Disagreement between Human and Machine Predictions

Oct 2nd, 2020

@Keio University

Applied Economics Workshop

Daisuke Miyakawa (Hitotsubashi) Kohei Shintani (Bank of Japan)

<u>Background</u>

☐ Prediction tasks

- E.g., firm exit, financial markets, macro, etc.
- Better prediction ⇒ Better decision
- Machine learning (ML) methods

- Using high dimensional information "mainly" for prediction
- Varian '14, Mullainathan & Spiess '17, Athey '19

Background (cont'd)

☐ Use ML for prediction

- Successful
 - Labor: Chalfin et al. '16
 - Public: Kleinberg et al. '18, Bazzi et al. '19, Lin et al. '20
 - Medical: Patel et al. '19, Mei et al. '20
 - Financial: Agrawal et al. '18
- "ML > Human" on average (⇔ They disagree)

Research question

- ☐ Any systematic pattern in the disagreement?
 - Informative to understand <u>human AND machine errors</u>
 - E.g., informational opaqueness
 - Can "ML ≺ Human" be the case?
 - ⇒ **Yes** (economist view): Signal extraction from soft info
 - ⇒ No (psychologist view): Noisy prediction
 - ⇔ Kleinberg et al. '18: ML > "Predicted" judge > Judge
 - Useful for task allocation
 - General computerization: Frey & Osborne '13
 - Automation: Acemoglu & Restrepo '18

What we are doing

A) Construct a ML-based prediction model

B) Measure the disagreement b/w ML & Human

C) Examine how opaqueness works as its determinants

D) Do a counterfactual exercise for task allocation

What we are NOT doing

A) Inventing a new ML algorithm

B) Studying other than business enterprises

C) Studying other than credit rating

- D) Causal impact of the introduction of ML score
 - Paravisini & Schoar '15, Hoffman et al.'18

Key takeaways

- "ML > Human" on average
 - Highly robust against many concerns
- "ML > Human > Predicted human"
 - ≠ Kleinberg et al. (QJE '18) and supporting economists' view
- Relative performance of H/M ↑ as firms opaqueness ↑
 - Highly robust against many concerns
- "ML < Human" could be the case when...</p>
 - Firms are very opaque
 - ii. Type I error is more concerned (than Type II error is)

Contribution

- ☐ First to study H-M disagreement in social science
 - Raghu et al. '19: Algorithmic triage for diabetic retinopathy (≠ Anderson et al. '17, McIlroy-Young '20 for "chess")
- ☐ This is mainly because...
 - Data limitation on human prediction
 - Data limitation on target attributes
 - Data limitation on "human" (⇒ severe omitted variable issues)
 - ⇔ E.g., Kleinberg et al. '18: No judge attributes
 - Selection label problem
 - ⇒ Not the case in our data
- ⇒ When we should/shouldn't use ML? (≠ Luca et al. '16)

Organization

1. Theoretical illustration

2. Methodology

3. Data

4. Results

5. Summary

1. Theoretical illustration

 \square Ground truth for an instance f:a(f)

 \square Prediction: m(f) by M & h(f,i) by H(i)

■ Prediction errors

$$\Theta(f) = L(a(f), m(f))$$
: M

$$\Omega(f,i) = L(a(f),h(f,i))$$
: H

SH

■ Relative error rate of H to M: Our main interest

$$Proxy_{f,i} = \Omega(f,i) - \Theta(f).$$

- ☐ Structure human's prediction & proxy: Also examined
 - Human prediction solely \propto observable info

$$\Omega_h(f)$$

$$Proxy'_{f,i} = \Omega(f,i) - \Omega_h(f)$$

1. Theoretical illustration

☐ "Ultimate" goal:

$$\min_{S,T} \sum_{f \in S} \Theta(f) + \sum_{f \in T} \Omega(f, i)$$
s.t. $S \cup T = U; S \cap T = \emptyset$

 \Rightarrow (S*, T*) as a function of (f, i)

