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Abstract

We consider learning in games that are misspecified in that players are unable to
learn the true probability distribution over outcomes. Under misspecification, Bayes’
rule might not converge to the model that leads to actions with the highest objective
payoff among the models subjectively admitted by the player. From an evolutionary
perspective, this renders a population of Bayesians vulnerable to invasion. Drawing on
the machine learning literature, we show that learning rules that outperform Bayes’ rule
suggest a new solution concept for misspecified games: misspecified Nash equilibrium.
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“No statistical model is “true” or “false”, “right” or “wrong”; the models
just have varying performance, which can be assessed.”

– Rissanen (2007).

1. Introduction

A desirable property of an equilibrium concept is that there be no profitable deviation
(NPD). In the space of learning rules (or, a fortiori, beliefs), this means that an adopted
learning rule should ensure that the learning outcome is not a model that, if believed true,
leads a player to choose actions that have lower expected payoff (according to the true dis-
tribution) than the actions she would choose if she had learned another model.
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Alice

Bob
b1 b2 b3

a1 2,2 1,0 4,1
a2 1,4 1,5 3,3
a3 0,1 0,0 5,5

Figure 1: A game. For each combination of strategies, entries give payoffs for Alice and
Bob respectively.

When a learning problem is correctly specified, a Bayesian learner will learn the true
model. In such an environment, no alternative learning rule strictly outperforms Bayesian
learning. However, this is not the case when the learning problem is misspecified. To see
this, consider a coin which can land either heads or tails and has a true probability of 0.7
of landing heads. Consider Alice, a Bayesian learner whose prior has full support over two
models of the coin, one in which the probability of heads is 0.45 and one in which the
probability of heads is 0.9. Every period, she earns a dollar if she correctly guesses the
outcome of the coin toss. Bayesian updating will lead her, in the limit, to place probability
one on the first model. Hence, she will predict tails and earn an average per period payoff of
0.3. However, she would achieve a higher payoff if she placed probability one on the second
model, predicted heads and earned an average per period payoff of 0.7. NPD is not satisfied.

From an evolutionary perspective (see, e.g. Weibull, 1995; Sandholm, 2010), a popula-
tion of Alice-like players who learn using Bayes’ rule would thus be vulnerable to invasion
by a mutant, say Bob, who follows a learning rule that eventually places probability one on
the second model, leading him to predict heads. If payoff is positively related to replication,
then over time the share of Bobs in the population will increase as they outperform the Al-
ices in terms of realized payoff. Note that Bob in fact performs exactly as well as another
player type, say Colm, who learns the correct belief that the probability of heads is 0.7. In
pragmatic terms, Bob and Colm learn perfectly. Alice, in contrast, learns the model in her
support that maximizes log-likelihood.

Here, we propose an equilibrium concept that satisfies NPD even if the learning envi-
ronment is not well specified. The equilibrium we propose, misspecified Nash equilibrium
(mNE), requires that each player’s beliefs attach probability one to the set of subjective dis-
tributions over consequences that lead to his taking actions that lead to the highest realized
payoff, keeping fixed the strategies of the other players. In the one player coin toss game
described above, Bob learns to play an mNE, but Alice does not. In well-specified learning
settings, every NE is a mNE. The reverse inclusion does not hold because mNE does not
uniquely pin down beliefs: the same actions can be, and typically are, a best response to
more than one belief. In the coin toss example above, Bob learns an mNE but not an NE.
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One way to understand mNE is as a restricted Nash equilibrium in which the actions
available to each player are restricted by the incomplete set of beliefs available to them.
Consider the game in Figure 1. If Alice’s set of conceivable models does not include any
model in which Bob plays b3 with enough probability, then Alice will never play a3 as a best
response. Similarly, if Bob’s set of conceivable models does not include any model in which
Alice plays a2with enough probability, then Bob will never play b2 as a best response. We
are left with a restricted game in which the action sets are {a1,a2} and {b1,b3}. Given that
Bob plays some combination of b1 and b3, Alice is better off when she learns a set of beliefs
that leads her to play a1 rather than a set of beliefs that leads her to play a2. Similarly, Bob
should learn a set of beliefs that leads him to play b1. Hence {a1,b1}, which constitutes
a Nash equilibrium of the restricted game, is the action profile that will be played at any
misspecified Nash equilibrium. Players’ beliefs at mNE can be any subjectively possible
beliefs that lead to these actions. Beliefs at mNE can thus be considered constrained optimal,
where the constraints arise from the restriction to the sets of beliefs that players consider
possible.

Optimality itself can be understood as something that is strategically pursued (Brun-
nermeier and Parker, 2005; Brunnermeier et al., 2007) or understood evolutionarily in the
sense of fitness maximization (Johnson and Fowler, 2011; Jouini et al., 2013; Frenkel et al.,
2018; Heller, 2014). This relationship between mNE and standard NE suggests that proce-
dures for learning NE such as regret testing (Foster and Young, 2006; Germano and Lugosi,
2007) or interactive trial and error learning (Young, 2009; Pradelski and Young, 2012) can
be adapted to this constrained optimization problem to give learning foundations for mNE.
Conversely, learning procedures that separate beliefs from payoffs, such as Bayes’ rule, can
be sub-optimal in such a setting because they ignore the payoff consequences of the learning
outcome.

The main limitation of Bayes’ rule in misspecified learning problems is that, even when
convergence of the prior occurs, Bayes’ rule converges to the maximum likelihood model
(Berk, 1966; White, 1982), but there is no guarantee that the maximum likelihood model
is also the model that maximizes payoffs (Grünwald et al., 2017; Csaba and Szoke, 2018;
Massari, 2019). This lack of robustness to model misspecification is the reason why the use
of Bayes’ rule in misspecified problems is controversial in the (more pragmatic) statistical
learning and computer science literatures which are mainly concerned with empirical valida-
tion rather than consistency with a set of axioms.1 Pragmatically, for a decision maker that
wishes to maximize payoff, the adoption of Bayes’ rule in (possibly) misspecified learning

1See Timmermann (2006); Grünwald (2007); Grünwald and Langford (2007). Note that in this literature,
maximizing expected payoff is usually described as minimizing an expected loss.
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problems is irrational in the sense that

“...a mode of behavior is irrational for a given decision maker, if, when the
decision maker behaves in this mode and is then exposed to the analysis of her
behavior, she feels embarrassed”

– Gilboa (2009, pp.139).

