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l. Introduction

Prediction is an important task in both private business and public policy. Recent
advances in prediction techniques, such as machine learning, have helped make the
conduct of prediction tasks more reliable than those dependent upon human
judgment and classical parametric models. The practical application of these new
prediction techniques has been the focus of recent academic, policy, and business
discussions (Varian 2014; Mullainathan and Spiess 2017; Athey 2019). The
successful application of these techniques has already been reported in a number of
fields, including labor markets (Chalfin et al. 2016), public services (Kleinberg et
al. 2018; Bazzi et al. 2019; Lin et al. 2020), medical services (Patel et al. 2019; Mei
et al. 2020), and the financial industry (Agrawal et al. 2018).

The growing employment of these powerful prediction techniques naturally
raises the question of the ways in which machine predictions disagree with and
outperform human predictions. This question is particularly relevant given the
number of recent studies which argue that technological advances will lead either
to the replacement of human labor with machines in certain types of jobs (e.g., Frey
and Osborne 2017) or to the reallocation of human resources to other types of jobs
(e.g., Autor et al. 2003; Acemoglu and Autor 2011; Acemoglu and Restrepo 2018).
Understanding the ways in which machines outperform humans in prediction, we
can identify those cases in which human predictions outperform machine
predictions. While this has started to be examined in, for example, the field of
medical studies (e.g., Raghu et al. 2019), it has not yet been investigated in the
context of social science.

The goal of this paper is to document, in the context of firm exits, the patterns of
disagreement between human predictions and machine-based predictions and their
relative prediction performance. First, following the literature in medical studies,

we test the relative performance of predictions based on machine learning



techniques and those based on human judgment for the two modes of firm exits,
i.e., corporate default and voluntary closure. Second, we document the systematic
patterns of disagreements between human and machine predictions for those events.
The disagreement between them is measured with the relative prediction
performance of human and machine. Thus, we can see not only whether human and
machine disagree but also, more importantly, the ways in which they disagree.
Suppose a firm actually does default ex-post. Ex-ante human and machine
predictions could differ. As reported by Kleinberg et al. (2018) in the context of
judicial bail decisions, it is highly likely that machine predictions will on average
outperform human predictions. Nonetheless, the relative performance of human
predictions may be better in specific circumstances, such as default predictions for
informationally opaque firms. Given this conjecture, we document the relative
performance of human and machine predictions conditional on the characteristics
of their prediction targets. Third, after confirming the characteristics (esp.,
opaqueness of the firms) systematically correlated with the relative performance of
human predictions compared with machine predictions, we implement a set of
counterfactual exercises reallocating prediction instances for firms with specific
characteristics from machine to human and see how overall prediction performance
varies.

To the best of our knowledge, this article is the first to explicitly study the
systematic patterns of disagreement between human and machine predictions in the
context of social science, and to use these systematic patterns to improve overall
prediction performance.! We take advantage of our access to a huge volume of
firm-level high-dimension panel data collected by one of the largest Japanese credit

reporting agencies, together with the prediction results of professional analysts

1 Anderson et al. (2017) report, in the domain of chess, that human decision tends to be wrong for more difficult instance.
Their study shares the motivation with ours in the sense that both characterize the determinants of the performance of human
decisions. The difference is that we compare human predictions not only with the ground truth (i.e., exits which we observe
ex-post), which is done in Anderson et al. (2017), but also with machine predictions.



working for the company and detailed individual attributes of those analysts. These
comprehensive datasets provide us with an ideal research ground where we can
construct a machine-based prediction model, compare its predictions with human
predictions, and document how they disagree and perform.

The empirical findings are summarized as follows. First, the average performance
in predicting firm exits is better for machines than humans, in line with the results
reported by existing studies in other fields (e.g., Kleinberg et al. 2018). Second,
nonetheless, the relative performance of human predictions to those of machines
improves as the availability of information on firm characteristics declines. This
could be the case when human predictions effectively employ unstructured
information associated with prediction instances. This kind of unstructured
information has been referred to as “soft information” (e.g., Liberti and Petersen
2019). Examples of soft information include workers’ skill levels, the CEO’s
management ability, the prospects of future product development, and so on. It is
difficult to record all of this highly qualitative information as structured (i.e.,
“hard”) information in, for example, firms’ financial statements or other documents.
To verify this conjecture, we compare the human predictions recorded in our dataset
not only with machine predictions but also with the part of the human predictions
solely correlated with structured information.? As the latter “structured” human
predictions do not rely on unstructured information, the comparison between the
original and the structured human predictions tells us to what extent unstructured
information has been used in human predictions. Similar to the comparison between
the original human predictions and machine predictions, we find that the
performance of human predictions relative to that of “structured” human

predictions improves as the availability of information on firm characteristics

2 The similar attempt for replicating human decisions has been done in the context of, for example, chess (e.g., Mcllroy-
Young et al. 2020).



declines. We also separately regress the performance of human and machine
predictions on various characteristics and confirm that the negative marginal
impacts associated with low availability of information is more sizable for machine
predictions than for human predictions.

Given the empirical finding that the availability of observable information is a
key driver in the disagreement between human and machine predictions and their
relative performance, we implement a set of counterfactual exercises that reallocate
prediction instances from machine to professional analysts, depending on how
much information is available for each firm. As the “improvement” in relative
performance of human predictions along with the change in specific firm
characteristics does not necessarily mean that the “level” of conditional
performance of human predictions is higher than that of machine predictions, these
counterfactual exercises are useful to confirm whether there could be any cases in
which humans outperform machines.

Using the number of available variables for each firm, which is orthogonalized
to other firm characteristics such as firm size, past growth trend, and industry fixed-
effects, we classify firms into five categories ranging from firms with smallest
information, small information, average information, large information, and largest
information. For most of the cases except for firms with smallest information,
machine predictions outperform human predictions in terms of both type I and type
Il errors, which leads to better prediction performance of machines. Nonetheless,
we also find that reallocating prediction tasks for firms with smallest information
from machine to human leads to a sizable reduction in type I error. To illustrate, for
firms with smallest information, the number of actually non-exit firms predicted as
“exit” by machine but “non-exit” by human is larger than the number of actually
non-exit firms predicted as “non-exit” by machine but “exit” by human. Thus,
reallocating prediction tasks for those firms from machines to humans reduces the

number of false-positives, and the type I error becomes smaller. We should note,



however, that the reallocation of the prediction tasks for these firms is also
accompanied by a larger type Il error; i.e., the number of actually exit firms
predicted as “exit” by machine but “non-exit” by human is larger than the number
of actually exit firms predicted as “non-exit” by machine but “exit” by human. Thus,
reallocating prediction tasks from machine to human also reduces the number of
true-positives, and type Il errors increase. As the number of exit firms are much
smaller than that of non-exit firms in the case of firm exits, the reduction of type |
error achieved by reallocating prediction tasks for those opaque firms from
machines to humans overwhelms the increase in type Il error. This is the mechanics
in which the relative performance of human predictions to that of machine
predictions improves as the availability of information on firm characteristics
declines.

These results jointly suggest the usefulness of powerful machine-based
prediction techniques for practical purposes and highlight a subtle feature of human
prediction in the context of exit prediction. Overall, most of the prediction work for
firm exits can be assigned to machines. Nonetheless, under specific circumstances,
such as when prediction targets are informationally opaque due to less available
information and the user of the prediction results is more concerned about type |
error than type Il error due to, for example, the imbalance between the numbers of
exit and non-exit firms, then there is still room for human predictions to outperform
machine predictions.

The rest of the paper proceeds as follows. Section Il presents the theoretical
underpinning of our empirical study, which follows Raghu et al. (2019). Section Il
explains our empirical methodology and a brief account of the institutional
background related to the prediction of firm exits. Section IV gives details of the
data used for our study. Section V presents and discusses the empirical results.

Section VI concludes.



I1. Conceptual Framework

In this section, we present the conceptual framework representing the disagreement
between human and machine predictions and their relative performance. Suppose
there is a prediction instance f for a specific outcome. In the present paper, we set
predictions for firms’ default and voluntary closure as our prediction instance f.
The instance f is accompanied by a set of attributes. It consists of, for example, the
number of available information associated with the firms. The instance f has the
actual outcome a(f), which we refer to as a ground truth. This ground truth will be
revealed ex-post when we observe whether the firm defaults or not within specific
periods of time. For the instance f, a prediction machine has its own prediction
denoted by m(f). Similarly, a professional analyst i with a set of individual
attributes has its own prediction for the instance f. We name this analyst’s
prediction h(f,1). Using these items, first, we can define the prediction error O (f)

of the machine prediction for an instance f as follows:

(1) 0(f) = L(a(f), m(f)).

