, widely accepted assumptions of economy were made.
Thus, without any assumptions that he said to be “exceedingly strong”, we
know nothing about the number of equilibria. The number of equilibria may
be one, a million, or infinity. To solve this problem, Debreu (1970) treated
purturbation of the economy by initial endowment vector, and showed that
in “almost all” economy, the number of equilibria is at least not infinite. This
result had been refined and developed into the theory of regular economy.

On the other hand, Kenneth Arrow took the former position. He treated
this problem in combination with another traditional problem, called the
theory of tâtonnement process. In 19th century, Walras (1874) explained
why equilibrium price is realized in the competitive equilibrium model as
follows. First, when the price is higher than the equilibrium price, then
supply will be high and demand will be low. This situation is called a state
of excess supply. In this situation, a lot of goods remain unsold and inventory
increases. Therefore, the price will go down. On the other hand, if the price
is lower than the equilibrium price, the opposite will occur: that is, demand
will be high and supply will be low. This situation is called a state of excess
demand. In this instance, there will be many sellouts and the price will be
high. As a result, the equilibrium price would attract the actual price, and
the economy tends to trade by the equilibrium price. This idea was refined
and expressed in differential equations, called tâtonnement process.

Arrow, Brock, and Hurwicz (1959) showed that if the excess demand
function is gross substitute, then any equilibrium price is a globally stable
steady state with respect to tâtonnement process. Because there can be only
one globally stable steady state, they actually showed simultaneously that
there is only one equilibrium price. Then, the next problem is to determine
the conditions of the economy under which the excess demand function satis-
fies the gross substitution. However, this problem has not yet been resolved.
As a result, Debreu’s view that “there is a little that can be said about
the number of equilibria in the general environment” is now common among
economists.

Meanwhile, there are two theories of equilibrium, the general equilibrium
theory and the partial equilibrium theory. The partial equilibrium theory has
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a foundation in general equilibrium theory, where there are only two types of
goods, numeraire good and traded good, and consumer’s utility function must
be quasi-linear (see Hayashi (2017)). Instead, in partial equilibrium model,
it is easy to show by drawing a diagram that there is only one equilibrium
price and this price is globally stable (see our section 2). In other words, in a
quasi-linear economy with two commodities, the equilibrium price is unique,
and it is globally stable with respect to the tâtonnement process.

The problem in this paper is to extend this result to a quasi-linear econ-
omy with more than two commodities. That is, the purpose of this study
is to see whether the above result holds when considering a general equilib-
rium model in which the utility remains quasi-linear and the dimension of
the consumption space may be more than two. The results are as follows:
first, the equilibrium price is unique in a pure exchange economy where all
consumers have a quasi-linear utility function. Second, this equilibrium price
is locally stable with respect to the tâtonnement process. Global stability
could not be derived in this paper. This is related to the inherent difficulty
of quasi-linear economies: see our discussion in subsection 3.5.

The structure of this paper is as follows. First, in order to help the readers
better understand the purpose of this study, we provide an explanation of
partial equilibrium theory and the general equilibrium model behind this
theory in section 2. In section 3, we first define pure exchange economy,
and then define the type of economy we call the “quasi-linear economy”.
There are two types of economies we call “quasi-linear economy”, one permits
negative consumption with respect to the numeraire good,1 and the other
assumes that the initial endowment of numeraire good is sufficiently large.
On the basis of the above preparations, we prove the main result. The proofs
are placed in section 4.

2 Motivation

Consider the classical partial equilibrium model. The market is described as
the following figure. (Figure 1)

The decreasing line is called the demand curve, and the increasing line
is called the supply curve. Two curves crosses at (p∗, x∗). p∗ is called
the equilibrium price, and x∗ is called the equilibrium output. In this
model, trade is done by equilibrium price, and the amount of traded com-
modity is determined by x∗.

1Note that, this is one of the traditional treatment of quasi-linear utility function. For
example, see the definition of the quasi-linear preference in Mas-Colell, Whinston, and
Green (1995).
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Figure 1: The Market

We explain the hidden structure that determines both curves. The hidden
structure is written by general equilibrium model with two commodities. The
first commodity is that is traded in this market, and the second commodity
is the money. We assume that the price of the money is always one. Let p
denote the price of the first commodity.

First, suppose that there are M suppliers of the first commodity, where
the cost function of i-th supplier is denoted by ci(xi). We assume that ci is
twice differentiable. Then, by first- and second-order necessary condition of
profit maximization, we must have,

p = c′i(xi), c′′i (xi) ≥ 0. (1)

The supply curve S(x) is determined as follows:

S(x) = p ⇔ ∃x1, ..., xM s.t. x =
M∑
i=1

xi, c′i(xi) = p.

If S ′(x) < 0, then c′′i (xi) < 0 for some i, which contradicts (1). Therefore,
we have that S ′(x) ≥ 0, and thus the supply curve is nondecreasing.

Second, suppose that there are N consumers, and every consumer has a
quasi-linear utility function: that is, the utility function Ui(xi, yi) is written as
ui(xi)+yi. We assume that Ui is strictly quasi-concave, which is equivalent to
the strict concavity of ui. Moreover, we assume that ui is twice continuously
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differentiable. By Lagrange’s first-order condition, if (x∗
i , y

∗
i ) maximizes the

utility, then there exists λ > 0 such that

u′
i(xi)− λp = 0,

1− λ = 0,

m− px+ y = 0,

which implies that λ = 1, and thus p = u′
i(xi). Now, because ui is strictly

concave, we have that u′
i is decreasing. Moreover, the demand curve D(x) is

determined by the following equation:

D(x) = p ⇔ x =
N∑
i=1

(u′
i)
−1(p),

which implies that D(x) is decreasing.
The above arguments says that S(x) is nondecreasing and D(x) is de-

creasing, and thus the equation D(x) = S(x) has at most one solution x∗.
Define p∗ = D(x∗) = S(x∗). Then, (p∗, x∗) is the unique equilibrium in this
market. Moreover, this is stable in Walras’ sense by the following reason.
Choose any p > p∗, and suppose that D(x̂) = S(x̄) = p. Then, by the above
arguments, we must have that x̂ < x̄. That is, this economy is in the state
of excess supply. Hence, we expect that price goes down. Meanwhile, choose
any p < p∗, and suppose that D(x̂) = S(x̄) = p. Then, we must have that
x̂ > x̄, and thus, this economy is in the state of excess demand. Hence, we
expect that price goes up. This arguments implies that the equilibrium price
has a power that attracts actual price, and thus this price is called stable,
and we can consider that p∗ is the realized price in long-run economy. In
conclusion, in quasi-linear economy with two commodities, the equilibrium
is unique and stable in Walras’ sense.

