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Abstract

We introduce a methodology for online estimation of smoothing expectations for
a class of additive functionals, in the context of a rich family of diffusion processes
(that may include jumps) – observed at discrete-time instances. We overcome the
unavailability of the transition density of the underlying SDE by working on the
augmented pathspace. The new method can be applied, for instance, to carry out
online parameter inference for the designated class of models. Algorithms defined
on the infinite-dimensional pathspace have been developed the last years mainly in
the context of MCMC techniques. There, the main benefit is the achievement of
mesh-free mixing times for the practical time-discretised algorithm used on a PC.
Our own methodology sets up the framework for infinite-dimensional online filtering
– an important positive practical consequence is the construct of estimates with vari-
ance that does not increase with decreasing mesh-size. Besides regularity conditions,
our method is, in principle, applicable under the weak assumption – relatively to
restrictive conditions often required in the MCMC or filtering literature of methods
defined on pathspace – that the SDE covariance matrix is invertible.
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1 Introduction

Research in Hidden Markov Models (HMMs) has – thus far – provided effective online

algorithms for the estimation of expectations of the smoothing distribution for the case of

a class of additive functionals of the underlying signal. Such methods necessitate knowledge

of the transition density of the Markovian part of the model between observation times.

We carry out a related exploration for the (common in applications) case when the signal

corresponds to a diffusion process, thus we are faced with the challenge that such transition

densities are typically unavailable. Standard data augmentation schemes that work with

the multivariate density of a large enough number of imputed points of the continuous-time

signal will lead to ineffective algorithms. The latter will have the abnormal characteristic

that – for given Monte-Carlo iterates – the variability of the produced estimates will increase

rapidly as the resolution of the imputation becomes finer. One of the ideas underpinning the

work in this paper is that development of effective algorithms instead requires respecting

the structural properties of the diffusion process, thus we build up imputation schemes on

the infinite-dimensional diffusion pathspace itself. As a consequence, the time-discretised

algorithm used in practice on a PC will be stable under mesh-refinement.

We consider continuous-time jump-diffusion models observed at discrete-time instances.

The dx-dimensional process, X = {Xt; t ≥ 0}, dx ≥ 1, is defined via the following time-

homogeneous stochastic differential equation (SDE), with Xt− := lims↑tXt,

dXt = b(Xt−)dt+ σ(Xt−)dWt + dJt, X0 = x0 ∈ Rdx , t ≥ 0. (1.1)

Solution X is driven by the dw-dimensional Brownian motion, W = {Wt; t ≥ 0}, dw ≥ 1,

and the compound Poisson process, J = {Jt; t ≥ 0}. The SDE involves a drift function

b = bθ : Rdx 7→ Rdx and coefficient matrix σ = σθ : Rdx 7→ Rdx×dw , for parameter θ ∈ Rp,

p ≥ 1. Let {Nt; t ≥ 0} be a Poisson process with intensity function λθ(·), and {ξk}k≥1

i.i.d. sequence of random variables with Lebesgue density hθ(·); the càdlàg process J is

determined as Jt = Jt,θ =
∑Nt

i=1 ξi. We work under standard assumptions (e.g. linear

growth, Lipschitz continuity for b, σ) that guarantee a unique global solution of (1.1), in a
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weak or strong sense, see e.g. Øksendal and Sulem (2007).

SDE (1.1) is observed with noise at discrete-time instances 0 = t0 < t1 < t2 < · · · < tn,

n ≥ 1. Without loss of generality, we assume equidistant observation times, with ∆ :=

t1 − t0. We consider data Yt0 , . . . , Ytn , and for simplicity we set,

xi := Xti , yi = Yti , 0 ≤ i ≤ n.

Let Fi be a filtration generated by Xs for s ∈ [ti−1, ti], 0 < i ≤ n. We assume,

[
Yti
∣∣ {Ytj ; j < i}, {Xs; s ∈ [0, ti]}

]
∼ gθ

(
dYti

∣∣Yti−1
,Fi
)
, 0 ≤ i ≤ n, (1.2)

for conditional distribution gθ(·|Yti−1
,Fi) on Rdy , dy ≥ 1, under convention Yt−1 = y−1 = ∅.

We write,

[xi |xi−1 ] ∼ fθ(dxi|xi−1), (1.3)

where fθ(dxi|xi−1) is the transition distribution of the driving SDE process (1.1). We

consider the density functions of gθ(dyi|yi−1,Fi) and fθ(dxi|xi−1), and – with some abuse

of notation – we write gθ(dyi|yi−1,Fi) = gθ(yi|yi−1,Fi)dyi, fθ(dxi|xi−1) = fθ(xi|xi−1)dxi,

where dyi, dxi denote Lebesgue measures. Our work develops under the following regime.

Assumption 1. The transition density fθ(x
′|x) is intractable; the density gθ(y

′|y,F) is

analytically available – for appropriate x′, x, y′, y, F consistent with preceding definitions.

The intractability of the transition density fθ(·|·) will pose challenges for the main problems

this paper aims to address.

Models defined via (1.1)-(1.3) are extensively used, e.g., in finance and econometrics, for

instance for capturing the market microstructure noise, see Aı̈t-Sahalia et al. (2005); Aı̈t-

Sahalia and Yu (2008); Hansen and Lunde (2006). The above setting belongs to the general

class of HMMs, with a signal defined in continuous-time. See Cappé et al. (2005); Douc

et al. (2014) for a general treatment of HMMs fully specified in discrete-time. A number of

methods have been suggested in the literature for approximating the unavailable transition
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density – mainly in the case of processes without jumps – including: asymptotic expansion

techniques (Aı̈t-Sahalia et al., 2005; Aı̈t-Sahalia, 2002, 2008; Kessler, 1997); martingale

estimating functions (Kessler and Sørensen, 1999); generalized method of moments (Hansen

and Scheinkman, 1993); Monte-Carlo approaches (Wagner, 1989; Durham and Gallant,

2002; Beskos et al., 2006). See, e.g., Kessler et al. (2012) for a detailed review.

For a given sequence {am}m, we use the notation ai:j := (ai, . . . , aj), for integers i ≤ j.

Let pθ(y0:n) denote the joint density of y0:n. Throughout the paper, pθ(·) is used generically

to represent probability distributions or densities of random variables appearing as its

arguments.

Consider the maximum likelihood estimator (MLE),

θ̂n := arg max
θ∈Θ

log pθ(y0:n).

Except for limited cases, one cannot obtain the MLE analytically for HMMs (even for

discrete-time signal) due to the intractability of pθ(y0:n).

We have set up the modelling context for this work. The main contributions of the

paper in this setting – several of which relate with overcoming the intractability of the

transition density of the SDE, and developing a methodology that is well-posed on the

infinite-dimensional pathspace – will be as follows:

(i) We present an online algorithm that delivers Monte-Carlo estimators of smoothing

expectations,

Sθ,n =

∫
Sθ(x0:n)pθ(dx0:n|y0:n), n ≥ 1, (1.4)

for the class of additive functionals Sθ(·) of the structure,

Sθ(x0:n) =
n∑
k=0

sθ,k(xk−1,xk), (1.5)

under the conventions x−1 = ∅, x0 = x0. The bold type notation xk, k ≥ 0, is

reserved for carefully defined variables involving elements of the infinite-dimensional

pathspace. The specific construction of xk will depend on the model at hand, and will
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be explained in the main part of the paper. We note that the class of additive func-

tionals considered supposes additivity over time, and therefore includes the general

case of evaluating the score function. The online solution of the smoothing problem

is often used as the means to solve some concrete inferential problems - see, e.g., (ii)

below.

(ii) We take advantage of the new approach to show numerical applications, with em-

phasis on carrying out online parameter inference for the designated class of models

via a gradient-ascent approach (in a Robbins-Monro stochastic gradient framework).

A critical aspect of this particular online algorithm (partly likelihood based, when

concerned with parameter estimation; partly Bayesian, with regards to identification

of filtering/smoothing expectations) is that it delivers estimates of the evolving score

function, of the model parameters, together with particle representations of the fil-

tering distributions, through a single passage of the data. This is a unique favourable

algorithmic characteristic, when constrasted with alternative algorithms with similar

objectives, such as, e.g., Particle MCMC (Andrieu et al., 2010), or SMC2 (Chopin

et al., 2013).