Second, we can define the prediction error 2(f, i) of the human prediction for an

instance f by an analyst i as follows:

() Q(f, 1) = L(a(f), h(f, D).

Suppose we have a set of prediction instances U. What we ultimately want to
solve is an allocation problem of U to machine (i.e., S) or analysts (i.e., T). Such an

optimization problem can be formulated as follows:

3) rgiTanESO(f)+ZfETQ(f,i) st. SUT=U;SNT = Q.



This is a problem called “an algorithmic triage” in Raghu et al. (2019). Solving
this problem, we obtain the best assignment (S*, T*) as a function of (f,i). This
optimal assignment function tells us whether we should assign a specific prediction
instance f to the prediction machine or to an analyst i. In this paper, we specifically
aim at identifying @(f) and 2(f, i) so that we can understand the sources of the
disagreement and further solve the algorithmic triage problem as a counterfactual
exercise.

For this purpose, we define an additional function Proxyy ; as follows:

4) Proxys; = Q(f, ) — 0(f).

As O(f) and 2(f, i) denote the prediction errors of the machine and the analyst,
the relative performance of the human prediction becomes higher as Proxyy;
becomes smaller. As we explicitly demonstrate in the following sections, this
Proxyg; accounts not only for the disagreement between human and machine
predictions but also for their relative performance.

While the current setup suffices to study the systematic disagreement between
human and machine predictions, further decomposition of 2(f,i) into those
correlated with structured information and the rest of the components is useful for
understanding the source of the disagreement between human and machine
predictions. Let 2, (f) account for the error component of the human prediction
correlated with structured observable attributes of the instance f. Using this
decomposition, we can define another measure for disagreement between the
human prediction and the “structured” human prediction which relies solely on hard

information.

®) Proxys; = Q(f, 1)) — 2,(f).



Suppose Proxyy; becomes smaller as the change in an attribute of the instance

f (e.g., the amount of available information decreases). This means the relative
performance of the human prediction to the human prediction relying on the
observable (i.e., structured) information becomes higher due to the change in the
attribute. In the current illustration representing the amount of available
information, this suggests that, as the volume of structured information becomes
smaller, the room for analysts to effectively employ unstructured information for
prediction becomes larger. This comparison between human predictions and
“structured” human predictions highlights the source for human predictions to
surpass machine predictions, with the latter (i.e., machine predictions) relying only

on structured information.
I11. Empirical Strategies

This section presents, first, how we construct a machine learning-based prediction
model for firm dynamics. Then, we explain how to identify the determinants of

disagreement and the relative performance of human and machine predictions.
A. Machine Prediction

To obtain machine prediction, we construct a standard machine learning method.
Our particular problem of predicting relatively rare firm exit events (which occur
with a low probability) falls into the class of “imbalanced label prediction” tasks.
Following the literature, we apply a weighted random forest, a minority-class
oversampling method.® Random forest models aggregate many individual decision
tree models, each trained on a randomly selected sample from the training data.

Particularly for predicting rare events, Chen et al. (2004) develop an extension of

3 We also use other machine learning techniques such as LASSO and extreme gradient boost to construct prediction
models and confirm the robustness of our results. All the results are in the appendix.



the random forest, called a weighted random forest. Intuitively, the method weighs
data corresponding to a minority event (e.g., a firm exit) much more heavily than
that corresponding to a majority event (e.g., non-exit).

In our baseline exercise, we train models with the realization of outcome
variables from the end of year t — 1 to the end of year t using the information
available over the periods from year t —3 to t — 1, and conduct out-of-sample
predictions of the realization of outcome variables from the end of year t to the end
of year t + 1 using the information available over the periods from year t — 2 to ¢t.

We utilize the Receiver Operating Characteristic (ROC) curve to evaluate the
predictive performance of the model. To implement the prediction task of a binary
exit outcome, we need a specific threshold. When a predicted score surpasses the
threshold, a positive binary outcome is indicated. For a given trained model, the
ROC curve plots the true and false positive rates corresponding to the varying of
this threshold value. Without any predictors (i.e., random guess), the curve should
trace the 45-degree line, and curves closer to the top-left corner are desirable
(maximize true positive rate and minimize false positive rate). With this motivation,
it is conventional to also summarize the ROC curve by the area under the curve
(AUC).

B. Human Prediction

In this section, we explain how to obtain human prediction. After introducing our
measure for human prediction, we discuss how to justify the measure and an

alternative approach we use.

“fscore ”.—Credit reporting agencies examine and predict firm exits as these firm-
level outcomes are of great interest to business entities and government sectors.

Examples of such credit reporting agencies include Dunn and Bradstreet in the US,



Experian in European countries, and Tokyo Shoko Research (TSR) in Japan.* In
addition to providing structured information such as financial statements to their
clients, credit reporting companies typically calculate and publish a credit rating
score, which we call as “fscore” in the present paper, to summarize the overall
performance of a firm. This score is typically constructed from both observable (i.e.,
structured) information on firm characteristics, and from the contents of in-depth
interviews on owner characteristics, reputation, growth opportunity, and so on (i.e.,
unstructured information). The score is constructed by a professional analyst and
assigned to each firm in each year. As in financial institutions such as banks, each
analyst is evaluated by the prediction performance of this fscore and thus has a
reasonable incentive to produce good predictions.

These credit reporting agencies typically rely on their own (often confidential)
algorithm to construct the scores. While a part of the score systematically depends
on structured information collected by those agencies, a large part of the score
reflects professional analysts’ subjective evaluation of the targeted firm. To
illustrate, a score given by TSR (max: 100 points) is the summation of (i) the ability
of the owner (max: 20 points) based on business attitude, experience, and asset
condition, (ii) the growth possibility (max: 25 points) based on past sales growth,
growth of profit, and characteristics of the products, (iii) stability (max: 45 points)
based on firm age, stated-capital, financial statement information, room for
collateral provision, and real and financial transaction relationships, and (iv)
reputation (max 10 points) based on the level of disclosure and overall reputation.
Most of these items are rarely recorded as structured information but largely as

unstructured information such as analysts’ subjective evaluation of those firms.

4 TSR is one of the largest credit reporting agencies in Japan and operates in the areas of credit research, publishing, and
database distribution. The central product of TSR is unsolicited-basis company reports representing the performance of each
targeted firm. TSR sells them to a variety of clients including banks, securities houses, non-financial enterprises, and
governmental organizations. A typical credit report consists of more than ten pages and includes firms’ basic characteristics
and financial statement information. The clients of TSR purchase the reports for various reasons such as evaluating the credit
worthiness of client firms, screening on transaction partners, and understanding the overall market environment.



Given this institutional background, we use the fscore assigned by TSR as the
output of human predictions.

We use this score and the ex-post record of exit to run a weighted Probit
estimation having the exit indicator on the left hand-side and only fscore on the
right hand-side of the estimated equation. Through this, we transform fscore
taking the value of 0-100 to the score associated with the occurrence of the firm

exit and use it as the result of human prediction.®

Can we really use fscore as human prediction?—There could be several immediate
concerns over using the fscore as the output of human predictions. First, this score
might also be constructed by some machine algorithms. If this is the case, the
comparison between fscore and machine predictions could not account for the
differences between human and machine predictions, being merely a comparison
of two algorithms. While the fscore used in the present study reflects professional
analysts’ subjective evaluation of targeted firms and largely employs both the
structured and unstructured information, we also try to separate out the analysts’
predictions correlated with structured information from the original fscore as
explained below. Using this framework, we can explicitly study the difference
between predictions based on structured information and those based on
unstructured information, the latter of which can be handled only by human analysts.

Second, machine predictions can take into full account higher dimensions of
information than human analysts can do. When this is the case, the comparison
between fscore and machine prediction might account only for the difference

between the two different datasets used by human and machine. While we think the

5 We should note that due to the weighting procedure aiming at a minority-class oversampling, the output obtained by
WRF and this Probit estimation is not exactly the exit probability in the data. It would be rather the probability of exits in the
balanced sample consisting of equal numbers of exits and non-exits. Given there is no problem for us to use these probabilities
as far as the machine outputs are constructed in the comparable way, we use them in the following empirical analyses. We
also construct a ranking based on the output obtained by WRF and the Probit estimation, and use the ranking for our empirical
analysis.



ability to handle different volumes of information itself is one aspect of the
difference between humans and machines and thus worth examining, we also try to
compare human and machine predictions on an equal footing in terms of the volume
of structured information.