⇒ Main interest: Info opaqueness as the determinants + other control variables

⇔ We achieve this through CF exercises

Organization

1. Theoretical illustration

2. Methodology

3. Data

4. Results

5. Summary

2-1. Method: ML-prediction

- ☐ Target of the prediction (outcome):
 - 1(Dynamics) in default & voluntary closure & sales growth
- Predictors
 - #(independent variables) > 200: Observed before the dynamics
 - 6 groups of variables
 - Firms' basic attributes (firmown)
 - Detailed financial statement information (kessan)
 - Geographical/industry information (geo/ind)
 - Bank relation (bank)
 - Customer-supplier relation (network)
 - Shareholder information (share)

2-1. Method: ML-prediction

☐ "Training"

Prediction w/ machine learning (weighted random forest: WRF)

< Random forest >

- Tree prediction
 - Category (outcome) & attributes
 - Discretize
 - Compute the information gain associated with the "creation" of a splitting rule (i.e., "edge") at each node
 - Criterion: Entropy, Gini
 - Root (starting point)
 - →At each node, create a tree/edge by referring to the best splitting rule among all the attributes and the thresholds
 - →Repeat → • → Terminal node ("leaf" only consisting of P/N)
- Random forest
 - Bootstrap the data and do the tree prediction for each data
 - Assemble (e.g., majority) the decisions and decide the tree

- <"Weighted" Random forest>
- ☐ Chen et al. (2004)
 - Imbalance problem
 - (i) Sampling technique
 - - Weighting minority class more during the search of tree structure
 - Weighting the leaf corresponding to the minority class when deciding the final tree structure
 - Class weight (hyper-parameter) is determined through out-of-bag estimate (i.e., accuracy test based on the data not sued in bootstrapping)

2-1. Method: ML-prediction

Relative performance

"Test" using hold-out data

Evaluate the prediction power ⇒ ROC curve, and AUC

<Evaluation: ROC curve & AUC>

Relative performance

False-positive rate

2-2. Method: Human-Prediction

- ☐ Target of the prediction (outcome):
 - 1(Dynamics) in default & voluntary closure & sales growth

- ☐ Predictors
 - Human
 - Widely used creditworthiness score: fscore
 - Also, use the sub-scores for *fscore*
 - ⇒ 4 sub-scores: CEO, growth opportunity, stability, openness
 - Calibrate by Probit (with oversampled positive data)

SH

a. Credit ratings as human prediction?

- Mixture of rule-based scoring & discretion
- Also, compare it with "structure" human

b. Same information used by Human & ML?

- Trying to make it comparable by reducing the info for ML
- Still, room for Human to use soft/private info (our interest)

c. Omitted payoff bias?

Use sub-scores

Н

- d. (Calibrated) score?
 - Rank-based analysis

e. Other ML methods (LASSO and XGB)?

- f. Structural change?
 - ML > H on average is confirmed for all test years

2-3. Method: "Structured" Human

- ☐ Construct a model for replicating human decision (SH)
 - WRF
 - Economist view vs. psychologist view
 - We can specify the information set used for the prediction
 - ⇒ Use this prediction instead of ML in our analysis
- ☐ Target of the prediction (outcome):
 - fscore
- Predictors
 - #(independent variables) > 200
 - The 6 groups of variables
 - firmown, kessan, geo/ind, bank, network, share

2-4. Method: Disagreement

- □ Proxy: Measure the disagreement
 - Predict firms' outcome with test data by M & H & SH
 - Predicted outcomes for each company (between 0 and 1)
 - Larger means the company is more likely to face an event
 - "t" is addeted to the subscript

- Normalize predicted outcomes for each model
 - $Outcome_{f,t}^{ML}$ & $Outcome_{f,i,t}^{H}$ & $Outcome_{f,t}^{SH}$