Is this result general in equilibrium theory? The answer is NO, even in
pure exchange economies. Debreu (1974) showed that for every compact
subset in {p ∈ Rn

++|∥p∥ = 1}, there exists a pure exchange economy in which
the set of equilibrium prices includes this set. Therefore, the uniqueness of the
equilibrium is broken. Moreover, even if there uniquely exists an equilibrium
price, this price may be unstable. Therefore, the above result is broken in
a general situation.

Meanwhile, Arrow, Brock, and Hurwicz (1959) showed that if the excess
demand function is gross substitute, then there uniquely exists an equilib-
rium price vector, and it is stable on the tâtonnement process. Therefore,
if the excess demand function is gross substitute, then the results in par-
tial equilibrium analysis revive. However, this result is criticized by Debreu
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(1972). Debreu said that the requirement of gross substitution is “exceed-
ingly strong”. Actually, there is no known natural assumption on an economy
under which the excess demand function becomes gross substitute.

Our next question is as follows: is the above result is general under quasi-
linear economy with more than two commodities? Our purpose is to
answer this question affirmatively. Consider a pure exchange economy, and
suppose that the utility function is quasi-linear for every consumer. The
purpose of this work is to show that there uniquely exists a normalized equi-
librium price vector, and it is locally stable on Walrasian tâtonnement
process. In other words, we will show that almost all results in partial equi-
librium theory also holds for every quasi-linear pure exchange economy.

3 Model and Results

3.1 Preliminary: General Setups of Pure Exchange
Economies

In this paper, for x, y ∈ RM , x ≥ y means xi ≥ yi for every i ∈ {1, ...,M},
and x ≫ y means xi > yi for every i ∈ {1, ...,M}, respectively. Define the
sets RM

+ = {x ∈ RM |x ≥ 0} and RM
++ = {x ∈ RM |x ≫ 0} as usual. If M = 1,

then we abbreviate this symbol, and simply write these set as R+ and R++.
The notation ej denote the j-th unit vector.

Let L ≥ 2. We call a quadruplet E = (N, (Ωi)i∈N , (Ui)i∈N , (ω
i)i∈N) a

pure exchange economy if,

(1) N = {1, ..., n} is a finite set of consumers,

(2) Ui : Ωi → R denotes the utility function of i-th consumer, where the
set Ωi ⊂ RL denotes the set of all possible consumption plans for i-th
consumer, and

(3) ωi ∈ Ωi denotes the initial endowment of i-th consumer.

Consider the following utility maximization problem:

max Ui(x),

subject to. x ∈ Ωi, (2)

p · x ≤ m,

where p ≫ 0 and m > 0. Let f i(p,m) denote the set of all solutions of
(2). This set-valued function f i(p,m) is called the demand function of
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consumer i. For given demand function f i, define

X i(p) = f i(p, p · ωi)− ωi.

This function is called the excess demand function of consumer i, and
the following function

ζ(p) =
∑
i∈N

X i(p)

is called the excess demand function in this economy. We call p∗ ∈ RL
++

an equilibrium price if 0 ∈ ζ(p∗).
If the demand function f i is single-valued and differentiable at (p,m),

then we can define

sijk(p,m) =
∂f i

j

∂pk
(p,m) +

∂f i
j

∂m
(p,m)f i

k(p,m).

The L × L matrix-valued function Sf i(p,m) = (sijk(p,m))Lj,k=1 is called the
Slutsky matrix.

Consider the following differential inclusion:

ṗj(t) ∈ ajζj(p(t)), pj(0) = p0j, j ∈ {1, ..., L}, (3)

where a1, ..., aL > 0 and p0 ∈ RL
++. This inclusion is called the tâtonnement

process in this economy E. We call a set I ⊂ R an interval if it is convex
and contains at least two different points. A function p : I → RL

++ is called
a solution of (3) if I is an interval including 0, p(t) is absolutely continuous
on any compact set C ⊂ I, p(0) = p0, and

ṗj(t) ∈ ajζj(p(t)),

for all j ∈ {1, ..., L} and almost all t ∈ I. It is well-known that if ζ is
single-valued and continuous, then every solution of (3) is continuously dif-
ferentiable.

An equilibrium price p∗ is called locally stable if there exists an open
neighborhood U of p∗ such that 1) for every p0 ∈ U , there exists a solution
p : I → RL

++ of (3) such that R+ ⊂ I, and 2) for every solution p : I → RL
++

of (3) such that R+ ⊂ I, limt→∞ p(t) = ap∗ for some a > 0. If we can choose
U = RL

++, then p∗ is called globally stable.
Finally, throughout this paper, the symbol Dh(x) refer to either the

Fréchet derivative of h at x or its transpose, whichever is more convenient.
We believe that there is no danger of causing confusion by this omission of
the transposition sign.
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3.2 Economies with Quasi-Linear Environments

We make assumptions for economies with quasi-linear environment. How-
ever, there are two styles on quasi-linear environment. The first style is in
Mas-Colell, Whinston, and Green (1995), in which the consumption space
Ωi is assumed to be RL−1

+ ×R. That is, in this style, consuming the negative
amount of the numeraire good is admitted.2 In the second style, we assume
that as usual Ωi = Rn

+, and the initial endowment of the numeraire good
is sufficiently large for every consumer. We treat both styles, and thus we
separates assumptions for these environments.

Throughout this paper, for every x ∈ RL, x̃ denotes (x1, ..., xL−1) ∈ RL−1.
Here, we make assumptions on economies with quasi-linear environment.

