Weak Monotone Comparative Statics

Yeon-Koo Che,! Jinwoo Kim,? Fuhito Kojima3

LColumbia University
2Seoul National University

3University of Tokyo

September 21, 2020

1/37



Motivation

o Comparative Statics: how predicted behavior changes as environment
changes.

e Monotone Comparative Statics: Topkis (1979, 1998) and Milgrom

and Shannon (1994) provide a method that captures essential properties
driving comparative statics.

» Since predictions are often nonunique, set order matters.
» Existing theory uses strong set order
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Strong Set vs Weak Set Order

o Consider a partial order (X, >), which induces set orders.
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Vx'e X' x" e X" X' vx"e X" X' nx" e X'

o Weak Set Order: X" >, X' if
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Strong Set vs Weak Set Order

o Consider a partial order (X, >), which induces set orders.

e Strong Set Order: X" >, X’ (both subsets of X) if
Vx'e X' x" e X" X' vx"e X" X' nx" e X'

o Weak Set Order: X" >, X' if
> X" >0 X' VX € X!, there exists x! € X" with x” > x'.
> X" > X VX" € X", there exists x' € X' with x' < x”.

- Strong set order implies weak set order.
[J The set M(t) := arg maxyex u(x; t) increases in t in the strong set

order if u satisfies MS conditions: single crossing in (x,t) and is
quasi-supermodular in x.

[J But beyond individual choices, MCS is difficult to achieve in the strong
set order (e.g., social choice, games, and matching)
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lllustration with Nash equilibria
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Figure: Failure of sMCS.

The MS conditions for payoffs guarantee monotonicity of best response.
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lllustration with Nash equilibria

X2

Figure: Failure of sSMCS.

But equilibria do not shift in the strong set order. They do shift
monotonically in the weak set order.
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What We Do

e We consider weak monotone comparative statics (wMCS)

> based on weak set order (cf. strong set order in MS and most others)
» weaker requirements; easier to satisfy

6/ 37



What We Do

e We consider weak monotone comparative statics (wMCS)

> based on weak set order (cf. strong set order in MS and most others)
» weaker requirements; easier to satisfy

@ Look for conditions for wMCS in the context of:

> Individual choices

» Pareto optimal choices
» Games

» Two-sided matching

6/ 37



What We Do

e We consider weak monotone comparative statics (wMCS)

> based on weak set order (cf. strong set order in MS and most others)
> weaker requirements; easier to satisfy
@ Look for conditions for wMCS in the context of:
» Individual choices
» Pareto optimal choices
» Games
» Two-sided matching
@ In the process, we make progress on
> existence of fixed points and Nash equilibria in games
> characterization and existence of stable matching in two-sided matching
@ Expand applications of game theory and matching: to allow for
indidviduals with incomplete preferences and multidivisional
organizations.
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Individual Choices

— characterizations along the lines of Milgrom and
Shannon (1994) and Quah and Strulovici (2007)

— Omitted due to time constraint
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Pareto Optimal Choices

8 /37



Pareto Optimal Choices

@ /: finite set of individuals
@ X: set of possible (social) choices; a poset with >
@ u; : X — R payoff function for i € I;
u = (u;) profile of payoff functions
@ P(u): set of Pareto optimal choices (POC) under u.

9/37



Pareto Optimal Choices

o [: finite set of individuals
@ X: set of possible (social) choices; a poset with >
@ u; : X — R payoff function for i € I;

u = (u;) profile of payoff functions

@ P(u): set of Pareto optimal choices (POC) under u.

» POC can be interpreted as individual choice by a single agent with
incomplete preferences (see Eliaz and Ok (2006))

9/37



Pareto Optimal Choices

I: finite set of individuals
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Pareto Optimal Choices

@ /: finite set of individuals

@ X: set of possible (social) choices; a poset with >
@ u; : X — R payoff function for i € I;

u = (u;) profile of payoff functions

P(u): set of Pareto optimal choices (POC) under u.

» POC can be interpreted as individual choice by a single agent with
incomplete preferences (see Eliaz and Ok (2006))

We identify sufficient conditions on u and v such that

P(u) <us P(v).

Does MS condition for individuals imply wMCS of POCs? Not without
additional condition.
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Example

@ Suppose X = (0,1).
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@ Unique Pareto optimum = %
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Example: after a single crossing dominating shift

@ Suppose X = (0,1).