2-4. Method: Disagreement

☐ *Proxy*: Measure the disagreement

- Large ⇔ M or SH > H
- M vs H

$$Proxy_{f,i,t} = Outcome_{f,t}^{ML} - Outcome_{f,i,t}^{H}$$
 for exit firms
$$= Outcome_{f,i,t}^{H} - Outcome_{f,t}^{ML}$$
 for non-exit firms

■ SH vs H

$$Proxy'_{f,i,t} = Outcome_{f,t}^{SH} - Outcome_{f,i,t}^{H}$$
 for exit firms
$$= Outcome_{f,i,t}^{H} - Outcome_{f,t}^{SH}$$
 for non-exit firms

2-5. Method: Determinants

- ☐ Identifying the determinants
 - Firm-Analyst-time level Panel estimation:

$$Proxy_{f,i,t} = G(\mathbf{O}_{f,t}, \mathbf{F}_{f,t}, \mathbf{I}_{i,t}, \mathbf{Z}_{i,t}) + \eta_{f,i,t} + \varepsilon_{f,i,t}$$
 where

 $\boldsymbol{O}_{f,t}$: Firm (i.e., target of scoring)' informational opaqueness

 $\boldsymbol{F}_{f,t}$: Firm (i.e., target of scoring)-attribute

 $I_{i,t}$: Analyst (i.e., human making score)- attribute

 $\boldsymbol{Z}_{i.t}$: Team- attribute

 $\eta_{f,i,t}$: Fixed-effects

Organization

1. Theoretical illustration

2. Methodology

3. <u>Data</u>

4. Results

5. Summary

3-1. Data: Overview

☐ TSR data: 1M+ firms/year

Similar to D&B in the U.S.

- KJ: Basic firm attributes, bank relation, shareholding
- SK: Supply chain network information
- KESSAN: Financial statement information
- Firm-Analyst table & HR data
- Exit frag: Default, voluntary exit
- \blacksquare t = 2010-1016 (t = 2017- in lockbox)

- ☐ Split the data to training & test (i.e., hold-out) data
 - One-year ahead predictions
 - Also, setting up the "lock box"

3-2. Data: Selection label problem?

- One typical issue in the comparison of prediction power
 - Outcomes might be recorded for a limited #(obs), which makes it difficult to compare machine- and human predictions
 - E.g., crime record is recorded only for released defendants
 ⇔ Kleinberg et al. '18
 - E.g., teaching performance is recorded only for hired teachers
 ⇒ Jacob et al. '18
 - We <u>do not have</u> this issue as TSR put scores for all firms and we can observe the default for all those firms

3-3. Data: Summary

Variable	Definition	#samples	min.	25% tile	median	mean	75% tile	max	sd
Disagreement									
$Proxy_{f,i,t}$	Relative performance of machine predictions for firm f . The larger (smaller) value means that machine (analyst i) can predict outcome better.	3,983,158	-5.066	-0.95	-0.09	0.00	0.89	5.62	1.29
structured fscore f, i	Firm <i>f</i> 's hypothetical <i>fscore</i> considered as analysts could use only hard information for predictions. It is calculated as a replication of <i>fscore</i> by machine prediction method.	3,983,158	19.300	43.27	46.19	46.82	49.66	80.95	5.26
Number of available varia									
#(available variables) _{f. t}	The number of firm f 's hard information available for predictions.	3,983,158	10	38.00	80.00	91.02	132.00	276	60.42
Firm Characteristics									
$\log(sales_{f,t})$	The logarithm of firm f 's gross sales.	3,983,158	0.000	10.29	11.29	11.37	12.41	23.92	1.86
$\log(sales_{f,t})$ - $\log(sales_{f,t-1})$	Log change in firm f 's gross sales.	3,983,158	-14.230	-0.06	0.00	0.01	0.07	12.73	0.36
#(industry) f, t	The number of industry codes which are assigned to firm f . It takes values from 1 to 3.	3,983,158	1	1.00	2.00	1.92	3.00	3	0.85
$priority_{f,t}$	Firm f 's relative importance for analysts.	3,810,937	0	0.00	2.00	14.76	8.00	41,290	75.80
$fscore_{f,t}$	A score that summarizes an overall performance of firm <i>f</i> provided by TSR. It takes values from 0 to 100.	3,983,158	0	43.00	46.00	46.82	50.00	88	5.91
Analyst Characteristics									
#(tenure years) i,t	Analyst i's length of serveice.	3,503,183	0.003	3.59	8.05	10.51	15.38	43.620	8.67
#(assigned companies) i,t	The number of companies for which analyst i is responsible to make $fscore$.	3,810,987	1	610	939	1,516	1,862	11,570	1,684.70
industry experience f, i, t	The number of companies (1) having the same industry codes as firm f , and (2) having been responsible for analyst i to make $fscore$ for recent 3 years.	3,810,987	1	27.00	85.00	263.60	271.00	6,241	515.25
Team Characteristics									
#(team members) i,t	The number of colleagues belonging to the same division as analyst i .	3,495,647	0	8.00	13.00	15.02	20.00	119	9.70
Average #(tenure years) ;, t	Average length of service across team members including analyst <i>i</i> .	3,466,648	0.504	7.50	9.76	10.35	12.72	37.19	4.18
Average industry experience f, i, t	Average industry experience across team members including analyst <i>i</i> .	3,466,648	0	25.67	60.33	117.60	162.30	883.00	136.57
Average #(assigned companies) i,t	Average number of assigned companies across the team members including analyst i .	3,466,648	1	920.20	1,230.00	1,407.00	1,877.00	3,543	679.30