There are many candidate solutions to “robustify” a learning problem. Most of them are
obtained by incorporating the objective of the decision maker into his learning rule to give
more weight to models that induce actions that lead to high expected payoffs (according to
the objective distribution), rather than to the models with the highest likelihood. Typically,
these procedures are model free. However, if a player subjectively believes that only certain
models are possible, then a descriptive theory of learning should account for this.2

Here we propose an approach which, to the best of the authors’ knowledge, has not been
explored in the economics literature. We modify the entropification procedure of Grünwald
(1998) to create a learning procedure for our model that fits the generalized Bayesian learning
framework (a.k.a. aggregation algorithm, Vovk, 1990; Rissanen, 1989). We show that the
beliefs that a player learns under this procedure will be optimal within the class of models
that he considers possible. That is, the beliefs learned are those that support mNE.

After carrying out entropification, our learning procedure closely parallels Bayesian
learning. Following this line of reasoning, we can then compare mNE with the correspond-
ing Bayesian equilibrium concept, Berk-Nash equilibrium proposed by Esponda and Pouzo
(2016). We discuss how mNE is the appropriate concept when players face an external crite-
rion of success. One such situation is when payoffs correspond to fitness. We show that if a
population follows a learning rule that leads to equilibrium behavior that is not a mNE, then
the population is vulnerable to invasion by players who follow a different rule. Conversely,
if the learning rule leads to a strict mNE, then the population is robust to invasion by other
learning rules. The stability concept we use adapts the idea of an evolutionarily stable state
(Taylor and Jonker, 1978) for a situation in which the aspect of the environment under evo-
lutionary pressure is neither strategies (Weibull, 1995), nor preferences (Samuelson, 2001),
nor agency (Newton, 2017b), but rather the learning rule that players follow.

The paper is organized as follows. Section 2 gives the model. Section 3 defines and
discusses mNE. Section 4 describes the learning foundation of mNE. Section 5 compares
mNE and Berk-Nash equilibrium. Section 6 provides examples. Section 7 discusses the
evolutionary stability of mNE.

2Furthermore, although model free algorithms optimize average payoffs, they necessarily have slower learn-
ing rates than algorithms that only search among a subset of probabilistic models. This trade-off is the reason
that information is valuable in economics.
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2. Model

A game G = 〈O,Q〉 is composed of a (simultaneous-move) objective game O and a
subjective model Q. The objective game represents the players’ true environment. The
subjective model represents the players’ perception of their environment.

OBJECTIVE GAME. A (simultaneous-move) objective game is a tuple

O = 〈I,Ω,S, p,X,Y, f ,π〉 .

I is the set of players. Ω is the set of payoff-relevant states. S=×i∈ISi is the set of profiles of
signals, where Si is the set of signals for player i. p is a probability distribution over Ω×S and
is assumed to have marginals with full support. Standard notation is used to denote marginal
and conditional distributions, for example pΩ|Si(·|si) denotes the conditional distribution over
Ω given Si = si. X = ×i∈IXi is a set of profiles of actions, where Xi is the set of actions of
player i. Y = ×i∈IYi is a set of profiles of (observable) consequences, where Yi is the set
of consequences for player i. f = ( f i)i∈I is a profile of feedback or consequence functions,
where f i :X×Ω→ Yi maps outcomes in Ω×X into consequences for player i. π = (π i)i∈I ,
where π i :Xi×Yi→R is the payoff function of player i. All of the above sets are finite.

A strategy for player i is a mapping σ i : Si→ ∆(Xi). The probability that player i chooses
action xi after observing signal si is denoted by σ i(xi|si). A strategy profile is a vector of
strategies σ = (σ i)i∈I . Let Σ denote the space of all strategy profiles.

Fix an objective game. For each strategy profile σ , there is an objective distribution
over player i’s consequences, Qi

σ : Si×Xi→ ∆(Yi), where

Qi
σ (y

i|si,xi) = ∑
{(ω,x−i): f i(xi,x−i,ω)=yi}

∑
s−i

∏
j,i

σ
j(x j|s j)pΩ×S−i|Si(ω,s−i|si).(1)

That is, when the strategy profile is σ , player i observes signal si and takes action xi, then the
distribution over consequences for player i is given by Qi

σ (·|si,xi).
SUBJECTIVE MODEL. The subjective model is the set of distributions over consequences

that players consider possible a priori. For a fixed objective game, a subjective model is a
tuple

Q = 〈Θ,(Qθ )θ∈Θ〉 ,

Θ =×i∈IΘ
i and Θi is player i’s parameter set. Qθ = (Qi

θ i)i∈I , where Qi
θ i : Si×Xi→ ∆(Yi) is

the conditional distribution over player i’s consequences parameterized by θ i ∈ Θi. Denote
the conditional distribution by Qi

θ i(·|si,xi).
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3. Misspecified Nash Equilibrium

Misspecified Nash equilibrium requires that each player’s beliefs attach probability one
to the set of subjective distributions over consequences that lead to his taking actions that
lead to the highest realized payoff, keeping fixed the strategies of the other players.

First, we define the set of best responses induced by every subjective belief and the set
of subjectively non-dominated model-response pairs.

Definition 1. The set of best responses of player i to Qi
θ i is

X∗(Qi
θ i) =×si∈SiX∗(Qi

θ i,si),

where

X∗(Qi
θ i,si) = argmax

xi∈Xi
EQi

θ i(·|si,xi)π
i(xi,Y i).

So (x̄i
si)si∈Si ∈ X∗(Qi

θ i) is a vector, each element of which comprises a best response for
some signal. For some Qi

θ i , it may be that X∗(Qi
θ i) has multiple elements. When this is the

case, it suits to consider each pair (Qi
θ i, x̄i) as a distinct object that can be learned. We define

the set of all such model-response pairs.

Definition 2. The set of subjectively non-dominated model-response pairs of player i is

Λ
i =
{
(θ i, x̄i) : θ

i ∈Θ
i, x̄i ∈ X∗(Qi

θ i)
}
.

It must be that every θ i ∈ Θi appears in at least one element of Λi, but the same is not
true for x̄i ∈ (Xi)S

i
. If x̄i is not a best response for any subjective model considered by

player i, then it will not be part of any element of Λi. Conversely, the same actions can
occur in multiple elements of Λi. For example, considering the coin toss example from our
introduction, if there are multiple models that give a probability of heads of at least half, then
each of these models paired with the action “predict heads” will be an element of Λi.

There is more than one way to consider such pairs (θ i, x̄i) bonded by a best response
correspondence. Our preferred interpretation is that subjective beliefs are ancillary to actions
in the sense that it is possible to omit beliefs from the decision model and still have a model,
but the model without actions would be nonsensical. What the beliefs do is to restrict the set
of possible actions to those that are justifiable by some model in the prior. Actions that are
unjustifiable are never taken.

Second, given any belief and an associated subjective best response, we calculate the
objective (expected) payoff for player i against a given strategy profile σ .
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Definition 3. The objective payoff of player i from (θ i, x̄i) ∈ Λi is

Π
i
σ (Q

i
θ i, x̄i) = ∑

si∈Si

EQi
σ (·|si,x̄i

si)
π

i(x̄i
si,Y i) pSi(si).