Assumption F. For every i ∈ N , Ωi = RL−1
+ × R, and the function Ui can

be written as follows:
Ui(x) = ui(x̃) + xL, (4)

where ui is continuous, nondecreasing, and concave on RL−1
+ . Moreover, ui

is twice continuously differentiable on RL−1
++ , Dui(x̃) ≫ 0, and the Hessian

matrix D2ui(x̃) is negative definite for every x̃ ∈ RL−1
++ .3

Assumption S1. For every i ∈ N , Ωi = RL
+ and the function Ui can be

written as (4), where ui is continuous, nondecreasing, and concave on RL−1
+ .

Moreover, ui is twice continuously differentiable on RL−1
++ , Dui(x̃) ≫ 0 and

the Hessian matrix D2ui(x̃) is negative definite for every x̃ ∈ RL−1
++ .

Assumption S2. Define

αi = sup

{
ui(x̃

i)− ui(ω̃
i)

∣∣∣∣∣∑
j∈N

(xj − ωj) = 0, Uj(x
j) ≥ Uj(ω

j) for every j ̸= i

}
.

Then, ωi
L > αi for every i ∈ N .4

Assumption Q. For every i ∈ N , p̃ ∈ RL−1
++ , and m > 0, the following

2If we consider that xL denotes the amount of money, the negative xL indicates a debt.
3This assumption is equivalent to the non-zero Gaussian curvature requirement of De-

breu (1972) for every indifference hypersurface of Ui passing through the interior of Ωi.
Debreu (1972) showed that this requirement is equivalent to the differentiability of the
demand function at any price and money such that every coordinate of the demand is
positive.

4For example, this assumption is satisfied if Assumption U holds and ωi
L > ui(ω̃) −

ui(ω̃
i) for every i ∈ N , where ω =

∑
j∈N ωj .
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problem

max ui(x̃)

subject to. x̃ ∈ RL−1
+ , (5)

p̃ · x̃ ≤ m

has an inner solution x̃∗ ≫ 0. Moreover, the equation

Dui(x̃) = p̃ (6)

also has an inner solution x̃+ ≫ 0. In addition, if ui(x̃) > ui(0), then ui is
strictly increasing on x̃+ RL−1

+ .5

Assumption U. ωi ∈ RL
+ \ {0} and

∑
i∈N ωi ≫ 0.

We call a pure exchange economy E that satisfies Assumptions F, Q, and
U a first-type quasi-linear economy, and that satisfies Assumptions S1,
S2, Q, and U a second-type quasi-linear economy, respectively. We call
E a quasi-linear economy if it is either a first-type quasi-linear economy
or a second-type quasi-linear economy.

3.3 Propositions

We first present several basic results on quasi-linear economies.

Proposition 1. Suppose that E is a quasi-linear economy. Then, for every
i ∈ N , f i is a single-valued continuous function. Moreover, if x = f i(p,m),
then x̃ ∈ RL−1

++ . Further, Walras’ law

p · f i(p,m) = m (7)

and homogeneity of degree zero

f i(ap, am) = f i(p,m) for all a > 0 (8)

hold.

Proposition 2. Suppose that E is a quasi-linear economy. If either E is
first-type or f i

L(p,m) > 0, then f i is continuously differentiable at (p,m),
and

∂f i
j

∂m
(p,m) =

{
0 if 1 ≤ j ≤ L− 1,
1
pL

if j = L.
(9)

5This requirement admits both ui(x) = (x1x2)
1/3 and ui(x) =

√
x1 +

√
x2.
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Proposition 3. Suppose that E is a quasi-linear economy, and fix (p,m) ∈
RL

++ × R++. Suppose also that either E is first-type or f i
L(p,m) > 0. Then,

the Slutsky matrix Sf i(p,m) satisfies the following three properties.

(R) The rank of Sf i(p,m) is L − 1. Moreover, pTSf i(p,m) = 0T and
Sf i(p,m)p = 0.

(ND) For every v ∈ RL such that v ̸= 0 and p · v = 0, vTSf i(p,m)v < 0.

(S) The matrix Sf i(p,m) is symmetric.

Recall that the definition of the excess demand function ζ:

ζ(p) =
∑
i∈N

X i(p) =
∑
i∈N

[f i(p, p · ωi)− ωi].

Because of Proposition 1, we have that ζ is a single-valued continuous func-
tion defined on RL

++.

Proposition 4. Suppose that E is a quasi-linear economy, and ζ is the
excess demand function of this economy. Then, this function ζ satisfies the
following Walras’ law

p · ζ(p) = 0, (10)

and the homogeneity of degree zero

ζ(ap) = ζ(p) for all a > 0. (11)

Moreover, there is at least one equilibrium price p∗ in this economy.

Proposition 5. Suppose that E is a second-type quasi-linear economy and
let p∗ be an equilibrium price of this economy. Then, f i

L(p
∗, p∗ · ωi) > 0 for

every i ∈ N .

3.4 Main Results

Suppose that E is a quasi-linear economy, and recall the tâtonnement process

ṗj(t) = ajζ(p(t)), pj(0) = p0j, (12)

where a1, ..., aL > 0 and p0 ∈ RL
++. Note that, because the excess demand

function ζ is single-valued in quasi-linear economies, the tâtonnement process
is not a differential inclusion but an ordinary differential equation in such
economies, and thus we can use usual techniques on ordinary differential
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equations. In particular, any solution p : I → RL
++ of (12) is continuously

differentiable.
We now complete the preparation of our main result.

Theorem 1. Suppose that E is a quasi-linear economy, and ζ is the excess
demand function of this economy. Choose any equilibrium price p∗ in this
economy. Then, every equilibrium price is proportional to p∗. Moreover, this
equilibrium price is locally stable.

3.5 Remarks on Global Stability of Equilibria

Actually, we want to show the global stability of an equilibrium price p∗.
That is, we want to show that for every p0 ∈ RL

++, there exists a solution
p(t) of (12) defined on R+, and for such a solution, limt→∞ p(t) exists and is
proportional to p∗. However, there are two hard tasks, and both could not
easily be solved.

