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We document how professional analysts’ predictions of firm exits 

disagree with machine-based predictions. First, on average, human 

predictions underperform machine predictions. Second, nonetheless, 

the relative performance of human to machine predictions improves 

for firms with less observable information, possibly due to the 

unstructured information used only in human predictions. 

Specifically, under the environment where the number of exit firms 

are much smaller than that of non-exit firms, the reduction of type I 

error achieved by reallocating prediction tasks for those opaque 

firms from machines to humans leads to better prediction 

performance. 
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I. Introduction 

Prediction is an important task in both private business and public policy. Recent 

advances in prediction techniques, such as machine learning, have helped make the 

conduct of prediction tasks more reliable than those dependent upon human 

judgment and classical parametric models. The practical application of these new 

prediction techniques has been the focus of recent academic, policy, and business 

discussions (Varian 2014; Mullainathan and Spiess 2017; Athey 2019). The 

successful application of these techniques has already been reported in a number of 

fields, including labor markets (Chalfin et al. 2016), public services (Kleinberg et 

al. 2018; Bazzi et al. 2019; Lin et al. 2020), medical services (Patel et al. 2019; Mei 

et al. 2020), and the financial industry (Agrawal et al. 2018). 

The growing employment of these powerful prediction techniques naturally 

raises the question of the ways in which machine predictions disagree with and 

outperform human predictions. This question is particularly relevant given the 

number of recent studies which argue that technological advances will lead either 

to the replacement of human labor with machines in certain types of jobs (e.g., Frey 

and Osborne 2017) or to the reallocation of human resources to other types of jobs 

(e.g., Autor et al. 2003; Acemoglu and Autor 2011; Acemoglu and Restrepo 2018). 

Understanding the ways in which machines outperform humans in prediction, we 

can identify those cases in which human predictions outperform machine 

predictions. While this has started to be examined in, for example, the field of 

medical studies (e.g., Raghu et al. 2019), it has not yet been investigated in the 

context of social science. 

The goal of this paper is to document, in the context of firm exits, the patterns of 

disagreement between human predictions and machine-based predictions and their 

relative prediction performance. First, following the literature in medical studies, 

we test the relative performance of predictions based on machine learning 



techniques and those based on human judgment for the two modes of firm exits, 

i.e., corporate default and voluntary closure. Second, we document the systematic 

patterns of disagreements between human and machine predictions for those events. 

The disagreement between them is measured with the relative prediction 

performance of human and machine. Thus, we can see not only whether human and 

machine disagree but also, more importantly, the ways in which they disagree. 

Suppose a firm actually does default ex-post. Ex-ante human and machine 

predictions could differ. As reported by Kleinberg et al. (2018) in the context of 

judicial bail decisions, it is highly likely that machine predictions will on average 

outperform human predictions. Nonetheless, the relative performance of human 

predictions may be better in specific circumstances, such as default predictions for 

informationally opaque firms. Given this conjecture, we document the relative 

performance of human and machine predictions conditional on the characteristics 

of their prediction targets. Third, after confirming the characteristics (esp., 

opaqueness of the firms) systematically correlated with the relative performance of 

human predictions compared with machine predictions, we implement a set of 

counterfactual exercises reallocating prediction instances for firms with specific 

characteristics from machine to human and see how overall prediction performance 

varies. 

To the best of our knowledge, this article is the first to explicitly study the 

systematic patterns of disagreement between human and machine predictions in the 

context of social science, and to use these systematic patterns to improve overall 

prediction performance.1 We take advantage of our access to a huge volume of 

firm-level high-dimension panel data collected by one of the largest Japanese credit 

reporting agencies, together with the prediction results of professional analysts 

 

1 Anderson et al. (2017) report, in the domain of chess, that human decision tends to be wrong for more difficult instance. 

Their study shares the motivation with ours in the sense that both characterize the determinants of the performance of human 

decisions. The difference is that we compare human predictions not only with the ground truth (i.e., exits which we observe 
ex-post), which is done in Anderson et al. (2017), but also with machine predictions.  



working for the company and detailed individual attributes of those analysts. These 

comprehensive datasets provide us with an ideal research ground where we can 

construct a machine-based prediction model, compare its predictions with human 

predictions, and document how they disagree and perform. 

The empirical findings are summarized as follows. First, the average performance 

in predicting firm exits is better for machines than humans, in line with the results 

reported by existing studies in other fields (e.g., Kleinberg et al. 2018). Second, 

nonetheless, the relative performance of human predictions to those of machines 

improves as the availability of information on firm characteristics declines. This 

could be the case when human predictions effectively employ unstructured 

information associated with prediction instances. This kind of unstructured 

information has been referred to as “soft information” (e.g., Liberti and Petersen 

2019). Examples of soft information include workers’ skill levels, the CEO’s 

management ability, the prospects of future product development, and so on. It is 

difficult to record all of this highly qualitative information as structured (i.e., 

“hard”) information in, for example, firms’ financial statements or other documents. 

To verify this conjecture, we compare the human predictions recorded in our dataset 

not only with machine predictions but also with the part of the human predictions 

solely correlated with structured information.2 As the latter “structured” human 

predictions do not rely on unstructured information, the comparison between the 

original and the structured human predictions tells us to what extent unstructured 

information has been used in human predictions. Similar to the comparison between 

the original human predictions and machine predictions, we find that the 

performance of human predictions relative to that of “structured” human 

predictions improves as the availability of information on firm characteristics 

 

2 The similar attempt for replicating human decisions has been done in the context of, for example, chess (e.g., McIlroy-
Young et al. 2020).  



declines. We also separately regress the performance of human and machine 

predictions on various characteristics and confirm that the negative marginal 

impacts associated with low availability of information is more sizable for machine 

predictions than for human predictions. 

Given the empirical finding that the availability of observable information is a 

key driver in the disagreement between human and machine predictions and their 

relative performance, we implement a set of counterfactual exercises that reallocate 

prediction instances from machine to professional analysts, depending on how 

much information is available for each firm. As the “improvement” in relative 

performance of human predictions along with the change in specific firm 

characteristics does not necessarily mean that the “level” of conditional 

performance of human predictions is higher than that of machine predictions, these 

counterfactual exercises are useful to confirm whether there could be any cases in 

which humans outperform machines.  

Using the number of available variables for each firm, which is orthogonalized 

to other firm characteristics such as firm size, past growth trend, and industry fixed-

effects, we classify firms into five categories ranging from firms with smallest 

information, small information, average information, large information, and largest 

information. For most of the cases except for firms with smallest information, 

machine predictions outperform human predictions in terms of both type I and type 

II errors, which leads to better prediction performance of machines. Nonetheless, 

we also find that reallocating prediction tasks for firms with smallest information 

from machine to human leads to a sizable reduction in type I error. To illustrate, for 

firms with smallest information, the number of actually non-exit firms predicted as 

“exit” by machine but “non-exit” by human is larger than the number of actually 

non-exit firms predicted as “non-exit” by machine but “exit” by human. Thus, 

reallocating prediction tasks for those firms from machines to humans reduces the 

number of false-positives, and the type I error becomes smaller. We should note, 



however, that the reallocation of the prediction tasks for these firms is also 

accompanied by a larger type II error; i.e., the number of actually exit firms 

predicted as “exit” by machine but “non-exit” by human is larger than the number 

of actually exit firms predicted as “non-exit” by machine but “exit” by human. Thus, 

reallocating prediction tasks from machine to human also reduces the number of 

true-positives, and type II errors increase. As the number of exit firms are much 

smaller than that of non-exit firms in the case of firm exits, the reduction of type I 

error achieved by reallocating prediction tasks for those opaque firms from 

machines to humans overwhelms the increase in type II error. This is the mechanics 

in which the relative performance of human predictions to that of machine 

predictions improves as the availability of information on firm characteristics 

declines. 

These results jointly suggest the usefulness of powerful machine-based 

prediction techniques for practical purposes and highlight a subtle feature of human 

prediction in the context of exit prediction. Overall, most of the prediction work for 

firm exits can be assigned to machines. Nonetheless, under specific circumstances, 

such as when prediction targets are informationally opaque due to less available 

information and the user of the prediction results is more concerned about type I 

error than type II error due to, for example, the imbalance between the numbers of 

exit and non-exit firms, then there is still room for human predictions to outperform 

machine predictions.  

The rest of the paper proceeds as follows. Section II presents the theoretical 

underpinning of our empirical study, which follows Raghu et al. (2019). Section III 

explains our empirical methodology and a brief account of the institutional 

background related to the prediction of firm exits. Section IV gives details of the 

data used for our study. Section V presents and discusses the empirical results. 

Section VI concludes. 



II. Conceptual Framework 

In this section, we present the conceptual framework representing the disagreement 

between human and machine predictions and their relative performance. Suppose 

there is a prediction instance 𝑓 for a specific outcome. In the present paper, we set 

predictions for firms’ default and voluntary closure as our prediction instance 𝑓. 