If θ i is the true model under strategy profile σ , then any choice of x̄i gives the same objective
payoff, so we omit the second argument and write Πi

σ (Q
i
σ ).

Finally, we have that

Definition 4. A profile (θ i∗, x̄i∗)i∈I is a misspecified Nash equilibrium (mNE) if, for all
i ∈ I,

(θ i∗, x̄i∗) ∈ argmax
(θ i,x̄i)∈Λi

Π
i
σ (Q

i
θ i, x̄i).(2)

mNE is a solution concept for players who (i) care about obtaining as high a payoff as
possible for themselves, similarly to all Nash-style concepts, and (ii) learn about what they
care about. In equilibrium, there are no (subjective) beliefs that player i could learn that
could lead him to act in a way that would increase his (objective) expected payoff. In other
words, there does not exist an (objectively) profitable deviation to a different set of beliefs
together with (subjectively) optimal actions.

Our analysis has effectively reduced the problem to a game with player set I, strategy
sets Λi for i∈ I, and payoff functions given by the objective payoffs. Each mNE corresponds
to a pure Nash equilibrium of the reduced game. The supporting intuition is that, under an
appropriate learning procedure, the role of model misspecification is to reduce the choice of
strategies available to a decision maker. This reduces the choice of possible profitable devi-
ations and consequently, if strategies that constitute a pure Nash equilibrium of the objective
game O are still available to players in the game G = 〈O,Q〉, then there exists a mNE in
these strategies.

Proposition 1. If (x̄i∗)i∈I is a pure Nash Equilibrium of the objective game and, for all i ∈ I,
there exists θ i∗ ∈Θi such that (θ i∗, x̄i∗) ∈ Λi, then (θ i∗, x̄i∗)i∈I is a mNE.

Proof. For given i, by definition of Nash equilibrium, x̄i∗ is a best response under correct
beliefs (Qi

σ )i∈I . This best response gives an expected payoff of Πi
σ (Q

i
σ ). As Πi

σ (Q
i
σ ) ≥

Πi
σ (Q

i
θ i, x̄i) for all (θ i, x̄i)∈Λi, and Πi

σ (Q
i
σ ) = Πi

σ (Q
i
θ i∗ , x̄i∗), it must be that (θ i∗, x̄i∗) solves

(2). �

A question that remains is whether model misspecification should reduce the choice of
strategies even further. Specifically, should it be permissible to consider mixing over el-
ements of Λi? We can think of two interpretations of such a mixture. The first is that
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a player mixing between (θ i1, x̄i1) and (θ i2, x̄i2) should act according to beliefs that are a
convex combination of Qi

θ i1 and Qi
θ i2 . However, it may be that neither x̄i1 nor x̄i2 is a best re-

sponse to such beliefs. The second interpretation is the “mass action” interpretation of John
Nash’s PhD thesis (Nash, 1950a). Under this interpretation, a mixture between (θ i1, x̄i1) and
(θ i2, x̄i2) would indicate that player i is drawn from some population and that such a draw
renders some chance of player i being of type i1, for whom x̄i1 is a best response, and some
chance of player i being of type i2, for whom x̄i2 is a best response. This latter interpretation
motivates the following.

Let Ξi be the set of all probability measures over model-response pairs (θ i, x̄i). Let ς i

denote an element of Ξi. Note that ς i ∈ Ξi induces a distribution σ i on Xi given by

σ
i(xi|si) = ∑

(θ i,x̄i)∈Λi: x̄i
si=xi

ς
i ((θ i, x̄i)

)
.

It follows that if (ς i)i∈I is given, then probabilities Qi
σ under the true model are well defined

and, consequently, so is Πi
σ .

Definition 5. (ς i)i∈I is a (mixed) misspecified Nash equilibrium (mmNE) of game G if, for
all players i ∈ I, for all (θ i∗, x̄i∗) in the support of ς i,

(θ i∗, x̄i∗) ∈ argmax
(θ i,x̄i)∈Λi

Π
i
σ (Q

i
θ i, x̄i).

Proposition 2. A mixed mNE exists.

Proof. For all i ∈ I, for all x̄i such that (θ i, x̄i) ∈ Λi for some θ i, choose one such θ i. Denote
the finite set of (θ i, x̄i) ∈ Λi chosen this way by Λ̃i ⊆ Λi.

The game G̃ with player set I, pure strategies (Λ̃i)i∈I and payoffs equal to objective payoffs
is finite and thus has at least one, possibly mixed, Nash equilibrium by Nash’s existence
theorem (Nash, 1950b). Choose one such equilibrium and denote it by (ς̃ i∗)i.

Define G to be identical to G̃ except that the strategy sets are Λi instead of Λ̃i. For all i ∈ I,
let ς i∗ = ς̃ i∗ on Λ̃i and ς i∗(Λir Λ̃i) = 0.

If (ς i∗)i is not a Nash equilibrium of G, there exists a profitable deviation for some player
i to some (θ i1, x̄i1) ∈ Λi. Note that by construction of Λ̃i there exists θ i ∈ Θi such that
(θ i, x̄i1) ∈ Λ̃i ⊆ Λi. Objective payoffs do not depend directly on beliefs, so if (θ i1, x̄i1) is
a profitable deviation from (ς i∗)i, then (θ i, x̄i1) is also a profitable deviation from (ς i∗)i.
However, as (ς̃ i∗)i and (ς i∗)i induce the same distributions over consequences, it must be
that (θ i, x̄i1) is also a profitable deviation from (ς̃ i∗)i. Contradiction. Therefore, (ς i∗)i, is a
Nash equilibrium of G.
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By definition of Nash equilibrium, if (θ i∗, x̄i∗) is in the support of ς i∗, then (θ i∗, x̄i∗) ∈
argmax(θ i,x̄i)∈Λi Πi

σ (θ
i, x̄i). Therefore (ς i∗)i is a mNE. �

4. Generalized Bayes’ rule

In this section, we describe a learning procedure, generalized Bayes’ rule, that general-
izes Bayes’ rule, guarantees equally good performance (in terms of convergence speed) in
well-specified learning problems, and learns models which give the best payoff in misspec-
ified settings. The mNE we propose can be interpreted as the equilibrium resulting from a
population of agents adopting generalized Bayes’. Like many regret-free algorithms, this ap-
proach is arguably closer to the way learning occurs in real-world situations because it is both
less abstract and more robust than Bayes’ rule. Less abstract because players learn directly
from and about rewards and punishments rather than learning from observations about a hy-
pothetical parameter characterizing a true distribution. More robust because, unlike Bayes’
rule, it guarantees that a player will learn a model that induces an action that leads to as high
an objective expected payoff as possible. Unlike other regret-free algorithms in the literature,
the generalized Bayesian algorithm we propose allows us to naturally incorporate players’
beliefs in the learning problem and it nests Bayes rule as a special case.