Third, the target of predictions might not be exactly the same for machine
predictions and human predictions. This issue is called as omitted payoff bias in the
literature (Chalfin et al. 2016). As we will detail in the next section, we construct
machine learning-based prediction models explicitly targeting one of the two
modes of firm exits (i.e., default and voluntary closure), while the fscore
summarizes the overall performance of a firm. Although the fscore is typically used
in credit risk management and thus largely accounts for the prospects of firm exits,
it is better to have human predictions more directly connected to firm exits.® For
this purpose, we employ not only the overall firm performance score but also the
sub-scores corresponding to the financial stability of firms as human predictions.

Apart from these concerns over using the fscore as the output of human
predictions, we should also bear in mind the external validity of the results.
Disagreements between human and machine predictions may be important in other
situations, such as the comparison between machine and investors who put more
emphasis on the “upside” of a firm’s performance rather than the downside. To
address these concerns, we implement the same set of analyses for firms’ sales

growth and assess the robustness of our results regarding firm exits.

Structured human prediction.—As already noted, fscore is likely to account for
both structured and unstructured information. While it is still informative to

compare the original fscore with the machine score, we also extract the component

® TSR guidelines provide the following categorization of fscore ranges: (a) caution required (scores 29 and under), (b)
medium caution required (scores between 30 and 49), (c) little caution required (scores between 50 and 64), (d) no specific
concern (scores between 65 and 79), and (e) no concern at all (scores 80 and above).



of fscore associated only with such unstructured information. For this purpose, we
construct a machine learning-based prediction model for fscore by using the same
right hand-side variables as we use to construct the machine prediction model. Such
a “structured” fscore accounts only for the part of fscore correlated with the
structured information. Using this predicted score and the actual record of exit to
run a weighted Probit estimation, we transform the “structured” fscore to the

probability associated with the occurrence of the firm exits.
C. Measurement of “disagreement”

We measure the disagreement between human and machine predictions for a
specific exit mode of firm f in year t. We standardize the machine scores of exits,
fscore, and “structured” fscore as mean zero and standard deviation is one. By using
these standardized scores for machine (ML), analyst (H), and “structured” human
(SH) denoted by Outcome, we compute a variable Proxy for a triplet of firm (f),
analyst (i), and time (t), which is conceptualized in the previous section, as the

following definition:

(6) Proxyg;. = Outcomef’t — Outcomef’;, for exit firms,

= Outcomef’;, — Outcomef’ for non-exit firms,

(7 Proxy;,;, = Outcome?{ — Outcomef’;, for exit firms,

= Qutcomef’;, — Outcomefy for non-exit firms.

Due to the way we compute Proxy, this measure of the disagreement becomes
larger when the machine or “structured” human produces better predictions than
the human does.

We should also note that, in our data detailed in the next section, these predictions

and the ex-post outcomes accounting for firm exits are all observable. In this sense,



our analysis does not suffer from the selective label problem that some of the ex-

post outcomes cannot be observed due to selection (Lakkaraju et al. 2017).
D. Identifying the determinants of “disagreement”

Once a measurement of Proxy is obtained, we can estimate the relationship
between Proxy and various explanatory variables consisting of informational
opaqueness of firms (0 .), firm attributes (Fy ), analyst attributes (I; ), and team

attributes (Z; ) as well as various configurations of fixed-effects (9 .):

(8) Proxysir = G(Of e, Fro 1y Zit) + Npip + &7 fOrt = 2013, --,2016.

In the baseline estimation, we employ a firm-level fixed-effect, analyst-level
fixed-effect, and year-level fixed-effect for n; ., while alternative configurations

of fixed-effects are also employed for the robustness check.
IV. Data

In this section, we will give details of the data used in our empirical analysis. All
the data is obtained from TSR through the joint research agreement between
Hitotsubashi University and TSR. We use the multiple datasets detailed below to
construct a machine-based prediction model for firm exits, estimating the

determinants of Proxyy; ., and implement counterfactual exercises.
A. Firm-level panel data

One of our main data sources is an annual-frequency panel of Japanese firm data
from t=2010 to 2016, providing information on firms’ financial statements and
basic details such as industry classification, company owner characteristics, precise

geographic location, firm age, etc. This year identifier t accounts for the timing of



data collection and means that the data labeled year t consists of the data extracted
as of the end of December of the year t from the data server owned by TSR. Given
a large portion of Japanese firms use an accounting period up to the end of March,
the file labeled t =2012, for example, consists of a large amount of firm information
corresponding to the accounting period up to the end of March 2012. The original
data covers around three million firms in each year. We use the data covering
around one million firms, which provide the information we need for our empirical
analysis. According to the Japanese Small and Medium Size Enterprises Agency,
there are around three- to four-million active companies in Japan. The TSR data
accounts for around one-third of that firm population. One point of note is that the
sample selection is tilted toward some specific industries, such as construction
companies.

These firm-level panel data are accompanied by three types of relational
information regarding real and financial partners. First, this information contains a
list of up to 10 lender banks. Second, the information also covers firm-to-firm trade.
It lists up to 48 customer and supplier firms for each company. In addition to the
list of each target firm’s trade partners, we also use the trade relationship reported
by those trade partners. As there are many trade relationships not reported by the
targeted firms but only by their trade partners, this operation significantly extends
the list of trade partners. Third, the data also contain the list of shareholders.

B. Prediction instances

We consider the two firm exit outcomes to be predicted over the one-year ahead
window: firm default and voluntary closure. The explanatory variables and
outcome variable used in constructing a machine-based prediction model are
defined for separate time intervals; explanatory variables from 2010 to 2012 to

predict the outcome defined over the one-year window from the end of 2012 to the



end of 2013, explanatory variables from 2011 to 2013 to predict the outcome from
the end of 2013 to the end of 2014, and so on. The latest data are the explanatory
variables from 2014 to 2016, used to predict the outcome from the end of 2016 to
the end of 2017. 7

We measure firm exits in the two modes (i.e., default and voluntary closure) if
firms exited from the market for these reasons as reported by TSR over the one-
year window. Then, we separately prepare two dummy variables that take 1 if firms
exit through either default or voluntary closure.

C. Firm attributes

To construct a machine-based prediction model of firm exits, we use the following
six categories of firm attributes: Firms’ basic characteristics (firm own), firms’
detailed financial statement information (financial statement), geography and
industry-related variables (geo/ind), firm-bank borrowing relationship variables
(bank), supply chain network variables (network), and shareholder-subsidiary
shareholding relationship variables (shareholder). All the variables categorized in
each group are summarized in appendix.

We set up the two prediction models for each one of the exit modes using these
six groups of firm attributes together with the differenced and double-differenced
variables of those variables. We create a set of dummy variables to deal with
missing variables, taking the value of one if the corresponding variable is missing
for a firm and zero otherwise. When a missing variable dummy takes one, we fill

in zero to the original missing record.

" The configuration of the data is as follows: Training - (i) outcome from 2012-2013 using 2010-2012, (ii) outcome from
2013-2014 using 2011-2013, (iii) outcome from 2014-2015 using 2012-2014, (iv) outcome from 2015-2016 using 2013-
2015 while Prediction - (i) outcome from 2013-2014 using 2011-2013, (ii) outcome from 2014-2015 using 2012-2014, (iii)
outcome from 2015-2016 using 2013-2015, (iv) outcome from 2016-2017 using 2014-2016. Each number corresponds to
the case of test and train.



D. Potential determinants of disagreement

To estimate the determinants of the disagreement between human and machine
predictions, we set up the following three groups of variables, i.e., the number of

available information, firm attributes, and analyst/team attributes.

Number of available variables.—As the most important potential determinant in
our analysis, which is denoted by Oy, we employ the number of variables available
(#(available variables)) for each firm in the dataset. This number accounts for the
opaqueness of firms. When this number is small, both humans and machines can
use only a limited number of structured information. As humans can also employ
soft information, the estimated coefficient associated with #(available variables)

show how effectively human predictions use such soft information.

Firm attributes.—We use a subset of variables we used for constructing machine
prediction model as the potential determinants, which we denoted as F;. The list
consists of the logarithm of firm sales, its difference, the listed status dummy
variable, the number of industries the targeted firms operate in. We employ this list
of variables as they are less prone to missing data.® In addition to these variables,
we also use the information relating to the task priority of each firm (priority) inside
the credit reporting agency, which is denoted by a number with a larger number
corresponding to a higher priority. The dataset includes the firm-level panel data of
fscore, which we explained in the previous section. The number is computed as the
sum of the four sub-scores representing the ability of the owner, growth possibility,

8 Note that the existence of missing data in specific variables can be taken care of by introducing dummy variables account
for the missing in the non-parametric model such as random forest we use for constructing prediction model. Contrary to
this, the parametric model such as the panel estimation used for identifying the determinants of the disagreement cannot take
care of the missing variables well.



stability, and reputation. In the following empirical analysis, we use both the fscore

and the decomposition of each component.