(iii) In this work, we will not characterise analytically the size of the time-discretisation

bias relevant to the SDE models at hand, and are content that: (I) the bias can be

decreased by increasing the resolution of the numerical scheme (typically an Eyler-

Maruyama one, or some other Taylor scheme, see e.g. Kloeden and Platen (2013)); (II)

critically, the Monte-Carlo algorithms are developed in a manner that the variance

does not increase (in the limit, up to infinity) when increasing the resolution of the

time-discretisation method; to achieve such an effect, the algorithms are (purposely)

defined on the infinite-dimensional pathspace, and SDE paths are only discretised

when implementing the algorithm on a PC (to allow, necessarily, for finite computa-

tions).

(iv) Our method draws inspiration from earlier works, in the context of online filtering

for discrete-time HMMs and infinite-dimensional pathspace MCMC methods. The
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complete construct is novel; one consequence of this is that it is applicable, in prin-

ciple, for a wide class of SDEs, under the following weak assumption (relatively to

restrictive conditions often imposed in the literature of infinite-dimensional MCMC

methods).

Assumption 2. The diffusion covariance matrix function,

Σθ(v) := σθ(v)σθ(v)> ∈ Rdx×dx ,

is invertible, for all relevant v, θ.

Thus, the methodology does not apply as defined here only for the class of hypoelliptic

SDEs.

An elegant solution to the online smoothing problem posed above in (i), for the case of

a standard HMM with discrete-time signal of known transition density fθ(x
′|x), is given in

Del Moral et al. (2010); Poyiadjis et al. (2011). Our own work overcomes the unavailability

of the transition density in the continuous-time scenario by following the above literature

but augmenting the hidden state with the complete continuous-time SDE path. Related

augmentation approaches in this setting – though for different inferential objectives – have

appeared in Fearnhead et al. (2008); Ströjby and Olsson (2009); Gloaguen et al. (2018),

where the auxiliary variables are derived via the Poisson estimator of transition densities

for SDEs (under strict conditions on the class of SDEs; no jumps), introduced in Beskos

et al. (2006), and in Särkkä and Sottinen (2008) where the augmentation involves indeed the

continuous-time path (the objective therein is to solve the filtering problem and the method

is applicable for SDEs with additive Wiener noise; no jump processes are considered).

A Motivating Example: Fig. 1.1 shows estimates of the score function, evaluated at

the true parameter value θ = θ†, for parameter θ3 of the Ornstein–Uhlenbeck (O–U) process,

dXt = θ1(θ2−Xt)dt+θ3dWt, X0 = 0.0, for n = 10 observations yi = xi+εi, εi
i.i.d∼ N (0, 0.12),

1 ≤ i ≤ n. Data were simulated from θ† = (0.5, 0.0, 0.4) with an Euler-Maruyama scheme

of M † = 1, 000 grid points per unit of time. Fig. 1.1 illustrates the ‘abnormal’ effect of a

standard data-augmentation scheme, where for N = 100 particles, the Monte-Carlo method
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(see later sections for details) produces estimates of increasing variability as algorithmic

resolution increases with M = 10, 50, 100, 200 – i.e., as it approaches the ‘true’ resolution

used for the data generation.

Figure 1.1: Boxplots of estimated score functions of θ3 for the O–U process over R = 50
experiment replications. N = 100 particles were used in all cases, for the same n = 10
data-points.

The rest of the paper is organised as follows. Section 2 reviews the Forward-Only

algorithm for the online approximation of expectations of a class of additive functionals

described in Del Moral et al. (2010). Section 3 sets up the framework for the treatment

of pathspace-valued SDEs, first for the conceptually simpler case of SDEs without jumps,

and then proceeding with incorporating jumps. Section 4 provides the complete online

approximation algorithm, constructed on the infinite-dimensional pathspace. Section 5

discusses the adaptation of the developed methodology for the purposes of online inference

for unknown parameters of the given SDE model. Section 6 shows numerical applications

of the developed methodology. Section 7 contains conclusions and directions for future

research.

2 Forward-Only Smoothing

A bootstrap filter (Gordon et al., 1993) is applicable in the continuous-time setting, as it

only requires forward sampling of the underlying signal {Xt}t≥0; this is trivially possible
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– under numerous approaches – and is typically associated with the introduction of some

time-discretisation bias (Kloeden and Platen, 2013). However, the transition density is still

required for the smoothing problem we have posed in the Introduction. In this section, we

assume a standard discrete-time HMM, with initial distribution pθ(dx0), transition density

fθ(x
′|x), and likelihood gθ(y|x), for appropriate x, x′ ∈ Rdx , y ∈ Rdy , and review the

online algorithm developed in Del Moral et al. (2010) for this setting. Implementation of

the bootstrap filter provides an approximation of the smoothing distribution pθ(dx0:n|y0:n)

by following the geneology of the particles. This method is studied, e.g., in Cappe (2009);

Dahlhaus and Neddermeyer (2010). Let {x(i)
0:n,W

(i)
n }Ni=1, N ≥ 1, be a particle approximation

of the smoothing distribution pθ(dx0:n|y0:n), in the sense that we have the estimate,

p̂θ(dx0:n|y0:n) =
N∑
i=1

W (i)
n δ

x
(i)
0:n

(dx0:n),
N∑
i=1

W (i)
n = 1, (2.1)

with δ
x
(i)
0:n

(dx0:n) the Dirac measure with an atom at x
(i)
0:n. Then, replacing pθ(x0:n|y0:n) with

its estimate in (2.1) provides consistent estimators of expectations of the HMM smoothing

distributions. Though the method is online and the computational cost per time step is

O(N), it typically suffers from the well-documented path-degeneracy problem – as illus-

trated via theoretical results or numerically (Del Moral et al., 2010; Kantas et al., 2015).

That is, as n increases, the particles representing pθ(dx0:n|y0:n) obtained by the above

method will eventually all share the same ancestral particle due to the resampling steps,

and the approximation collapses for big enough n. This is well-understood not to be a

solution to the approximation of the smoothing distribution for practical applications.

An approach which overcomes path-degeneracy is the Forward Filtering Backward

Smoothing (FFBS) algorithm of Doucet et al. (2000). We briefly review the method here,

following closely the notation and development in Del Moral et al. (2010). In the for-

ward direction, assume that a filtering algorithm (e.g. bootstrap) has provided a particle

approximation of the filtering distribution pθ(dxk−1|y0:k−1) – assuming a relevant k –,

p̂θ(dxk−1|y0:k−1) =
N∑
i=1

W
(i)
k−1δx(i)k−1

(dxk−1), (2.2)
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for weighted particles {x(i)
k−1,W

(i)
k−1}Ni=1. In the backward direction, assume that one is given

the particle approximation of the marginal smoothing distribution pθ(dxk|y0:n),

p̂θ(dxk|y0:n) =
N∑
i=1

W
(i)
k|nδx(i)k

(dxk). (2.3)

One has that (Kitagawa, 1987),

pθ(dxk−1:k|y0:n) = pθ(dxk|y0:n)⊗ pθ(dxk−1|xk, y0:k−1)

= pθ(dxk|y0:n)⊗ pθ(dxk−1|y0:k−1)
fθ(xk|xk−1)∫

fθ(xk|xk−1)pθ(xk−1|y0:k−1)dxk−1

. (2.4)

Using (2.2)-(2.3), and based on equation (2.4), we obtain the approximation,

p̂θ(dxk−1:k|y0:n) =
N∑
j=1

W
(j)
k|n

N∑
i=1

fθ(x
(j)
k |x

(i)
k−1)W

(i)
k−1∑N

l=1 fθ(x
(j)
k |x

(l)
k−1)W

(l)
k−1

δ
(x

(i)
k−1,x

(j)
k )

(dxk−1:k). (2.5)

Recalling the expectation of additive functionals in (1.4)-(1.5) – where now, in the discrete-

time setting, we can ignore the bold xk elements, and simply use xk instead – the above

calculations give rise to the following estimator of the target quantity Sθ,n in (1.5),

Ŝθ,n =
n∑
k=0

∫
sθ,k(xk−1, xk) p̂θ(dxk−1:k|y0:n).

To be able to apply the above method, the marginal smoothing approximation in (2.3) is

obtained via a backward recursive approach. In particular, starting from k = n (where the

approximation is provided by the standard forward particle filter), one proceeds as follows.