The generalized Bayesian algorithm has two steps. First, players transform their original
beliefs to a new set of entropified probabilities (Grünwald, 1998) which incorporate payoffs
that correspond to the best responses induced by each subjective belief. Second, players
update their prior beliefs iteratively using (generalized) Bayes’ rule on the set of entropified
probabilities.

Here we briefly describe the entropification procedure, define generalized Bayes’ rule
and provide a simple proof of the fact that a player who follows this rule will learn to play
actions that correspond to the highest objective payoff that can be justified by some model
in his prior. That is, players learn to play as per the definition of mNE. We then illustrate the
differing learning outcomes of Bayes’ and generalized Bayes’ rule by revisiting Example 6.1
(coin tosses).

Definition 6. For each (θ i, x̄i) ∈ Λi, the entropified probability of consequence yi given si

is

eQi
(θ i,x̄i)(yi |si ) =

eβ π i(x̄i
si ,y

i)∫
Yi eβ π i(x̄i

si ,ŷ
i)dŷi

,
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where we will fix β = 1 for the rest of the paper.3 For given σ , we similarly define eQi
σ by

replacing x̄i with an arbitrary best response to Qi
σ .

Entropified probabilities are defined with reference to the finite set of best responses
rather than the possibly infinite set of model-response pairs. Thus, dealing with entropified
probabilities effectively reduces the domain of the learning problem to a finite set of classes
of model-response pairs indexed by the set of subjectively non-dominated best responses.4

Given entropified probabilities, we can define the generalized likelihood of any model
response pair (θ i, x̄i) and the generalized Bayesian prior after t observations. These are
simply the standard concepts applied to the entropified probabilities.

Definition 7. For each (θ i, x̄i) ∈ Λi, the generalized likelihood after t periods on (si
τ ,y

i
τ)

t
τ=0

is

gQi
(θ i,x̄i)

(
(yi

1,s
i
1), ...,(y

i
t ,s

i
t)
)
=

t

∏
τ=1

 e
π i(x̄i

si
τ

,yi
τ )

∫
Yi e

π i(x̄i
si
τ

ŷi)
dŷi

 .

The evolution of generalized Bayes’ rule mimics Bayes’ rule: the generalized posterior
weight of each model is proportional to its generalized likelihood.

Definition 8. Given prior distribution µ i
0 on Λi, the generalized Bayesian prior distribution

gµ i
t given observations (sτ ,yτ)

t
τ=0 is given by

gµ
i
t (A) =

∫
A gQ(θ i,x̄i)

(
(yi

1,s
i
1), ...,(y

i
t ,s

i
t)
)

dµ i
0(θ

i, x̄i)∫
Λi gQi

(θ i,x̄i)

(
(yi

1,s
i
1), ...,(y

i
t ,si

t)
)

dµ i
0(θ

i, x̄i)
,

for A⊆ Λi.

Finally, we define the entropified Kullback-Leibler divergence as the measure of distance
between entropified beliefs.

Definition 9. Entropified Kullback-Leibler divergence (eKLD):

eKi(σ ,θ i, x̄i) = Π
i
σ (Q

i
σ )−Π

i
σ (Q

i
θ i, x̄i).

Πi
σ (Q

i
θ i, x̄i) is player i’s objective expected payoff when he plays the subjective best

response x̄i to beliefs Qi
θ i and the other players follow strategies (σ j) j,i. So the eKLD

3The appropriate value of β (a.k.a. the learning rate) is an active topic in the machine learning literature
(e.g., Grünwald, 1998). WLOG, we set β = 1 because any time independent value of the learning rate converges
to the same model when convergence occurs if the prior support is finite.

4This finiteness guarantees that assumptions C1−C4 of Grünwald (1998) (π is bounded), Assumption 1 of
Frick et al. (2019) and Assumption 1 of Esponda and Pouzo (2016) about the learning problem are satisfied.

–10–



measures the distance between model-response pairs in terms of differences in true expected
payoffs.

It is easy to verify that if we replace π i(x̄si,yi) by lnQi
θ i(yi|si, x̄si) in Definition 6, then we

obtain the standard likelihood function. This analogy goes further. In fact, if probabilities
over outcomes are independent of a player’s action, then the entropified Kullback-Leibler
divergence of Definition 9 is simply the definition of standard Kullback-Leibler divergence
(see Section 5) applied to the entropified probabilities and generalized Bayes’ rule coincides
with Bayes rule.

The eKLD plays a similar role in the generalized Bayesian framework to the role played
by standard Kullback-Leibler divergence in standard Bayes.5 While Bayes rule converges to
the model with the lowest Kullback-Leibler divergence (Berk, 1966), the generalized Bayes’
rule converges to the model with the lowest eKLD (Proposition 3).

The following Proposition generalizes the results of (Berk, 1966), showing that gener-
alized Bayes’ rule eventually gives positive weight only to beliefs that support actions that
minimize eKLD.

Proposition 3. Let Qσ be generated by σ . Write A := argmin(θ i,x̄i)∈Λi eKi(σ ,θ i, x̄i). If
µ i

0(A)> 0, then gµ i
t (A)→ 1 Qσ -a.s. as t→ ∞.

Proof. Write

a := max
(θ i,x̄i)∈Λi

Π
i
σ (Q

i
θ i, x̄i) and b := max

(θ i,x̄i)∈ΛirA
Π

i
σ (Q

i
θ i, x̄i).(3)

The result follows from the strong law of large numbers (SLLN):

gµ
i
t (A) = 1−gµ

i
t (Λ

irA)

=︸︷︷︸
by

Definition 8

1−
∫

ΛirA gQ(θ i,x̄i)

(
(yi

1,s
i
1), ...,(y

i
t ,s

i
t)
)

dµ i
0(θ

i, x̄i)∫
Λi gQi

(θ i,x̄i)

(
(yi

1,s
i
1), ...,(y

i
t ,si

t)
)

dµ i
0(θ

i, x̄i)

≥ 1−
∫

ΛirA gQ(θ i,x̄i)

(
(yi

1,s
i
1), ...,(y

i
t ,s

i
t)
)

dµ i
0(θ

i, x̄i)∫
A gQi

(θ i,x̄i)

(
(yi

1,s
i
1), ...,(y

i
t ,si

t)
)

dµ i
0(θ

i, x̄i)

= 1−
∫

ΛirA elngQ(θ i,x̄i)((y
i
1,s

i
1),...,(y

i
t ,s

i
t)) dµ i

0(θ
i, x̄i)∫

A e
lngQi

(θ i,x̄i)((y
i
1,s

i
1),...,(y

i
t ,si

t)) dµ i
0(θ

i, x̄i)

