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No statistical model is “true” or “false”, “right” or “wrong”; the models just 

have varying performance, which can be assessed.

Jorma Rissanen - Information and complexity in statistical modeling (2007).

The human mind is programmed for survival, not for truth.

John Gray - Seven types of  atheism (2018).





Consider a biased coin that has a true 
probability of  heads of  0.7

0.7 0.3



However Zhang only considers the following two possibilities, neither 
of  which corresponds to the truth. 

Her model is misspecified.

0.45 0.55 0.9 0.1



She observes a sequence of  tosses of  the coin and can bet heads or 
tails each time, earning a dollar every time she is correct.

Recall that the true probability of  heads is 0.7

0.45 0.55 0.9 0.1



Zhang is a Bayesian learner.

If  she places positive initial probability on the blue and the red
models, then over time she places almost all weight on the blue model.

0.45 0.55
0.9 0.1



Hence she will bet tails every period.

As the true probability of  heads is 0.7, she will earn an average 
payoff  over time of  0.3 dollars per period.

0.45 0.55
0.9 0.1



If  she had instead learned the red model, she would have bet 
heads every period and earned an average payoff  of  0.7 dollars!

0.9 0.1

0.45 0.55

I regret being 
a Bayesian 



Koike is not a Bayesian.

Rather than update her prior probabilities 
over red and blue using standard likelihoods, 
she uses generalized likelihoods that 
depend on payoffs.



Let’s start with the blue model.

Recall that a believer in this model will bet on tails.

If  she followed the blue model and tails
arose, she would obtain a payoff  of  1.

0.45 0.55

If  she followed the blue model and heads arose, 
she would obtain a payoff  of  0.



Take a sequence of  observations, say
heads, tails, tails…

The likelihood of  this sequence under the 
blue model is

0.45 0.55 0.55 …

0.45 0.55



Take a sequence of  observations, say
heads, tails, tails…

The generalized likelihood under the blue
model is

𝑒0

𝑒0 + 𝑒1
⋅

𝑒1

𝑒0 + 𝑒1
⋅

𝑒1

𝑒0 + 𝑒1
…

0.45 0.55

Exponents in numerator are the payoffs from the sequence 

heads, tails, tails… when the blue model is followed.

The denominator normalizes.



Do the same for the red model.

Now applying standard Bayesian learning using these generalized 
likelihoods… 



…over time she comes to place all weight on the red model. 

Hence she bets heads and earns an average payoff  of  0.7 dollars.

0.9 0.1

0.45 0.55



The model she learns is in some sense wrong, but in a pragmatic 
sense it works out just as well as if  she had learnt the correct 
probability of  heads.

0.9 0.1

0.45 0.55



Bayesian learning
Generalized

Bayesian learning

Axiomatically sound.

Learns about log-

likelihoods, not payoffs.

Pragmatically sound.

Learns about payoffs.

Note, if  the model is correctly specified, so that 𝑝 𝐻 = 0.7 is considered 

possible, then Bayesians learn the correct parameter. 

Generalized Bayesians learn the correct parameter and all other parameters 

that lead them to bet the same way (i.e. heads).



Over time the Generalized Bayesians may outperform the 
standard Bayesians. 

If  payoffs are linked to fitness, Generalized Bayesians come to 
predominate in the population.
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So far we have considered a one player decision problem.

What about games with more than one player?

Answer is simple. Given the behavior of  the other players, they 
should play according to whichever of  their possible models of  
the world leads to the highest payoff.

What kind of  behavior would these 
Generalized Bayesian, payoff  
optimizers play in equilibrium in a 
misspecified environment?

vs.
Alice Betti



Simple example.

Two players, Alice and Betti.

Alice

Betti



If  Alice considers it impossible that Betti plays 𝑏3 with any 
significant probability, then Alice will never play 𝑎3.

If  Betti considers it impossible that Alice plays 𝑎2 with any 
significant probability, then Betti will never play 𝑏2.

Alice

Betti



Consider the game in which we exclude actions that cannot be 
justified by any possibilities that the players consider.
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Consider the game in which we exclude actions that cannot be 
justified by any possibilities that the players consider.

Find the Nash equilibria.
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Consider the game in which we exclude actions that cannot be 
justified by any possibilities that the players consider.

Find the Nash equilibria.

This is a misspecified Nash equilibrium (mNE).

Alice

Betti



Alice

Betti

At mNE, for any given player there are no beliefs in their model 
of  the world that would justify them taking actions that would 
lead to their obtaining a higher payoff. 

That is, there is no profitable deviation.



Alice

Betti

Note that a NE of  the original game that is still feasible will 
remain a NE of  the restricted game and will thus be a mNE.

This is the case with (𝑎1, 𝑏1).



Alice

Betti

However, mNE need not be NE of  the original game.

Consider the same game as before, but exchanging Alice’s
payoffs from 𝑎1 and 𝑎2.



Alice

Betti

Applying the same logic as before…

… 𝑎2, 𝑏1 is an NE of  the restricted game and thus a mNE.

However, 𝑎2, 𝑏1 it is not a NE of  the original game.



Alice

Betti

If  generalized Bayesian learners converge to an equilibrium, then 
this equilibrium must be a mNE.



Alice

Betti

If  a population converges to something other than mNE play, it 
will be vulnerable to invasion by generalized Bayesian learners.

Conversely, populations playing mNE are robust to invasion by 
types of  learners who do not play mNE. (all subject to T&Cs)



Alice

Betti

More generally (and vaguely), the relationship between mNE and 
NE of  the restricted game implies that arguments in favour
of/against learning NE in correctly specified environments also 
work for mNE in misspecified environments.



Can regard beliefs about the world as justifications. Some are 
more pragmatically useful than others.

In this latter respect, whether some beliefs are “truer” than 
other beliefs is incidental.

This is something missed in correctly specified models, where 
maximum likelihood estimates and pragmatically useful beliefs 
coincide.

Thanks for listening!

Read the working paper at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3473630