The instance 𝑓 is accompanied by a set of attributes. It consists of, for example, the 

number of available information associated with the firms. The instance 𝑓 has the 

actual outcome 𝑎(𝑓), which we refer to as a ground truth. This ground truth will be 

revealed ex-post when we observe whether the firm defaults or not within specific 

periods of time. For the instance 𝑓, a prediction machine has its own prediction 

denoted by 𝑚(𝑓) . Similarly, a professional analyst 𝑖  with a set of individual 

attributes has its own prediction for the instance 𝑓 . We name this analyst’s 

prediction ℎ(𝑓, 𝑖). Using these items, first, we can define the prediction error 𝛩(𝑓) 

of the machine prediction for an instance 𝑓 as follows: 

(1) 𝛩(𝑓) = 𝐿(𝑎(𝑓), 𝑚(𝑓)). 

 

Second, we can define the prediction error 𝛺(𝑓, 𝑖) of the human prediction for an 

instance 𝑓 by an analyst 𝑖 as follows: 

(2) 𝛺(𝑓, 𝑖) = 𝐿(𝑎(𝑓), ℎ(𝑓, 𝑖)). 

 

Suppose we have a set of prediction instances 𝑈. What we ultimately want to 

solve is an allocation problem of 𝑈 to machine (i.e., 𝑆) or analysts (i.e., 𝑇). Such an 

optimization problem can be formulated as follows: 

(3) min
𝑆,𝑇

∑ 𝛩(𝑓)𝑓∈𝑆 + ∑ 𝛺(𝑓, 𝑖)𝑓∈𝑇   s.t.  𝑆 ∪ 𝑇 = 𝑈; 𝑆 ∩ 𝑇 = ∅. 

 



This is a problem called “an algorithmic triage” in Raghu et al. (2019). Solving 

this problem, we obtain the best assignment (𝑆∗, 𝑇∗) as a function of (𝑓, 𝑖). This 

optimal assignment function tells us whether we should assign a specific prediction 

instance 𝑓 to the prediction machine or to an analyst 𝑖. In this paper, we specifically 

aim at identifying 𝛩(𝑓) and 𝛺(𝑓, 𝑖) so that we can understand the sources of the 

disagreement and further solve the algorithmic triage problem as a counterfactual 

exercise.  

For this purpose, we define an additional function 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖 as follows: 

(4) 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖 =  𝛺(𝑓, 𝑖) −  𝛩(𝑓). 

 

As 𝛩(𝑓) and 𝛺(𝑓, 𝑖) denote the prediction errors of the machine and the analyst, 

the relative performance of the human prediction becomes higher as 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖 

becomes smaller. As we explicitly demonstrate in the following sections, this 

𝑃𝑟𝑜𝑥𝑦𝑓,𝑖  accounts not only for the disagreement between human and machine 

predictions but also for their relative performance. 

While the current setup suffices to study the systematic disagreement between 

human and machine predictions, further decomposition of  𝛺(𝑓, 𝑖)  into those 

correlated with structured information and the rest of the components is useful for 

understanding the source of the disagreement between human and machine 

predictions. Let 𝛺ℎ(𝑓) account for the error component of the human prediction 

correlated with structured observable attributes of the instance 𝑓 . Using this 

decomposition, we can define another measure for disagreement between the 

human prediction and the “structured” human prediction which relies solely on hard 

information. 

(5) 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖
′ =  𝛺(𝑓, 𝑖) −  𝛺ℎ(𝑓). 

 



Suppose 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖
′  becomes smaller as the change in an attribute of the instance 

𝑓 (e.g., the amount of available information decreases). This means the relative 

performance of the human prediction to the human prediction relying on the 

observable (i.e., structured) information becomes higher due to the change in the 

attribute. In the current illustration representing the amount of available 

information, this suggests that, as the volume of structured information becomes 

smaller, the room for analysts to effectively employ unstructured information for 

prediction becomes larger. This comparison between human predictions and 

“structured” human predictions highlights the source for human predictions to 

surpass machine predictions, with the latter (i.e., machine predictions) relying only 

on structured information. 

III. Empirical Strategies 

This section presents, first, how we construct a machine learning-based prediction 

model for firm dynamics. Then, we explain how to identify the determinants of 

disagreement and the relative performance of human and machine predictions. 

A. Machine Prediction 

To obtain machine prediction, we construct a standard machine learning method. 

Our particular problem of predicting relatively rare firm exit events (which occur 

with a low probability) falls into the class of “imbalanced label prediction” tasks. 

Following the literature, we apply a weighted random forest, a minority-class 

oversampling method.3 Random forest models aggregate many individual decision 

tree models, each trained on a randomly selected sample from the training data. 

Particularly for predicting rare events, Chen et al. (2004) develop an extension of 

 

3 We also use other machine learning techniques such as LASSO and extreme gradient boost to construct prediction 
models and confirm the robustness of our results. All the results are in the appendix. 



the random forest, called a weighted random forest. Intuitively, the method weighs 

data corresponding to a minority event (e.g., a firm exit) much more heavily than 

that corresponding to a majority event (e.g., non-exit). 

In our baseline exercise, we train models with the realization of outcome 

variables from the end of year 𝑡 − 1 to the end of year 𝑡 using the information 

available over the periods from year 𝑡 − 3 to 𝑡 − 1, and conduct out-of-sample 

predictions of the realization of outcome variables from the end of year 𝑡 to the end 

of year 𝑡 + 1 using the information available over the periods from year 𝑡 − 2 to 𝑡. 

We utilize the Receiver Operating Characteristic (ROC) curve to evaluate the 

predictive performance of the model. To implement the prediction task of a binary 

exit outcome, we need a specific threshold. When a predicted score surpasses the 

threshold, a positive binary outcome is indicated. For a given trained model, the 

ROC curve plots the true and false positive rates corresponding to the varying of 

this threshold value. Without any predictors (i.e., random guess), the curve should 

trace the 45-degree line, and curves closer to the top-left corner are desirable 

(maximize true positive rate and minimize false positive rate). With this motivation, 

it is conventional to also summarize the ROC curve by the area under the curve 

(AUC). 

B. Human Prediction 

In this section, we explain how to obtain human prediction. After introducing our 

measure for human prediction, we discuss how to justify the measure and an 

alternative approach we use. 

“fscore”.—Credit reporting agencies examine and predict firm exits as these firm-

level outcomes are of great interest to business entities and government sectors. 

Examples of such credit reporting agencies include Dunn and Bradstreet in the US, 



Experian in European countries, and Tokyo Shoko Research (TSR) in Japan.4 In 

addition to providing structured information such as financial statements to their 

clients, credit reporting companies typically calculate and publish a credit rating 

score, which we call as “fscore” in the present paper, to summarize the overall 

performance of a firm. This score is typically constructed from both observable (i.e., 

structured) information on firm characteristics, and from the contents of in-depth 

interviews on owner characteristics, reputation, growth opportunity, and so on (i.e., 

unstructured information). The score is constructed by a professional analyst and 

assigned to each firm in each year. As in financial institutions such as banks, each 

analyst is evaluated by the prediction performance of this 𝑓𝑠𝑐𝑜𝑟𝑒 and thus has a 

reasonable incentive to produce good predictions. 

These credit reporting agencies typically rely on their own (often confidential) 

algorithm to construct the scores. While a part of the score systematically depends 

on structured information collected by those agencies, a large part of the score 

reflects professional analysts’ subjective evaluation of the targeted firm. To 

illustrate, a score given by TSR (max: 100 points) is the summation of (i) the ability 

of the owner (max: 20 points) based on business attitude, experience, and asset 

condition, (ii) the growth possibility (max: 25 points) based on past sales growth, 

growth of profit, and characteristics of the products, (iii) stability (max: 45 points) 

based on firm age, stated-capital, financial statement information, room for 

collateral provision, and real and financial transaction relationships, and (iv) 

reputation (max 10 points) based on the level of disclosure and overall reputation. 

Most of these items are rarely recorded as structured information but largely as 

unstructured information such as analysts’ subjective evaluation of those firms. 

 

4 TSR is one of the largest credit reporting agencies in Japan and operates in the areas of credit research, publishing, and 

database distribution. The central product of TSR is unsolicited-basis company reports representing the performance of each 
targeted firm. TSR sells them to a variety of clients including banks, securities houses, non-financial enterprises, and 

governmental organizations. A typical credit report consists of more than ten pages and includes firms’ basic characteristics 

and financial statement information. The clients of TSR purchase the reports for various reasons such as evaluating the credit 
worthiness of client firms, screening on transaction partners, and understanding the overall market environment. 



Given this institutional background, we use the fscore assigned by TSR as the 

output of human predictions.  

We use this score and the ex-post record of exit to run a weighted Probit 

estimation having the exit indicator on the left hand-side and only 𝑓𝑠𝑐𝑜𝑟𝑒 on the 

right hand-side of the estimated equation. Through this, we transform 𝑓𝑠𝑐𝑜𝑟𝑒 

taking the value of 0-100 to the score associated with the occurrence of the firm 

exit and use it as the result of human prediction.5 

Can we really use fscore as human prediction?—There could be several immediate 

concerns over using the fscore as the output of human predictions. First, this score 

might also be constructed by some machine algorithms. If this is the case, the 

comparison between fscore and machine predictions could not account for the 

differences between human and machine predictions, being merely a comparison 

of two algorithms. While the fscore used in the present study reflects professional 

analysts’ subjective evaluation of targeted firms and largely employs both the 

structured and unstructured information, we also try to separate out the analysts’ 

predictions correlated with structured information from the original fscore as 

explained below. Using this framework, we can explicitly study the difference 

between predictions based on structured information and those based on 

unstructured information, the latter of which can be handled only by human analysts. 