5Note that no model can give a higher objective payoff than the true model σ . That is, Πi
σ (Q

i
σ ) ≥

Πi
σ (Q

i
θ i , x̄i) for all (θ i, x̄i) ∈ Λi. Therefore, eKi(σ ,θ i, x̄i) ≥ 0 and equals 0, by definition, if and only if

x̄i ∈ argmaxΠi
σ (Q

i
σ ). So, the eKLD is a divergence in the space of entropified beliefs
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=︸︷︷︸
by

Definition 7

1−
∫

ΛirA e
t ∑

t
τ=1

1
t π(x̄i

si
τ

,yτ )
dµ i

0(θ
i, x̄i)∫

A e
t ∑

t
τ=1

1
t π(x̄i

si
τ

,yτ )
dµ i

0(θ
i, x̄i)

≈︸︷︷︸
Qi

σ -a.s. for t large
by SSLN

1−
∫

ΛirA et Πσ (Qi
θ i ,x̄

i) dµ i
0(θ

i, x̄i)∫
A et Πσ (Qi

θ i ,x̄
i) dµ i

0(θ
i, x̄i)

≥︸︷︷︸
by (3)

1−
et b µ i

0(Λ
irA)

et a µ i
0(A)

t→∞−−−→︸ ︷︷ ︸
by a>b

1.

�

It follows that the generalized Bayesian prior will identify responses x̄i which give the
highest objective expected payoff, but that each such response may correspond to a mul-
tiplicity of beliefs. By using generalized Bayes, players pragmatically learn how to act to
maximize their average payoff according to the true distribution, rather than which of their
probabilistic models is the most accurate in some abstract sense. Comparing Definition 4
and Definition 9, it is clear that these learned model-response pairs are exactly those that
occur in mNE.

4.1 Coin tosses revisited

Again consider the example from the introduction in which a decision maker learns a
probabilistic model of coin tosses from amongst the models θ i1 (probability of heads is
0.45) and θ i2 (probability of heads is 0.9).

Bayes’ rule. By standard arguments, the prior probability of θ i1 after t periods, calcu-
lated via Bayes’ rule is

µ
i
t (θ

i1) =

(
µ i

0(θ
i1)∏

t
τ=1 ∏ω=H,T Qi

θ i1(ω)Iyτ=ω

µ i
0(θ

i1)∏
t
τ=1 ∏ω=H,T Qi

θ i1(ω)Iyτ=ω +µ i
0(θ

i2)∏
t
τ=1 ∏ω=H,T Qi

θ i2(ω)Iyτ=ω

)
=

1

1+ µ i
0(θ

i2)

µ i
0(θ

i1)
e

∑
t
τ=1 ∑ω=H,T Iyτ=ω ln

Qi
θ i2 (ω)

Qi
θ i1 (ω)

=
1

1+ µ i
0(θ

i2)

µ i
0(θ

i1)
e

t

(
1
t ∑

t
τ=1 ∑ω=H,T Iyτ=ω ln Qi

σ (ω)

Qi
θ i1 (ω)

− 1
t ∑

t
τ=1 ∑ω=H,T Iyτ=ω ln Qi

σ (ω)

Qi
θ i2 (ω)

)
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≈Qi
σ -a.s.

for t large

 1

1+ µ i
0(θ

i2)

µ i
0(θ

i1)
et(K(σ ,θ i1)−K(σ ,θ i2))


→Qi

σ -a.s.

{
1 if K(σ ,θ i1)−K(σ ,θ i2)< 0
0 if K(σ ,θ i1)−K(σ ,θ i2)> 0

.

For Qi
σ (H)= 0.7, a quick calculation shows that K(σ ,θ i1)−K(σ ,θ i2)< 0, so that µ i

t (θ
i1)→

1 as t → ∞. Accordingly, the Bayesian player becomes certain that tails is more likely than
heads and bets on tails for all large t. These learned beliefs ensure him an objective expected
payoff of 0.3, which is lower than the objective expected utility of 0.7 that he would have
obtained had he learned the θ i2 model.

Generalized Bayes’ rule. Adapting the previous argument (see also the proof of Lemma
3), the generalized Bayesian prior probability of θ i1 after t periods is

µ
e
t (θ1)≈

Qi
σ -a.s.

for t large

 1

1+ µ0(θ2)
µ0(θ2)

et(eK(σ ,θ i1,T )−eK(σ ,θ i2,H))


→Qi

σ -a.s.

{
1 if eK(σ ,θ i1,T )− eK(σ ,θ i2,H)< 0
0 if eK(σ ,θ i1,T )− eK(σ ,θ i2,H)> 0

,

which implies that the generalized Bayesian prior converges to a Dirac distribution on the
parameter with the lowest eKL divergence from the truth. For Qi

σ (H) = 0.7, our decision
maker correctly learns that betting on heads is more profitable than betting on tails and that
he is better off acting under the beliefs Qθ i2 than he is acting under the beliefs Qθ i1 .

5. Comparing mNE with Berk-Nash

In this section, we formally define the Berk-Nash equilibrium concept of Esponda and
Pouzo (2016) and provide an alternative definition of mNE, equivalent to our original defi-
nition, which eases the comparison between the two equilibrium concepts.

Esponda and Pouzo (2016) define an equilibrium concept for mispecified models with
Bayesian players by leveraging the observation that a Bayesian learner would learn the mod-
els that are “closest” to the objective distribution in terms of minimizing Kullback-Leibler
divergence (Berk, 1966). Berk-Nash equilibrium places probability one on the set of subjec-
tive beliefs that minimize Kullback-Leibler divergence.

Formally, these are the relevant definitions.

Definition 10. Weighted Kullback-Leibler divergence (wKLD):
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Ki(σ ,θ i) = ∑
(si,xi)∈Si×Xi

EQi
σ (·|si,xi)

[
ln

Qi
σ (Y

i|si,xi)

Qi
θ i(Y i|si,xi)

]
σ

i(xi|si) pSi(si).(4)

Definition 11. A strategy profile σ is a Berk-Nash equilibrium (BNE) of game G if, for all
players i ∈ I, there exists µ i ∈ ∆(Θi) such that

(i) σ i is optimal given µ i, and

(ii) If θ̂ i is in the support of µ i then θ̂ i ∈ argminθ i∈Θi Ki(σ ,θ i).

In well-specified learning settings with a proper information structure, BNE coincides
with NE and every NE is a mNE. The reverse inclusion does not hold because mNE does
not uniquely pin down beliefs: the same actions can be, and typically are, a best response to
more than one belief. In misspecified learning settings, a BNE is observationally equivalent
to some mNE if and only if the beliefs of each player are a useful model in that they lead to
the highest payoff amongst the models subjectively believed possible by the decision maker.