A

/

V2
/O 3
1 1
0 7 5 1 X
@ Unique Pareto optimum = % — Pareto optimum falls!!
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wMCS of POC: one-dimensional X
If X is totally ordered, the condition is simple:

Theorem

Suppose
(i) X is compact and u and v are upper semicontinuous;
(i) v single-crossing dominates u.

Then, P(u) <us P(v). )
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wMCS of POC: one-dimensional X
If X is totally ordered, the condition is simple:

Theorem

Suppose
(i) X is compact and u and v are upper semicontinuous;
(i) v single-crossing dominates u.

Then, P(u) <us P(v).

@ In the example: If X = [0, 1], then

P(u) = {O' %} Sws %, 1} - P(V)

12 /37



Proof Sketch

Any x < inf P(u) is Pareto dominated under u

In particular, it is Pareto dominated by some x’ € P(u) (due to
compactness), so x’ > x;

@ & x Pareto dominated by x” under u,.

e By SCP, x Pareto dominated (by x’) under v

e inf P(u) <inf P(v).

Similar argument shows sup P(u) < sup P(v). With a little more care, the
result follows. [
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wMCS of POC: General X

Theorem
Suppose
(i) X is a convex, compact lattice

(ii) u and v are upper semicontinuous, concave, supermodular; and v
increasing-difference dominates u.

Then, P(u) <us P(v).
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- Supermodularity: cardinal strengthening of quasi-supermodularity

- Increasing differences: cardinal strengthening of single crossing

15 / 37



wMCS of POC: General X

Theorem
Suppose
(i) X is a convex, compact lattice

(ii) u and v are upper semicontinuous, concave, supermodular; and v
increasing-difference dominates u.

Then, P(u) <us P(v).

- Supermodularity: cardinal strengthening of quasi-supermodularity
- Increasing differences: cardinal strengthening of single crossing

@ Upshot: Conditions guaranteeing sMCS for individual choices give
wMCS for POCs, in a “well-behaved” environment.
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Proof Skech

We utilize our new characterization of POC.
Theorem (Che, Kim, Kojima and Ryan, 2020)

Given our conditions, x € P(u) if and only if there exists a sequence

{¢*}K_| of nonnegative welfare weights, ¢p¥ strictly positive, such that

x € XK(u) for all k =1, ..., K, where

x'eXk1(u

X%(u) := X and X¥(u) :=arg  max )Z(p,{‘u;(x'). =
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Given our conditions, x € P(u) if and only if there exists a sequence

{¢*}K_| of nonnegative welfare weights, ¢p¥ strictly positive, such that
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o Fix any sequence {¢*}. Apply MS result inductively to get
Pipey (u) == XK(u) <o XK(v) = Pipry (V).
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Proof Skech

We utilize our new characterization of POC.
Theorem (Che, Kim, Kojima and Ryan, 2020)

Given our conditions, x € P(u) if and only if there exists a sequence

{¢*}K_| of nonnegative welfare weights, ¢p¥ strictly positive, such that
x € XK(u) for all k =1, ..., K, where

X%(u) := X and X¥(u) :=arg  max )Zq)f‘u,-(x'). =

x'eXk1(u

o Fix any sequence {¢*}. Apply MS result inductively to get
Pipey (u) == XK(u) <o XK(v) = Pipry (V).
@ The result then follows since
P(u) = U P{¢k}(u) <ws U P{¢k}(v) = P(V).
{o*} {o*}
(Strong set order is NOT closed under U, but weak set order is.) [J
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Example

Let X = [0,6]2, I = {1,2} and
ui(x,y) = —=(x=1> = (y = 1>, w(x,y) =—-(x—4)>—(y - 1)
nlxy) =—(x=12=(y =42 wlxy)=—(x—4>%—(y—2)7>
y
T (6,6)
(1,4

P(u
> X

(0,0)
Figure: Failure of strong set monotonicity )
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Fixed Point Theorem and Applications
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Tarski-Zhou Fixed Point Theorem

Theorem (Tarski-Zhou)
Suppose

e X: a complete lattice

e F : X =2 X: non-empty, complete sublattice-valued, strong set
monotonic

Then, the fixed point set is nonempty and a complete lattice.
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New Fixed Point Theorem

Theorem (Tarski-Zhou)
Suppose
@ X: a complete lattice

e F: X = X: non-empty, complete sublattice-valued, strong set
monotonic

Then, the fixed point set is nonempty and a complete lattice.