Second, machine predictions can take into full account higher dimensions of 

information than human analysts can do. When this is the case, the comparison 

between fscore and machine prediction might account only for the difference 

between the two different datasets used by human and machine. While we think the 

 

5 We should note that due to the weighting procedure aiming at a minority-class oversampling, the output obtained by 

WRF and this Probit estimation is not exactly the exit probability in the data. It would be rather the probability of exits in the 
balanced sample consisting of equal numbers of exits and non-exits. Given there is no problem for us to use these probabilities 

as far as the machine outputs are constructed in the comparable way, we use them in the following empirical analyses. We 

also construct a ranking based on the output obtained by WRF and the Probit estimation, and use the ranking for our empirical 
analysis. 



ability to handle different volumes of information itself is one aspect of the 

difference between humans and machines and thus worth examining, we also try to 

compare human and machine predictions on an equal footing in terms of the volume 

of structured information. 

Third, the target of predictions might not be exactly the same for machine 

predictions and human predictions. This issue is called as omitted payoff bias in the 

literature (Chalfin et al. 2016). As we will detail in the next section, we construct 

machine learning-based prediction models explicitly targeting one of the two 

modes of firm exits (i.e., default and voluntary closure), while the fscore 

summarizes the overall performance of a firm. Although the fscore is typically used 

in credit risk management and thus largely accounts for the prospects of firm exits, 

it is better to have human predictions more directly connected to firm exits.6 For 

this purpose, we employ not only the overall firm performance score but also the 

sub-scores corresponding to the financial stability of firms as human predictions. 

Apart from these concerns over using the fscore as the output of human 

predictions, we should also bear in mind the external validity of the results. 

Disagreements between human and machine predictions may be important in other 

situations, such as the comparison between machine and investors who put more 

emphasis on the “upside” of a firm’s performance rather than the downside. To 

address these concerns, we implement the same set of analyses for firms’ sales 

growth and assess the robustness of our results regarding firm exits. 

Structured human prediction.—As already noted, fscore is likely to account for 

both structured and unstructured information. While it is still informative to 

compare the original fscore with the machine score, we also extract the component 

 

6 TSR guidelines provide the following categorization of fscore ranges: (a) caution required (scores 29 and under), (b) 

medium caution required (scores between 30 and 49), (c) little caution required (scores between 50 and 64), (d) no specific 
concern (scores between 65 and 79), and (e) no concern at all (scores 80 and above). 



of fscore associated only with such unstructured information. For this purpose, we 

construct a machine learning-based prediction model for fscore by using the same 

right hand-side variables as we use to construct the machine prediction model. Such 

a “structured” fscore accounts only for the part of fscore correlated with the 

structured information. Using this predicted score and the actual record of exit to 

run a weighted Probit estimation, we transform the “structured” fscore to the 

probability associated with the occurrence of the firm exits. 

C. Measurement of “disagreement” 

We measure the disagreement between human and machine predictions for a 

specific exit mode of firm 𝑓 in year 𝑡. We standardize the machine scores of exits, 

fscore, and “structured” fscore as mean zero and standard deviation is one. By using 

these standardized scores for machine (𝑀𝐿), analyst (𝐻), and “structured” human 

(SH) denoted by 𝑂𝑢𝑡𝑐𝑜𝑚𝑒, we compute a variable 𝑃𝑟𝑜𝑥𝑦 for a triplet of firm (𝑓), 

analyst (𝑖), and time (𝑡), which is conceptualized in the previous section, as the 

following definition: 

(6) 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑡
𝑀𝐿 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑖,𝑡

𝐻   for exit firms, 

                         = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑖,𝑡
𝐻 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑡

𝑀𝐿  for non-exit firms, 

(7) 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡
′ = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑡

𝑆𝐻 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑖,𝑡
𝐻   for exit firms, 

                         = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑖,𝑡
𝐻 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑡

𝑆𝐻  for non-exit firms. 

 

Due to the way we compute 𝑃𝑟𝑜𝑥𝑦, this measure of the disagreement becomes 

larger when the machine or “structured” human produces better predictions than 

the human does. 

We should also note that, in our data detailed in the next section, these predictions 

and the ex-post outcomes accounting for firm exits are all observable. In this sense, 



our analysis does not suffer from the selective label problem that some of the ex-

post outcomes cannot be observed due to selection (Lakkaraju et al. 2017).  

D. Identifying the determinants of “disagreement” 

Once a measurement of 𝑃𝑟𝑜𝑥𝑦  is obtained, we can estimate the relationship 

between 𝑃𝑟𝑜𝑥𝑦  and various explanatory variables consisting of informational 

opaqueness of firms (𝑶𝑓,𝑡), firm attributes (𝑭𝑓,𝑡), analyst attributes (𝑰𝑖,𝑡), and team 

attributes (𝒁𝑖,𝑡) as well as various configurations of fixed-effects (𝜼𝑓,𝑖,𝑡): 

(8) 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 = 𝐺(𝑶𝑓,𝑡, 𝑭𝑓,𝑡, 𝑰𝑖,𝑡, 𝒁𝑖,𝑡) + 𝜼𝑓,𝑖,𝑡 + 𝜀𝑓,𝑖,𝑡  for 𝑡 = 2013, ⋯ , 2016. 

 

In the baseline estimation, we employ a firm-level fixed-effect, analyst-level 

fixed-effect, and year-level fixed-effect for 𝜼𝑓,𝑖,𝑡, while alternative configurations 

of fixed-effects are also employed for the robustness check. 

IV. Data 

In this section, we will give details of the data used in our empirical analysis. All 

the data is obtained from TSR through the joint research agreement between 

Hitotsubashi University and TSR. We use the multiple datasets detailed below to 

construct a machine-based prediction model for firm exits, estimating the 

determinants of 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡, and implement counterfactual exercises. 

A. Firm-level panel data 

One of our main data sources is an annual-frequency panel of Japanese firm data 

from 𝑡=2010 to 2016, providing information on firms’ financial statements and 

basic details such as industry classification, company owner characteristics, precise 

geographic location, firm age, etc. This year identifier 𝑡 accounts for the timing of 



data collection and means that the data labeled year 𝑡 consists of the data extracted 

as of the end of December of the year 𝑡 from the data server owned by TSR. Given 

a large portion of Japanese firms use an accounting period up to the end of March, 

the file labeled 𝑡 =2012, for example, consists of a large amount of firm information 

corresponding to the accounting period up to the end of March 2012. The original 

data covers around three million firms in each year. We use the data covering 

around one million firms, which provide the information we need for our empirical 

analysis. According to the Japanese Small and Medium Size Enterprises Agency, 

there are around three- to four-million active companies in Japan. The TSR data 

accounts for around one-third of that firm population. One point of note is that the 

sample selection is tilted toward some specific industries, such as construction 

companies.  

These firm-level panel data are accompanied by three types of relational 

information regarding real and financial partners. First, this information contains a 

list of up to 10 lender banks. Second, the information also covers firm-to-firm trade. 

It lists up to 48 customer and supplier firms for each company. In addition to the 

list of each target firm’s trade partners, we also use the trade relationship reported 

by those trade partners. As there are many trade relationships not reported by the 

targeted firms but only by their trade partners, this operation significantly extends 

the list of trade partners. Third, the data also contain the list of shareholders. 

B. Prediction instances 

We consider the two firm exit outcomes to be predicted over the one-year ahead 

window: firm default and voluntary closure. The explanatory variables and 

outcome variable used in constructing a machine-based prediction model are 

defined for separate time intervals; explanatory variables from 2010 to 2012 to 

predict the outcome defined over the one-year window from the end of 2012 to the 



end of 2013, explanatory variables from 2011 to 2013 to predict the outcome from 

the end of 2013 to the end of 2014, and so on. The latest data are the explanatory 

variables from 2014 to 2016, used to predict the outcome from the end of 2016 to 

the end of 2017. 7 

We measure firm exits in the two modes (i.e., default and voluntary closure) if 

firms exited from the market for these reasons as reported by TSR over the one-

year window. Then, we separately prepare two dummy variables that take 1 if firms 

exit through either default or voluntary closure.  

C. Firm attributes 

To construct a machine-based prediction model of firm exits, we use the following 

six categories of firm attributes: Firms’ basic characteristics (firm own), firms’ 

detailed financial statement information (financial statement), geography and 

industry-related variables (geo/ind), firm-bank borrowing relationship variables 

(bank), supply chain network variables (network), and shareholder-subsidiary 

shareholding relationship variables (shareholder). All the variables categorized in 

each group are summarized in appendix. 

We set up the two prediction models for each one of the exit modes using these 

six groups of firm attributes together with the differenced and double-differenced 

variables of those variables. We create a set of dummy variables to deal with 

missing variables, taking the value of one if the corresponding variable is missing 

for a firm and zero otherwise. When a missing variable dummy takes one, we fill 

in zero to the original missing record. 

 

7 The configuration of the data is as follows: Training - (i) outcome from 2012-2013 using 2010-2012, (ii) outcome from 
2013-2014 using 2011-2013, (iii) outcome from 2014-2015 using 2012-2014, (iv) outcome from 2015-2016 using 2013-

2015 while Prediction - (i) outcome from 2013-2014 using 2011-2013, (ii) outcome from 2014-2015 using 2012-2014, (iii) 

outcome from 2015-2016 using 2013-2015, (iv) outcome from 2016-2017 using 2014-2016. Each number corresponds to 
the case of test and train. 