Given k, the quantity for k − 1 is directly obtained by integrating out xk in (2.5), thus we

have,

p̂θ(dxk−1|y0:n) =
N∑
i=1

W
(i)
k−1|nδx(i)k−1

(dxk−1),
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for the normalised weights,

W
(i)
k−1|n ∝

N∑
j=1

W
(j)
k|n

fθ(x
(j)
k |x

(i)
k−1)W

(i)
k−1∑N

l=1 fθ(x
(j)
k |x

(l)
k−1)W

(l)
k−1

.

Notice that – in this version of FFBS – the same particles {x(i)
k }Ni=1 are used in both

directions (the ones before resampling at the forward filter), but with different weights.

An important development made in Del Moral et al. (2010) is transforming the above

offline algorithm into an online one. This is achieved by consideration of the sequence of

instrumental functionals,

Tθ,0(x0) = sθ,0(x0); Tθ,n(xn) :=

∫
Sθ,n(x0:n)pθ(dx0:n−1|y0:n−1, xn), n ≥ 1.

Notice that, first,

Sθ,n =

∫
Tθ,n(xn)pθ(dxn|y0:n).

We also have that,

Tθ,n(xn) =

∫ [
Tθ,n−1(xn−1) + sθ,n(xn−1, xn)

]
pθ(dxn−1|y0:n−1, xn)

≡
∫ [
Tθ,n−1(xn−1) + sθ,n(xn−1, xn)

]
fθ(xn|xn−1)pθ(dxn−1|y0:n−1)∫

fθ(xn|xn−1)pθ(dxn−1|y0:n−1)
, (2.6)

– see Proposition 2.1 of Del Moral et al. (2010) for a (simple) proof. This recursion provides

an online – forward-only – advancement of FFBS for estimating the smoothing expectation

of additive functionals. The complete method is summarised in Algorithm 1: one key

ingredient is that, during the recursion, values of the functional Tθ,n(xn) are only required

at the discrete positions x
(i)
n determined by the forward particle filter.

In the SDE context, under Assumption 1, the transition density fθ(·|·) is considered

intractable, thus Algorithm 1 – apart from serving as a review of the method in Del Moral

et al. (2010) – does not appear to be practical in the continuous-time case.
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Algorithm 1 Online Forward-Only Smoothing (Del Moral et al., 2010)

(i) Initialise particles {x(i)
0 ,W

(i)
0 }Ni=1, with x

(i)
0

iid∼ pθ(dx0), W
(i)
0 ∝ gθ(y0|x(i)

0 ), and func-

tionals T̂θ,0(x
(i)
0 ) = sθ,0(x

(i)
0 ), for 1 ≤ i ≤ N .

(ii) Assume that at time n− 1, one has a particle approximation {x(i)
n−1,W

(i)
n−1}Ni=1 of the

filtering law pθ(dxn−1|y0:n−1) and estimators T̂θ,n−1(x
(i)
n−1) of Tθ,n−1(x

(i)
n−1), for 1 ≤ i ≤

N .

(iii) At time n, sample x
(i)
n , for 1 ≤ i ≤ N , from the mixture (Gordon et al., 1993),

x(i)
n ∼ p̂θ(xn|y0:n) =

N∑
j=1

W
(j)
n−1fθ(xn|x

(j)
n−1),

and assign particle weights W
(i)
n ∝ gθ(yn|x(i)

n ), 1 ≤ i ≤ N .

(iv) Then set, for 1 ≤ i ≤ N ,

T̂θ,n(x(i)
n ) =

∑N
j=1W

(j)
n−1fθ(x

(i)
n |x(j)

n−1)∑N
l=1W

(l)
n−1fθ(x

(i)
n |x(l)

n−1)

[
T̂θ,n−1(x

(j)
n−1) + sθ,n(x

(j)
n−1, x

(i)
n )
]
.

(v) Obtain an estimate of Sθ,n as,

Ŝθ,n =
N∑
i=1

W (i)
n T̂θ,n(x(i)

n ).

3 Data Augmentation on Diffusion Pathspace

To overcome the intractability of the transition density fθ(·|·) of the SDE, we will work with

an algorithm that is defined in continuous-time and makes use of the complete SDE path-

particles in its development. The new method has connections with earlier works in the

literature. Särkkä and Sottinen (2008) focus on the filtering problem for a class of models

related to (1.1)-(1.3), and come up with an approach that requires the complete SDE path,

for a limited class of diffusions with additive noise and no jumps. Fearnhead et al. (2008)

also deal with the filtering problem, and – equipped with an unbiased estimator of the

unknown transition density – recast the problem as one of filtering over an augmented space
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that incorporates the randomness for the unbiased estimate. The method is accompanied

by strict conditions on the drift and diffusion coefficient (one should be able to transform

the SDE – no jumps – into one of unit diffusion coefficient; the drift of the SDE must have

a gradient form). Our contribution requires, in principle, solely the diffusion coefficient

invertibility Assumption 2; arguably, the weakened condition we require stems from the

fact that our approach appears as the relatively most ‘natural’ extension (compared to

alternatives) of the standard discrete-time algorithm of Del Moral et al. (2010).

The latter discrete-time method requires the density fθ(x
′|x) = fθ(dx

′|x)/dx′. In

continuous-time, we obtain an analytically available Radon-Nikodym derivative of pθ(dx
′|x),

for a properly defined variate x′ that involves information about the continuous-time path

for moving from x to x′ within time ∆. We will give the complete algorithm in Section 4.

In this section, we prepare the ground via carefully determining x′ given x, and calculating

the relevant densities to be later plugged in into our method.

3.1 SDEs with Continuous Paths

We work first with the process with continuous sample-paths, i.e. of dynamics,

dXt = bθ(Xt)dt+ σθ(Xt)dWt. (3.1)

We adopt an approach motivated by techniques used for MCMC algorithms (Chib et al.,

2004; Golightly and Wilkinson, 2008; Roberts and Stramer, 2001). Assume we are given

starting point x ∈ Rdx , ending point x′ ∈ Rdx , and the complete continuous-time path for

the signal process in (3.1) on [0, T ], for some T ≥ 0. That is, we now work with the path

process,

[
{Xt; t ∈ [0, T ]}

∣∣X0 = x,XT = x′
]
. (3.2)
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Let Pθ,x,x′ denote the probability distribution of the pathspace-valued variable in (3.2). We

consider the auxiliary bridge process X̃ = {X̃t; t ∈ [0, T ]} defined as,

dX̃t =
{
bθ(X̃t) +

x′ − X̃t

T − t

}
dt+ σθ(X̃t)dWt, X̃0 = x, t ∈ [0, T ], (3.3)

with corresponding probability distribution Qθ,x,x′ . Critically, a path of X̃ starts at point

x and finishes at x′, w.p. 1. Under regularity conditions, Delyon and Hu (2006) prove that

probability measures Pθ,x,x′ , Qθ,x,y are absolutely continuous with respect to each other.

We treat the auxiliary SDE (3.3) as a transform from the driving noise to the solution,

whence a sample path, X, of the process X̃ = {X̃t; t ∈ [0, T ]}, is produced by a mapping –

determined by (3.3) – of a corresponding sample path, say Z, of the Wiener process. That

is, we have set up a map, and – under Assumption 2 – its inverse,

Z 7→ X =: Fθ(Z;x, x′), Z = F−1
θ (X;x, x′). (3.4)

More analytically, F−1
θ is given via the transform,

dZt = σθ(Xt)
−1
{
dXt − bθ(Xt)dt−

x′ −Xt

T − t
dt
}
.

In this case we define,

x′ := (x′, Z),

and the probability measure of interest is,

pθ(dx
′|x) := fθ(dx

′|x)⊗ pθ(dZ|x′, x). (3.5)

Let W be the standard Wiener probability measure on [0, T ]. Due to the 1–1 transform,

we have that,
pθ(dZ|x′, x)

W(dZ)
≡ dPθ,x,x′
dQθ,x,x′

(Fθ(Z;x, x′)),

so it remains to obtain the density dPθ,x,x′/dQθ,x,x′ .

Such a Radom-Nikodym derivative has been object of interest in many works. Delyon
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and Hu (2006) provided detailed conditions and a proof, but (seemingly) omit an expression

for the normalising constant which is important in our case, as it involves the parameter

θ – in our applications later in the paper, we aim to infer about θ. Papaspiliopoulos et al.