To further compare BNE and mNE, we give a definition of mNE, equivalent to our origi-
nal definition, that is directly linked to eKLD, and thus to the generalized Bayesian approach
that was described in Section 4.

Definition 12. A profile (θ i∗, x̄i∗)i∈I , is a (pure) misspecified Nash equilibrium (mNE) of
game G if, for all players i ∈ I,6

(i) (θ i∗, x̄i∗) ∈ Λi, and

(ii) (θ i∗, x̄i∗) ∈ argmin(θ i,x̄i)∈Λi eKi(σ ,θ i, x̄i).

Definition 12 highlights that mNE is similar to BNE in requiring that players’ beliefs at-
tach probability one to the set of subjective distributions over consequences that are “closest”
to the objective distribution. The difference between BNE and mNE is the way in which the
respective concepts define the distance between distributions. Specifically, BNE uses wKLD
whereas mNE uses eKLD.

These notions of distance, wKLD and eKLD, and consequently BNE and mNE respec-
tively, rest on different learning paradigms. Bayes’ rule has become the standard in eco-
nomics due to its simplicity and the sound axiomatic foundation (Ghirardato 2002; Gilboa
and Marinacci 2011). Furthermore, in well-specified learning problems, its derivation is al-
most tautological when we consider empirical frequencies. A natural question is why should
a player deviate from Bayes’ rule to favor other rules such as generalized Bayes? The main

6It is easy to verify that this definition is equivalent to Definition 4 because, by Definition 7
argmin(θ i,x̄i)∈Λi eKi(σ ,θ i, x̄i) = argmax(θ i,x̄i)∈Λi Πi

σ (Q
i
θ i , x̄i).
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reason is the misspecification risk. When the learning environment is potentially misspeci-
fied, Bayes’ rule does not guarantee robust choices. As Dawid (1982) eloquently put it:

“If a subjective distribution P attaches probability zero to a non-ignorable event,
and if this event happens, then P must be treated with suspicion and modified or
replaced.”

The generalized Bayesian approach we describe has the pragmatic advantage of being as
good as regular Bayes’ (comparable convergence rate to the truth) in well specified learn-
ing problems, as well as ensuring minimum regret choices even in misspecified learning
environments.

The axiomatic and the pragmatic rationality criteria coincide in well-specified learning
environments but differ in misspecified problems. These two criteria should be seen as com-
plementary, with the preferred criterion depending on the specifics of the decision environ-
ment. The former is appropriate in situations in which an agent is not subject to an external
criterion of performance. In this case, a set of axioms can jointly determine an agent’s pref-
erences and beliefs. The latter is appropriate for cases in which an agent’s decisions are
evaluated according to an external criterion of performance (e.g. Sharpe ratio for portfo-
lio managers, calibration for weather forecasters). Because the criterion pins down agent
preferences, a pragmatic agent should internalize this constraint in his decision problem and
choose a prediction rule that is optimal for his preferences (Massari, 2020).

One important external criterion is fitness. If we consider an evolutionary model in which
payoffs correspond to fitness, then players with high payoffs reproduce more than players
with low payoffs. In this case, the pragmatic criterion is most appropriate when it comes
to identifying the long-run equilibria of the population dynamic. We show this formally in
Section 7.

6. Examples

6.1 Coin tosses

Here we discuss the illustrative example from the introduction. A decision maker guesses
the outcome of a coin toss, Xi = {H,T}. The outcome of the coin toss is independent of
the decision maker’s action and is given by y = f (x,ω) = ω , where ω = H with probability
0.7 and ω = T with probability 0.3. There are no signals. Hence we have Qi

σ (H|xi) =

Qi
σ (H) = 0.7 for all σ , xi. Payoffs are given by π i(x,y) = 1 if x = y and π i(x,y) = 0 if

x , y. The parameter set is Θi = {θ i1,θ i2} and we let Qi
θ i1(H|xi) = Qi

θ i1(H) = 0.45 and
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Qi
θ i2(H|xi) = Qi

θ i2(H) = 0.9 for all xi. Note that T is the unique best response to beliefs
Qi

θ i1 , whereas H is the unique best response to beliefs Qi
θ i2 or to the true model Qi

σ .
Misspecified Nash equilibrium. The set of subjectively non-dominated model-response

pairs is given by Λi = {(θ i1,T ),(θ i2,H)}. We obtain objective expected payoffs

Π
i
σ (Q

i
θ i1,T ) = 0.3, Π

i
σ (Q

i
θ i2,H) = 0.7, Π

i
σ (Q

i
σ ) = 0.7.

It follows that the unique mNE is (θ i2,H). At this equilibrium, the decision maker obtains
an expected objective payoff of 0.7 and thus he would correctly guess the outcome of the
coin toss 0.7 of the time.

An easy calculation shows that, for all σ , we have

eKi(σ ,θ i1,T ) = 0.7−0.3 = 0.4, eKi(σ ,θ i2,H) = 0.7−0.7 = 0.

So, this is the pair that will be learned by applying generalized Bayes’ rule. The player learns
what he cares about: payoffs.

Berk-Nash equilibrium. Substituting into (10) we obtain, for θ i ∈Θi,

Ki(σ ,θ i) = EQi
σ (·)

[
ln

Qi
σ (Y

i)

Qi
θ i(Y i)

]
.(5)

Therefore, as Qi
σ is independent of σ , we have that, for all σ ,

Ki(σ ,θ i1) = 0.7
(

ln
0.7

0.45

)
+0.3

(
ln

0.3
0.55

)
≈ 0.13

and

Ki(σ ,θ i2) = 0.7
(

ln
0.7
0.9

)
+0.3

(
ln

0.3
0.1

)
≈ 0.15.

So, at BNE, it must be that model θ i1 is believed with probability one. These are the beliefs
that would be learned by applying Bayes’ rule. The unique best response for θ i1 is T ,
so the unique BNE has σ i(H) = 0, σ i(T ) = 1, supported by the belief µ i(θ i) = 1. At
this equilibrium, the player obtains an expected objective payoff of 0.3 and thus he would
correctly guess the outcome of the coin toss only 0.3 of the time. The player learns the model
with the highest likelihood, not the model that grants him higher payoffs if believed true.
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6.2 Arrow-Debreu securities

We extend the example of the preceding subsection so that the decision maker chooses a
share xi ∈Xi = {0,0.01, . . . ,0.99,1} of a unit of Arrow-Debreu security to invest in outcome
H. The remainder is invested in outcome T . Similar to before, y = f (x,ω) = ω , where
ω = H with probability pH and ω = T with probability 1− pH . There are no signals and the
decision maker’s action does not affect outcome probabilities. Hence we have Qi

σ (H|xi) =

Qi
σ (H)= pH for all σ , xi. The decision maker is aware that his action does not affect outcome

probabilities and has Bernoulli beliefs parametrized by Θ = {0,0.01, . . . ,0.99,1}, so that
∀θ i ∈ Θi,Qi

θ i(H) = θ i. Payoffs are given by π i(xi,H) = u(xi) and π i(xi,T ) = u(1− xi),
where u is a utility function.