Analyst/Team attiributes—We also use the attributes I; of the analysts. To
measure I;, at each data point, we use the attributes of the analysts working for TSR
as stored in the anonymized background information associated with the company’s
analysts. As analysts enter and exit the pool of TSR employees, the data is
unbalanced panel data. This dataset is accompanied by a table listing the firms
assigned to each analyst at each data point, which we use to relate analysts to firms.
The dataset allows us to identify the list of assigned firms in each year and the
tenure years of each analyst. The former information allows us to calculate the
number of firms assigned to each analyst and any previous exposure of an analyst
to other firms in the industry of the targeted firms, which can be interpreted as the
industry expertise of the analyst.

The dataset also allows us to measure the characteristics associated with the team
each analyst belongs to, which is denoted by Z; .. First, we measure the size of the
team by counting the number of analysts in each department. Second, we measure
the average tenure years of all members of the team. Third, we measure the average
number of firms assigned to the analysts in the team. Fourth, we also measure the
average industry expertise of all the analysts in each team.

We should note that this analyst and team information is endogenous as the
assignment of analysts to teams and to targeted firms is not random. Thus, we treat
these variables simply as control variables in the regression of the determinants for
Proxyy ;. and do not intend to establish any causal relation between these variables
and Proxys ;.

Table 1 summarizes the variables used to estimate the determinants of the
disagreement between human and machine predictions, together with the fscore,

structured fscore, and Proxyy ; ;.



Table 1: Summary statistics

Variable Definition #samples min.  25%tile  median mean 75%tile max sd

Disagreement
Relative performance of machine predictions for firm f.

Proxy it The larger (smaller) value means that machine (analyst 3,983,158 -5.066  -0.95 -0.09 0.00 0.89 5.62 1.29
i) can predict outcome better.
Firm f's hypothetical fscore considered as analysts

structured fscore+.« could use only hard information for predictions. Itis 345 155 19300 4327 4619 4682 4966 8095 526
calculated as a replication of fscore by machine
prediction method.

Number of available variables

#available variables) . |6 umber of firm f'shard information available for 5 4¢3 55 10 3800 8000 9102 13200 276 6042
predictions.

Firm Characteristics

log(saless.«) The logarithm of firm f's gross sales. 3,983,158 0.000 10.29 11.29 11.37 12.41 23.92 1.86

log(sales+.:)-log(salesi1)  Log change in firm f's gross sales. 3,983,158 -14.230  -0.06 0.00 0.01 0.07 12.73 0.36

. The number of industry codes which are assigned to

#(industry) r.c firm . It takes values from 1 to 3. 3,983,158 1 1.00 2.00 1.92 3.00 3 0.85

priorityr,t Firm f's relative importance for analysts. 3,810,937 0 0.00 2.00 14.76 8.00 41,290 75.80
A score that summarizes an overall performance of firm

fscorer.t f provided by TSR. It takes values from 0 to 100. 3,983,158 0 43.00 46.00 46.82 50.00 88 591

Analyst Characteristics

#(tenure years) i.t Analyst i's length of serveice. 3,503,183 0.003 3.59 8.05 10.51 15.38 43.620 8.67

#(assigned companies) ;. T1e umber of companies for which analyst i is 3,810,987 1 610 939 1516 1862 11570 168470
responsible to make fscore
The number of companies (1) having the same industry

industry experiencer,i, « codes as firm f, and (2) having been responsible for 3,810,987 1 27.00 85.00 26360  271.00 6,241 515.25
analyst i to make fscore for recent 3 years.

Team Characteristics

#(team members) 1.« The number of colleagues belonging to the same 3,495,647 0 800 1300 1502 2000 119 9.70
division as analyst i .

Average Average length of service across team members 3466648 0504  7.50 976 1035 1272 37.19 418

# (tenure years) it including analyst i .

Average Average industry experience across team members 3,466,648 0 2567 6033 11760 16230 88300 13657

industry experiencer.i,« including analyst i.

Average Average number of assigned companies across the team 3,466,648 1 92020 1,23000 1407.00 1,877.00 3,543 679.30

#(assigned companies ) i.t

members including analyst i .

V. Empirical Results

In this section, first, we compare the performance of machine-based predictions and
human predictions. Then, we identify how the disagreement between those
predictions varies with changes in the characteristics of the targeted companies.
After confirming that there could be room for human predictions to outperform

machine predictions, we implement counterfactual exercises.
A. Prediction performance

The following four panels in Table 2 show the AUCs and standard errors of the five
prediction models for the years 2013 to 2016. The first and second rows show the

performance of human predictions and machine predictions, respectively. The third



row is for the structured human predictions. The fourth and fifth rows show the
performances of machine predictions with different sets of independent variables.
The fourth row is the case where we add fscore to the list of independent variables
used to construct a machine prediction model. The fifth row corresponds to the case
where we use only a small set of independent variables to construct a machine
prediction model.® Using a smaller set of independent variables to construct a
machine-based prediction model allows us to compare human and machine

predictions on an equal footing in terms of the volume of structured information.

9 As the smaller set of variables, we employ all the firm own variables except for dividend-related variables, financial
statement variables representing total assets, profit, and EBITDA, all the bank variables, network variables representing
only customers and suppliers with direct links, and shareholder variables in direct shareholding relations.



Table 2: AUC

Test data: t = 2013 Test data: t = 2014
Model default voluntary Model default voluntary
closure closure
Human 0.634 0.719 Human 0.639 0.729
(0.0049) | (0.0030) (0.0052) | (0.0031)
. 0.793 0.828 . 0.780 0.828
Machine | 5 5041) | (0.0024) Machine 1 504s) | (0.0024)
Structured 0.617 0.749 Structured 0.622 0.757
human (0.0046) | (0.0027) human (0.0049) | (0.0028)
Machine & 0.807 0.829 Machine & 0.794 0.830
fscore (0.0040) | (0.0023) fscore (0.0043) | (0.0024)
W'\i’lff:r'n”ail 0.777 0.829 W'\i/lff:r'nnsl 0.765 0.829
information (0.0044) | (0.0024) information (0.0048) | (0.0024)
Test data: t = 2015 Test data: t = 2016
| |
Model default voluntary Model default voluntary
closure closure
Human 0.653 0.737 Human 0.663 0.748
(0.0055) | (0.0031) (0.0053) | (0.0031)
. 0.786 0.833 . 0.773 0.841
Machine | 4 50as) | (0.0024) Machine 1 504s) | (0.0025)
Structured 0.638 0.766 Structured 0.648 0.776
human (0.0052) | (0.0028) human (0.0050) | (0.0027)
Machine & 0.799 0.835 Machine & 0.789 0.843
fscore (0.0044) | (0.0024) fscore (0.0044) | (0.0025)
W'\i/lf]‘::r;”aﬁl 0.768 0.834 W'\i/lzc:r;naﬁl 0.758 0.843
information (0.0050) | (0.0025) information (0.0049) | (0.0024)

Note: Each number represents AUC and the number in the parentheses is its standard error.

First, we can immediately notice that the AUC of machine predictions (the
second row) is significantly higher than that of human predictions (the first row)
given the size of standard errors of those AUCs. This is the case even when we

employ a smaller set of independent variables to make a machine prediction model



(the fifth row). Thus, human predictions underperform machine predictions on
average.

Second, in the case of default prediction, human predictions outperform those of
structured human (the first and third rows). We also find that fscore makes an
additional contribution to the overall performance of the machine predictions (the
second and fourth rows). These results contrast with the findings of Kleinberg et al.
(2018). In their empirical analysis of judicial bail decisions, they show that the
structured human does a better job of identifying risky criminals than the judge’s
prediction. They claim that the “psychologist’s view,” where humans tend to make
noisy predictions, outdoes the “economist’s view” where humans can use soft
information to make a better prediction. Our result suggests that, at least in our
setup for default predictions, the economist’s view should be more reliable. One
point to note is that, as for predictions of voluntary closure, the structured human
does a better job than the human prediction does, which is consistent with the

psychologist’s view.°

B. Determinants of disagreement

Table 3 summarizes the results of the panel estimation associated with default and
voluntary closure. All the coefficients are shown in the percent point (i.e., the
estimated coefficients times 100).

10 1n the appendix, we examine the recall and precision measures for machine, human, and structured human predictions
over different thresholds for prediction.