Theorem (Li-CKK)
Suppose
@ X: partially ordered, and compact

e F: X = X: non-empty, compact-valued, (upper) weak set monotonic
e regularity: X (F) is non-empty.

Then, the fixed point set is nonempty and contains a maximal point.

@ Note: analogous for “lower weak set monotonicity”
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Comparison

Theorem (Tarski-Zhou)
Suppose
@ X: a complete lattice

e F: X = X: non-empty, complete sublattice-valued, strong set
monotonic

Then, the fixed point set is nonempty and a complete lattice.

Theorem (Li-CKK)

Suppose

@ X: partially ordered, and compact

e F: X == X: non-empty, compact-valued, (upper) weak set monotonic
o regularity: X (F) is non-empty.

Then, the fixed point set is nonempty and contains a maximal point.

@ Note: analogous for “lower weak set monotonicity”
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Comparison

Theorem (Tarski-Zhou)
Suppose
@ X: a complete lattice

e F: X = X: non-empty, complete sublattice-valued, strong set
monotonic

Then, the fixed point set is nonempty and a complete lattice.

Theorem (Li-CKK)

Suppose

@ X: partially ordered, and compact

e F: X == X: non-empty, compact-valued, (upper) weak set monotonic
o regularity: X (F) is non-empty.

Then, the fixed point set is nonempty and contains a maximal point.

@ Note: analogous for “lower weak set monotonicity”
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wMCS of Fixed Point Set
Let £(F) be the fixed point set of F.

Theorem (CKK)

Suppose X is compact, both F and G satisfy CKK conditions. If
G(x) >uws F(x) for all x, then E(G) >,us E(F).

@ analogous for “lower weak set monotonic.”

Theorem
With order continuity (satisfied if X is finite), a fixed point can be found
iterating F from a regular point (i.e., X} or X_).

@ But, can’t guarantee obtaining a maximal or minimal fixed point this
way. =
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Application: Games with Weak Strategic
Complementarities

I finite set of players
X: set of strategy profiles
B;: best response correspondence

o I'=(1,X,(Bj)ics) a game where
>
>
>
o I' is a game with weak strategic complementarity if

for each i, B; is. nonempty, compact valued and upper weak set monotonic
B = (B;) satisfies regularity.

v

v
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wMCS of Nash equilibria

Theorem

@ A game I' with weak strategic complementarities has a nonempty set of
Nash equilibria.

@ Suppose that I” and T are both games with weak strategic
complementarities, and B/(s_;) >yws Bj(s_;) for every i € I and

s €5_;. Then, NE(T') > yus NE(T).
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wMCS of Nash equilibria

Theorem
@ A game I' with weak strategic complementarities has a nonempty set of
Nash equilibria.

@ Suppose that I” and T are both games with weak strategic
complementarities, and B/(s_;) >yws Bj(s_;) for every i € I and

s €5_;. Then, NE(T') > yus NE(T).

@ Requirement weaker than standard “(quasi)supermodular’ games
(Milgrom and Shannon (1994))

@ Preferences don't need to be complete: B; can simply be Pareto
optimal choices (recall results before)
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Application: General Model of Two Sided Matching with
Contracts

o W: finite set of workers
@ F: finite set of firms

@ X: finite set of contracts; a contract x € X specifies a worker w and a
firm f and a contract term (salary).

e choice correspondence: C,(X’) are optimal choices by agent
ac€ FUW from X"

o stable allocation suitably defined—/ndividually Rational and No
Blocking.
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Conditions on C,
@ Weak Substitutability: the rejection correspondence

Ry(X")={Z:Z=X,\Y for some Y € C,(X")} is weak set
monotonic with “D" as order.
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Conditions on C,

@ Weak Substitutability: the rejection correspondence

Ry(X")={Z:Z=X,\Y for some Y € C,(X")} is weak set
monotonic with “D" as order.

@ Sensu: YeG (X )and Y C X' CX'=Y e G(X).