(2013); Papaspiliopoulos and Roberts (2012) provide an expression based on a conditioning

argument for the projection of the probability measures on [0, t), t < T , and passage to the

limit t ↑ T . The derivations in Delyon and Hu (2006) are extremely rigorous, so we will

make use the expressions in that paper. Following carefully the proofs of some of their main

results (Theorem 5, together with Lemmas 7, 8) one can indeed retrieve the constant in

the deduced density. In particular, Delyon and Hu (2006) impose the following conditions.

Assumption 3. (i) SDE (3.1) admits a strong solution;

(ii) v 7→ σθ(v) is in C2
b (i.e., twice continuously differentiable and bounded, with bounded

first and second derivatives), and it is invertible, with bounded inverse;

(iii) v 7→ bθ(v) is locally Lipschitz, locally bounded.

Under Assumption 3, Delyon and Hu (2006) prove that,

dPθ,x,x′
dQθ,x,x′

(X) =
|Σθ(x

′)|1/2

|Σθ(x)|1/2
× N (x′;x, TΣθ(x))

fθ(x′|x)
× ϕθ(X;x, x′), (3.6)

where N (v;µ, V ) is the density function of the Gaussian law on Rdx with mean µ, variance

V , evaluated at v, | · | is matrix determinant, and ϕθ(X;x, x′) is such that,

logϕθ(X;x, x′) =

∫ T

0

〈
bθ(Xt),Σ

−1
θ (Xt)dXt

〉
− 1

2

∫ T

0

〈
bθ(Xt),Σ

−1
θ (Xt)bθ(Xt)dt

〉
− 1

2

∫ T

0

〈 (x′−Xt), dΣ−1
θ (Xt)(x′−Xt) 〉
T−t − 1

2

∫ T

0

∑dx
i,j=1 d [ Σ−1

θ,ij ,(x
′
i−Xt,i)(x′j−Xt,j) ]

T−t .

Here, [·, ·] denotes the quadratic variation process for semi-martingales; also, 〈·, ·〉 is the

standard inner-product on Rdx . We note that transforms different from (3.4) have been

proposed in the literature (Dellaportas et al., 2006; Kalogeropoulos et al., 2010) to achieve

the same effect of obtaining an 1–1 mapping of the latent path that has a density with

respect to a measure that does not depend on x, x′ or θ. However, such methods are

14



mostly applicable for scalar diffusions (Aı̈t-Sahalia, 2008). Auxiliary variables involving

a random, finite selection of points of the latent path, based on the (generalised) Poisson

estimator of Fearnhead et al. (2008) are similarly restrictive. In contrast to other attempts,

our methodology may be applied for a much more general class of SDEs, as determined by

Assumption 2 – and further regularity conditions, e.g. as in Assumption 3. Thus, continuing

from (3.5) we have obtained that,

pθ(dx
′|x)

(Leb⊗dx ⊗W)(dx′)
= ϕθ

(
Fθ(Z;x, x′);x, x′

)
×N (x′;x, TΣθ(x))× |Σθ(x

′)|1/2

|Σθ(x)|1/2

=: pθ(x
′|x) ≡ pθ(x

′|x;T ). (3.7)

We have added the extra argument involving the length of path, T , in the last expression,

as it will be of use in the next section.

Remark 1. A critical point here is that the above density is analytically tractable, thus by

working on pathspace we have overcome the unavailability of the transition density fθ(x
′|x).

3.2 SDEs with Jumps

We extend the above developments to the more general case of the dx-dimensional jump

diffusion model given in (1.1), which we re-write here for convenience,

dXt = bθ(Xt−)dt+ σθ(Xt−)dWt + dJt, X0 = x ∈ Rdx , t ∈ [0, T ]. (3.8)

Recall that Jθ = J = {Jt} denotes a compound Poisson process with jump intensity λθ(·)

and jump-size density hθ(·). Let Fθ,x(·) denote the law of the unconditional process (3.8) and

Lθ the law of the involved compound Poisson process. We write J = ((τ1, b1), . . . , (τκ, bκ))

to denote the jump process, where {τi} are the times of events, {bi} the jump sizes and

κ ≥ 0 the total number of events. In addition, we consider the reference measure L,

corresponding to unit rate Poisson process measure on [0, T ] multiplied with ⊗κ+1
i=1 Leb⊗dx .
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Construct One

We consider the random variate,

x′ =
(
J, {xτi−}κ+1

i=1 , {Z(i)}κ+1
i=1

)
,

under the conventions xτ0− ≡ x, xτκ+1− ≡ x′, where we have defined,

Z(i) = F−1
θ (X(i) ; xτi−1

, xτi−), X(i) := {Xt; t ∈ [xτi−1
, xτi)}, 1 ≤ i ≤ κ+ 1.

We have that,

pθ(dx
′|x) := Lθ(dJ)⊗

[
⊗κ+1
i=1

{
fθ(dxτi−|xτi−1

)⊗ pθ(dZ(i)|xτi−1
, xτi−)

}]
.

Using the results about SDEs without jumps in Section 3.1, and in particular expression

(3.7), upon defining,

x′(i) := (xτi−, Z(i)),

we have that – under an apparent adaptation of Assumption 3,

fθ(dxτi−|xτi−1
)⊗ pθ(dZ(i)|xτi−1

, xτi−)

Leb⊗dx(dxτi−)⊗W(dZ(i)))
= pθ(x

′(i)|xτi−; τi − τi−1),

with the latter density pθ(x
′(i)|xτi−) determined as in (3.7), given clear adjustments. Thus,

the density of pθ(dx
′|x) with respect to the reference measure,

µ(dx′) := L(dJ)⊗
[
⊗κ+1
i=1

{
Leb⊗dx(dxτi−)⊗W(dZ(i))

}]
,

is equal to,

pθ(dx
′|x)

µ(dx′)
=
e−

∫ T
0 λθ(t)dt

e−T
·

κ∏
i=1

{
λθ(τi))hθ(bi)

}
×

κ+1∏
i=1

pθ(x
′(i)|xτi−; τi − τi−1).

16



Construct Two

We adopt an idea used – for a different problem – in Gonçalves and Roberts (2014). Given

x, x′ ∈ Rdx , we define an auxiliary process X̃t as follows,

dX̃t =
{
bθ(X̃t) +

x′ − JT − X̃t + Jt
T − t

}
dt+ σθ(X̃t)dWt + dJt, X0 = x, (3.9)

so that X̃T = x′, w.p. 1. As with (3.4), we view (3.9) as a transform, projecting a path, Z

of the Wiener process and the compound process, J , onto a path, X, of the jump process.

That is, we consider the 1–1 maps,

(J, Z) 7→ X =: Gθ(J, Z;x, x′), (J, Z) = G−1
θ (X;x, x′).

Notice that for the inverse transform, the J-part is obtained immediately, whereas for the

Z-part one uses the expression – well-defined due to Assumption 2 –,

dZt = σθ(Xt)
−1
{
dXt − dJt − bθ(Xt)dt−

x′ − JT −Xt + Jt
T − t

dt
}
.

We denote by Pθ,x,x′ the law the original process in (3.8) conditionally on hitting x′ at time

T . Also, we denote the distribution on pathspace induced by (3.9) as Qθ,x,x′ . Consider the

variate,

x′ = (x′, J, Z),

so that,

pθ(dx
′|x) := fθ(dx

′|x)⊗ pθ
(
d(J, Z)|x′, x

)
.