Table 3: Baseline estimation

default voluntary closure
Machine vs. Human SH vs. Human Machine vs. Human SH vs. Human
Coef. S.E. Coef.  S.E. Coef. SE. Coef. S.E.
Number of available variables
#(available variables ) f.t 0.566 0.001 ***  0.041 0.000 *** 0.485 0.001 *** 0.031  0.000 ***
Firm characteristics
log(sales¢) -18.545 0.127 *** 3,987 0.028 *** -8.511  0.111 *** 5.036  0.030 ***
log(sales ;) - log(sales 1) 13.015 0.097 ***  -0.618 0.022 *** 5205 0.086 *** -0.521  0.023 ***
listed 1 -2.105 2.758 0.605 0.621 -18.931 2429 *** -6.351  0.662 ***
#(industry ) ft -3.009 0.159 ***  -0.084 0.036 ** 0.097 0.140 -0.129  0.038 ***
priority ¢ 0.001  0.000 ** 0.000 0.000 *** 0.002  0.000 *** -0.000  0.000 **
Analyst characterstics
#(assigned companies ) it -0.001 0.000 ***  -0.000 0.000 *** -0.001  0.000 *** -0.000  0.000 ***
industry experience -0.004 0.000 *** 0.000 0.000 *** -0.001 0.000 *** 0.001  0.000 ***
Team characteristics
#(team members) it 0.081 0.012 ***  -0.001 0.003 0.106  0.010 *** -0.001  0.003
Average #(tenure years) it 0.136 0.016 ***  -0.008 0.004 ** -0.008 0.014 -0.006 0.004
Average industry experience 0.014 0.001 ***  0.000 0.000 0.001 0.001 0.000 0.000
Average #(assigned companies ) it -0.001 0.000 *** -0.000 0.000 *** -0.002 0.000 *** -0.000 0.000 ***
Constant 152.997 1512 *** -49.111 0.340 *** 54,692 1.331 *** -59.965 0.363 ***
Firm fixed-effect yes yes yes yes
Analyst fixed-effect yes yes yes yes
Year fixed-effect yes yes yes yes
#(obs) 3,238,817 3,238,817 3,238,817 3,238,817
F 14,314.100 3,591.740 12,417.240 3,908.300
Adj. R-squared 0.879 0.789 0.831 0.777
Within R-squared 0.071 0.019 0.062 0.020

*** Significant at the 1 percent level.
** Significant at the 5 percent level.

* Significant at the 10 percent level.

Regardless of whether we use default or voluntary closure as the prediction target,
we find that the relative prediction performance of human to machine becomes
better for firms with less observable information for their attributes (i.e., lower
values for #(available variables)). Thus, for firms with less observable information,
the relative performance of human predictions to machine predictions improves.

Why do analysts perform better in the case of opaque firms with smaller amounts
of observable information? One conjecture is that analysts are using unstructured
information, which, by definition, cannot be used in machine predictions. To

confirm this conjecture, we also run the panel regression for Proxys ; ., which is



defined by replacing Outcome/’’ with Outcome?,. This regression characterizes

under what conditions human predictions outperform those of the structured human.
The obtained results show the similar pattern in Table 3, i.e., relative prediction
power of human predictions compared with structured human becomes higher as
the amount of available information becomes smaller.!

We also regress separately the performance of human and machine predictions
on the same set of characteristics. From the estimation results (reported in the
appendix), we confirm that the negative marginal impact associated with lower
availability of information is greater for machine predictions than for human
predictions. This could be the case when human predictions effectively use
unstructured information to make predictions.

To check the robustness of the results and address the concerns we raised in the
previous section, first, we employ alternative methods of measuring the
disagreement between human and machine predictions. As detailed above, we are
using the ex-post record of firm exits to obtain the probabilities of exit implied by
fscore and “structured” fscore. As the transformation of fscore to the probability is
simply a monotonic transformation and does not change the order of the score, it
does not affect the comparison of human and machine predictions. Nonetheless, in
reality, such an ex-post record of exit used in calibrating fscore to probability is not
attainable in the process of human predictions. Thus, we also construct a set of
rankings based on the machine prediction, fscore, and “structured” fscore. In this
ranking of prediction outcomes, we do not need to refer to the ex-post default
records. Second, we also define a dummy variable taking the value of one if

Proxyy ;. is positive and zero otherwise. We use this dummy variable and run a

linear probability model with the abovementioned fixed effects and conditional

11 We can also find that the marginal impact of available information on the relative performance of human predictions
to that of structured humans is much smaller than that for human vs. machine. This means that the sensitivity of the structured
human predictions with respect to the level of available information is much smaller than that of machine.



logit model with firm-level fixed effects. We also set 1 to 10 variables depending
on the level of Proxyy ;. and run ordered-logit estimation without fixed effects.
Third, we replace analyst-level fixed effect with analyst-year-level fixed effect so
that we can take complete account of analyst-level unobservable factors varying
over time. Fourth, we employ one of the sub-scores of fscore, which represents the
“stability” of a firm, instead of the total fscore, so that the target of human
predictions becomes plausibly more comparable to that of machine predictions.
Fifth, instead of weighted random forest, we employ LASSO or extreme gradient
boost for producing machine predictions. All the results are shown in the appendix

and are consistent with the results in Table 3.
C. Counterfactual exercises

Can we use the empirical findings presented in the previous section to improve
overall prediction performance for firm exits? Given the performance of humans
relative to machines improves for more opaque firms with smaller amounts of
observable information, it is natural to assign firms with smaller observable
information to humans and firms with larger information to machines.

Based on this conjecture, we split the sample into five subsamples according to
the number of observable variables. We aim at setting up multiple groups for which
the relative performance of human to machine differs. To construct subgroups
purely tied to the number of observable variables, we regress #(available variables)
to a firm’s sales, growth, and industry classification, all of which are significant in
the estimation of Proxyy ; ;, and take out the residual. Then, we use this residual to
sort the firms and construct five subsamples so that we can set up five groups of
firms depending on the level of #(available variables) orthogonal to other firm

attributes.



In each subsample, we evaluate the performances of human and machine
predictions. By comparing, for example, the number of false negatives based on
machine predictions (M) to those based on human predictions (H) for the same set
of firms, we can describe what happens to the prediction performance for the

subsample by reallocating prediction tasks from machine to human.

Table 4: Reallocation of prediction instances

(a) Firms actually do NOT exit ex-post

Prediction for default Prediction for voluntary closure
M= M= M= M=
default not default closure not closure
H= H= (2)/(1) H= H= (2)/(1)
not default default not closure closure
(1) (2) (1) (2)
~2.0 49,117 23,068 0.47 25,206 19,453 0.77
%tile
20~.40 36,094 54,446 1.51 28,326 23,667 0.84
%tile
40~.60 37,362 46,368 1.24 28,370 28,134 0.99
%tile
60~.80 33,409 39,218 1.17 20,249 30,962 1.53
%tile
80
. 11,652 30,608 2.63 8,026 34,406 4.29
%tile~




(b) Firms actually do exit ex-post

Prediction for default Prediction for voluntary closure
M = M = M= M=
default not default closure not closure
H= H= (3)/(4) H= H= (3)/(4)
not default default not closure closure
3) 4) 3) 4)
~20 88 21 4.19 140 51 2.75
%tile ' '
20~40
Ytile 82 40 2.05 195 42 4.64
40~60
Ytile 86 37 2.32 231 43 5.37
60~_80 74 37 2.00 174 54 3.22
%tile
80
Ytile~ 38 27 1.41 72 45 1.60

Note: M and H denote the predictions of machine and human, respectively.

The two panels in Table 4 summarize the number of false positive, false negative,
true positive, and true negative cases for the five subsamples. We treat the top 30%
of firms in terms of the prediction score as the firms predicted to exit.*2

For example, the columns marked (1) in panel (a), show the number of false-
positives for machine predictions and true-negatives for human predictions, as
these columns show the number of firms that do not exit ex-post. Conversely, the
columns marked (2) in panel (a) show the number of true-negatives for machine
predictions and false-positives for human predictions for firms that do not exit ex-
post. Panel (b) in Table 4 summarizes the number in the same manner but for the

firms that actually do exit ex-post.

12 For robustness check, we vary this prediction threshold (i.e., the top 30% in this baseline exercise) from the top 50% to
the top 20% and confirm the results do not change.



Comparing the numbers in each column, we can see how type | and type Il errors
vary depending on whether prediction instances are allocated to machine or human.
In six out of the ten rows in Panel (a), the number in columns marked (1) is smaller
than that in (2), while in Panel (b), all the numbers in the columns marked (3) are
larger than those in (4).