First, suppose that p(t) is a solution of (12) for some p0 ∈ RL
++ defined

on R+. We want to show that limt→∞ p(t) exists. However, this problem
is difficult if p0 is too far from the half-line {ap∗|a > 0}, and we could not
prove this result. For example, we could not exclude the possibility that
the trajectory of p(t) consists of a cycle. If L = 2, then we can show that
such a case vanishes, because, by the intermediate value theorem, the sign of
ζ1(p1, p2) coincides with that of p2

p1
− p∗2

p∗1
. However, this is a too simple case,

and if L > 2, such a rough argument cannot be done.
The second problem is more serious. That is, we could not show the

existence of a solution p(t) of (12) defined on R+. The essential problem is
the following: because RL

++ is open, C ⊂ RL
++ may be not compact even if

it is bounded and closed in relative topology of RL
++. The existence of the

a solution of (12) whose trajectory is included in RL
++ is called the ‘viability

problem’. To solve this viability problem, we can use the strong boundary
condition of the excess demand function. Consider a pure exchange econ-
omy E such that the excess demand function ζ is a single-valued function.
We say that ζ satisfies the strong boundary condition if and only if for every
sequence (pk) on RL

++ such that pk → p ∈ RL
+ \ (RL

++ ∪ {0}) as k → ∞, if
J = {j|pj = 0}, then ∑

j∈J

ζj(p
k) → +∞.

If the set Ωi is bounded from below, then ζ usually satisfies the strong bound-
ary condition. Theorem 7 of Hosoya and Yu (2013) states that if ζ is single-
valued, continuous, and homogeneous of degree zero, and it satisfies Walras’
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law and the strong boundary condition, then there exists a solution of (12)
defined on R+. Therefore, if the economy E is second-type quasi-linear, then
we can solve the viability problem positively.

However, in first-type quasi-linear economies, there is no known method
for solving the viability problem. Therefore, it is hard to prove the existence
of a solution p(t) of (12) defined on R+, and thus the global stability is also
difficult to verify.

4 Proofs

4.1 Lemmas

In this subsection, we show several lemmas.
First, suppose that E is a first-type quasi-linear economy and choose any

s ≥ 0. Let
Ωs

i = RL−1
+ × [−s,+∞[.

Consider the modified economy Es = (N, (Ωs
i )i∈N , (Ui)i∈N , (ω

i)i∈N). Note
that a second-type quasi-linear economy can be treated as E0 for some first-
type quasi-linear economy E. Let f i

s be the demand function of consumer
i in the economy Es, and ζs be the excess demand function of the economy
Es.

Lemma 1. Suppose that E is a quasi-linear economy. Then, there exists a
continuously differentiable function x̃i : RL−1

++ → RL−1
++ such that

ỹ = x̃i(p̃) ⇔ Dui(ỹ) = p̃.

Proof. Let p̃ ∈ RL−1
++ . By Assumption Q, there exists a solution x̃∗ ∈ RL−1

++

of the following equation:
Dui(x̃) = p̃. (13)

Consider the following optimization problem:

max ui(x̃)− p̃ · x̃
subject to. x̃ ∈ RL−1

++ .

Because of either Assumption F or Assumption S1, we have that ui is strictly
concave on RL−1

++ , and thus 1) any solution of (13) is also a solution of this
problem, and 2) the solution of the above problem is unique. Therefore, x̃∗ is
the unique solution of the equation (13), and thus we can define x̃i(p̃) = x̃∗.
Because D2ui(x̃

∗) is negative definite, it is regular, and thus by the inverse
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function theorem, we have that x̃i(p̃) is continuously differentiable. This
completes the proof. ■

For any p̃ ∈ RL−1
++ and m ∈ R++, let

xi
L(p̃,m) = m− p̃ · x̃i(p̃).

Lemma 2. Suppose that E is a first-type quasi-linear economy and s ≥ 0,
and choose any (p,m) ∈ RL

++ × R++. Define (q, w) = p−1
L (p,m). Then,

f i(p,m) = (x̃i(q̃), xi
L(q̃, w)),

and if xi
L(q̃, w) ≥ −s, then

f i
s(p,m) = (x̃i(q̃), xi

L(q̃, w)).

Proof. By Assumption F, we have that ui(x̃) is strictly concave on RL−1
++ .

Because ui is continuous, it is concave on RL−1
+ , and thus Ui is concave on

Ωi.
Define

x∗ = (x̃i(q̃), xi
L(q̃, w)).

First, we show the latter claim of this lemma. Suppose that x∗
L ≥ −s. Then,

we have that x∗ ∈ Ωs
i . Moreover,

p · x∗ = pL(q̃ · x̃i(q̃) + xi
L(q̃, w)) = pLw = m.

By Lagrange’s multiplier rule, we have that x∗ ∈ f i
s(p,m). Suppose that

y∗ ∈ f i
s(p,m) and x∗ ̸= y∗. Then, Ui(x

∗) = Ui(y
∗). If x̃∗ = ỹ∗, then x∗

L = y∗L
by equation Ui(x

∗) = Ui(y
∗), which contradicts that x∗ ̸= y∗. Thus, we have

that x̃∗ ̸= ỹ∗. Define z(t) = (1 − t)x∗ + ty∗. Then, for every t ∈ [0, 1], we
have that p · z(t) ≤ m, and thus Ui(z(t)) ≤ Ui(x

∗). Because Ui is concave,
we have that Ui(z(t)) = Ui(x

∗) for all t ∈ [0, 1]. Set t1 = 1
2
and t2 = 1

4
, and

let z∗ = z(t1), z
+ = z(t2). Then, z̃

∗ ∈ RL−1
++ , p · z∗ ≤ m, and Ui(z

∗) = Ui(x
∗).

However, because ui is strictly concave on RL−1
++ , we have that

ui(z̃
+) >

1

2
ui(x̃

∗) +
1

2
ui(z̃

∗),

which implies that Ui(z
+) > Ui(x

∗). This contradicts that Ui(z
+) = Ui(x

∗).
Therefore, f i

s(p,m) = {x∗}, as desired.
Next, we show the former claim of this lemma. Clearly x∗ ∈ Ωi. Again by

Lagrange’s multiplier rule, we have that x∗ ∈ f i(p,m). If y∗ ∈ f i(p,m) and

13



x∗ ̸= y∗, then choose s > 0 so large that x∗, y∗ ∈ Ωs
i . Then, y∗ ∈ f i

s(p,m),
which is a contradiction. This completes the proof. ■

Lemma 3. Suppose that E is a first-type quasi-linear economy, and s ≥ 0.
Choose any (p,m) ∈ RL

++ × R++, and define

x∗ = (x̃i(p−1
L p̃), xi

L(p
−1
L p̃, p−1

L m)).