Due to the employed 1–1 transforms, we have that,

pθ(dx
′|x)(

Leb⊗dx ⊗ Lθ ⊗W
)
(dx′)

= fθ(x
′|x)× dPθ,x,x′

dQθ,x,x′

(
Gθ(J, Z;x, x′)

)
.
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Thus, using the parameter-free reference measure,

µ(dx′) := Leb⊗dx ⊗ L⊗W,

one obtains that,

pθ(dx
′|x)

µ(dx′)
= fθ(x

′|x)× e−
∫ T
0 λθ(t)dt

e−T
·

κ∏
i=1

{
λθ(τi))hθ(bi)

}
× dPθ,x,x′
dQθ,x,x′

(
Fθ(J, Z;x, x′)

)
. (3.10)

Remark 2. Delyon and Hu (2006) obtained the Radon-Nikodym derivative expression

in (3.6) after a great amount of rigorous analysis. A similar development for the case

of conditioned jump diffusions does not follow from their work, and can only be subject

of dedicated research at the scale of a separate paper. This is beyond the scope of our

work. In practice, one can proceed as follows. For grid size M ≥ 1, and δ = T/M , let

PMθ,x,x′(Xδ, . . . , X(M−1)δ |X0 = x,XMδ = x′) denote the time-discretised Lebesgue density of

the (M − 1)-positions of the conditioned diffusion with law Pθ,x,x′. Once (3.10) is obtained,

a time-discretisation approach will give,

PMθ,x,x′(Xδ, . . . ,X(M−1)δ |X0 = x,XMδ = x′)

=
PMθ,x,x′(Xδ, . . . , X(M−1)δ, XMδ = x′ |X0 = x)

PMθ,x,x′(XMδ = x′ |X0 = x)
.

In this time-discretised setting, fθ(x
′|x) in (3.6) will be replaced by PMθ,x,x′(XMδ = x′ |X0 =

x). Thus, the intractable transition density over the complete time period will cancel out,

and one is left with an explicit expression to use on a PC. Compared to the method in

Section 3.1, and the Construct One in the current section, we do not have explicit theoretical

evidence of a density on the pathspace. Yet, all numerical experiments we tried showed that

the deduced algorithm was stable under mesh-refinement. We thus adopt the approach (or,

conjecture) that the density in (3.10) exists – under assumptions –, and can be obtained

pending future research.
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4 Forward-Only Smoothing for SDEs

4.1 Pathspace Algorithm

We are ready to develop a forward-only particle smoothing method, under the scenario in

(1.4)-(1.5) on the pathspace setting. We will work with the pairs of random elements

(xk−1,xk), 1 ≤ k ≤ n,

with xk as defined in Section 3, i.e. containing pathspace elements, and given by an 1–1

transform of {Xs; s ∈ [tk−1, tk]}, such that we can obtain a density for pθ(xk|xk−1) with

respect to a reference measure that does not involve θ. Recall that pθ(dxk|xk−1) denotes the

probability law for the augmented variable xk given xk−1. We also write the corresponding

density as,

pθ(xk|xk−1) :=
pθ(dxk|xk−1)

µ(dxk)
.

The quantity of interest is now,

Sθ,n =

∫
Sθ(x0:n) pθ(dx0:n|y0:n), n ≥ 1,

for the class of additive functionals S(·) of the structure,

Sθ(x0:n) =
n∑
k=0

sθ,k(xk−1,xk),

under the convention that x−1 = ∅. Notice that we now allow sk(·, ·) to be a function

of xk−1 and xk; thus, sk(·, ·) can potentially correspond to integrals, or other pathspace

functionals. We will work with a transition density on the enlarged space of xk.

Similarly to the discrete-time case in Section 2, we define the functional,

Tθ,n(xn) :=

∫
Sθ(x0:n) pθ(dx0:n−1|y0:n−1,xn).
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Proposition 1. We have that,

Sθ,n =

∫
Tθ,n(xn) pθ(dxn|y0:n).

Proof. We have the integral,

∫
Tθ,n(xn) pθ(dxn|y0:n) =

∫
Sθ(x0:n) pθ(dx0:n−1|y0:n−1,xn)⊗ pθ(dxn|y0:n). (4.1)

Also, simple calculations give,

pθ(dx0:n−1|y0:n−1,xn)⊗ pθ(xn|y0:n)

≡ pθ(dx0:n−1|y0:n,xn)⊗ pθ(xn|y0:n) = pθ(dx0:n|y0:n).

Using this expression in the integral on the right side of (4.1) completes the proof.

Critically, as in (2.6), we obtain the following recursion. (We provide a proof for complete-

ness.)

Proposition 2. For any n ≥ 1, we have that,

Tθ,n(xn) =

∫ [
Tθ,n−1(xn−1) + sθ,n(xn−1,xn)

]
pθ(dxn−1|y0:n−1,xn)

≡
∫ [
Tθ,n−1(xn−1) + sθ,n(xn−1,xn)

]
pθ(xn|xn−1) pθ(dxn−1|y0:n−1)∫

pθ(xn|xn−1) pθ(dxn−1|y0:n−1)
.

Proof. Simply note that,

∫
Tθ,n−1(xn−1) pθ(dxn−1|y0:n−1,xn) =

=

∫
Sθ,n−1(x0:n−1) pθ(dx0:n−2|y0:n−2,xn−1) pθ(dxn−1|y0:n−1,xn).
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Then, we have that,

pθ(dx0:n−2|y0:n−2,xn−1) pθ(dxn−1|y0:n−1,xn)

≡ pθ(dx0:n−2|xn−1, y0:n−1,xn) pθ(dxn−1|y0:n−1,xn)

≡ pθ(dx0:n−1|y0:n−1,xn).

Replacing the probability measure on the left side of the above equality with its equal on

the right side, and using the latter in the integral above completes the proof for the first

equation in the statement of the proposition. The second equation follows from trivial use

of Bayes rule.

Proposition 2 gives rise to a Monte-Carlo methodology for a forward-only, online approxi-

mation of the smoothing expectation of interest. This is given in Algorithm 2.
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Algorithm 2 Online Forward-Only Particle Smoothing on Pathspace

(i) Initialise the particles {x(i)
0 ,W

(i)
0 }Ni=1, with x

(i)
0

i.i.d.∼ pθ(dx0), W
(i)
0 ∝ gθ(y0|x(i)

0 ), and

functionals T̂θ,0(x
(i)
0 ) = sθ,0(x

(i)
0 ), where x

(i)
0 ≡ x

(i)
0 , 1 ≤ i ≤ N .

(ii) Assume that at time n− 1, one has a particle approximation {x(i)
n−1,W

(i)
n−1}Ni=1 of the

filtering law pθ(dxn−1|y0:n−1) and estimators T̂θ,n−1(x
(i)
n−1) of Tθ,n−1(x

(i)
n−1), 1 ≤ i ≤ N .

(iii) At time n, sample x
(i)
n , for 1 ≤ i ≤ N , from

x(i)
n ∼ p̂θ(dxn|y0:n−1) =

N∑
j=1

W
(j)
n−1pθ(dxn|x

(j)
n−1),

and assign particle weights W
(i)
n ∝ gθ(yn|yn−1,F (i)

n ), 1 ≤ i ≤ N .

(iv) Then set, for 1 ≤ i ≤ N ,

T̂θ,n(x(i)
n ) =

∑N
j=1 W

(j)
n−1 pθ(x

(i)
n |x(j)

n−1)∑N
l=1 W

(l)
n−1 pθ(x

(i)
n |x(l)

n−1)

[
T̂θ,n−1(x

(j)
n−1) + sθ,n(x

(j)
n−1,x

(i)
n )
]
.

(v) Obtain an estimate of Sθ,n as,

Ŝθ,n =
N∑
i=1

W (i)
n T̂θ,n(x(i)

n ).

Remark 3. Algorithm 2 uses a simple bootstrap filter with multinomial resampling applied

at each step. The variability of the Monte-Carlo estimates can be further reduced by incor-

porating: more effective resampling (e.g., systematic resampling (Carpenter et al., 1999),

stratified resampling (Kitagawa, 1996)); dynamic resampling via use of Effective Sample

Size; non-blind proposals in the propagation of the particles.

4.2 Pathspace versus Finite-Dimensional Construct

One can attempt to define an algorithm without reference to the underlying pathspace.

That is, in the case of no jumps (for simplicity) an alternative approach can involve working

with a regular grid on the period [0, T ], say {sj = jδ}Mj=0, with δ = T/M for chosen size

M ≥ 1. Then, defining x′ = (xδ, x2δ, . . . , xMδ), and using, e.g., an Euler-Maruyama time-
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discretisation scheme to obtain the joint density of such an x′ given x = x0, a Radon-

Nikodym derivative, pMθ (x′|x) on RM×dx , can be obtained with respect to the Lebesgue

reference measure Leb⊗(dx×M), as a product of M conditionally Gaussian densities. As

shown e.g. in the motivating example in the Introduction, such an approach would lead to

estimates with variability that increases rapidly with M , for fixed Monte-Carlo particles N .

