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Motivation

Comparative Statics: how predicted behavior changes as environment
changes.

Monotone Comparative Statics: Topkis (1979, 1998) and Milgrom
and Shannon (1994) provide a method that captures essential properties
driving comparative statics.

I Since predictions are often nonunique, set order matters.
I Existing theory uses strong set order
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Strong Set vs Weak Set Order

Consider a partial order (X ,≥), which induces set orders.

Strong Set Order: X ′′ ≥ss X
′ (both subsets of X ) if

∀x ′ ∈ X ′, x ′′ ∈ X ′′, x ′ ∨ x ′′ ∈ X ′′, x ′ ∧ x ′′ ∈ X ′.

Weak Set Order: X ′′ ≥ws X
′ if

I X ′′ ≥uws X
′ : ∀x ′ ∈ X ′, there exists x ′′ ∈ X ′′ with x ′′ ≥ x ′.

I X ′′ ≥lws X
′ : ∀x ′′ ∈ X ′′, there exists x ′ ∈ X ′ with x ′ ≤ x ′′.

- Strong set order implies weak set order.

� The set M(t) := arg maxx∈X u(x ; t) increases in t in the strong set
order if u satisfies MS conditions: single crossing in (x , t) and is
quasi-supermodular in x .

� But beyond individual choices, MCS is difficult to achieve in the strong
set order (e.g., social choice, games, and matching)
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Illustration with Nash equilibria

x2

x1

B1

B2x

Figure: Failure of sMCS.

The MS conditions for payoffs guarantee monotonicity of best response.
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Illustration with Nash equilibria
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Figure: Failure of sMCS.

But equilibria do not shift in the strong set order. They do shift
monotonically in the weak set order.
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What We Do

We consider weak monotone comparative statics (wMCS)

I based on weak set order (cf. strong set order in MS and most others)
I weaker requirements; easier to satisfy

Look for conditions for wMCS in the context of:
I Individual choices
I Pareto optimal choices
I Games
I Two-sided matching

In the process, we make progress on
I existence of fixed points and Nash equilibria in games
I characterization and existence of stable matching in two-sided matching

Expand applications of game theory and matching: to allow for
indidviduals with incomplete preferences and multidivisional
organizations.
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Individual Choices
— characterizations along the lines of Milgrom and
Shannon (1994) and Quah and Strulovici (2007)

— Omitted due to time constraint
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Pareto Optimal Choices
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Pareto Optimal Choices

I : finite set of individuals

X : set of possible (social) choices; a poset with ≥
ui : X → R payoff function for i ∈ I ;

u = (ui ) profile of payoff functions

P(u): set of Pareto optimal choices (POC) under u.

I POC can be interpreted as individual choice by a single agent with
incomplete preferences (see Eliaz and Ok (2006))

We identify sufficient conditions on u and v such that

P(u) ≤ws P(v).

Does MS condition for individuals imply wMCS of POCs? Not without
additional condition.
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Example

Suppose X = (0, 1).

0 11
2 x

u1

u2

Unique Pareto optimum = 1
2 .
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Example: after a single crossing dominating shift

Suppose X = (0, 1).

v2

v1

0 11
2

1
4 x

Unique Pareto optimum = 1
4 — Pareto optimum falls!!
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wMCS of POC: one-dimensional X

If X is totally ordered, the condition is simple:

Theorem

Suppose

(i) X is compact and u and v are upper semicontinuous;

(ii) v single-crossing dominates u.

Then, P(u) ≤ws P(v).

In the example: If X = [0, 1], then

P(u) = {0, 1
2} ≤ws { 1

4 , 1} = P(v).
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Proof Sketch

Any x < inf P(u) is Pareto dominated under u

In particular, it is Pareto dominated by some x ′ ∈ P(u) (due to
compactness), so x ′ > x ;

⇔ x Pareto dominated by x ′ under u,.

By SCP, x Pareto dominated (by x ′) under v

inf P(u) ≤ inf P(v).

Similar argument shows supP(u) ≤ supP(v). With a little more care, the
result follows. �
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wMCS of POC: General X

Theorem

Suppose

(i) X is a convex, compact lattice

(ii) u and v are upper semicontinuous, concave, supermodular; and v
increasing-difference dominates u.

Then, P(u) ≤ws P(v).
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(ii) u and v are upper semicontinuous, concave, supermodular; and v
increasing-difference dominates u.

Then, P(u) ≤ws P(v).