D. Potential determinants of disagreement 

To estimate the determinants of the disagreement between human and machine 

predictions, we set up the following three groups of variables, i.e., the number of 

available information, firm attributes, and analyst/team attributes. 

Number of available variables.—As the most important potential determinant in 

our analysis, which is denoted by 𝑶𝑓,𝑡, we employ the number of variables available 

(#(available variables)) for each firm in the dataset. This number accounts for the 

opaqueness of firms. When this number is small, both humans and machines can 

use only a limited number of structured information. As humans can also employ 

soft information, the estimated coefficient associated with #(available variables) 

show how effectively human predictions use such soft information. 

Firm attributes.—We use a subset of variables we used for constructing machine 

prediction model as the potential determinants, which we denoted as 𝑭𝑓. The list 

consists of the logarithm of firm sales, its difference, the listed status dummy 

variable, the number of industries the targeted firms operate in. We employ this list 

of variables as they are less prone to missing data.8 In addition to these variables, 

we also use the information relating to the task priority of each firm (priority) inside 

the credit reporting agency, which is denoted by a number with a larger number 

corresponding to a higher priority. The dataset includes the firm-level panel data of 

fscore, which we explained in the previous section. The number is computed as the 

sum of the four sub-scores representing the ability of the owner, growth possibility, 

 

8 Note that the existence of missing data in specific variables can be taken care of by introducing dummy variables account 

for the missing in the non-parametric model such as random forest we use for constructing prediction model. Contrary to 

this, the parametric model such as the panel estimation used for identifying the determinants of the disagreement cannot take 
care of the missing variables well. 



stability, and reputation. In the following empirical analysis, we use both the fscore 

and the decomposition of each component. 

Analyst/Team attiributes.—We also use the attributes 𝑰𝑖  of the analysts. To 

measure 𝑰𝑖, at each data point, we use the attributes of the analysts working for TSR 

as stored in the anonymized background information associated with the company’s 

analysts. As analysts enter and exit the pool of TSR employees, the data is 

unbalanced panel data. This dataset is accompanied by a table listing the firms 

assigned to each analyst at each data point, which we use to relate analysts to firms. 

The dataset allows us to identify the list of assigned firms in each year and the 

tenure years of each analyst. The former information allows us to calculate the 

number of firms assigned to each analyst and any previous exposure of an analyst 

to other firms in the industry of the targeted firms, which can be interpreted as the 

industry expertise of the analyst.  

The dataset also allows us to measure the characteristics associated with the team 

each analyst belongs to, which is denoted by 𝒁𝑖,𝑡. First, we measure the size of the 

team by counting the number of analysts in each department. Second, we measure 

the average tenure years of all members of the team. Third, we measure the average 

number of firms assigned to the analysts in the team. Fourth, we also measure the 

average industry expertise of all the analysts in each team.  

We should note that this analyst and team information is endogenous as the 

assignment of analysts to teams and to targeted firms is not random. Thus, we treat 

these variables simply as control variables in the regression of the determinants for 

𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 and do not intend to establish any causal relation between these variables 

and 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡. 

Table 1 summarizes the variables used to estimate the determinants of the 

disagreement between human and machine predictions, together with the fscore, 

structured fscore, and 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡. 



 

Table 1: Summary statistics 

  

V. Empirical Results 

In this section, first, we compare the performance of machine-based predictions and 

human predictions. Then, we identify how the disagreement between those 

predictions varies with changes in the characteristics of the targeted companies. 

After confirming that there could be room for human predictions to outperform 

machine predictions, we implement counterfactual exercises. 

A. Prediction performance 

The following four panels in Table 2 show the AUCs and standard errors of the five 

prediction models for the years 2013 to 2016. The first and second rows show the 

performance of human predictions and machine predictions, respectively. The third 

Variable Definition #samples min. 25%tile median mean 75%tile max sd

Disagreement

Proxy f , i , t

Relative performance of machine predictions for firm f .

The larger (smaller) value means that machine (analyst

i ) can predict outcome better.

3,983,158 -5.066 -0.95 -0.09 0.00 0.89 5.62 1.29

structured fscore f , t

Firm f 's hypothetical fscore  considered as analysts

could use only hard information for predictions. It is

calculated as a replication of fscore  by machine

prediction method.

3,983,158 19.300 43.27 46.19 46.82 49.66 80.95 5.26

Number of available variables

#(available variables ) f, t
The number of firm f 's hard information available for

predictions.
3,983,158 10 38.00 80.00 91.02 132.00 276 60.42

Firm Characteristics

log(sales f, t) The logarithm of firm f 's gross sales. 3,983,158 0.000 10.29 11.29 11.37 12.41 23.92 1.86

log(sales f, t)-log(sales f, t -1) Log change in firm f 's gross sales. 3,983,158 -14.230 -0.06 0.00 0.01 0.07 12.73 0.36

#(industry ) f, t
The number of industry codes which are assigned to

firm f . It takes values from 1 to 3.
3,983,158 1 1.00 2.00 1.92 3.00 3 0.85

priority f , t Firm f 's relative importance for analysts. 3,810,937 0 0.00 2.00 14.76 8.00 41,290 75.80

fscore f , t
A score that summarizes an overall performance of firm

f  provided by TSR. It takes values from 0 to 100.
3,983,158 0 43.00 46.00 46.82 50.00 88 5.91

Analyst Characteristics

#(tenure years ) i , t Analyst i 's length of serveice. 3,503,183 0.003 3.59 8.05 10.51 15.38 43.620 8.67

#(assigned companies ) i , t
The number of companies for which analyst i is

responsible to make fscore .
3,810,987 1 610 939 1,516 1,862 11,570 1,684.70

industry experience f, i , t

The number of companies (1) having the same industry

codes as firm f , and (2) having been responsible for

analyst i  to make fscore  for recent 3 years.

3,810,987 1 27.00 85.00 263.60 271.00 6,241 515.25

Team Characteristics

#(team members ) i , t
The number of colleagues belonging to the same

division as analyst i .
3,495,647 0 8.00 13.00 15.02 20.00 119 9.70

Average

# (tenure years ) i, t

Average length of service across team members

including analyst i .
3,466,648 0.504 7.50 9.76 10.35 12.72 37.19 4.18

Average

industry experience f, i , t

Average industry experience across team members

including analyst i .
3,466,648 0 25.67 60.33 117.60 162.30 883.00 136.57

Average

#(assigned companies ) i , t

Average number of assigned companies across the team

members including analyst i .
3,466,648 1 920.20 1,230.00 1,407.00 1,877.00 3,543 679.30



row is for the structured human predictions. The fourth and fifth rows show the 

performances of machine predictions with different sets of independent variables. 

The fourth row is the case where we add fscore to the list of independent variables 

used to construct a machine prediction model. The fifth row corresponds to the case 

where we use only a small set of independent variables to construct a machine 

prediction model.9 Using a smaller set of independent variables to construct a 

machine-based prediction model allows us to compare human and machine 

predictions on an equal footing in terms of the volume of structured information. 

  

 

9 As the smaller set of variables, we employ all the firm own variables except for dividend-related variables, financial 

statement variables representing total assets, profit, and EBITDA, all the bank variables, network variables representing 
only customers and suppliers with direct links, and shareholder variables in direct shareholding relations. 



Table 2: AUC 

Test data: t = 2013 Test data: t = 2014 

Model default 
voluntary 

closure 

Human 
0.634 

(0.0049) 

0.719 

(0.0030) 

Machine 
0.793 

(0.0041) 

0.828 

(0.0024) 

Structured 

human 

0.617 

(0.0046) 

0.749 

(0.0027) 

Machine & 

fscore  

0.807 

(0.0040) 

0.829 

(0.0023) 

Machine 

with small 

information 

0.777 

(0.0044) 

0.829 

(0.0024) 

 

Model default 
voluntary 

closure 

Human 
0.639 

(0.0052) 

0.729 

(0.0031) 

Machine 
0.780 

(0.0045) 

0.828 

(0.0024) 

Structured 

human 

0.622 

(0.0049) 

0.757 

(0.0028) 

Machine & 

fscore  

0.794 

(0.0043) 

0.830 

(0.0024) 

Machine 

with small 

information 

0.765 

(0.0048) 

0.829 

(0.0024) 

 

 

Test data: t = 2015 

 

Test data: t = 2016 

Model default 
voluntary 

closure 

Human 
0.653 

(0.0055) 

0.737 

(0.0031) 

Machine 
0.786 

(0.0045) 

0.833 

(0.0024) 

Structured 

human 

0.638 

(0.0052) 

0.766 

(0.0028) 

Machine & 

fscore  

0.799 

(0.0044) 

0.835 

(0.0024) 

Machine 

with small 

information 

0.768 

(0.0050) 

0.834 

(0.0025) 

 

Model default 
voluntary 

closure 

Human 
0.663 

(0.0053) 

0.748 

(0.0031) 

Machine 
0.773 

(0.0045) 

0.841 

(0.0025) 

Structured 

human 

0.648 

(0.0050) 

0.776 

(0.0027) 

Machine & 

fscore  

0.789 

(0.0044) 

0.843 

(0.0025) 

Machine 

with small 

information 

0.758 

(0.0049) 

0.843 

(0.0024) 

 

 

Note: Each number represents AUC and the number in the parentheses is its standard error. 