Suppose that x∗
L < −s. Let m̄ = m + pLs, and x̃+ ∈ RL−1

++ be a solution of
the problem

max ui(x̃)

subject to. x̃ ∈ RL−1
+ ,

p̃ · x̃ ≤ m̄,

and define x+
L = −s. Then, f i

s(p,m) = (x̃+, x+
L).

6

Proof. First, because of Assumption F, we have that ui is continuous and
strictly concave on RL−1

++ . Therefore, we have that if ỹ ∈ RL−1
+ and p̃ · ỹ ≤ m̄,

then either ỹ = x̃+ or ui(ỹ) < ui(x̃
+). Moreover, because ui is increasing

on RL−1
++ , we have that p̃ · x̃+ = m̄. Because f i(p,m) = x∗, we have that

Ui(x
∗) > Ui(x

+).
Suppose that there exists y+ ∈ Ωs

i such that x+ ̸= y+, p · y+ ≤ m and
Ui(y

+) ≥ Ui(x
+). Then, p̃ · ỹ+ ≤ m̄. If y+L = −s, then we have that ỹ+ ̸= x̃+,

and thus ui(ỹ
+) < ui(x̃

+), which is a contradiction. Therefore, we have that
y+L > −s, and there exists t ∈]0, 1[ such that for z+ = (1−t)x∗+ty+, z+L = −s.
Because ui is concave on RL−1

+ , we have that ui(z̃
+) ≥ (1− t)ui(x̃

∗)+ tui(ỹ
+),

which implies that Ui(z
+) > Ui(x

+), and thus ui(z̃
+) > ui(x̃

+). However,
p̃ · z̃+ ≤ m+ pLs = m̄, which contradicts the definition of x̃+. Thus, we have
that f i

s(p,m) = {x+}, as desired. This completes the proof. ■

Lemma 4. Suppose that a function ξ : RL
++ → RL satisfies the following

properties.

1) ξ is continuous and satisfies (10) and (11).

2) There exists s > 0 such that ξj(p) > −s for every p ∈ RL
++ and j ∈

{1, ..., L}.

3) If (pk) is a sequence of RL
++ such that pk → p ̸= 0 as k → 0 and the set

J = {j|pj = 0} is nonempty, then ∥ξ(pk)∥ → ∞ as k → ∞.

6Note that, the existence of such x̃+ is assumed in Assumption Q.
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Then, there exists p∗ such that ξ(p∗) = 0.

Proof. Omitted. See Proposition 17.C.1 of Mas-Colell, Whinston, and Green
(1995). ■

Lemma 5. Suppose that E is a first-type quasi-linear economy and either
s > 0, or s = 0 and ωi

L > 0 for all i ∈ N . Then, ζs is a single-valued function
that satisfies 1)-3) of Lemma 4.

Proof. By Lemmas 2-3, we have that f i
s is a single-valued function. Because

of Berge’s maximum theorem, we have that f i
s is continuous, and thus ζs is

also single-valued and continuous.
It is easy to prove that ζs satisfies (10) and (11), and thus we omit the

proof of this fact. Thus, ζs satisfies 1).
Because ζs(p) ≫ −

∑
i∈N ωi − (s+ 1, s+ 1, ..., s+ 1) for all p ∈ RL

++, we
have that ζs satisfies 2).

Therefore, it suffices to show that 3) holds for ζs. Suppose that (pk) is a
sequence of RL

++ such that pk → p ̸= 0 as k → 0 and the set J = {j|pj = 0}
is nonempty, but ∥ζs(pk)∥ ̸→ ∞. By taking a subsequence, we can assume
that ζs(p

k) → x for some x ∈ RL. Let xk = ζs(p
k) and xik = f i

s(p
k, pk · ωi).

Because xik is also bounded, we can assume that xik → xi as k → ∞.
Suppose that pL = 0. Because p · xi = p · ωi and

∑
i∈N ωi ≫ 0, we

have that there exists i such that xi
j > 0 for some j with pj > 0. Define

yi = xi − εej + eL, where ε > 0 is sufficiently small that Ui(y
i) > Ui(x

i).
Then, Ui(y

i) > Ui(x
ik) and pk·yi < pk·xik for some k, which is a contradiction.

Therefore, we have that pL > 0. Next, suppose that for some i, ui(x̃
i) =

ui(0). If s > 0, then because Ui(x
i) ≥ Ui(ω

i), we have that xi
L ≥ 0 > −s. If

s = 0 and ωi
L > 0, then by the same inequality, we have that xi

L > 0 = −s.

Therefore, in both cases, xi
L > −s. Fix any M > 2∥p̃∥

pL
. By Assumption

Q, there exists ỹ ∈ RL−1
++ such that ∂u

∂xj
(ỹ) > M for all j. Define vj =

yj∑L−1
ℓ=1 yℓ

for j = {1, ..., L − 1} and vL = − 2
pL
(p̃ · ṽ). Because ui is strictly

concave and increasing on RL−1
++ , we have that g(t) = ui(tṽ) is increasing and

limt↓0 g
′(t) > M . Thus, there exists t > 0 such that for yi = (0, xi

L) + tv,
Ui(y

i) > Ui(x
i), yiL > −s, and p·yi < p·xi. This implies that Ui(y

i) > Ui(x
ik)

and pk ·yi < pk ·xik for some k, which is a contradiction. Therefore, for every i,
ui(x̃

i) > ui(0). Choose any j such that pj = 0. Because ζs satisfies (10), there
exists i and ℓ such that pℓ > 0 and xi

ℓ > 0. Then, for yi = xi + ej − εeℓ, we
have that yiℓ > 0 and Ui(y

i) > Ui(x
i) if ε > 0 is sufficiently small. Because

p · yi < p · xi, we have that there exists k such that Ui(y
i) > Ui(x

ik) and
pk · yi < pk · xik, which is a contradiction. This completes the proof. ■
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Lemma 6. Suppose that E is a first-type quasi-linear economy. Then, there
exists s > 0 such that the following properties holds.

(i) The set of equilibrium prices in E coincides with that in Es.