First, this means that type Il error is always smaller in machine predictions than
human predictions, regardless of the level of available information. Even for the
firms with smallest information, human predictions cannot outperform machine
predictions. Second, in the case of the firms with smallest information however (i.e.,
the first raw labeled as “~20%tile”), it is still possible to reduce the number of false-
positives, and thus reduce type | error, by reallocating the default prediction
instances from machine to human (i.e., the number of false-positives is reduced
from 49,117 to 23,068). In the case of voluntary closure, we can also achieve
smaller type I error for firms with the smallest, small, and average information (i.e.,
the first, second, and third raws labeled “~20%tile”, “20~40%tile”, and
“40~60%tile”) by reallocating the default prediction instances from machine to
human.

We should note, nonetheless, that such a reallocation of prediction tasks is
accompanied by larger type Il error, as shown above. The numbers in columns (3)
are always larger than that in (4), which suggests that reallocating the prediction
instances from machine to human always increases the number of false negatives.
As one interesting result, we can also find that, in the case of default predictions,
the ratio tends to be larger as we move from the subsample with smallest
information to that with largest. This pattern is inconsistent with the positive
coefficient obtained in our estimation for Proxys;.. This is the case simply
because, in our data, the number of exits is much smaller than that of non-exits. In

other words, the relative performance of human predictions to machine predictions



with respect to the level of available information is driven by human predictions
correctly predicting non-exit firms.

These results reconfirm the usefulness of machine-based prediction techniques in
the context of exit predictions. There is however room for human predictions to
outperform machine predictions under specific circumstances, such as when the
prediction targets are opaque due to less available information or when the user of
the prediction results is more concerned with type | error than type Il due to, for

example, the imbalance between the numbers of exit and non-exit firms.
D. Growth prediction

We have so far focused on exit predictions. What happens if we focus on the upside
of firm dynamics instead? We repeat the same analyses by considering firm growth
as the target of our predictions. We define growth in sales for a firm as a sales
growth rate of one standard deviation higher than the industry average defined in
two-digits over the one-year window used to measure the outcome. Then, we
prepare a dummy variable that takes 1 if firms experience a growth rate higher than
these criteria.

As predictions for upside events are the mirror image of downside predictions,
we conjecture that while overall prediction performance is still higher for machine
prediction than human, and the relative performance of human predictions also
becomes higher when the available information is smaller as we have described,
the source of this better performance is not from lower type | error but from lower
type Il error. In other words, analysts correctly predict non-growth for actual non-
growth firms based on smaller information. As presented in the appendix, this is

indeed the case.



V1. Conclusion

We examine empirically the relative performance of machine-based and human
subjective predictions for firm exits. Using a huge volume of firm-level high-
dimension panel data, we find that human predictions are not as accurate as
machine predictions on average. As for predicting the exits of firms with less
observable information, nonetheless, the relative performance of human predictions
improves.

As one important point to note when using machine predictions in practice, Luca
et al. (2016) claim that machine predictions cannot ensure automated decision
making as it is necessary to take into account the various dimensions of the
problems under consideration. The present paper provides an evidence that it is also
necessary to take into account the conditions under which a prediction is to be
assigned to machine. Our findings cast light on the circumstances and the extent to
which tasks should be allocated either to machine or to human.

Future extensions of the present study may benefit from the inclusion of
additional explanatory variables as regressors for Proxy. A large-sized aggregate-
level shock, such as a market downturn or a natural disaster, could have an impact
on the marginal effect of each determinant of Proxy. Understanding potentially
relevant shocks is useful in considering how we should allocate prediction tasks to
machines and humans under specific circumstances. Such an additional analysis
will help us to understand both the nature of human error and how humans and

machines can work together to provide accurate predictions.
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Appendix A

The list of variables we use for constructing machine learning-based prediction

model is as follows:

Firm-own characteristics (firm own): As variables representing firms’ own
characteristics, we use firm size measured by the logarithm of sales and the change
in sales from the previous period, profit-to-sales ratio and any change from the
previous period, the status of dividend payments (paid or not) and any change from
the previous period, whether the firm is listed or not, the number of employees, the
logarithm of stated capital, and dummy variables representing industry
classification (note: multiple industry codes are recorded). We also use firm age,

owner age, and the number of establishments.

Firms’ financial statement information (financial statement): We set up a
number of financial variables used in the literature as variables representing firms’

detailed financial statement information.3

Industry and geographical information (geo/ind): We set up the following two
groups of variables as variables representing the industry and area to which the
firms belong. First, we construct the variables measuring the average sales growth
of firms located in the same city as the targeted firms. Second, we compute the
average sales growth of firms belonging to the same industry classified in the 2-

digit level.

13 The list of “financial statement” variables consists of the following items: Logarithm of total assets, cash-to-total
assets ratio, liquid assets-to-total assets ratio, tangible assets-to-total assets ratio, receivables turn-over, inventory turn-over,
total liability-to-total assets ratio, liquid liability-to-total assets ratio, bond-to-total liability ratio, bank borrowing-to-total
liability ratio, bank short borrowing-to-total bank borrowing ratio, payables turn-over, interest coverage ratio, liquid assets-
to-liquid liability ratio, fixed compliance ratio, fixed ratio, working capital turn-over, gross profit-to-sales ratio, operating
profit-to-sales ratio, ordinary profit-to-sales ratio, net profit before tax-to-sales ratio, logarithm of EBITDA, logarithm of
EBITDA-to-sales ratio, special income-to-sales ratio, special expenses-to-sales ratio, and labor productivity.



Lender banks information (bank): As variables representing firms’ borrowing
relationships with lender banks, we construct a dummy variable to represent a

change in main lenders (i.e., top lender bank) or in the number of lender banks.

Supply-chain linkage information (network): We construct the following two
groups of variables to represent the supply chain network. First, we compute widely
used network metrics for each firm by using the supply chain network information.
The metrics consist of degree centrality; eigenvector centrality; egonet eigenvalue;
co-transaction; and the number of transaction partners, both direct (i.e., customers
and suppliers) and indirect (i.e., suppliers’ suppliers, customers’ suppliers, etc.).
Second, we construct a number of variables representing the characteristics of
transaction partners. To summarize this information, we employ the average,
maximum, minimum and the sum of fscore associated with each transaction partner.
Note that while the network metrics cover both direct and indirect transaction
partners, the transaction partners’ characteristics only cover direct transaction

partners.

Shareholder linkage information (shareholder): We set up similar variables to

those for supply chain network as predictors for shareholder information.



Appendix B

Here we list the tables and figures referred to in the main body of the paper for the
robustness check. First, we show an alternative way to compare the prediction
power of machine, human, and the “structured” human (Figure Al). We can
confirm that machine predictions outperform human predictions on average.
Regarding the comparison between human predictions and those of the structured
human, human predictions are more precise in the case of default predictions, while
the structured human is better in terms of recall in the case of voluntary closure.

Second, instead of estimating the determinants of Proxyy ; ., we estimate separately
the determinants of Proxys: and Proxy}fi,t, which are defined as below,

representing the prediction performance of machine and human, respectively.
Comparing the estimated coefficients associated with the independent variables, we
can see how the respective prediction powers of machine and human vary according

to the change in determinants (Table Al).

(AL) Proxyf, = Outcomefi — 1 for exit firms,

=1 — Outcomef’’ for non-exit firms,

(A2) Proxy;”i’t = Outcomef’;, — 1 for exit firms,

= 1 — Outcomef’;, for non-exit firms.

Third, we construct a set of rankings based on the machine prediction, fscore, and
“structured” fscore and repeat the same estimation for the disagreement (Table A2).
Fourth, we also define a dummy variable taking the value of one if Proxyy;, is
positive and zero otherwise and run a linear probability model and conditional logit
model (Table A3). We also set 1 to 10 variables, depending on the level of

Proxyy;., and run an ordered-logit estimation (Table A4). Fifth, we replace



analyst-level fixed effect with analyst-year-level fixed effect (Table A5). Sixth, we
employ one of the sub-scores of fscore, which represents the “stability” of each
firm, instead of the total fscore, so that the target of human predictions becomes
plausibly more comparable to that of machine predictions (Table A6). Seventh, we
summarize the results of the proxy estimation and counterfactual exercise
representing firm growth (Table A7). Eighth, we repeat the AUC estimation and
proxy estimation based on the two alternative methods (i.e., LASSO and extreme
gradient boost) (Table A8, A9). All the results are consistent with the ones we

presented in the main body of the present paper.