 

First, we can immediately notice that the AUC of machine predictions (the 

second row) is significantly higher than that of human predictions (the first row) 

given the size of standard errors of those AUCs. This is the case even when we 

employ a smaller set of independent variables to make a machine prediction model 



(the fifth row). Thus, human predictions underperform machine predictions on 

average. 

Second, in the case of default prediction, human predictions outperform those of 

structured human (the first and third rows). We also find that fscore makes an 

additional contribution to the overall performance of the machine predictions (the 

second and fourth rows). These results contrast with the findings of Kleinberg et al. 

(2018). In their empirical analysis of judicial bail decisions, they show that the 

structured human does a better job of identifying risky criminals than the judge’s 

prediction. They claim that the “psychologist’s view,” where humans tend to make 

noisy predictions, outdoes the “economist’s view” where humans can use soft 

information to make a better prediction. Our result suggests that, at least in our 

setup for default predictions, the economist’s view should be more reliable. One 

point to note is that, as for predictions of voluntary closure, the structured human 

does a better job than the human prediction does, which is consistent with the 

psychologist’s view.10 

B. Determinants of disagreement 

Table 3 summarizes the results of the panel estimation associated with default and 

voluntary closure. All the coefficients are shown in the percent point (i.e., the 

estimated coefficients times 100). 

 

  

 

10 In the appendix, we examine the recall and precision measures for machine, human, and structured human predictions 
over different thresholds for prediction. 



Table 3: Baseline estimation 

 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

Regardless of whether we use default or voluntary closure as the prediction target, 

we find that the relative prediction performance of human to machine becomes 

better for firms with less observable information for their attributes (i.e., lower 

values for #(available variables)). Thus, for firms with less observable information, 

the relative performance of human predictions to machine predictions improves.  

Why do analysts perform better in the case of opaque firms with smaller amounts 

of observable information? One conjecture is that analysts are using unstructured 

information, which, by definition, cannot be used in machine predictions. To 

confirm this conjecture, we also run the panel regression for 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡
′ , which is 

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.566 0.001 *** 0.041 0.000 *** 0.485 0.001 *** 0.031 0.000 ***

Firm characteristics

log(sales f,t) -18.545 0.127 *** 3.987 0.028 *** -8.511 0.111 *** 5.036 0.030 ***

log(sales f,t) - log(sales f,t-1 ) 13.015 0.097 *** -0.618 0.022 *** 5.205 0.086 *** -0.521 0.023 ***

listed f,t -2.105 2.758 0.605 0.621 -18.931 2.429 *** -6.351 0.662 ***

#(industry ) f,t -3.009 0.159 *** -0.084 0.036 ** 0.097 0.140 -0.129 0.038 ***

priority f,t 0.001 0.000 ** 0.000 0.000 *** 0.002 0.000 *** -0.000 0.000 **

Analyst characterstics

#(assigned companies ) i,t -0.001 0.000 *** -0.000 0.000 *** -0.001 0.000 *** -0.000 0.000 ***

industry experience f,i,t -0.004 0.000 *** 0.000 0.000 *** -0.001 0.000 *** 0.001 0.000 ***

Team characteristics

#(team members) i,t 0.081 0.012 *** -0.001 0.003 0.106 0.010 *** -0.001 0.003

Average #(tenure years ) i,t 0.136 0.016 *** -0.008 0.004 ** -0.008 0.014 -0.006 0.004

Average industry experience f,i,t 0.014 0.001 *** 0.000 0.000 0.001 0.001 0.000 0.000

Average #(assigned companies ) i,t -0.001 0.000 *** -0.000 0.000 *** -0.002 0.000 *** -0.000 0.000 ***

Constant 152.997 1.512 *** -49.111 0.340 *** 54.692 1.331 *** -59.965 0.363 ***

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared

SH vs. Human

yes

yes

yes yes

yes yes

Machine vs. Human

0.879

0.071

SH vs. Human Machine vs. Human

0.789

0.019

14,314.100

yes

yes

yes

3,238,817

3,591.740

yes

3,238,817

yes

0.831

yes

3,238,817 3,238,817

12,417.240 3,908.300

0.777

default voluntary closure

0.062 0.020



defined by replacing 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑡
𝑀𝐿 with 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑖,𝑡

𝑆𝐻 . This regression characterizes 

under what conditions human predictions outperform those of the structured human. 

The obtained results show the similar pattern in Table 3, i.e., relative prediction 

power of human predictions compared with structured human becomes higher as 

the amount of available information becomes smaller.11 

We also regress separately the performance of human and machine predictions 

on the same set of characteristics. From the estimation results (reported in the 

appendix), we confirm that the negative marginal impact associated with lower 

availability of information is greater for machine predictions than for human 

predictions. This could be the case when human predictions effectively use 

unstructured information to make predictions. 

To check the robustness of the results and address the concerns we raised in the 

previous section, first, we employ alternative methods of measuring the 

disagreement between human and machine predictions. As detailed above, we are 

using the ex-post record of firm exits to obtain the probabilities of exit implied by 

fscore and “structured” fscore. As the transformation of fscore to the probability is 

simply a monotonic transformation and does not change the order of the score, it 

does not affect the comparison of human and machine predictions. Nonetheless, in 

reality, such an ex-post record of exit used in calibrating fscore to probability is not 

attainable in the process of human predictions. Thus, we also construct a set of 

rankings based on the machine prediction, fscore, and “structured” fscore. In this 

ranking of prediction outcomes, we do not need to refer to the ex-post default 

records. Second, we also define a dummy variable taking the value of one if 

𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 is positive and zero otherwise. We use this dummy variable and run a 

linear probability model with the abovementioned fixed effects and conditional 

 

11 We can also find that the marginal impact of available information on the relative performance of human predictions 

to that of structured humans is much smaller than that for human vs. machine. This means that the sensitivity of the structured 
human predictions with respect to the level of available information is much smaller than that of machine. 



logit model with firm-level fixed effects. We also set 1 to 10 variables depending 

on the level of 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 and run ordered-logit estimation without fixed effects. 

Third, we replace analyst-level fixed effect with analyst-year-level fixed effect so 

that we can take complete account of analyst-level unobservable factors varying 

over time. Fourth, we employ one of the sub-scores of fscore, which represents the 

“stability” of a firm, instead of the total fscore, so that the target of human 

predictions becomes plausibly more comparable to that of machine predictions. 

Fifth, instead of weighted random forest, we employ LASSO or extreme gradient 

boost for producing machine predictions. All the results are shown in the appendix 

and are consistent with the results in Table 3. 

C. Counterfactual exercises 

Can we use the empirical findings presented in the previous section to improve 

overall prediction performance for firm exits? Given the performance of humans 

relative to machines improves for more opaque firms with smaller amounts of 

observable information, it is natural to assign firms with smaller observable 

information to humans and firms with larger information to machines. 

Based on this conjecture, we split the sample into five subsamples according to 

the number of observable variables. We aim at setting up multiple groups for which 

the relative performance of human to machine differs. To construct subgroups 

purely tied to the number of observable variables, we regress #(available variables) 

to a firm’s sales, growth, and industry classification, all of which are significant in 

the estimation of 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡, and take out the residual. Then, we use this residual to 

sort the firms and construct five subsamples so that we can set up five groups of 

firms depending on the level of #(available variables) orthogonal to other firm 

attributes. 



In each subsample, we evaluate the performances of human and machine 

predictions. By comparing, for example, the number of false negatives based on 

machine predictions (M) to those based on human predictions (H) for the same set 

of firms, we can describe what happens to the prediction performance for the 

subsample by reallocating prediction tasks from machine to human. 

 
Table 4: Reallocation of prediction instances 

 

(a) Firms actually do NOT exit ex-post 

 

 Prediction for default Prediction for voluntary closure 

M =  

default 

H =  

not default 

(1) 

M =  

not default 

H =  

default 

 (2) 

(2)/(1) 

M =  

closure 

H =  

not closure 

(1) 

M =  

not closure 

H =  

closure 

 (2) 

(2)/(1) 

~20 

%tile 
49,117 23,068 0.47  25,206 19,453 0.77  

20~40 

%tile 
36,094 54,446 1.51  28,326 23,667 0.84  

40~60 

%tile 
37,362 46,368 1.24  28,370 28,134 0.99  

60~80 

%tile 
33,409 39,218 1.17  20,249 30,962 1.53  

80 

%tile~ 
11,652 30,608 2.63  8,026 34,406 4.29  

 

  



(b) Firms actually do exit ex-post 

 
 Prediction for default Prediction for voluntary closure 

M =  

default 

H =  

not default 

 (3) 

M =  

not default 

H =  

default 

 (4) 

(3)/(4) 

M =  

closure 

H =  

not closure 

(3) 

M =  

not closure 

H =  

closure 

 (4) 

(3)/(4) 

~20 

%tile 
88 21 4.19  140 51 2.75  

20~40 

%tile 
82 40 2.05  195 42 4.64  

40~60 

%tile 
86 37 2.32  231 43 5.37  

60~80 

%tile 
74 37 2.00  174 54 3.22  

80 

%tile~ 
38 27 1.41  72 45 1.60  

 

Note: M and H denote the predictions of machine and human, respectively. 