(ii) For every equilibrium price p∗, mini f
i
L(p

∗, p∗ · ωi) > −s.

Proof. Let
ω =

∑
i∈N

ωi,

and choose s > 0 such that

s > max
i∈N

[ui(ω̃)− ui(0)].

Suppose that p∗ is an equilibrium price of E. Let xi = f i(p∗, p∗ ·ωi). Because∑
i∈N

xi = ω,

we have that x̃i ≤ ω̃, and thus, if xi
L ≤ −s, then

Ui(x
i) = ui(x̃

i) + xi
L ≤ ui(ω̃)− s < ui(0) ≤ Ui(ω

i),

which is a contradiction. Therefore, we have that xi
L > −s. By Lemma 2,

we have that f i
s(p

∗, p∗ · ωi) = xi, and thus p∗ is an equilibrium price of Es.
Conversely, suppose that p∗ is an equilibrium price of Es. Let xi =

f i
s(p

∗, p∗ · ωi). Then, by the same arguments as above, we can show that
xi
L > −s. By Lemma 2, we have that f i(p∗, p∗ · ωi) = xi, and thus p∗ is an

equilibrium price of E. This completes the proof. ■

Lemma 7. Suppose that ξ : RL
++ → RL is a continuous function, and define

S∗ = {p ∈ RL
++|∥p∥ = 1}.

Suppose also that ξ satisfies the following five properties:

1) The function ξ satisfies (10) and (11).

2) There exists s > 0 such that ξj(p) > −s for every p ∈ RL
++ and j ∈

{1, ..., L}.

3) If (pk) is a sequence of RL
++ such that pk → p ̸= 0 as k → 0 and the set

J = {j|pj = 0} is nonempty, then ∥ξ(pk)∥ → ∞ as k → ∞.
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4) If ξ(p) = 0, then ξ is continuously differentiable around p.

5) If ξ(p) = 0, then

χ(p) =

∣∣∣∣Dξ(p) p
pT 0

∣∣∣∣ ̸= 0.

Define E = ξ−1(0) ∩ S∗, and for p ∈ E,

index(p) =

{
+1 if (−1)Lχ(p) > 0,

−1 if (−1)Lχ(p) < 0.

Then, the set E is finite, and∑
p∈E

index(p) = +1.

Proof. Omitted. See Propositions 5.3.3, 5.3.4, and 5.6.1 of Mas-Colell
(1985).

4.2 Proof of Proposition 1

If E is first-type, then by Lemma 2, we have that f i is single-valued and
continuously differentiable, and f̃ i(p,m) ∈ RL−1

++ . If E is second-type, then

by Lemmas 2 and 3, f i is single-valued and f̃ i(p,m) ∈ RL−1
++ , and by Berge’s

maximum theorem, f i is continuous.
It is clear that f i is homogeneous of degree zero. Because Ui is locally

non-satiated, we have that f i satisfies Walras’ law. This completes the proof.
■

4.3 Proof of Proposition 2

Let Ω̃i denote the interior of Ωi. Suppose that x = f i(p,m) and either the
economy is first-type or xL > 0. Then, x ∈ Ω̃i, and because of Lemma 2,
we have that there exists an open neighborhood V of (p,m) such that if
(q, w) ∈ V , then

f i(q, w) = (x̃i(q−1
L q̃), xi

L(q
−1
L q̃, q−1

L w)).

Therefore, f i is continuously differentiable on V and (9) holds. This com-
pletes the proof. ■
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4.4 Proof of Proposition 3

First, choose an open neighborhood U of (p,m) such that f i is single-valued
and continuously differentiable on U . Because of Proposition 1, we have that

q · f i(q, w) = w

for every (q, w) ∈ U and

f i(ap, am) = f i(p,m)

for every a > 0. Hence, by differentiation,

f i
j(p,m) +

L∑
k=1

pk
∂f i

k

∂pj
(p,m) = 0,

p · ∂f
i

∂m
(p,m) = 1,

L∑
j=1

pj
∂f i

k

∂pj
(p,m) +m

∂f i
k

∂m
(p,m) = 0,

and thus we have

pTSf i(p,m) = 0T , Sf i(p,m)p = 0.

Second, for x = f i(p,m), define

Ex
i (q) = inf{q · y|Ui(y) ≥ Ui(x)}.

It is well known that Ex
i is concave and continuously differentiable around p,

and the following Shephard’s lemma holds:7

DEx
i (q) = f i(q, Ex

i (q)), Ex
i (p) = m.

Because f i is continuously differentiable around (p,m), to differentiate both
sides of the above equality, we have that

D2Ex
i (p) = Sf i(p,m).

Therefore, (S) holds because of Young’s theorem, and Sf i(p,m) is negative
semi-definite.

7See Lemma 1 of Hosoya (2020). Although this lemma assumes that Ωi = RL
+, the

proof of this result is still valid for the case in which Ωi = RL−1
+ × R.
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Third, let Ω̃i denote the interior of Ωi, and for y ∈ Ω̃i, define

gi(y) = DUi(y),

and for j, k ∈ {1, ..., L− 1}, define

aijk(y) =
∂gij
∂xk

(y)−
∂gij
∂xn

(y)gik(y).

The (L − 1) × (L − 1) matrix-valued function Agi(y) = (aijk(y))
L−1
j,k=1 is

called Antonelli matrix. Samuelson (1950) showed that if y = f i(q, w) ∈
Ω̃i, then Agi(y) is regular, and the inverse matrix of Agi(y) coincides with
(sijk(q, w))

L−1
j,k=1. By assumption of this proposition, we have that if x =

f i(p,m), then x ∈ Ω̃i, and thus, (R) holds. Moreover, because Sf i(p,m) is
symmetric, there exists an orthogonal matrix P such that

Sf i(p,m) = P T


λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ... λL

P,

where each λj ≤ 0 is an eigenvalue of Sf i(p,m). Because of (R), we have
that there exists exactly one j such that λj = 0, and λk < 0 whenever k ̸= j.
This implies that (ND) holds, which completes the proof. ■

4.5 Proof of Proposition 4

To show (10) and (11) is easy, and thus we omit its proof. If E is second-
type, then by Lemmas 4 and 5, there exists an equilibrium price p∗. Thus,
we assume that E is first-type. Take s > 0 that satisfies requirements in
Lemma 6. Then, by Lemmas 4 and 5, there exists p∗ such that ζs(p

∗) = 0,
which implies that p∗ is an equilibrium price in E. This completes the proof.
■

4.6 Proof of Proposition 5

First, note that if xi = f i(p∗, p∗ · ωi), then∑
i∈N

(xi − ωi) = 0.