A central argument in this work is that one should develop the algorithm in a manner that

respect the probabilistic properties of the SDE pathspace, before applying (necessarily) a

time-discretisation for implementation on a PC. This procedure is not followed for purposes

of mathematical rigour, but it has practical effects on algorithmic performance.

4.3 Consistency

For completeness, we provide an asymptotic result for Algorithm 2 following standard

results from the literature. We consider the following assumptions.

Assumption 4. Let X and X denote the state spaces of x and x respectively.

(i) For any relevant y′, y, F , x′, we have that gθ(y
′|y,F) ≡ gθ(y

′|x′), where the latter is

a positive function such that, for any y, supx∈X gθ(y|x) <∞.

(ii) sup(x,x′)∈X×X pθ(x
′|x) <∞.

Proposition 3. (i) Under Assumption 4, for any n ≥ 0, there exist constants bn, cn > 0,

such that for any ε > 0,

Prob
[
|Sθ,n − Ŝθ,n| > ε

]
≤ bne

−cnNε2 .

(ii) For any n ≥ 0, Ŝθ,n → Sθ,n w.p.1, as N →∞.

Proof. Part (i) follows via the same arguments as in Olsson and Westerborn (2017, Corol-

lary 2), based on Azuma (1967) and Douc et al. (2011, Lemma 4). For part (ii), one can

proceed as follows. Given n ≥ 0, we define the event AN(1/j) := {|Sθ,n − ŜNθ,n| > 1
j
},

where we added superscript N to stress the dependency of the estimate on the number of
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particles. Then,

Prob
[

lim
N→∞

ŜNθ,n = Sθ,n
]

= 1− Prob
[
∪∞j=1 lim sup

N→∞
AN(1/j)

]
≥ 1−

∞∑
j=1

Prob
[

lim sup
N→∞

AN(1/j)
]
. (4.2)

From (i), we get Prob [AN(1/j) ] ≤ bne
−cnN( 1

j )
2

, so
∑∞

N=1 Prob [AN(1/j) ] < ∞. The

Borel–Cantelli lemma gives Prob [ lim supN→∞AN(1/j) ] = 0, therefore the result follows

from (4.2).

5 Online Parameter/State Estimation for SDEs

In this section, we derive an online gradient-ascent for partially observed SDEs. Poyiadjis

et al. (2011) use the score function estimation methodology to propose an online gradient-

ascent algorithm for obtaining an MLE-type parameter estimate, following ideas in LeGland

and Mevel (1997). In more detail, the method is based on the Robbins-Monro-type of

recursion,

θn+1 = θn + γn+1∇ log pθ0:n(yn|y0:n−1)

= θn + γn+1

{
∇ log pθ0:n(y0:n)−∇ log pθ0:n−1(y0:n−1)

}
(5.1)

where {γk}k is a positive decreasing sequence with,

∞∑
k=1

γk =∞,
∞∑
k=1

γ2
k <∞.

The meaning of quantity ∇ log pθ0:n(y0:n) is that – given a recursive method (in n) for the

estimation of θ 7→ ∇ log pθ(y0:n) as we describe below and based on the methodology of

Algorithm 2 – one uses θn−1 when incorporating yn−1, then θn for yn, and similarly for

k > n. See LeGland and Mevel (1997); Tadic and Doucet (2018) for analytical studies of

the convergence properties of the deduced algorithm, where under strong conditions the
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recursion is shown to converge to the ‘true’ parameter value, say θ†, as n→∞.

Observe that, from Fisher’s identity (see e.g. Poyiadjis et al. (2011)) we have that,

∇ log pθ(y0:n) =

∫
∇ log pθ(x0:n, y0:n)pθ(dx0:n|y0:n).

Thus, in the context of Algorithm 2, estimation of the score function corresponds to the

choice,

Sθ(x0:n) = ∇ log pθ(x0:n, y0:n) ≡
n∑
k=0

∇ log pθ(xk, yk|xk−1).

and,

sθ,k(xk−1,xk) ≡ ∇ log pθ(xk, yk|xk−1). (5.2)

Combination of the Robins-Morno recursion (5.1) with the one in Algorithm 2, delivers

Algorithm 3, which we have presented here in some detail for clarity.
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Algorithm 3 Online Gradient-Ascent for SDEs via Forward-Only Smoothing

(i) Assume that at time n ≥ 0, one has current parameter estimate θ̂n, particle ap-

proximation {x(i)
n ,W

(i)
n }Ni=1 of the ‘filter’ pθ̂0:n(dxn|y0:n) and estimators T̂θ̂0:n,n(x

(i)
n ) of

Tθ̂0:n,n(x
(i)
n ), for 1 ≤ i ≤ N .

(ii) Apply the iteration,

θ̂n+1 = θ̂n + γn+1

{
∇ log pθ̂0:n(y0:n)−∇ log pθ̂0:n−1

(y0:n−1)
}

(iii) At time n+ 1, sample x
(i)
n+1, for 1 ≤ i ≤ N , from the mixture,

x
(i)
n+1 ∼ p̂θ̂n+1

(dxn+1|y0:n) =
N∑
j=1

W (j)
n pθ̂n+1

(xn+1|x(j)
n ),

and assign particle weights W
(i)
n+1 ∝ gθ̂n+1

(yn+1|yn,F (i)
n+1), 1 ≤ i ≤ N .

(iii) Then set, for 1 ≤ i ≤ N ,

T̂θ̂0:n+1,n+1(x
(i)
n+1) =

∑N
j=1W

(j)
n pθ(x

(i)
n+1|x

(j)
n )∑N

l=1W
(l)
n pθ(x

(i)
n+1|x

(l)
n )

[
T̂θ̂0:n,n(x(j)

n ) + sθ,n(x(j)
n ,x

(i)
n+1)

]
,

where, on the right-hand-side we use the parameter,

θ = θ̂n+1.

(iv) Obtain the estimate,

Ŝθ̂n+1,n+1 =
N∑
i=1

W
(i)
n+1 T̂θ̂0:n+1,n+1(x

(i)
n+1).

Remark 4. When the joint density of (x0:n, y0:n) is in the exponential family, an online

EM algorithm can also be developed; see Del Moral et al. (2010) for the discrete-time case.

6 Numerical Applications

When running the algorithms detailed below on a PC, we discretised the pathspace using

the Euler-Maruyama scheme with M = 10 time points per unit of time; the cost of the
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algorithms scales linearly with M . To specify the schedule for the scaling parameters {γk}

in (5.1), we use the standard adaptive method termed ADAM, by Kingma and Ba (2014).

Assume that after n steps, we have cn := −(∇ log pθ̂0:n(y0:n) − ∇ log pθ̂0:n−1
(y0:n−1)). ADAM

applies the following iterative procedure,

mn = mn−1β1 + (1− β1)cn, vn = vn−1β2 + (1− β2)c2
n,

m̂n = mn/(1− βn1 ), v̂n = vn/(1− βn2 ),

θ̂n+1 = θ̂n − αm̂n/(
√
v̂n + ε),

where (β1, β2, α, ε) are tuning parameters. Convergence properties of ADAM have been widely

studied (Goodfellow et al., 2016; Kingma and Ba, 2014; Reddi et al., 2019). Following

Kingma and Ba (2014), in all cases below we set (β1, β2, α, ε) = (0.9, 0.999, 0.001, 10−8).

ADAM is nowadays a standard and very effective addition to the type of recursive inference

algorithms we are considering here, even more so as for increasing dimension of unknown

parameters. See the above references for more motivation and details.

6.1 Ornstein-Uhlenbeck SDE

We consider the model,

dXt = θ1(θ2 −Xt) + θ3dWt + dJt, X0 = 0,

yi = xi + εi, i ≥ 1, εi
i.i.d.∼ N (0, 0.12), ∆ = 1, (6.1)

where Jt =
∑Nt

i=1 ξi, with Nt a Poisson process with intensity λ ≥ 0, and ξi
i.i.d.∼ U (−ζ, ζ),

ζ > 0.

O–U: Experiment 1. In this case we choose λ = 0, and the score function can

be found analytically; we also fixed θ2 = 0. We simulated separate datasets of size n =

2, 500, 5, 000, 7, 500, 10, 000 under true remaining parameter values (θ†1, θ
†
3) = (0.4, 0.5). We

executed Algorithm 2 to approximate the score function with N = 50, 100, 150 particles,

for all above datasets. Fig. 6.1 summarises results of R = 50 replicates of estimates of the
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bivariate score function, with the black dashed lines showing the true values.