Organization

1. Theoretical illustration

2. Methodology

3. Data

4. Results

5. Summary

Table 2: AUC

■ Default & Closure

- ☐ Economist vs. psychologist
 - Default: Econ

■ Closure: Psy

Test data: $t = 2013$						
Model	default	voluntary closure				
Human	0.634 (0.0049)	0.719 (0.0030)				
Machine	0.793 (0.0041)	0.828 (0.0024)				
Structured human	0.617 (0.0046)	0.749 (0.0027)				
Machine & fscore	0.807 (0.0040)	0.829 (0.0023)				
Machine with small information	0.777 (0.0044)	0.829 (0.0024)				

Test data: t = 2012

Mode1	default	voluntary closure		
	0.639	0.729		
Human	(0.0052)	(0.0031)		
Machine	0.780 (0.0045)	0.828 (0.0024)		
Structured human	0.622 (0.0049)	0.757 (0.0028)		
Machine & fscore	0.794 (0.0043)	0.830 (0.0024)		
Machine with small information	0.765 (0.0048)	0.829 (0.0024)		

Test data: t = 2014

lest data: $t = 2015$						
Model	default	voluntary closure				
Human	0.653 (0.0055)	0.737 (0.0031)				
Machine	0.786 (0.0045)	0.833 (0.0024)				
Structured human	0.638 (0.0052)	0.766 (0.0028)				
Machine & fscore	0.799 (0.0044)	0.835 (0.0024)				
Machine with small information	0.768 (0.0050)	0.834 (0.0025)				

2000 0000000000000000000000000000000000						
Model	default	voluntary closure				
Human	0.663 (0.0053)	0.748 (0.0031)				
Machine	0.773 (0.0045)	0.841 (0.0025)				
Structured human	0.648 (0.0050)	0.776 (0.0027)				
Machine & fscore	0.789 (0.0044)	0.843 (0.0025)				
Machine with small information	0.758 (0.0049)	0.843 (0.0024)				

Test data: t = 2016

4-2. Result: H vs. SH?