- Supermodularity: cardinal strengthening of quasi-supermodularity

- Increasing differences: cardinal strengthening of single crossing

Upshot: Conditions guaranteeing sMCS for individual choices give
wMCS for POCs, in a “well-behaved” environment.
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Proof Skech

We utilize our new characterization of POC.

Theorem (Che, Kim, Kojima and Ryan, 2020)

Given our conditions, x ∈ P(u) if and only if there exists a sequence
{φk}Kk=1 of nonnegative welfare weights, φK strictly positive, such that
x ∈ X k(u) for all k = 1, ...,K , where

X 0(u) := X and X k(u) := arg max
x ′∈X k−1(u)

∑
i

φk
i ui (x

′). ⇒

Fix any sequence {φk}. Apply MS result inductively to get

P{φk}(u) := XK (u) ≤ss X
K (v) =: P{φk}(v).

The result then follows since

P(u) =
⋃
{φk}

P{φk}(u) ≤ws

⋃
{φk}

P{φk}(v) = P(v).

(Strong set order is NOT closed under ∪, but weak set order is.) �
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Example

Let X = [0, 6]2, I = {1, 2} and

u1(x , y) = −(x − 1)2 − (y − 1)2, u2(x , y) = −(x − 4)2 − (y − 1)2

v1(x , y) = −(x − 1)2 − (y − 4)2, v2(x , y) = −(x − 4)2 − (y − 2)2.

x

y

P(u)

P(v)

(4, 4)

(1, 1)

(1, 4)

(4, 2)

(4, 1)

(0, 0)

(6, 6)

Figure: Failure of strong set monotonicity
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Fixed Point Theorem and Applications
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Tarski-Zhou Fixed Point Theorem

Theorem (Tarski-Zhou)

Suppose

X : a complete lattice

F : X ⇒ X : non-empty, complete sublattice-valued, strong set
monotonic

Then, the fixed point set is nonempty and a complete lattice.

19 / 37



New Fixed Point Theorem

Theorem (Tarski-Zhou)

Suppose

X : a complete lattice

F : X ⇒ X : non-empty, complete sublattice-valued, strong set
monotonic

Then, the fixed point set is nonempty and a complete lattice.

Theorem (Li-CKK)

Suppose

X : partially ordered, and compact

F : X ⇒ X : non-empty, compact-valued, (upper) weak set monotonic

regularity: X+(F ) is non-empty.

Then, the fixed point set is nonempty and contains a maximal point.

Note: analogous for “lower weak set monotonicity”
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Comparison

Theorem (Tarski-Zhou)
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X : a complete lattice
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wMCS of Fixed Point Set

Let E(F ) be the fixed point set of F .

Theorem (CKK)

Suppose X is compact, both F and G satisfy CKK conditions. If
G (x) ≥uws F (x) for all x , then E(G ) ≥uws E(F ).

analogous for “lower weak set monotonic.”

Theorem

With order continuity (satisfied if X is finite), a fixed point can be found
iterating F from a regular point (i.e., X+ or X−).

But, can’t guarantee obtaining a maximal or minimal fixed point this
way. ⇒
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Application: Games with Weak Strategic
Complementarities

Γ = (I ,X , (Bi )i∈I ) a game where
I I : finite set of players
I X : set of strategy profiles
I Bi : best response correspondence

Γ is a game with weak strategic complementarity if
I for each i , Bi is. nonempty, compact valued and upper weak set monotonic
I B = (Bi ) satisfies regularity.
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wMCS of Nash equilibria

Theorem
1 A game Γ with weak strategic complementarities has a nonempty set of

Nash equilibria.

2 Suppose that Γ′ and Γ are both games with weak strategic
complementarities, and B ′i (s−i ) ≥uws Bi (s−i ) for every i ∈ I and
s−i ∈ S−i . Then, NE(Γ′) ≥uws NE(Γ).

Requirement weaker than standard “(quasi)supermodular” games
(Milgrom and Shannon (1994))

Preferences don’t need to be complete: Bi can simply be Pareto
optimal choices (recall results before)
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Application: General Model of Two Sided Matching with
Contracts

W : finite set of workers

F : finite set of firms

X : finite set of contracts; a contract x ∈ X specifies a worker w and a
firm f and a contract term (salary).

choice correspondence: Ca(X ′) are optimal choices by agent
a ∈ F ∪W from X ′:

stable allocation suitably defined—Individually Rational and No
Blocking.
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Conditions on Ca

1 Weak Substitutability: the rejection correspondence
Ra(X ′) = {Z : Z = X ′a \ Y for some Y ∈ Ca(X ′)} is weak set
monotonic with “⊃” as order.