Misspecified Nash equilibrium. The set of mNE are all pairs (θ i,xi)∈Λi that maximize
EQi

σ (·)π
i(xi,Y i). By definition, these are also the pairs that minimize the eKLD.

Berk-Nash equilibrium. To find a BNE, choose θ i to minimize (5), then choose a
strategy in which any action xi played with positive probability maximizes EQi

θ i(·)
π i(xi,Y i).

In general, a Bayesian will learn different beliefs from those held at mNE. So, mNE
and BNE can differ. However, when the model is correctly specified, a Bayesian will learn
correct beliefs and thus his best responses will be those described above for mNE. In the case
of log utility, minimizing eKLD is equivalent to minimizing wKLD and therefore beliefs at
mNE will be identical to those that would be learned by a Bayesian.

Correctly specified model. If there exists θ i∗ ∈ Θi such that Qi
θ i∗ = Qi

σ , then wKLD is
minimized at θ i∗. Then BNE is a NE. Furthermore, EQi

θ i∗(·)
u(xi) = EQi

σ (·)u(x
i), therefore we

also have that (θ i∗,xi) is a mNE. Note that there may also exist other mNE that choose the
same actions but are based on incorrect beliefs. However, if (θ i,xi) is a mNE, then (θ i∗,xi)

is also a mNE and σ i, σ i(xi) = 1, is a BNE supported by the belief µ i(θ i∗) = 1.
Log utility. Now, let u(·) = ln(·). When this is the case, for any (θ i,xi) ∈ Λi, we have

that xi = Qi
θ i(H) and 1− xi = Qi

θ i(T ). That is, the share of asset invested in H equals the
subjective probability of H. Readers will recognize this as the celebrated Kelly criterion.
Consequently, eKLD will be minimized by (θ i,xi) ∈ Λi that maximize EQi

σ (·) lnQi
θ i(Y i).

This is equivalent to minimizing (5), therefore (θ i,xi) is a mNE if and only if σ i, σ i(xi) = 1,
is a BNE supported by the belief µ i(θ i) = 1.

6.3 Monopoly with unknown demand

Here we consider Example 2.1 of Esponda and Pouzo (2016). A monopolist chooses
a price xi ∈ Xi = {2,10} that generates demand yi = f (xi,ω) = φ0(xi)+ω , where ω is a
mean-zero shock with distribution p ∈ ∆(Ω). It is assumed that φ0(2) = 34 and φ0(10) = 2.
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There are no signals. The payoff is π i(xi,yi) = xiyi.
The monopolist’s uncertainty about p and f is described by a parametric model fθ , pθ ,

where y = fθ (xi,ω) = a− bxi +ω is the demand function, θ = (a,b) ∈ Θ is a parameter
vector, and ω ∼ N(0,1). The set of possible models is given by Θ = [33,40]× [3,3.5]. Let
θ0 ∈ R2 provide a perfect fit for the demand so that φ0(xi) = φθ0(x

i) for all xi ∈ Xi. This
gives θ0 = (a0,b0) = (42,4) < Θ and therefore the monopolist has a misspecified model.
Note that, as there are no other players, the conditional objective distribution Qi

σ (·|xi) does
not depend on σ and is normal with mean φ0(xi) and unit variance. Similarly, Qθ (·|xi) is
normal with mean φθ (xi) = a−bx and unit variance.

Misspecified Nash equilibrium. By substituting the true model parameters into the
payoff function, we obtain expected objective payoffs from playing model-response pairs
(Qi

θ i,xi).

Π
i
σ (Q

i
θ i,xi) = E[π i(xi,yi)] = E

[
xi(42−4xi +ω))

]
= xi(42−4xi)+ xiE(ω) =

{
68 i f xi = 2
20 i f xi = 10

Consequently, the set of mNE is the set of all pairs (θ i,2) ∈ Λi. As there is only one player,
the set of mmNE is the set of all mixtures on these pairs. As there are no actions other than 2
and 10, with correct beliefs the monopolist should always choose action 2, so Πi

σ (Q
i
σ ) = 68.

Applying Definition 9, we see that eKi(σ ,θ i,2) = 68−68 = 0 for all pairs (θ i,2) ∈ Λi and
eKi(σ ,θ i,2) = 68− 20 = 48 for all pairs (θ i,10) ∈ Λi. So, these are exactly the pairs that
can be learned by applying generalized Bayes’ rule.

Comparison to a Bayesian learner. Esponda and Pouzo (2016) show that if a Bayesian
monopolist consistently chooses action 2, then he will learn beliefs to which the only best
response is action 10. Conversely, if he consistently chooses action 10, then he will learn
beliefs to which the only best response is action 2. Consequently, the only way to reconcile
Bayesian learning with best response is for the monopolist to mix between actions 2 and 10.
If he does this in the right proportions, then he can learn beliefs that give both actions as best
responses.7

The Bayesian disconnect. The reason that Bayesian learning gives rise to the com-
plexity above is a fundamental disconnect between (i) the idea of payoff maximization that
underpins Nash-style concepts, and (ii) the learning procedure, which ignores payoffs and
maximizes log-likelihood. Even when the Bayesian monopolist plays both actions 2 and 10,

7The frequencies with which each action is played under σ i are chosen so that the θ i that minimizes
Ki(σ ,θ i) makes the monopolist (subjectively) indifferent between the actions. The unique Berk-Nash equi-
librium of this game is σ i = (35/36, 1/36) with supporting beliefs given by the parameters θ i = (40, 10/3).
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his learning procedure does not pay attention to the difference in expected objective payoffs
from each action. This is in contrast to the ideas and learning procedures that underpin belief
selection for mNE.

7. Evolutionary stability

In this section we show that if a population follows a learning rule that leads to equilib-
rium behavior that is not a mNE, then the population is vulnerable to invasion by players
who follow a different rule. Conversely, if the learning rule leads to a strict mNE, then the
population is robust to invasion by other learning rules. The stability concept we use adapts
the idea of an evolutionarily stable state (Taylor and Jonker, 1978) for a situation in which the
aspect of the environment under evolutionary pressure is neither strategies (Weibull, 1995),
nor preferences (Samuelson, 2001), nor agency (Newton, 2017b), but rather the learning rule
that players follow.