O–U: Experiment 2. We now present two scenarios: one still without jumps (i.e.,

λ = 0); and one with jumps, such that we fix λ = 0.5 and ζ = 0.5. In both scenarios, the

parameters to be estimated are θ = (θ1, θ2, θ3). Beyond the mentioned fixed values for λ, ζ,

in both scenarios we generated n = 20, 000 data using true parameters θ† = (θ†1, θ
†
2, θ
†
3) =

(0.2, 0.0, 0.2). We apply Algorithm 3 with N = 100 particles, and initial parameter values

θ̂0 = (1.0, 1.0, 1.0) for both scenarios. Fig. 6.2 summarises the obtained results.

O–U: Experiment 3. To compare the efficiency of Constructs 1 and 2 for the case of

jump processes, as developed in Section 3.2, we applied Algorithm 2 – for each case – to

approximate the score function (at the true values for (θ1, θ2, θ3)), withN = 50, 100, 150, 200

particles, with n = 10 data generated from O–U process (6.1) with fixed λ = 0.5, ζ =

0.5, and true remaining parameters (θ†1, θ
†
2, θ
†
3) = (0.3, 0.0, 0.2). Fig. 6.3 shows boxplots

summarising the results from R = 50 replications of the obtained estimates. We note that

performance of Construct 2 is, in this case, much better than that of Construct 1.

Figure 6.1: O–U: Experiment 1: Boxplots of estimated score functions of θ1 at θ1 = 0.4,
over R = 50 experiment replications, for O–U model (6.1), without jumps (λ = 0), fixed
θ2 = 0, and free parameters (θ1, θ3), with true values (θ†1, θ

†
3) = (0.4, 0.5) used for data

generation. The blue, orange, green plots correspond to N = 50, 100, 150, respectively.
The black dashed lines show the correct values (−33.1, 24.7,−154.2,−48.7) for n = 2, 500,
5, 000, 7, 500, 10, 000, respectively.
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Figure 6.2: O–U: Experiment 2: Trajectories from execution of Algorithm 3 for estimation
of (θ1, θ2, θ3) of O–U model (6.1). We used N = 100 particles and initial value θ̂0 =
(1.0, 1.0, 1.0). The Left Panel shows results for O–U model with jumps (λ = 0.5, ζ = 0.5).
The Right Panel shows results for O–U model without jumps (λ = 0). The horizontal
dashed lines in the plots show the true parameter values (θ†1, θ

†
2, θ
†
3) = (0.2, 0.0, 0.2) used in

both scenarios.

6.2 Periodic Drift SDE

We consider the (highly) nonlinear model,

dXt = sin (Xt − θ1) dt+ θ2dWt, X0 = 0,

yi = xi + εi, i ≥ 1, εi
i.i.d.∼ N (0, 0.12), ∆ = 1, (6.2)

for θ1 ∈ [0, 2π), θ2 > 0. We used true values (θ†1, θ
†
2) = (π/4, 0.9), generated n = 104 data,

and applied Algorithm 3 with N = 100 particles and initial value θ̂0 = (0.1, 2). Figure 6.4

shows the data (Left Panel) and the trajectory of the estimated parameter values (Right

Panel).
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Figure 6.3: O–U: Experiment 3: Boxplots of estimated score function of θ1, at θ1 = 0.3,
over R = 50 experiment replications, for O–U model (6.1), with fixed λ = 0.5, ζ = 0.5, and
true parameters (θ†1, θ

†
2, θ
†
3) = (0.3, 0.0, 0.2), used to generate n = 10 observations. Orange

boxplots correspond to Construct 1; blue boxplots to Construct 2.

Figure 6.4: Left Panel: Data generated from model (6.2) for true parameters θ† =
(π/4, 0.9). Right Panel: Trajectory obtained from application of Algorithm 3 with N = 100
particles and initial value θ̂0 = (0.1, 2).
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6.3 Heston Model

Consider the Heston model (Heston, 1993), for price St and volatility Xt, modelled as,

dSt = θ4Stdt+ StX
1/2
t dBt,

dXt = θ1(θ2 −Xt)dt+ θ3X
1/2
t dWt, X0 = θ2,

where Bt, Wt are independent standard Brownian motions. Define the log-price Ut =

log(St), so that application of It’s lemma gives,

dUt = (θ4 − Xt
2

)dt+X
1/2
t dBt,

dXt = θ1(θ2 −Xt)dt+ θ3X
1/2
t dWt, X0 = θ2. (6.3)

We make the standard assumption 2θ1θ2 > θ2
3, so that the CIR process X = {Xt} will

not hit 0; also, we have θ1, θ2, θ3, θ4 > 0. Process Ut is observed at discrete times, so that

yi = Uti , i ≥ 1. Thus, we have,

[
yi
∣∣ yi−1, {Xs; s ∈ [ti−1, ti]}

]
∼ N (yi;µi,Σi),

where we have set,

µi = yi−1 +

∫ ti

ti−1

(θ4 − Xs
2

)ds, Σi =

∫ ti

ti−1

Xsds.

We chose true parameter value θ† = (0.1, 1.0, 0.2, 0.45), and generated n = 104 observations,

with ∆ = 1. We applied Algorithm 3 with θ̂0 = (0.005, 0.1, 0.4, 0.3) and N = 100 particles.

The trajectories of the estimated parameters are given in Figure 6.5.
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Figure 6.5: Trajectories for parameter estimates produced by Algorithm 3, for data gener-
ated from Heston model (6.3). The algorithm used initial value θ̂0 = (0.005, 0.1, 0.4, 0.3),
and N = 100 particles. The horizontal dashed lines show the true parameter values
θ† = (0.1, 1.0, 0.2, 0.45).

6.4 Sequential Model Selection – Real Data

We use our methodology to carry out sequential model selection, motivated by applications

in Eraker et al. (2003); Johannes et al. (2009). Recall that BIC (Schwarz, 1978) for model

M, with parameter vector θ, and data y1:n is given by,

BIC(M) := −2`θ̂MLE
(y1:n) + dim(θ) log n,

where θ̂MLE denotes the MLE, and `(·) the log-likelihood. BIC and the (closely related)

Bayes Factor are known to have good asymptotic properties, e.g. they are consistent Model

Selection Criteria, under the assumption of model-correctness, in the context of nested

models, for specific classes of models (see e.g. Chib and Kuffner (2016); Nishii (1988); Sin

and White (1996), and Yonekura et al. (2018) for the case of discrete-time nested HMMs).

One can plausibly conjecture such criteria will also perform well for the type of continuous-

time HMMs we consider here. See also Eguchi and Masuda (2018) for a rigorous analysis
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of BIC for diffusion-type models. Given models Ma,Mb, with Ma ⊂ Mb, we use the

difference,

BIC(Mab) := −2(`θ̂MLE,a
(y1:n) + `θ̂MLE,b

(y1:n)) + (dim(θa)− dim(θb)) log n,

with involved terms defined as obviously, to choose between Ma and Mb.

We note that Eraker et al. (2003) use Bayes Factor for model selection in the context

of SDE processes; that work uses MCMC to estimate parameters, and is not sequential (or

online). We stress that our methodology allows for carrying out inference for parameters

and the signal part of the model, and simultaneously allowing for model selection, all in

an online fashion. Also, it is worth noting that Johannes et al. (2009) use the sequential

likelihood ratio for model comparison, but such quantity can overshoot, i.e. the likelihood

ratio will tend to choose a large model. Also, that work uses fixed calibrated parameters,

so it does not relate to online parameter inference.

Remark 5. We will use the running estimate of the parameter vector as a proxy for the

MLE given the data already taken under consideration. Similarly, we use the weights of

the particle filter to obtain a running proxy of the log-likelihood evaluated at the MLE,

thus overall an online approximation of BIC. Such an approach, even not fully justified

theoretically, can provide reasonable practical insights when performing model comparison

in an online manner – particularly so, given when there is no alternative, to the best of our

knowledge, for such an objective.