Because p∗ · ωi ≤ p∗ · ωi, we must have Ui(x
i) ≥ Ui(ω

i). This implies that
ui(x̃

i) ≤ ui(ω̃
i)+αi < Ui(ω

i), and thus xi
L > 0. This completes the proof. ■
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4.7 Proof of Theorem 1

First, suppose that E = (N, (Ωi)i∈N , (Ui)i∈N , (ω
i)i∈N) is a second-type quasi-

linear economy. Let Ω̂i = RL−1
+ × R, and consider the alternative economy

Ê = (N, (Ω̂i)i∈N , (Ui)i∈N , (ω
i)i∈N). Then, Ê is a first-type quasi-linear econ-

omy, and E = Ê0. Let f
i (resp. f̂ i) be the demand function of i in economy

E (resp. Ê). Because of Lemma 2 and Proposition 5, we have that if p∗

is an equilibrium price of E, then there exists a neighborhood U of p∗ such
that f i(p, p · ωi) = f̂ i(p, p · ωi) for every p ∈ U . In particular, p∗ is also
an equilibrium price of Ê. Therefore, if the claim of this theorem holds for
first-type quasi-linear economies, then this theorem also holds for second-
type quasi-linear economies. Hence, we assume without loss of generality
that E is a first-type quasi-linear economy. By Lemma 2, we have that f i is
continuously differentiable.

We separate the proof into several steps. First, recall that

X i(p) = f i(p, p · ωi)− ωi.

Because f i is continuously differentiable, we have thatX i is also continuously
differentiable.

Step 1. For every p ∈ RL
++,

∂X i
j

∂pk
(p) =

{
sijk(p, p · ωi) if j ̸= L,

sijk(p, p · ωi)− Xi
k(p)

pL
if j = L.

(14)

Proof of Step 1. Let m = p · ωi. If j ̸= L, then by Proposition 2,

∂X i
j

∂pk
(p) =

∂f i
j

∂pk
(p,m) = sijk(p,m),

as desired. If j = L, then by Walras’ law (7),

X i
j(p) = f i

j(p, p · ωi) =
p · ωi

pL
− 1

pL
(p̃ · f̃ i(p,m)),

and because ∂f̃ i

∂m
(p,m) = 0, we have that for k ̸= L,

∂X i
j

∂pk
(p) =

ωi
k

pL
− f i

k(p,m)

pL
− 1

pL

(
p̃ · ∂f̃

i

∂pk
(p, p · ωi)

)
.
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Because of (R), we have that
∑L

ℓ=1 pℓsℓk(p,m) = 0, and thus,

sijk(p,m) = − 1

pL

(
p̃ · ∂f̃

i

∂pk
(p,m)

)
.

This implies that
∂X i

j

∂pk
(p) = sijk(p,m)− X i

k(p)

pL
,

as desired. Finally, suppose that j = k = L. Because of (R), we have that∑L
ℓ=1 s

i
jℓ(p,m)pℓ = 0, and because of (8), we have that X i(p) = X i(ap) for

a > 0. Therefore,
L∑

ℓ=1

∂X i
j

∂pℓ
(p)pℓ = 0.

Moreover,
L∑

ℓ=1

X i
ℓ(p)pℓ = p · ωi − p · ωi = 0.

Hence,

sijk(p,m) = − 1

pL

L−1∑
ℓ=1

sijℓ(p,m)pℓ,

and
L−1∑
ℓ=1

X i
ℓ(p)

pL
pℓ = −X i

k(p),

which implies that

∂X i
j

∂pk
(p) = − 1

pL

L−1∑
ℓ=1

∂X i
j

∂pℓ
(p)pℓ

= − 1

pL

L−1∑
ℓ=1

(
sijℓ(p,m)− X i

ℓ(p)

pL

)
pℓ

= sijk(p,m)− X i
k(p)

pL
,

as desired. This completes the proof of Step 1. ■

Step 2. Define S∗ = {p ∈ RL
++|∥p∥ = 1}. Then, there uniquely exists

p∗ ∈ S∗ that is an equilibrium price of this economy.
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Proof of Step 2. Choose s > 0 that satisfies all requirements in Lemma 6.
Then, ζ(p∗) = 0 if and only if ζs(p

∗) = 0. Because (11) holds, by Proposition
4, we have that there exists an equilibrium price p∗ ∈ S∗ in economy Es. Fix
such a p∗. By Lemma 2, there exists an open neighborhood U of p∗ such that
if p ∈ U , then ζs(p) = ζ(p). In particular, ζs is continuously differentiable
around p∗, and

Dζs(p
∗) = Dζ(p∗).

By Step 1, we have that for every v ̸= 0 with p∗ · v = 0,

vTDζ(p∗)v =
∑
i∈N

vTDX i(p∗)v =
∑
i∈N

vTSf i(p∗, p∗ · ωi)v < 0,

by (ND). Therefore, we have that8

(−1)L
∣∣∣∣Dζs(p

∗) p∗

(p∗)T 0

∣∣∣∣ > 0.

This implies that ζs satisfies assumptions 1)-5) of ξ in Lemma 7, and thus
the set E = ζ−1

s (0) ∩ S∗ is finite, and

index(p∗) = +1

for all p∗ ∈ S∗, where index(p∗) is defined in Lemma 7. This implies that E
is a singleton, as desired. This completes the proof of Step 2. ■.

Choose any equilibrium price p∗ in this economy. By Step 2, the set of
all equilibrium prices coincides with {ap∗|a > 0}.

Recall the tâtonnement process (12):

ṗj(t) = ajζj(p(t)), pj(0) = p0j.

We had assumed that a1, ..., aL > 0. Because p∗ is an equilibrium price in
this economy, we have that p∗ is a steady state of (12). Define

h(p) =
√

a−1
1 p21 + ...+ a−1

L p2L.