Figure Al: Recall and precision measures over different thresholds
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Table Al: Prediction performance of machine and human

default voluntary closure
Machine Human Machine Human
Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.
lumber of available variables
#(available variables) ft 0.102  0.000 *** 0.008 0.000 *** 0.118  0.000 *** 0.012  0.000 ***
irm characteristics
log(sales 1) 2.318 0.020 *** 5.024 0.014 *** 6.461 0.021 *** 7.493 0.021 ***
log(sales 1) - log(sales 1) 1.701  0.015 *** -0.440  0.011 *** 0.231  0.017 *** -0.760  0.016 ***
listed ¢ 2477  0.443 *** 2.621 0.303 *** -1.838  0.481 *** 2,168  0.467 ***
#(industry) £t -0.502  0.025 *** 0.099 0.017 *** 0.244  0.027 *** 0.202  0.027 ***
priority ¢ 0.000 0.000 * 0.000 0.000 *
nalyst characterstics
#(assigned companies ) it 0.000 0.000 *** 0.000 0.000 ***
industry experience g -0.000 0.000 *** -0.000 0.000 ***
eam characteristics
#(team members) it 0.002 0.001 -0.005 0.002 **
Average #(tenure years) it 0.014 0.002 *** 0.016 0.003 ***
Average industry experience ¢ -0.000 0.000 ** 0.000 0.000
Average #(assigned companies )it 0.000 0.000 *** 0.000  0.000 ***
onstant 29.191  0.226 *** -4.012  0.166 *** -19.798  0.245 *** -28.631  0.256 ***
irm fixed-effect yes yes yes yes
nalyst fixed-effect yes yes yes yes
ear fixed-effect yes yes yes yes
(obs) 3,756,803 3,238,817 3,756,803 3,238,817
53,485.400 15,304.020 78,182.190 14,025.710
dj R-squared 0.815 0.897 0.876 0.866
Jithin R-squared 0.092 0.075 0.129 0.069




Table A2: Rank-based disagreement estimation

Machine vs. Human

default voluntary closure
Coef. S.E. Coef. S.E.
Number of available variables
#(available variables) ft 1,607.929 4.271 *** 1,527.788 3.784 ***
Firm characteristics
log(sales 1) -58,115.530 374526 *** -25,088.000 331.840 ***
log(sales ;) - log(sales ;) 37,273.310 287.922 *** 16,041.170 255.107 ***
listed ¢ 27,956.380 8,164.855 *** -34,210.110 7,234.288 ***
#(industry ) ft -8,595.519 471.108 *** 620.723 417.415
priority ¢ 5.258 1.144 *** 8.109 1.013 ***
Analyst characterstics
#(assigned companies ) it -1.894 0.313 *** -3.357 0.277 ***
industry experience -11.528 0.604 *** -6.217 0.535 ***
Team characteristics
#(team members) it 268.315 34.572 *** 346.771 30.632 ***
Average #(tenure years) it 384.545 48.371 *** -63.242 42.858
Average industry experience ¢ 39.630 2.346 *** -2.152 2.079
Average #(assigned companies) -2.936 0.437 *** -5.742 0.387 ***
Constant 470,115.500  4,475.366 *** 125,805.500  3,965.298 ***
Firm fixed-effect yes yes
Analyst fixed-effect yes yes
Year fixed-effect yes yes
#(obs) 3,238,817 3,238,817
F 13,426.970 13,873.310
Adj. R-squared 0.876 0.820

Within R-squared 0.067 0.069




Table A3: Dummy variable measure for disagreement

(1) Linear probability model

Machine vs. Human

default voluntary closure
Coef. S.E. Coef. S.E.
Number of available variables
#(available variables) 1t 0.157 0.001 *** 0.265 0.001 ***
Firm characteristics
log(sales ) -5.664 0.076 *** -3.578 0.085 ***
log(sales ;) - log(sales ;) 4.064 0.059 *** 2.315 0.065 ***
listed ¢, 2.856 1.664 * -7.332  1.849 ***
#(industry ) f. -1.350 0.096 *** 0.042 0.107
priority 0.001 0.000 *** 0.002 0.000 ***
Analyst characterstics
#(assigned companies ) it -0.000 0.000 -0.001 0.000 ***
industry experience ¢ -0.001 0.000 *** -0.000 0.000 **
Team characteristics
#(team members) it 0.041 0.007 *** 0.041 0.008 ***
Average #(tenure years) it 0.005 0.010 0.005 0.011
Average industry experience ¢ 0.006 0.000 *** 0.000 0.001
Average #(assigned companies )it -0.001 0.000 *** -0.001 0.000 ***
Constant 93.738  0.912 *** 59.737 1.014 ***
Firm fixed-effect yes yes
Analyst fixed-effect yes yes
Year fixed-effect yes yes
#(obs) 3,238,817 3,238,817
F 3,135.790 6,343.690
Adj. R-squared 0.721 0.659

Within R-squared 0.016 0.033




(2) Conditional logit model

Machine vs. Human

default voluntary closure
Coef. S.E. Coef. S.E.
Number of available variables
#(available variables) 1t 1.942 0.013 *** 2.587 0.012 ***
Firm characteristics
log(sales ) -87.264  1.207 *** -42.894  1.011 ***
log(sales¢;) - log(salesy.) 65.887 0.962 *** 28.807 0.783 ***
listed ¢, 45.617 25.010 * -82.705 20.077 ***
#(industry ) .t -20.860 1.326 *** -6.271  1.235 ***
priority 0.095 0.014 *** 0.072 0.008 ***
Analyst characterstics
#(assigned companies) it 0.000 0.001 0.000 0.000
industry experience ¢ 0.006 0.001 *** -0.002 0.001 *
Team characteristics
#(team members) it 0.425 0.071 *** 0.409 0.065 ***
Average #(tenure years) it -0.241 0.114 ** -0.067 0.104
Average industry experience; 0.022 0.006 *** -0.104  0.005 ***
Average #(assigned companies )it -0.003 0.001 *** -0.002 0.001 **
Constant
Firm fixed-effect yes yes
Analyst fixed-effect no no
Year fixed-effect no no
#(obs) 736,498 922,303
Log-likelihood -259,176.670 -315,385.000

x-squared 30,953.570 57,174.730




Table A4: Ordered logit estimation

Machine vs. Human

default voluntary closure

Coef. SEE. Coef. S.E.
lumber of available variables
#(available variables ) f: 1.214  0.005 *** 2.262  0.005 ***
irm characteristics
log(salest;) -171.686  0.244 *** -22.596  0.210 ***
log(sales ) - log(sales ¢t ) 103.072  0.390 *** 26.065 0.366 ***
listed ¢ 542,157 6.472 ***  -103.528 5.877 ***
#(industry) ft -48.697  0.389 *** -1.500 0.385 ***
priority ¢ 0.086 0.003 *** 0.010 0.002 **=*
nalyst characterstics
#(assigned companies) it 0.001 0.000 *** -0.001 0.000 ***
industry experience 0.047 0.001 *** 0.032 0.001 ***
eam characteristics
#(team members) it 2.314 0.028 *** 2.805 0.028 ***
Average #(tenure years) it -0.375 0.049 *** -0.498 0.049 ***
Average industry experience 0.255 0.002 *** 0.297 0.002 ***
Average #(assigned companies) it -0.030  0.000 *** -0.041 0.000 ***
‘onstant
irm fixed-effect no no
nalyst fixed-effect no no
ear fixed-effect no no
(obs) 3,466,611 3,466,611
og-likelihood -6,008,220.100 -6,508,573.100
-squared 621,072.400 253,758.480




Table A5: Alternative fixed-effects specification

Machine vs. Human

default voluntary closure
Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) ft 0.571 0.001 *** 0.482 0.001 ***
Firm characteristics

log(sales ) -19.063  0.125 *** -8.293  0.111 ***

log(sales ;) - log(salesty) 13.213 0.096 *** 5.074 0.085 ***

listed ¢ -4.449  2.732 -19.247  2.412 ***

#(industry ) .t -3.538 0.158 *** 0.002 0.140

priority ¢ 0.000 0.000 0.002 0.000 ***

Analyst characterstics

#(assigned companies ) it

industry experience ¢ 0.001 0.000 *** 0.000 0.000
Team characteristics

#(team members) it

Average #(tenure years) it

Average industry experience 0.017 0.001 *** 0.000 0.001
Average #(assigned companies )it
Constant 157.847  1.465 *** 49.298 1.293 ***
Firm fixed-effect yes yes
Analyst-Year fixed-effect yes yes
Year fixed-effect yes yes
#(obs) 3,238,266 3,238,266
F 22,197.050 18,409.250
Adj. R-squared 0.882 0.834