☐ Econ view is supported for default (not for closure)

Determinants

4-3. Result: Determinants

- \square Higher opaqueness \Rightarrow M \prec H
- Same pattern for SH < H</p>

	default					voluntary	closure	
	Machine vs. Human		SH vs.	Human	Machine vs. Human SH v.		SH vs.	Human
	Coef.	S.E	Coef.	S.E	Coef.	S.E	Coef.	S.E.
Number of available variables								
#(available variables) f,t	0.566	0.001 ***	0.041	0.000 ***	0.485	0.001 ***	0.031	0.000 ***

(All the attributes $F_{f,t}$, $I_{i,t}$, $Z_{i,t}$ are controlled)

Firm fixed-effect	yes	yes	yes	yes
Analyst fixed-effect	yes	yes	yes	yes
Year fixed-effect	yes	yes	yes	yes
#(obs)	3,238,817	3,238,817	3,238,817	3,238,817
F	14,314.100	3,591.740	12,417.240	3,908.300
Adj. R-squared	0.879	0.789	0.831	0.777
Within R-squared	0.071	0.019	0.062	0.020

4-4. Result: Determinants

- Robustness
 - M vs. ground truth & H vs. ground truth (Table A1)
 - Rankings based analysis:
 - Difference in ranking (Table A2)
 - A dummy variable taking the value of one if $Proxy_{f,i,t}$ is positive and zero otherwise (Table A3)
 - 1 to 10 variables, depending on the level of $Proxy_{f,i,t}$ (Table A4).
 - Replace analyst-level fixed effect with analyst-year-level fixed effect (Table A5)
 - Employ one of the sub-scores of *fscore*, which represents the "stability" of each firm, instead of the total *fscore* (Table A6)
 - AUC estimation and proxy estimation based on the two alternative methods (i.e., LASSO and extreme gradient boost) (Table A8, A9)

4-5. Result: Determinants

- ☐ Growth?
 - 1(sales growth > Industry average + 1 std. dev.)

	Machine v	s. Human	SH vs. Human		
	Coef.	S.E.	Coef.	S.E.	
Number of available variables					
#(available variables) f,t	0.196	0.003 ***	0.037	0.000 ***	

(All the attributes $F_{f,t}$, $I_{i,t}$, $Z_{i,t}$ are controlled)

Firm fixed-effect	yes	yes
Analyst fixed-effect	yes	yes
Year fixed-effect	yes	yes
#(obs)	3,037,588	3,037,588
F	4,799.540	650.920
Adj. R-squared	0.590	0.639
Within R-squared	0.026	0.004

4-6. Result: Task allocation

- lacksquare Orthogonalize $oldsymbol{O}_{f,t}$ to...
 - Firm's sales, sales growth, industry classification
- ☐ Then, make 5 (equal #obs) sub-groups accounting for
 - Highly Opaque
 - Opaque
 - Average
 - Transparent
 - Highly transparent
- Then, count # of TN, FN, TP, FP based on M & H

4-6. Result: Task allocation

- ☐ Firms actually do NOT exit (many)
 - H can reduce type I error for opaque firms

	Predi	ction for defar	ılt	Prediction for voluntary closure			
	M =	M =		M =	M =		
	default	not default		closure	not closure		
	H =	H =	(2)/(1)	H =	H =	(2)/(1)	
	not default	default		not closure	closure		
	(1)	(2)	(1)		(2)		
~20	49,117	23,068	0.47	25,206	19,453	0.77	
%tile	49,117	23,000	0.47	23,200	19,433	0.77	
20~40	36,094	54,446	1.51	28,326	23,667	0.84	
%tile	30,094	34,140	1.51	20,320	23,007	0.01	
40~60	37,362	46,368	1.24	28,370	28,134	0.99	
%tile	37,302	40,508	1.27	20,370	20,134	0.55	
60~80	33,409	39,218	1.17	20,249	30,962	1.53	
%tile	33,409	39,210	1.17	20,249	30,902	1.55	
80	11,652	30,608	2.63	8,026	34,406	4.29	
%tile~	11,032	30,000	2.03	0,020	34,400	1.23	