> Weaker than WARP = Sen’s & + Sen's .
» Sen's B: Y, Y € G(X'), Y e G(X"), X' c X" =Y e C(X")

> Relaxing Sen’s B accommodates incomplete preferences =

e cf. State of the art assumes a stronger version of 1 and WARP.
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Fixed Point Characterization of Stability

Build a tadtonnement-like operator: T (X', X") = (T1(X"), T2(X")), for
each (X', X") € 2% x 2%, where

T (X//) = {X e2X: X = X\V for some Y € RW(X”)}
To(X') = {X €2X: X = X\Y for some ¥ € Re(X)},

where Ry, and Rfr defined similarly to before.
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Fixed Point Characterization of Stability

Build a tadtonnement-like operator: T (X', X") = (T1(X"), T2(X")), for
each (X', X") € 2% x 2%, where

T (X//) = {X e2X: X = X\V for some Y € RW(X”)}
To(X') = {X €2X: X = X\Y for some ¥ € Re(X)},

where Ry, and Rfr defined similarly to before.

Theorem

Suppose C, satisfies Sen's « for all a. Then, Z is stable if and only if there
exists a fixed point (X', X”") of T such that Z € Ce(X') N Cw (X").

o cf. The state of art assumes WARP.
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Existence of Stability

Theorem

Suppose choice correspondences satisfy Sen’s « and weak substitutability.
Then, a stable allocation exists.
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Existence of Stability

Theorem

Suppose choice correspondences satisfy Sen’s « and weak substitutability.
Then, a stable allocation exists.

Proof Sketch.
o Define a partial order set (2X x 2X, >) with >= (D, C).
o Weak Substitutability: T is weak set monotonic.

o Fixed Point Theorem: T has a fixed point

By our characterization, a stable allocation exists. O

Remark: Gale-Shapley is an iterative version of Tarski that works for a
simple environment. We are generalizing it.
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weak MCS

Theorem

Suppose that a firm's choice correspondence becomes more permissive (in
set inclusion). Then, workers become better off and firms become worse
off in the weak set order sense (under original preferences).
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weak MCS

Theorem

Suppose that a firm's choice correspondence becomes more permissive (in
set inclusion). Then, workers become better off and firms become worse
off in the weak set order sense (under original preferences).

Proof Sketch.
@ Stable allocation = Fixed point of T
@ Change in choice = Change in T

@ Use Comparative statics of fixed points
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Applications:

@ Multidivisional organizations

@ Matching with Regional Constraints

31/37



Applications:

@ Multidivisional organizations

@ Matching with Regional Constraints

= Modelled by choice correspondences selecting Pareto optimal choices
among divisions or among hospitals within region:

31/37



Applications:

@ Multidivisional organizations

@ Matching with Regional Constraints

= Modelled by choice correspondences selecting Pareto optimal choices
among divisions or among hospitals within region:

Choice correspondence satisfies weak substitutability and Sen’s a while
violating WARP

31/37



Applications:

o

Q

Multidivisional organizations

Matching with Regional Constraints
Modelled by choice correspondences selecting Pareto optimal choices
among divisions or among hospitals within region:

Choice correspondence satisfies weak substitutability and Sen’s a while
violating WARP

Corollaries: Existence of stable allocations, comparative statics: when
the hiring constraint becomes more restrictive; all other firms benefit,
workers are hurt.

31/37



Conclusion
@ We propose weak monotone comparative statics (wMCS)
@ Requirement is weaker, so wider applicability

@ Analyzed: individual choices, Pareto optimal choices, games with weak
strategic complementarity, matching theory

@ Future Research:

» Weaker sufficient conditions for wMCS of Pareto optimal choices
> More applications
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Thank You!
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lllustration of Non-Exposed Pareto Optimum

@ u is Pareto optimal but not exposed.
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Faiulure of any iteration to reach a minimal fixed point

(1,1) (2,1) (3,1)

@ The minimal fixed point (2,2) cannot be reached from any iterative
application of F starting from (1,1).
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Violation of Sen’s B due to Preference Imcompleteness

@ A firm f with two divisions, J and ', and three workers w, w’, and w’.
@ Workers are all acceptable to § and ¢’ while w” =5 w'.
@ Constrained to hire at most one worker across the divisions.

@ No strict preferences over which division should hire a worker when both
divisions have applicants.

Cr({(w.0), (W', 87)}) = {{(w,é)}, {(w'. &)} }.
But Cr({(w,d), (w',8"), (w",8")}) = {{(w, )}, {(w", &)} }.
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