Within R-squared 0.073 0.061




Table A6: Using sub-score as human predictions

default voluntary closure
Machine vs. Human SH vs. Human Machine vs. Human SH vs. Human
Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.
Number of available variables
#(available variables) 0.637  0.002 *** 0.018 0.000 *** 0.519 0.002 *** 0.018 0.000 ***
Firm characteristics
log(sales ) 5178 0.191 *** 3.120 0.044 *** 13.864 0.166 *** 3.240 0.044 ***
log(salest,) - log(sales¢..1) 17.783  0.142 *** -2.203  0.033 *** 13.444  0.123 *** -2.283  0.033 ***
listed ¢, 8.962 3.434 *** 4.606 0.787 *** -0.880 2.974 *** 4304 0.787 ***
#(industry ) ft -2.132  0.227 *** 0.090 0.052 * 1.092 0.197 *** 0.086 0.052 *
priority 0.000 0.000 0.000 0.000 0.001  0.000 ** -0.000 0.000
Analyst characterstics
#(assigned companies ) it -0.002  0.000 *** 0.000 0.000 *** 0.000 0.000 ** 0.001  0.000 ***
industry experience -0.003  0.000 *** 0.001  0.000 *** 0.002  0.000 *** 0.001 0.000 ***
Team characteristics
#(team members) it 0.028 0.019 -0.017  0.004 *** 0.026 0.017 -0.018  0.004 ***
Average #(tenure years) it 0.080 0.026 *** -0.046  0.006 *** -0.078  0.022 *** -0.047  0.006 ***
Average industry experience ¢ 0.026  0.001 *** -0.002  0.000 *** -0.005 0.001 *** -0.002 0.000 ***
Average #(assigned companies ) it 0.001  0.000 *** 0.000 0.000 ** -0.001  0.000 *** 0.000 0.000
Constant -132.004  2.359 *** -38.266 0.540 *** | -212.930 2.044 *** -39.522  0.540 ***
Firm fixed-effect yes yes yes yes
Analyst fixed-effect yes yes yes yes
Year fixed-effect yes yes yes yes
#(obs) 2,199,518 2,199,518 2,199,518 2,199,518
F 10,515.140 719.200 11,101.810 752.040
Adj. R-squared 0.825 0.712 0.830 0.718
Within R-squared 0.081 0.006 0.085 0.006




Table A7: Growth prediction

(1) Proxy estimation

Machine vs. Human

SH vs. Human

Coef. S.E. Coef. S.E.
Number of available variables
#(available variables) ft 0.196 0.003 *** 0.037  0.000 ***
Firm characteristics
log(sales t;) -50.833  0.229 *** -0.166  0.039 ***
log(sales¢,) - log(sales ;1) 14.032 0.174 *** -0.439  0.030 ***
listed ¢, -24.028  4.837 *** 3.056 0.830 ***
#(industry ) ft -1.239  0.281 *** 0.036  0.048
priority 0.005 0.001 *** 0.000 0.000
Analyst characterstics
#(assigned companies ) it -0.000 0.000 -0.000 0.000 ***
industry experience ¢ 0.003 0.000 *** 0.000 0.000 ***
Team characteristics
#(team members) it -0.167 0.021 *** -0.008 0.004 **
Average #(tenure years) it -0.357  0.029 *** -0.014  0.005 ***
Average industry experience -0.017 0.001 *** 0.000 0.000
Average #(assigned companies )it 0.001 0.000 *** -0.000  0.000 ***
Constant 574761 2.737 *** -0.627 0.470
Firm fixed-effect yes yes
Analyst fixed-effect yes yes
Year fixed-effect yes yes
#(obs) 3,037,588 3,037,588
F 4,799.540 650.920
Adj. R-squared 0.590 0.639
Within R-squared 0.026 0.004







(2) Counterfactual exercise

(a) Firms that actually do not grow ex-post

(b) Firms that actually grow ex-post

M = M = M = M =
growth not growth growth not growth
H= H= 2)/(1) H= H= (3)/(4)
not growth growth not growth growth
1) () @) (4)
~20 12,799 30,678 | 2.40 1765 791 | 2.23
%itile
20~.40 15,822 38,401 2.43 2170 978 2.22
Ytile
40~.60 18,513 31,610 1.71 2660 883 3.01
Ytile
60~80 25171 22727 |  0.90 3599 760 | 474
%itile
80
34,835 11,263 0.32 5308 401 13.24

%tile~




Table A8: AUC:s of alternative prediction models for default

Test data: t = 2013

Test data: t = 2014

Model | LASSO | XGBoost Model | LASSO | XGBoost
Human 0.634 Human 0.639
(0.0049) (0.0052)

. 0.783 0.807 . 0.774 0.787
Machine {5 5042) | (0.0039) Machine 1 6047) | (0.0044)
Structured 0.529 0.598 Structured 0.537 0.558

human (0.0047) | (0.0046) human (0.0051) | (0.0096)
Machine & 0.806 0.823 Machine & 0.798 0.815
fscore (0.0040) | (0.0037) fscore (0.0044) | (0.0042)
W'\ﬂf]":r;“aﬁl 0.746 | 0.783 W'\i"tff:r'n”zjl 0.740 | 0768
tormation | (:0046) | (0.0043) tormation | (0051 | (0.0049)

Test data: t = 2015

Test data: t = 2016

Model | LASSO | XGBoost Model | LASSO | XGBoost
Human 0.653 Human 0.663
(0.0055) (0.0053)

; 0.774 0.804 _ 0.779 0.786
Machine - 60ag) | (0.0044) Machine 1 6049) | (0.0046)
Structured 0.547 0.500 Structured 0.563 0.516

human (0.0053) | (0.0115) human (0.0054) | (0.0111)
Machine & 0.804 0.818 Machine & 0.803 0.810
fscore (0.0046) | (0.0044) fscore (0.0046) | (0.0045)
W'\ﬁic:r'n”aﬁl 0.735 0.772 W'\i"tf]c:r;]”jl 0.738 0.767
i formation (0.0054) | (0.0050) information (0.0054) | (0.0049)

Note: Each number represents AUC and the number in the parentheses is its standard error.



Table A9: Proxy estimation based on alternative prediction models

(1) LASSO
Machine vs. SH vs. Human
Human
Coef. S.E. Coef. S.E.
Number of available variables
#(available variables) ft 0.495 0.002 ***  0.150 0.001 ***
Firm characteristics
log(sales ;) -12.859 0.146 *** 10.266 0.082 ***
log(sales ;) - log(sales+.;) 17.666 0.113 ***  -1.179 0.063 ***
listed ¢, 59.775 3.193 *** 4973 1.792 ***
#(industry ) fi -4.934 0.184 ***  -0.769 0.103 ***
priority ¢ 0.007 0.000 ***  0.001 0.000 ***
Analyst characterstics
#(assigned companies ) it -0.001 0.000 ***  -0.001 0.000 ***
industry experience -0.001 0.000 ***  -0.000 0.000
Team characteristics
#(team members) it 0.112 0.014 ***  0.009 0.008
Average #(tenure years) it 0.123 0.019 ***  0.016 0.011
Average industry experience 0.009 0.001 ***  -0.005 0.001 ***
Average #(assigned companies)it -0.001 0.000 ***  -0.001 0.000 ***
Constant 97.460 1.750 *** #HHH##H 0.982 ***
Firm fixed-effect yes yes
Analyst fixed-effect yes yes
Year fixed-effect yes yes
#(obs) 3,238,817 3,238,817
F 9,181.380 4,103.740
Adj. R-squared 0.841 0.832

Within R-squared 0.047 0.021




(2) Extreme gradient boost

Machine vs. SH vs. Human
Human
Coef. S.E. Coef. S.E.
Number of available variables
#(available variables) ft 0.449 0.003 ***  0.075 0.004 ***
Firm characteristics
log(sales ;) 0.298 0.264 2.947 0.348 ***
log(sales ;) - log(sales+.;) 12.878 0.203 ***  -0.930 0.268 ***
listed ¢, -5.342 5.763 -24.407 7.592 ***
#(industry ) fi -3.276 0.333 ***  -5364 0.438 ***
priority ¢ -0.051 0.001 ***  -0.123 0.001 ***
Analyst characterstics
#(assigned companies ) it 0.002 0.000 ***  -0.001 0.000 **
industry experience -0.008 0.000 ***  0.010 0.001 ***
Team characteristics
#(team members) it 0.768 0.024 ***  0.392 0.032 ***
Average #(tenure years) it 0.508 0.034 ***  0.139 0.045 ***
Average industry experience -0.035 0.002 ***  -0.020 0.002 ***
Average #(assigned companies)it -0.005 0.000 ***  -0.006 0.000 ***
Constant -52.916 3.159 *** -27.909 4.161 ***
Firm fixed-effect yes yes
Analyst fixed-effect yes yes
Year fixed-effect yes yes
#(obs) 3,238,817 3,238,817
F 2,886.910 1,230.400
Adj. R-squared 0.506 -0.042
Within R-squared 0.015 0.007