 

The two panels in Table 4 summarize the number of false positive, false negative, 

true positive, and true negative cases for the five subsamples. We treat the top 30% 

of firms in terms of the prediction score as the firms predicted to exit.12 

For example, the columns marked (1) in panel (a), show the number of false-

positives for machine predictions and true-negatives for human predictions, as 

these columns show the number of firms that do not exit ex-post. Conversely, the 

columns marked (2) in panel (a) show the number of true-negatives for machine 

predictions and false-positives for human predictions for firms that do not exit ex-

post. Panel (b) in Table 4 summarizes the number in the same manner but for the 

firms that actually do exit ex-post. 

 

12 For robustness check, we vary this prediction threshold (i.e., the top 30% in this baseline exercise) from the top 50% to 
the top 20% and confirm the results do not change. 



Comparing the numbers in each column, we can see how type I and type II errors 

vary depending on whether prediction instances are allocated to machine or human. 

In six out of the ten rows in Panel (a), the number in columns marked (1) is smaller 

than that in (2), while in Panel (b), all the numbers in the columns marked (3) are 

larger than those in (4). 

First, this means that type II error is always smaller in machine predictions than 

human predictions, regardless of the level of available information. Even for the 

firms with smallest information, human predictions cannot outperform machine 

predictions. Second, in the case of the firms with smallest information however (i.e., 

the first raw labeled as “~20%tile”), it is still possible to reduce the number of false-

positives, and thus reduce type I error, by reallocating the default prediction 

instances from machine to human (i.e., the number of false-positives is reduced 

from 49,117 to 23,068). In the case of voluntary closure, we can also achieve 

smaller type I error for firms with the smallest, small, and average information (i.e., 

the first, second, and third raws labeled “~20%tile”, “20~40%tile”, and 

“40~60%tile”) by reallocating the default prediction instances from machine to 

human. 

We should note, nonetheless, that such a reallocation of prediction tasks is 

accompanied by larger type II error, as shown above. The numbers in columns (3) 

are always larger than that in (4), which suggests that reallocating the prediction 

instances from machine to human always increases the number of false negatives. 

As one interesting result, we can also find that, in the case of default predictions, 

the ratio tends to be larger as we move from the subsample with smallest 

information to that with largest. This pattern is inconsistent with the positive 

coefficient obtained in our estimation for 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 . This is the case simply 

because, in our data, the number of exits is much smaller than that of non-exits. In 

other words, the relative performance of human predictions to machine predictions 



with respect to the level of available information is driven by human predictions 

correctly predicting non-exit firms. 

These results reconfirm the usefulness of machine-based prediction techniques in 

the context of exit predictions. There is however room for human predictions to 

outperform machine predictions under specific circumstances, such as when the 

prediction targets are opaque due to less available information or when the user of 

the prediction results is more concerned with type I error than type II due to, for 

example, the imbalance between the numbers of exit and non-exit firms. 

D. Growth prediction 

We have so far focused on exit predictions. What happens if we focus on the upside 

of firm dynamics instead? We repeat the same analyses by considering firm growth 

as the target of our predictions. We define growth in sales for a firm as a sales 

growth rate of one standard deviation higher than the industry average defined in 

two-digits over the one-year window used to measure the outcome. Then, we 

prepare a dummy variable that takes 1 if firms experience a growth rate higher than 

these criteria. 

As predictions for upside events are the mirror image of downside predictions, 

we conjecture that while overall prediction performance is still higher for machine 

prediction than human, and the relative performance of human predictions also 

becomes higher when the available information is smaller as we have described, 

the source of this better performance is not from lower type I error but from lower 

type II error. In other words, analysts correctly predict non-growth for actual non-

growth firms based on smaller information. As presented in the appendix, this is 

indeed the case. 



VI. Conclusion 

We examine empirically the relative performance of machine-based and human 

subjective predictions for firm exits. Using a huge volume of firm-level high-

dimension panel data, we find that human predictions are not as accurate as 

machine predictions on average. As for predicting the exits of firms with less 

observable information, nonetheless, the relative performance of human predictions 

improves. 

As one important point to note when using machine predictions in practice, Luca 

et al. (2016) claim that machine predictions cannot ensure automated decision 

making as it is necessary to take into account the various dimensions of the 

problems under consideration. The present paper provides an evidence that it is also 

necessary to take into account the conditions under which a prediction is to be 

assigned to machine. Our findings cast light on the circumstances and the extent to 

which tasks should be allocated either to machine or to human. 

Future extensions of the present study may benefit from the inclusion of 

additional explanatory variables as regressors for 𝑃𝑟𝑜𝑥𝑦. A large-sized aggregate-

level shock, such as a market downturn or a natural disaster, could have an impact 

on the marginal effect of each determinant of 𝑃𝑟𝑜𝑥𝑦. Understanding potentially 

relevant shocks is useful in considering how we should allocate prediction tasks to 

machines and humans under specific circumstances. Such an additional analysis 

will help us to understand both the nature of human error and how humans and 

machines can work together to provide accurate predictions. 
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Appendix A 

The list of variables we use for constructing machine learning-based prediction 

model is as follows: 

 

Firm-own characteristics (firm own): As variables representing firms’ own 

characteristics, we use firm size measured by the logarithm of sales and the change 

in sales from the previous period, profit-to-sales ratio and any change from the 

previous period, the status of dividend payments (paid or not) and any change from 

the previous period, whether the firm is listed or not, the number of employees, the 

logarithm of stated capital, and dummy variables representing industry 

classification (note: multiple industry codes are recorded). We also use firm age, 

owner age, and the number of establishments.  

Firms’ financial statement information (financial statement): We set up a 

number of financial variables used in the literature as variables representing firms’ 

detailed financial statement information.13  

Industry and geographical information (geo/ind): We set up the following two 

groups of variables as variables representing the industry and area to which the 

firms belong. First, we construct the variables measuring the average sales growth 

of firms located in the same city as the targeted firms. Second, we compute the 

average sales growth of firms belonging to the same industry classified in the 2-

digit level. 

 

13 The list of  “financial statement” variables consists of the following items: Logarithm of total assets, cash-to-total 

assets ratio, liquid assets-to-total assets ratio, tangible assets-to-total assets ratio, receivables turn-over, inventory turn-over, 

total liability-to-total assets ratio, liquid liability-to-total assets ratio, bond-to-total liability ratio, bank borrowing-to-total 
liability ratio, bank short borrowing-to-total bank borrowing ratio, payables turn-over, interest coverage ratio, liquid assets-

to-liquid liability ratio, fixed compliance ratio, fixed ratio, working capital turn-over, gross profit-to-sales ratio, operating 

profit-to-sales ratio, ordinary profit-to-sales ratio, net profit before tax-to-sales ratio, logarithm of EBITDA, logarithm of 
EBITDA-to-sales ratio, special income-to-sales ratio, special expenses-to-sales ratio, and labor productivity. 



Lender banks information (bank): As variables representing firms’ borrowing 

relationships with lender banks, we construct a dummy variable to represent a 

change in main lenders (i.e., top lender bank) or in the number of lender banks. 

Supply-chain linkage information (network): We construct the following two 

groups of variables to represent the supply chain network. First, we compute widely 

used network metrics for each firm by using the supply chain network information. 

The metrics consist of degree centrality; eigenvector centrality; egonet eigenvalue; 

co-transaction; and the number of transaction partners, both direct (i.e., customers 

and suppliers) and indirect (i.e., suppliers’ suppliers, customers’ suppliers, etc.). 

Second, we construct a number of variables representing the characteristics of 

transaction partners. To summarize this information, we employ the average, 

maximum, minimum and the sum of fscore associated with each transaction partner. 

Note that while the network metrics cover both direct and indirect transaction 

partners, the transaction partners’ characteristics only cover direct transaction 

partners. 

Shareholder linkage information (shareholder): We set up similar variables to 

those for supply chain network as predictors for shareholder information. 

 

  



Appendix B 

Here we list the tables and figures referred to in the main body of the paper for the 

robustness check. First, we show an alternative way to compare the prediction 

power of machine, human, and the “structured” human (Figure A1). We can 

confirm that machine predictions outperform human predictions on average. 

Regarding the comparison between human predictions and those of the structured 

human, human predictions are more precise in the case of default predictions, while 

the structured human is better in terms of recall in the case of voluntary closure. 

Second, instead of estimating the determinants of 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡, we estimate separately 

the determinants of  𝑃𝑟𝑜𝑥𝑦𝑓,𝑡
𝑚  and 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡

ℎ , which are defined as below, 

representing the prediction performance of machine and human, respectively. 

Comparing the estimated coefficients associated with the independent variables, we 

can see how the respective prediction powers of machine and human vary according 

to the change in determinants (Table A1). 

(A1) 𝑃𝑟𝑜𝑥𝑦𝑓,𝑡
𝑚 = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑡

𝑀𝐿 − 1  for exit firms, 

                       = 1 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑡
𝑀𝐿  for non-exit firms, 

(A2) 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡
ℎ = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑖,𝑡

𝐻 − 1  for exit firms, 

                         = 1 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑓,𝑖,𝑡
𝐻   for non-exit firms. 

 

Third, we construct a set of rankings based on the machine prediction, fscore, and 

“structured” fscore and repeat the same estimation for the disagreement (Table A2). 