2 Sen’s α: Y ∈ Ca(X ′′) and Y ⊂ X ′ ⊂ X ′′ ⇒ Y ∈ Ca(X ′).

I Weaker than WARP = Sen’s α + Sen’s β.

I Sen’s β: Y ,Y ′ ∈ Ca(X ′),Y ∈ Ca(X ′′),X ′ ⊂ X ′′ ⇒ Y ′ ∈ Ca(X ′′)

I Relaxing Sen’s β accommodates incomplete preferences ⇒

• cf. State of the art assumes a stronger version of 1 and WARP.
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Fixed Point Characterization of Stability

Build a tâtonnement-like operator: T (X ′,X ′′) = (T1(X ′′),T2(X ′)), for
each (X ′,X ′′) ∈ 2X × 2X , where

T1(X
′′) = {X̃ ∈ 2X : X̃ = X\Ỹ for some Ỹ ∈ RW (X ′′)},

T2(X
′) = {X̃ ∈ 2X : X̃ = X\Ỹ for some Ỹ ∈ RF (X

′)},

where RW and RF defined similarly to before.

Theorem

Suppose Ca satisfies Sen’s α for all a. Then, Z is stable if and only if there
exists a fixed point (X ′,X ′′) of T such that Z ∈ CF (X

′) ∩ CW (X ′′).

cf. The state of art assumes WARP.
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Existence of Stability

Theorem

Suppose choice correspondences satisfy Sen’s α and weak substitutability.
Then, a stable allocation exists.

Proof Sketch.

Define a partial order set (2X × 2X ,≥) with ≥= (⊃,⊂).
Weak Substitutability: T is weak set monotonic.

Fixed Point Theorem: T has a fixed point

By our characterization, a stable allocation exists.

Remark: Gale-Shapley is an iterative version of Tarski that works for a
simple environment. We are generalizing it.
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weak MCS

Theorem

Suppose that a firm’s choice correspondence becomes more permissive (in
set inclusion). Then, workers become better off and firms become worse
off in the weak set order sense (under original preferences).

Proof Sketch.

Stable allocation = Fixed point of T

Change in choice ⇒ Change in T

Use Comparative statics of fixed points
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Applications:

1 Multidivisional organizations

2 Matching with Regional Constraints

⇒ Modelled by choice correspondences selecting Pareto optimal choices
among divisions or among hospitals within region:

Choice correspondence satisfies weak substitutability and Sen’s α while
violating WARP

Corollaries: Existence of stable allocations, comparative statics: when
the hiring constraint becomes more restrictive; all other firms benefit,
workers are hurt.
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Choice correspondence satisfies weak substitutability and Sen’s α while
violating WARP

Corollaries: Existence of stable allocations, comparative statics: when
the hiring constraint becomes more restrictive; all other firms benefit,
workers are hurt.

31 / 37



Conclusion

We propose weak monotone comparative statics (wMCS)

Requirement is weaker, so wider applicability

Analyzed: individual choices, Pareto optimal choices, games with weak
strategic complementarity, matching theory

Future Research:
I Weaker sufficient conditions for wMCS of Pareto optimal choices
I More applications
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Thank You!
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Illustration of Non-Exposed Pareto Optimum

U

u

φ = (1, 0)

1

1

u is Pareto optimal but not exposed.
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Faiulure of any iteration to reach a minimal fixed point

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2)

(3, 2)

The minimal fixed point (2, 2) cannot be reached from any iterative
application of F starting from (1, 1).
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Violation of Sen’s β due to Preference Imcompleteness

A firm f with two divisions, δ and δ′, and three workers w , w ′, and w ′′.

Workers are all acceptable to δ and δ′ while w ′′ �δ′ w
′.

Constrained to hire at most one worker across the divisions.

No strict preferences over which division should hire a worker when both
divisions have applicants.

Cf ({(w , δ), (w ′, δ′)}) = {{(w , δ)}, {(w ′, δ′)}}.
But Cf ({(w , δ), (w ′, δ′), (w ′′, δ′)}) = {{(w , δ)}, {(w ′′, δ′)}}.

Return

37 / 37



Li (2014), Fleiner (2003), Che et al. (2020), Tarski (1955), Zhou (1994)

37 / 37