4-6. Result: Task allocation

- ☐ Firms actually exit (a few)
 - It is accompanied by larger type II error

	Prediction for default				Prediction for voluntary closure			
	M = default H = not default (3)	M = not default H = default (4)	(3)/(4)	M = closure H = not closure (3)		M = not closure H = closure (4)	(3)/(4)	
~20 %tile	88	21	4.19		140	51	2.75	
20~40 %tile	82	40	2.05		195	42	4.64	
40~60 %tile	86	37	2.32		231	43	5.37	
60~80 %tile	74	37	2.00		174	54	3.22	
80 %tile~	38	27	1.41	72		45	1.60	

Organization

1. Theoretical illustration

2. Methodology

3. Data

4. Results

5. **Summary**

5. Summary

- ML outperforms Human-prediction on average
- ☐ Yet, human-prediction could outperform for opaque firms due to the employment of soft info
 - # of exit firms are much smaller than that of non-exit firms
 - Type I error overwhelms Type II error in terms of AUC

- ⇒ When we should/shouldn't use ML (≠ Luca et al. '16)
- ⇒ Other fields and issues (e.g., financial MKT)

X1: Grid search results

exit_default (train for *t* = 2016, model 15)

Note: upper value is ROC for training data, lower is AUC for test.

				min.node.size			
		10	100	1,000	10,000	100,000	
Mtry	1	0.705	0.703	0.706	0.711	0.695	
		<0.700>	<0.700>	<0.702>	<0.707>	<0.687>	
	5	0.696	0.696	0.702	0.769	0.751	
		<0.688>	<0.688>	<0.698>	<0.765>	<0.747>	
	14	0.689	0.687	0.715	0.773	0.769	
		<0.685>	<0.684>	<0.707>	<0.773>	<0.760>	
	73	0.729	0.726	0.709	0.765	0.773	
		<0.716>	<0.718>	<0.710>	<0.764>	<0.766>	

score (train for t = 2016, model 15)

Note:

upper value is RMSE for training data, middle is R-squared, lower is RMSE for test.

		min.node.size							
		10	100	1,000	10,000	100,000			
mtry	1	5.143	5.145	5.153	5.171	5.309			
		(0.342)	(0.338)	(0.338)	(0.330)	(0.275)			
		<5.126>	<5.124>	<5.132>	<5.157>	<5.259>			
	5	3.729	3.754	3.841	4.047	4.551			
		(0.622)	(0.620)	(0.609)	(0.577)	(0.478)			
		<3.716>	<3.740>	<3.824>	<4.013>	<4.467>			
	14	3.358	3.379	3.476	3.705	4.231			
		(0.681)	(0.678)	(0.662)	(0.624)	(0.531)			
		<3.352>	<3.371>	<3.460>	<3.672>	<4.155>			
	73	3.317	3.314	3.384	3.574	4.049			
		(0.686)	(0.687)	(0.674)	(0.639)	(0.540)			
		<3.313>	<3.309>	<3.374>	<3.547>	<3.999>			

X2: Predicted H

X3: Model configuration

Model (set of variables use for prediction) pattern										
	1	8	15	17	18	19	20			
	Estimation method									
Variable group	Probit	WRF	WRF	WRF	WRF	WRF	WRF			
Fscore	0	0								
Firm own		0	0	Δ		Δ				
Financial statement		0	0	Δ	Δ					
geo/ind		0	0							
Bank		0	0	0	0	0	0			
Network		0	0	Δ	Δ	Δ	Δ			
Shareholder		0	0	Δ	Δ	Δ	Δ			

Note: \triangle indicates smaller set of variables is applied compared to \bigcirc . Blank means no variables are in the model.

Thank you and comments are welcome!

<Contact Information>

<u>Daisuke Miyakawa</u>:

Associate Professor

Hitotsubashi University Business School (HUB)

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8439 Japan

E-mail: dmiyakawa@hub.hit-u.ac.jp

Web: https://sites.google.com/site/daisukemiyakawaphd/

Kohei Shintani:

Director and Senior Economist
Institute for Monetary and Economic Studies
Bank of Japan

2-1-1 Nihombashi-Hongokucho, Chuo-ku, Tokyo 103-8660 Japan

E-mail: kouhei.shintani@boj.or.jp