Fourth, we also define a dummy variable taking the value of one if 𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 is 

positive and zero otherwise and run a linear probability model and conditional logit 

model (Table A3). We also set 1 to 10 variables, depending on the level of 

𝑃𝑟𝑜𝑥𝑦𝑓,𝑖,𝑡 , and run an ordered-logit estimation (Table A4). Fifth, we replace 



analyst-level fixed effect with analyst-year-level fixed effect (Table A5). Sixth, we 

employ one of the sub-scores of fscore, which represents the “stability” of each 

firm, instead of the total fscore, so that the target of human predictions becomes 

plausibly more comparable to that of machine predictions (Table A6). Seventh, we 

summarize the results of the proxy estimation and counterfactual exercise 

representing firm growth (Table A7). Eighth, we repeat the AUC estimation and 

proxy estimation based on the two alternative methods (i.e., LASSO and extreme 

gradient boost) (Table A8, A9). All the results are consistent with the ones we 

presented in the main body of the present paper. 

 

 

  



Figure A1: Recall and precision measures over different thresholds 
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Table A1: Prediction performance of machine and human 

 

 

 

 

 

  

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.102 0.000 *** 0.008 0.000 *** 0.118 0.000 *** 0.012 0.000 ***

Firm characteristics

log(sales f,t) 2.318 0.020 *** 5.024 0.014 *** 6.461 0.021 *** 7.493 0.021 ***

log(sales f,t) - log(sales f,t-1 ) 1.701 0.015 *** -0.440 0.011 *** 0.231 0.017 *** -0.760 0.016 ***

listed f,t 2.477 0.443 *** 2.621 0.303 *** -1.838 0.481 *** 2.168 0.467 ***

#(industry ) f,t -0.502 0.025 *** 0.099 0.017 *** 0.244 0.027 *** 0.202 0.027 ***

priority f,t 0.000 0.000 * 0.000 0.000 *

Analyst characterstics

#(assigned companies ) i,t 0.000 0.000 *** 0.000 0.000 ***

industry experience f,i,t -0.000 0.000 *** -0.000 0.000 ***

Team characteristics

#(team members) i,t 0.002 0.001 -0.005 0.002 **

Average #(tenure years ) i,t 0.014 0.002 *** 0.016 0.003 ***

Average industry experience f,i,t -0.000 0.000 ** 0.000 0.000

Average #(assigned companies ) i,t 0.000 0.000 *** 0.000 0.000 ***

Constant 29.191 0.226 *** -4.012 0.166 *** -19.798 0.245 *** -28.631 0.256 ***

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

Adj R-squared

Within R-squared

Human

yes

yes

yes yes

yes yes

Machine

0.815

0.092

Human Machine

0.897

0.075

53,485.400

yes

yes

yes

3,238,817

15,304.020

yes

3,756,803

yes

0.876

yes

3,756,803 3,238,817

78,182.190 14,025.710

0.866

default voluntary closure

0.129 0.069



Table A2: Rank-based disagreement estimation 

 

 

 

 

 

  

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 1,607.929 4.271 *** 1,527.788 3.784 ***

Firm characteristics

log(sales f,t ) -58,115.530 374.526 *** -25,088.000 331.840 ***

log(sales f,t ) - log(sales f,t-1 ) 37,273.310 287.922 *** 16,041.170 255.107 ***

listed f,t 27,956.380 8,164.855 *** -34,210.110 7,234.288 ***

#(industry ) f,t -8,595.519 471.108 *** 620.723 417.415

priority f,t 5.258 1.144 *** 8.109 1.013 ***

Analyst characterstics

#(assigned companies ) i,t -1.894 0.313 *** -3.357 0.277 ***

industry experience f,i,t -11.528 0.604 *** -6.217 0.535 ***

Team characteristics

#(team members) i,t 268.315 34.572 *** 346.771 30.632 ***

Average #(tenure years ) i,t 384.545 48.371 *** -63.242 42.858

Average industry experience f,i,t 39.630 2.346 *** -2.152 2.079

Average #(assigned companies ) i,t -2.936 0.437 *** -5.742 0.387 ***

Constant 470,115.500 4,475.366 *** 125,805.500 3,965.298 ***

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared 0.067 0.069

13,426.970 13,873.310

0.876 0.820

yes yes

3,238,817 3,238,817

yes yes

yes yes

default voluntary closure

Machine vs. Human



Table A3: Dummy variable measure for disagreement 

 

(1) Linear probability model 

 

 

  

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.157 0.001 *** 0.265 0.001 ***

Firm characteristics

log(sales f,t ) -5.664 0.076 *** -3.578 0.085 ***

log(sales f,t ) - log(sales f,t-1 ) 4.064 0.059 *** 2.315 0.065 ***

listed f,t 2.856 1.664 * -7.332 1.849 ***

#(industry ) f,t -1.350 0.096 *** 0.042 0.107

priority f,t 0.001 0.000 *** 0.002 0.000 ***

Analyst characterstics

#(assigned companies ) i,t -0.000 0.000 -0.001 0.000 ***

industry experience f,i,t -0.001 0.000 *** -0.000 0.000 **

Team characteristics

#(team members) i,t 0.041 0.007 *** 0.041 0.008 ***

Average #(tenure years ) i,t 0.005 0.010 0.005 0.011

Average industry experience f,i,t 0.006 0.000 *** 0.000 0.001

Average #(assigned companies ) i,t -0.001 0.000 *** -0.001 0.000 ***

Constant 93.738 0.912 *** 59.737 1.014 ***

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared 0.016 0.033

3,135.790 6,343.690

0.721 0.659

yes yes

3,238,817 3,238,817

yes yes

yes yes

default voluntary closure

Machine vs. Human



 

 

(2) Conditional logit model 

 

  

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 1.942 0.013 *** 2.587 0.012 ***

Firm characteristics

log(sales f,t ) -87.264 1.207 *** -42.894 1.011 ***

log(sales f,t ) - log(sales f,t-1 ) 65.887 0.962 *** 28.807 0.783 ***

listed f,t 45.617 25.010 * -82.705 20.077 ***

#(industry ) f,t -20.860 1.326 *** -6.271 1.235 ***

priority f,t 0.095 0.014 *** 0.072 0.008 ***

Analyst characterstics

#(assigned companies ) i,t 0.000 0.001 0.000 0.000

industry experience f,i,t 0.006 0.001 *** -0.002 0.001 *

Team characteristics

#(team members) i,t 0.425 0.071 *** 0.409 0.065 ***

Average #(tenure years ) i,t -0.241 0.114 ** -0.067 0.104

Average industry experience f,i,t 0.022 0.006 *** -0.104 0.005 ***

Average #(assigned companies ) i,t -0.003 0.001 *** -0.002 0.001 **

Constant

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

Log-likelihood

χ-squared 57,174.73030,953.570

-259,176.670 -315,385.000

no no

736,498 922,303

yes yes

no no

default voluntary closure

Machine vs. Human



Table A4: Ordered logit estimation 

 

 

 

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 1.214 0.005 *** 2.262 0.005 ***

Firm characteristics

log(sales f,t) -171.686 0.244 *** -22.596 0.210 ***

log(sales f,t) - log(sales f,t-1 ) 103.072 0.390 *** 26.065 0.366 ***

listed f,t 542.157 6.472 *** -103.528 5.877 ***

#(industry ) f,t -48.697 0.389 *** -1.500 0.385 ***

priority f,t 0.086 0.003 *** 0.010 0.002 ***

Analyst characterstics

#(assigned companies ) i,t 0.001 0.000 *** -0.001 0.000 ***

industry experience f,i,t 0.047 0.001 *** 0.032 0.001 ***

Team characteristics

#(team members) i,t 2.314 0.028 *** 2.805 0.028 ***

Average #(tenure years ) i,t -0.375 0.049 *** -0.498 0.049 ***

Average industry experience f,i,t 0.255 0.002 *** 0.297 0.002 ***

Average #(assigned companies ) i,t -0.030 0.000 *** -0.041 0.000 ***

Constant

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

Log-likelihood

χ-squared

-6,008,220.100 -6,508,573.100

621,072.400 253,758.480

no no

3,466,611 3,466,611

no no

no no

default voluntary closure

Machine vs. Human



Table A5: Alternative fixed-effects specification 

 

 

 

 

  

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.571 0.001 *** 0.482 0.001 ***

Firm characteristics

log(sales f,t ) -19.063 0.125 *** -8.293 0.111 ***

log(sales f,t ) - log(sales f,t-1 ) 13.213 0.096 *** 5.074 0.085 ***

listed f,t -4.449 2.732 -19.247 2.412 ***

#(industry ) f,t -3.538 0.158 *** 0.002 0.140

priority f,t 0.000 0.000 0.002 0.000 ***

Analyst characterstics

#(assigned companies ) i,t

industry experience f,i,t 0.001 0.000 *** 0.000 0.000

Team characteristics

#(team members) i,t

Average #(tenure years ) i,t

Average industry experience f,i,t 0.017 0.001 *** 0.000 0.001

Average #(assigned companies ) i,t

Constant 157.847 1.465 *** 49.298 1.293 ***

Firm fixed-effect

Analyst-Year fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared

voluntary closuredefault

yes

3,238,266

18,409.250

0.834

yes

yes

3,238,266

0.882

0.061

Machine vs. Human

0.073

22,197.050

yes

yes

yes



Table A6: Using sub-score as human predictions 

 