We consider the following family of nested SDE models,

dXt = b
(i)
θ (Xt) + θ4

√
XtdWt,
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where,

M1 : b
(1)
θ (Xt) = θ0 + θ1Xt,

M2 : b
(2)
θ (Xt) = θ0 + θ1Xt + θ2

2X
2
t ,

M3 : b
(3)
θ (Xt) = θ0 + θ1Xt + θ2

2X
2
t +

θ3

Xt

.

Such models have been used for short-term interest rates; see Jones (2003); Durham (2003);

Aı̈t-Sahalia (1996); Bali and Wu (2006) and references therein for more details. Moti-

vated by Dellaportas et al. (2006); Stanton (1997), we applied our methodology to daily

3-month Treasury Bill rates, from 2nd of January 1970, to 29th of December 2000, pro-

viding n = 7, 739 observations. The data can be obtained from the Federal Reserve Bank

of St. Louis, at webpage https://fred.stlouisfed.org/series/TB3MS. The dataset is

shown at Fig. 6.6.

Figure 6.6: Daily values of 3-Month Treasury Bill rates from 2 Jan 1970 to 29 Dec 2000.

Results obtained from out methodology are shown in Fig. 6.7, 6.8, 6.9, for modelsM1,

M2, M3 respectively1. Fig. 6.10 shows the BIC differences, obtained online, for each of

1To better tune the starting position for the parameters, we start off with a ‘trial’ execution of the
algorithm that starts with arbitrary initial values, and calculate the mean of the estimates after a burn-in
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the three pairs of models. The results suggest that M2 does not provide a good fit to

the data – relatively to M1, M3 – for almost all period under consideration. In terms of

M1 againstM3, there is evidence that once the data from around 1993 onwards are taken

under consideration, M3 is preferred to M1. In general, one can claim that models with

non-linear drift should be taken under consideration for fitting daily 3-month Treasury Bill

rates, without strong evidence in favour or against linearity. This non-definite conclusion

is in some agreement with the empirical studies in Chapman and Pearson (2000); Durham

(2003); Dellaportas et al. (2006).

Figure 6.7: Online estimation of parameters of model M1 for the dataset in Fig. 6.6. We
applied Algorithm 3 with initial values (0.243,−0.136, 0.0153) for (θ0, θ1, θ4), and N = 100
particles.

period of 1, 000 time steps. The obtained value is used as the initial position for the actual algorithmic
runs.
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Figure 6.8: Online estimation of parameters for modelM2. Algorithm 3 used initial values
of (0.259,−0.0064,−0.079, 0.017) for (θ0, θ1, θ2, θ4), and N = 100 particles.

Figure 6.9: Online estimation of parameters for modelM3. Algorithm 3 used initial values
of (0.21,−0.036,−0.067, 0.011, 0.016) for (θ0, θ1, θ2, θ3, θ4), and N = 100 particles.
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Figure 6.10: Online estimation of BIC differences. The blue solid line stands for BIC(M32),
the orange dashed line for BIC(M31), and the green dotted line for BIC(M21).

7 Conclusions and Future Directions

We have introduced an online particle smoothing methodology for discretely observed

(jump) diffusions with intractable transition densities. Our approach overcomes such in-

tractability by formulating the problem on pathspace, thus delivering an algorithm that –

besides regulatory conditions – requires only the weak invertibility Assumption 2. Thus,

we have covered a rich family of SDE models, when related literature imposes quite strong

restrictions. Combining our online smoothing algorithm with a Robbins-Monro-type ap-

proach of Recursive Maximum-Likelihood, we set up an online stochastic gradient-ascent for

the likelihood function of the SDEs under consideration. The algorithm provides a wealth

of interesting output, that can provide a lot of useful insights in statistical applications.

The numerical examples show a lot of promise for the performance of the methodology.

Our framework opens up a number of routes for insights and future research, including the

ones described below.

(i) In the case of SDEs of jumps, we have focused on jump dynamics driven by compound
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Poisson processes. There is great scope for generalisation here, and one can extend the

algorithm to different cases of jump processes, also characterised by more complex

dependencies between the jumps and the paths of the solution of the SDE, X =

{Xt}. Extensions to time-inhomogeneous cases with b(v) = b(t, v), σ(v) = σ(t, v),

are immediate; we have chosen the time-homogeneous models only for purposes of

presentation simplicity.

(ii) Since the seminal work of Delyon and Hu (2006), more ‘tuned’ auxiliary bridge pro-

cesses have appeared in the literature, see e.g. the works of Schauer et al. (2017);

van der Meulen and Schauer (2017). Indicatively, the work in Schauer et al. (2017)

considers bridges of the form (in one of the many options they consider),

dX̃t =
{
b(X̃t) + Σ(X̃t)Σ

−1(x′)
x′ − X̃t

T − t

}
dt+ σ(X̃t)dWt. (7.1)

Auxiliary bridge processes that are closer in dynamics to the diffusion bridges of the

given signal are expected to reduce the variability of Monte-Carlo algorithm, thus

progress along the above direction can be immediately incorporated in our method-

ology and improve its performance. For instance, as noted in Schauer et al. (2017),

use of (7.1) will give a Radon-Nikodym derivative where stochastic integrals cancel

out. Such a setting is known to considerably reduce the variability of Monte-Carlo

methods, see e.g. the numerical examples in Durham and Gallant (2002) and the

discussion in (Papaspiliopoulos and Roberts, 2012, Section 4).

(iii) The exact specification of the recursion used for the online estimation of unknown

parameters is in itself an problem of intensive research in the field of stochastic op-

timisation. One would ideally aim for the recursion procedure to provide parameter

estimates which are as close to the unknown parameter as the data (considered thus

far) permit. In our case, we have used a fairly ‘vanilla’ recursion, maybe with the

exception of the Adam variation. E.g., recent works in the Machine Learning commu-

nity have pointed at the use of ‘velocity’ components in the recursion to speed up

convergence, see, e.g., Sutskever et al. (2013); Yuan et al. (2016).
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(iv) We mentioned in the main text several modifications that can improve algorithmic

performance: dynamic resampling, stratified resampling, non-blind proposals in the

filtering steps, choice of auxiliary processes. Parallelisation and use of HPC are

obvious additions in this list.

(v) We stress that the algorithm involves a filtering step, and a step that approximates

the values of the instrumental function. These two procedures should be thought of

separately. A reason of including two approaches in the case of jump diffusions (Con-

structs 1 and 2) is indeed to highlight this point. The two Constructs are identical

in terms of the filtering part. Construct 1 incorporates in x′ the location of the path

at all times of jumps; thus, when the algorithm ‘mixes’ all pairs of {x(j)
k−1}, {x

(i)
k }, at

the update of the instrumental function (see Step (iv) of Algorithm 2), many of such

pairs can be incompatible. Such an effect is event stronger in the case of the standard

algorithm applied in the motivating example in the Introduction, and partially ex-

plains the inefficiency of that algorithm. In contrast, in Construct 2, x′ contains less

information about the underlying paths, thus improving the combatability of pairs

selected from particle populations {x(j)
k−1}, {x

(i)
k }, thus – not surprisingly – Construct

2 seems more effective than Construct 1.

References

Aı̈t-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. The

Review of Financial Studies, 9(2):385–426. 34

Aı̈t-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: a

closed-form approximation approach. Econometrica, 70(1):223–262. 4

Aı̈t-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. The

Annals of Statistics, 36(2):906–937. 4, 15

Aı̈t-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005). How often to sample a continuous-

39



time process in the presence of market microstructure noise. The Review of Financial

Studies, 18(2):351–416. 3, 4

Aı̈t-Sahalia, Y. and Yu, J. (2008). High frequency market microstructure noise estimates

and liquidity measures. Technical report, National Bureau of Economic Research. 3

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov Chain Monte Carlo

methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

72(3):269–342. 5

Azuma, K. (1967). Weighted sums of certain dependent random variables. Tohoku Math-

ematical Journal, Second Series, 19(3):357–367. 23

Bali, T. G. and Wu, L. (2006). A comprehensive analysis of the short-term interest-rate

dynamics. Journal of Banking & Finance, 30(4):1269–1290. 34

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006). Exact and

computationally efficient likelihood-based estimation for discretely observed diffusion

processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68(3):333–382. 4, 6

Cappe, O. (2009). Online sequential Monte Carlo EM algorithm. In 2009 IEEE/SP 15th

Workshop on Statistical Signal Processing. 8
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