We note that h(p) satisfies all requirements of the norm. In particular, we
have that h(ap) = ah(p) for every p and a > 0, and thus Dh(p)p = h(p) if
p ̸= 0. Define

S(b) = {p ∈ RL
++|h(p) = h(bp∗)}.

8See Debreu (1952).
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Choose a sufficiently small ε > 0 such that if ∥v∥ ≤ ε and t ∈ [−1, 1], then
p∗ + tv ∈ RL

++. Define

S = {v ∈ RL|∥v∥ = ε, Dh(p∗)v = 0},

and

p(t, v) =
h(p∗)

h(p∗ + tv)
(p∗ + tv).

Step 3. Define m∗
i = p∗ · ωi and the following function

gi(t, v) =

{
1
t2
(p(t, v)− p∗) · (f i(p(t, v), p(t, v) · ωi)− f i(p∗,m∗

i )) if t ̸= 0,

vTDX i(p∗)v if t = 0.

Then, gi is continuous on [−1, 1]× S.

Proof of Step 3. Clearly, gi is continuous at (t, v) if t ̸= 0. Therefore, it
suffices to show that gi is continuous at (0, v) for all v ∈ S.

Choose any ε′ > 0. Note that, p(0, v) = p∗ and h is continuously differ-
entiable without 0. We can easily check that

∂p

∂t
(0, v) = v, (15)

∂p

∂vj
(0, v) = 0 for all j ∈ {1, ..., L}. (16)

Define
q(t, v) = ∥p(t, v)− (p∗ + tv)∥.

By (15) and (16), we have that q(0, v) = 0 and Dq(0, v) = 0T for all v ∈ S.
Hence, by the formula of finite increments, for all v ∈ S, there exists an open
and convex neighborhood Uv of (0, v) such that if (t′, v′), (t′′, v′′) ∈ Uv, then

|q(t′, v′)− q(t′′, v′′)| ≤ ε′∥(t′, v′)− (t′′, v′′)∥/2. (17)

We can assume without loss of generality that

Uv = {(t′, v′) ∈ [−1, 1]× S||t′| < 2δv, ∥v′ − v∥ < δv}.

Define
Wv = {v′ ∈ S|∥v′ − v∥ < δv}.

Then, (Wv) is an open covering of S, and thus, there exists a finite subcov-
ering (Wv1 , ...,WvM ). Let δ∗ = min{δv1 , ..., δvM}. Then, we have that

sup
t∈]0,δ∗]

q(t, v)

t
< ε′
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for all v ∈ S.
Fix any v ∈ S. Since f i(ap, am) = f i(p,m), we have that

f i(p(t, v), p(t, v) · ωi) = f i(p∗ + tv, (p∗ + tv) · ωi).

Define

ĝi(t, v) =
1

t
v · (f i(p∗ + tv, (p∗ + tv) · ωi)− f i(p∗,m∗

i )).

Then, by chain rule, we can easily show that there exists δ > 0 such that if
0 < |t| < δ and v ∈ S, then

|ĝi(t, v)− vTDX i(p∗)v| < ε′.

Therefore, if 0 < |t| < min{δ, δ∗}, we have that

|gi(t, v)− vTDX i(p∗)v| ≤ |gi(t, v)− ĝi(t, v)|+ |ĝi(t, v)− vTDX i(p∗)v|

<
1

t
ε′∥f i(p(t, v), p(t, v) · ωi)− f i(p∗,m∗

i )∥+ ε′

≤ (M + 1)ε′,

where M > 0 is some constant independent of (t, v).9 Let M∗ > 0 be the
operator norm of DX i(p∗). If ∥v − v′∥ <

√
ε′ and 0 ≤ |t| < min{δ, δ∗}, then

|gi(t, v′)− gi(0, v)| ≤ |gi(t, v′)− gi(0, v′)|+ |gi(0, v′)− gi(0, v)|
< (M +M∗ + 1)ε′.

Therefore, gi is continuous at (0, v). This completes the proof of Step 3. ■

Note that, because Sf i(p∗,m∗) satisfies (ND), by Step 1, we have that
maxv∈S

∑
i∈N gi(0, v) < 0. By Step 3, we have that if ε > 0 is sufficiently

small, then
∑

i∈N gi(t, v) < 0 for every t ∈ [−1, 1] and v ∈ S. Thus, we
assume without loss of generality that ε > 0 is so small that

∑
i∈N gi(t, v) < 0

for every t ∈ [−1, 1] and v ∈ S.

Step 4. There exists an open neighborhood U of p∗ such that if p0 ∈ U , then
there uniquely exists a solution p(t) of (12) defined on R+, and limt→∞ p(t) =

bp∗ for b = h(p0)
h(p∗)

.10

Proof of Step 4. First, suppose that p(t) is a solution defined on (12).
Then,

d

dt
(h(p(t)))2 =

L∑
j=1

a−1
j pj(t)ajζ(pj(t)) = 0,

9Use the formula of finite increments.
10In this case, ζ is continuously differentiable, and thus the solution (12) is automatically

unique by Picard-Lindelöf’s theorem.
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by Proposition 4. Therefore, we have that h(p(t)) = h(p0) for all t.
Next, let U = {p ∈ RL

++|h(p) = h(p∗), h(p − p∗) < ε′}, where ε′ > 0 is
so small that for all p ∈ U , there exists v ∈ S and t ∈ [0, 1] such that p is
proportional to p∗ + tv. Let W = {p ∈ RL

++|(h(p∗)/h(p))p ∈ U}. Define

V (p) = (h(p− (h(p)/h(p∗))p∗))2.

Then, by Step 3 and our succeeding arguments, we have that

d

dt
V (p(t)) < 0

for every solution p(t) of (12) such that p0 ∈ U . Because V (p) > 0 if p is not
proportional to p∗ and V (bp∗) = 0 for b > 0, we have that V is a Lyapunov
function of (12) on W ∩S(b). Therefore, if p0 ∈ W , then there uniquely exists

a solution p(t) of (12) defined on R+, and limt→∞ p(t) = bp∗ for b = h(p0)
h(p∗)

.
This completes the proof of Step 4. ■.

Steps 2 and 4 states our claim of Theorem 1 is correct. This completes
the proof. ■
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