 

 

  

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.637 0.002 *** 0.018 0.000 *** 0.519 0.002 *** 0.018 0.000 ***

Firm characteristics

log(sales f,t ) 5.178 0.191 *** 3.120 0.044 *** 13.864 0.166 *** 3.240 0.044 ***

log(sales f,t ) - log(sales f,t-1 ) 17.783 0.142 *** -2.203 0.033 *** 13.444 0.123 *** -2.283 0.033 ***

listed f,t 8.962 3.434 *** 4.606 0.787 *** -9.880 2.974 *** 4.304 0.787 ***

#(industry ) f,t -2.132 0.227 *** 0.090 0.052 * 1.092 0.197 *** 0.086 0.052 *

priority f,t 0.000 0.000 0.000 0.000 0.001 0.000 ** -0.000 0.000

Analyst characterstics

#(assigned companies ) i,t -0.002 0.000 *** 0.000 0.000 *** 0.000 0.000 ** 0.001 0.000 ***

industry experience f,i,t -0.003 0.000 *** 0.001 0.000 *** 0.002 0.000 *** 0.001 0.000 ***

Team characteristics

#(team members) i,t 0.028 0.019 -0.017 0.004 *** 0.026 0.017 -0.018 0.004 ***

Average #(tenure years ) i,t 0.080 0.026 *** -0.046 0.006 *** -0.078 0.022 *** -0.047 0.006 ***

Average industry experience f,i,t 0.026 0.001 *** -0.002 0.000 *** -0.005 0.001 *** -0.002 0.000 ***

Average #(assigned companies ) i,t 0.001 0.000 *** 0.000 0.000 ** -0.001 0.000 *** 0.000 0.000

Constant -132.004 2.359 *** -38.266 0.540 *** -212.930 2.044 *** -39.522 0.540 ***

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared

default voluntary closure

0.085 0.006

0.718

yes

2,199,518 2,199,518

11,101.810 752.040

0.825

0.081

SH vs. Human Machine vs. Human

0.712

0.006

10,515.140

yes

yes

yes

2,199,518

719.200

yes

2,199,518

yes

0.830

SH vs. Human

yes

yes

yes yes

yes yes

Machine vs. Human



Table A7: Growth prediction 

 

(1) 𝑃𝑟𝑜𝑥𝑦 estimation 

 

 

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.196 0.003 *** 0.037 0.000 ***

Firm characteristics

log(sales f,t ) -50.833 0.229 *** -0.166 0.039 ***

log(sales f,t ) - log(sales f,t-1 ) 14.032 0.174 *** -0.439 0.030 ***

listed f,t -24.028 4.837 *** 3.056 0.830 ***

#(industry ) f,t -1.239 0.281 *** 0.036 0.048

priority f,t 0.005 0.001 *** 0.000 0.000

Analyst characterstics

#(assigned companies ) i,t -0.000 0.000 -0.000 0.000 ***

industry experience f,i,t 0.003 0.000 *** 0.000 0.000 ***

Team characteristics

#(team members) i,t -0.167 0.021 *** -0.008 0.004 **

Average #(tenure years ) i,t -0.357 0.029 *** -0.014 0.005 ***

Average industry experience f,i,t -0.017 0.001 *** 0.000 0.000

Average #(assigned companies ) i,t 0.001 0.000 *** -0.000 0.000 ***

Constant 574.761 2.737 *** -0.627 0.470

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared

yes

Machine vs. Human SH vs. Human

yes

yes

yes yes

yes

650.920

3,037,588 3,037,588

4,799.540

0.004

0.590 0.639

0.026



 

  



 

 

(2) Counterfactual exercise 

 

(a) Firms that actually do not grow ex-post    (b) Firms that actually grow ex-post 

 

 M =  

growth 

H =  

not growth 

(1) 

M =  

not growth 

H =  

growth 

 (2) 

(2)/(1) 

M =  

growth 

H =  

not growth  

(3) 

M =  

not growth 

H =  

growth 

 (4) 

(3)/(4) 

~20 

%tile 
12,799 30,678 2.40  1765 791 2.23  

20~40 

%tile 
15,822 38,401 2.43  2170 978 2.22  

40~60 

%tile 
18,513 31,610 1.71  2660 883 3.01  

60~80 

%tile 
25,171 22,727 0.90  3599 760 4.74  

80 

%tile~ 
34,835 11,263 0.32  5308 401 13.24  

 

 

  



Table A8: AUCs of alternative prediction models for default 

 

Test data: t = 2013 Test data: t = 2014 

Model LASSO XGBoost 

Human 
0.634 

(0.0049) 

Machine 
0.783 

(0.0042) 

0.807 

(0.0039) 

Structured 

human 

0.529 

(0.0047) 

0.598 

(0.0046) 

Machine & 

fscore 

0.806 

(0.0040) 

0.823 

(0.0037) 

Machine 

with small 

information 

0.746 

(0.0046) 

0.783 

(0.0043) 

 

Model LASSO XGBoost 

Human 
0.639 

(0.0052) 

Machine 
0.774 

(0.0047) 

0.787 

(0.0044) 

Structured 

human 

0.537 

(0.0051) 

0.558 

(0.0096) 

Machine & 

fscore 

0.798 

(0.0044) 

0.815 

(0.0042) 

Machine 

with small 

information 

0.740 

(0.0051) 

0.768 

(0.0049) 

 

  

Test data: t = 2015 Test data: t = 2016 

Model LASSO XGBoost 

Human 
0.653 

(0.0055) 

Machine 
0.774 

(0.0049) 

0.804 

(0.0044) 

Structured 

human 

0.547 

(0.0053) 

0.500 

(0.0115) 

Machine & 

fscore 

0.804 

(0.0046) 

0.818 

(0.0044) 

Machine 

with small 

information 

0.735 

(0.0054) 

0.772 

(0.0050) 

 

Model LASSO XGBoost 

Human 
0.663 

(0.0053) 

Machine 
0.779 

(0.0049) 

0.786 

(0.0046) 

Structured 

human 

0.563 

(0.0054) 

0.516 

(0.0111) 

Machine & 

fscore 

0.803 

(0.0046) 

0.810 

(0.0045) 

Machine 

with small 

information 

0.738 

(0.0054) 

0.767 

(0.0049) 

 

 

Note: Each number represents AUC and the number in the parentheses is its standard error. 

 

 

  



Table A9: Proxy estimation based on alternative prediction models 

 

(1) LASSO 

 

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.495 0.002 *** 0.150 0.001 ***

Firm characteristics

log(sales f,t) -12.859 0.146 *** 10.266 0.082 ***

log(sales f,t) - log(sales f,t-1 ) 17.666 0.113 *** -1.179 0.063 ***

listed f,t 59.775 3.193 *** 4.973 1.792 ***

#(industry ) f,t -4.934 0.184 *** -0.769 0.103 ***

priority f,t 0.007 0.000 *** 0.001 0.000 ***

Analyst characterstics

#(assigned companies ) i,t -0.001 0.000 *** -0.001 0.000 ***

industry experience f,i,t -0.001 0.000 *** -0.000 0.000

Team characteristics

#(team members) i,t 0.112 0.014 *** 0.009 0.008

Average #(tenure years ) i,t 0.123 0.019 *** 0.016 0.011

Average industry experience f,i,t 0.009 0.001 *** -0.005 0.001 ***

Average #(assigned companies ) i,t -0.001 0.000 *** -0.001 0.000 ***

Constant 97.460 1.750 *** ###### 0.982 ***

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared

4,103.740

3,238,817 3,238,817

9,181.380

0.021

0.841 0.832

0.047

yes

Machine vs.

Human
SH vs. Human

yes

yes

yes yes

yes



 

 

(2) Extreme gradient boost 

 

Coef. S.E. Coef. S.E.

Number of available variables

#(available variables ) f,t 0.449 0.003 *** 0.075 0.004 ***

Firm characteristics

log(sales f,t) 0.298 0.264 2.947 0.348 ***

log(sales f,t) - log(sales f,t-1 ) 12.878 0.203 *** -0.930 0.268 ***

listed f,t -5.342 5.763 -24.407 7.592 ***

#(industry ) f,t -3.276 0.333 *** -5.364 0.438 ***

priority f,t -0.051 0.001 *** -0.123 0.001 ***

Analyst characterstics

#(assigned companies ) i,t 0.002 0.000 *** -0.001 0.000 **

industry experience f,i,t -0.008 0.000 *** 0.010 0.001 ***

Team characteristics

#(team members) i,t 0.768 0.024 *** 0.392 0.032 ***

Average #(tenure years ) i,t 0.508 0.034 *** 0.139 0.045 ***

Average industry experience f,i,t -0.035 0.002 *** -0.020 0.002 ***

Average #(assigned companies ) i,t -0.005 0.000 *** -0.006 0.000 ***

Constant -52.916 3.159 *** -27.909 4.161 ***

Firm fixed-effect

Analyst fixed-effect

Year fixed-effect

#(obs)

F

Adj. R-squared

Within R-squared

Machine vs.

Human
SH vs. Human

yes yes

yes yes

0.506 -0.042

0.015 0.007

yes yes

3,238,817 3,238,817

2,886.910 1,230.400