Formally, consider a population comprising a unit mass of players. Every period, mem-
bers of the population are matched into groups of size I to play a game G that we as-
sume, without loss of generality, to be symmetric.8 Members of the population follow
a learning rule, a function that maps a player’s history of actions xi

0, . . . ,x
i
t−1, outcomes

yi
0, . . . ,y

i
t−1 and payoffs π i(xi

0,y
i
0), . . . ,π

i(xi
t−1,y

i
t−1) to a distribution ς i

t over model-response
pairs λ i

t = (θ i
t , x̄

i
t) ∈ Λi.

Every period, let each member of the population generate a model-response pair accord-
ing to the learning rule, before being matched to play the game. Matching is uniform, so
that the probability of any given opponent of a player following a given model-response pair
equals the share of the players in the population with that model-response pair. Write ςt as
the aggregate distribution over model-response pairs in the population at time t.

Consider an alternative, mutant, learning rule that would have led to ςm
t as the dis-

tribution over model-response pairs in the population at time t. For given ε ∈ [0,1), let
ς ε

t = (1− ε)ςt + εςm
t . That is, ς ε

t is the aggregate distribution over model-response pairs in
the population at time t when 1− ε of the population follows the incumbent learning rule
and ε of the population follows the mutant learning rule. Let fitness F(ς ,ς ε

t ) be the expected
payoff that a player in the population would obtain from following ς when the population as
a whole follows ς ε

t .

8To accomodate asymmetric games, we need only consider a game that is ex-ante symmetric but has players’
signals assign them to player positions in the asymmetric game. Further, note that the arguments leading to
Proposition 4 do not rely in any substantive way on the pre-mutant population containing only a single learning
rule, an assumption which is maintained to avoid a considerable amount of distracting further notation.
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Definition 13. A population learning evolutionarily stable equilibrium (PLESE) is a
learning rule and a history of play at some arbitrary period, say t, such that when the learn-
ing rule is used to extend the history, (i) ςτ remains constant for all τ > t, and (ii) there
does not exist τ̄ > t, ε̄ > 0 and a mutant learning rule such that for all ε < ε̄ , we have
F(ςm

τ̄
,ς ε

τ̄
)> F(ςτ̄ ,ς

ε
τ̄
).

Condition (i) of the definition specifies that we are indeed concerning ourselves with an
equilibrium. Condition (ii) specifies that it is impossible for a small number of mutants that
follow a different learning rule to invade the population and obtain higher average fitness
than the incumbents. Aside from considerations of time, the second part of the definition is
the standard definition of an evolutionarily stable state (Taylor and Jonker, 1978).

It turns out that there is a close relationship between play that can be sustained in a
PLESE and our concept of mNE. The reason for this is that non-mNE play can be destabi-
lized by the invasion of minimum regret learning algorithms such as the generalized Bayes’
rule.

Proposition 4.
(i) If a PLESE is such that ςτ = ς∗ for all sufficiently large τ , then (ς∗)i∈I is an mNE. (ii) If
(ς∗)i∈I is a strict mNE (i.e. the maximizers in the definition are unique), then for any given
t, there exists a PLESE such that ςτ = ς∗ for all τ ≥ t.

Proof. Part (i). Consider a PLESE such that ςτ = ς∗ for all sufficiently large τ , but (ς∗)i∈I

is not an mNE. The definition of (mixed) mNE (Definition 5) then implies that ς∗ places
strictly positive weight on some model-response pairs that do not maximize payoff when
every other player follows ς∗.

Consider generalized Bayes’ rule as discussed in Section 4. As the assumed PLESE even-
tually has ς∗ played by the population every period, Proposition 3 implies that generalized
Bayes’ rule eventually places almost all weight on model-response pairs that maximize pay-
off when every other player follows ς∗. Write the output of generalized Bayes’ rule as ςm

t .
That is, generalized Bayes’ rule will be our mutant rule. Write ς ε

t = (1− ε)ς∗+ εςm
t . Note

that ς0
t = ς∗. The above argument shows that for large enough t, ςm

t gives a strictly higher
payoff than ς∗ when every other player plays ς∗. That is, F(ςm

t ,ς0
t )> F(ς∗,ς0

t ). Fix such a
t.

As ε → 0, the probability of any player in the population being matched only with non-
mutants approaches 1. Hence, F(ςm

t ,ς ε
t )→ F(ςm

t ,ς0
t ) and F(ς∗,ς ε

t )→ F(ς∗,ς0
t ). There-

fore, for small enough ε , we have F(ςm
t ,ς ε

t )> F(ς∗,ς ε
t ). This violates Definition 13(ii), so

we cannot have started with a PLESE. Contradiction.
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Part (ii). Let (ς∗)i∈I be a strict mNE and choose an arbitrary history of play until time
t such that ςt = ς∗. Let the incumbent learning rule be such that from periods τ = t + 1
onwards, ς i

τ = ς i
t for each player i in the population. Therefore, in the absence of mutants, the

aggregate distribution of model-response pairs in the population is ς∗ from period t onwards.
Thus Definition 13(i) is satisfied.

As the mNE is strict, for any mutant rule, any τ > t, we must have F(ςm
τ ,ς0

τ ) < F(ς∗,ς0
τ ).

Hence, for small enough ε , we have F(ςm
t ,ς ε

t ) < F(ς∗,ς ε
t ). Thus Definition 13(ii) is satis-

fied.
�

Some remarks are in order regarding the limits of this result. As remarked earlier in
the paper, there are clear analogies between the study of NE in correctly specified games
and the study of mNE in misspecified games. Consequently, insights gained from the study
of the evolutionary stability of NE (see, e.g. Dekel et al., 2007; Heifetz et al., 2007; Ok
and Vega-Redondo, 2001) are applicable to the study of mNE. Crucially, when a player is
matched with a mutant that has newly appeared in the population, he does not recognize the
mutant. That is, he does not condition his play on whether or not an opponent is a mutant.
Relating this to Proposition 4(i), this means that incumbents cannot punish invading regret-
minimizing mutants and prevent them from destabilizing non-mNE behavior. Regarding
Proposition 4(ii), it means that when an mNE is being played, invading mutants cannot attain
higher payoffs than the population average due to their matched opponents adjusting their
strategies.

Another important assumption is that of uniform matching. In correctly specified mod-
els, it is known that assortativity in matching can lead to non-NE behavior (Alger and
Weibull, 2013; Bergstrom, 1995; Eshel and Cavalli-Sforza, 1982). If mutants match more
frequently with other mutants due to either exogenous factors or an evolved homophily
(Newton, 2017a), then there is a bias towards efficiency in play. This is because mutants
can evolve that are both highly likely to interact with others like themselves and behave in a
way that obtains high payoffs when one’s opponent does similarly. Such arguments can also
be applied to misspecified settings.
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