Introduction Experi	imental Design F	Results	Conclusion	Additional Things
000000 000		00000000	0	0000

Comparing Theories of One-Shot Play Out of Treatment

Philipp Külpmann Christoph Kuzmics University of Vienna University of Graz

July 3, Keio University

Introduction	Experimental Design	Results	Conclusion	Additional Things
000000	000	000000000		0000
Motivation				

Use of game theory in social science research:

- observe behavior that one would like to explain
- identify key individuals in the interaction
- identify what they could do
- identify their goals
- this constitutes a game (players, strategies, payoffs)
- identify appropriate "solution concept" (a theory): set of predictions, a mapping from games to predicted behavior

the explanation can only be "good" if the solution concept predicts well

Introduction	Experimental Design	Results 000000000	Conclusion	Additional Things
Testing predict	ive power			

we want to test the predictive power of such theories with lab experiments

many theories have parameters

how should we choose these parameters?

we don't estimate them with our own data!

why? we are worried about overfitting and getting game specific subject pool specific parameter estimates.

recall: when using such theories we probably use them for new games and new "subjects" so we estimate parameters "out of treatment"

 Introduction
 Experimental Design
 Results
 Conclusion
 Additional Things

 Soo<000</td>
 Soo
 Soo
 Soo
 Soo
 Soo

 Advantages of "out of treatment" testing
 Soo
 Soo
 Soo

conceptually appropriate for our motivation

allows a direct likelihood comparison of theories

without having to "punish" theories for the number of parameters

Introduction	Experimental Design	Results	Conclusion	Additional Things
000000		000000000		0000
What we	do specifically theory	ries		

test theories of one-shot play

Nash equilibrium (NE) level k reasoning (LK) - Stahl and Wilson (1994, 1995), Nagel (1995) cognitive hierarchy (CH) - Camerer, Ho, and Chong (2004) quantal response equilibrium (QRE) - McKelvey and Palfrey (1995) noisy introspection (NI) - Goeree and Holt (2004) quantal level k (QLK) - Stahl and Wilson (1994) quantal cognitive hierachy (QCH) - Camerer, Nunnari, and Palfrey (2016)

all theories are used with and without risk aversion ("-RA" added to their abbreviation)

 Introduction
 Experimental Design
 Results
 Conclusion
 Additional Things

 0000
 000
 000
 0000
 0000
 0000

 What we do specifically, parameter estimates
 0000
 0000
 0000

all parameter estimates from meta-analysis of Wright and Leyton-Brown (2017) risk aversion coefficient (CRRA) from Hey and Orme (1994) and Harrison and Rutström (2009)

Introduction	Experimental Design	Results 000000000	Conclusion	Additional Things
What we do s	pecifically, games			

we look at representative selection of 2 by 2 games with unique and mixed strategy predictions additional advantage: we do not need to have a model of mistakes: no pure strategy prediction and mixed strategy observation can directly apply a Vuong (1989) test (based on log-likelihood comparison)

Introduction	Experimental Design ●○○	Results	Conclusion	Additional Things
experimental	design, games			

	U	D			U	D
U	0, 0 1, ×	x, 1	-	U	z, 0	0, 1
D	1, x	у, у		D	z, 0 0, 1	1, 0
(a) H	awk-Dov	ve Game	(b) M	latching	Pennies

Figure: Payoff matrices for our hawk dove and matching pennies games

with $(x, y) \in \{(1, 0), (2, 0), (3, 0), (5, 0), (10, 0), (3, 2), (5, 2), (10, 2), (10, 3), (10, 5)\}$ first five T1-T5: anti-coordination games; second five T6-T10: "proper" hawk-dove games and $z \in \{1, 2, 3, 5, 10\}$ each once as player 1 (T11-T15) and 2 (T16-T20)

Introduction	Experimental Design ○●○	Results	Conclusion O	Additional Things
experiment	tal design, subjects			

conducted at the DR@W Laboratory at the University of Warwick using zTree (Fischbacher, 2007)

147 subjects recruited using Warwick's SONA System without placing any restrictions on the subject pool

Introduction	Experimental Design ○○●	Results 000000000	Conclusion	Additional Things
experiment	al design, play and	рау		

each subject was asked to play each game once (20 games)

subjects were for each round randomly matched with some other subject in the subject pool

subjects never received any feedback about their opponent or their opponent's strategy choice until the very end when all they were told is how much money they received

at the very end of the experiment, one of the 10 rounds of hawk-dove and one of the 10 rounds of matching pennies was randomly selected and paid out in GBP

after the games were played, we also elicited risk aversion and level k reasoning skills (in the 11/20 game developed by Arad and Rubinstein, 2012) which were not used in this paper

Introduction	Experimental Design	Results •••••••	Conclusion O	Additional Things
predictions				

theory *i* makes prediction $p_{i,t}$ for treatment *t*, where $p_{i,t}$ is the proportion of action *U* theory *i* is thus identified by the vector $p_i = (p_{i,1}, ..., p_{i,20})$ of predictions p is the true probability vector of choices of our subjects \bar{p}_t is the observed proportion of *U* in treatment *t* in our sample

Introduction	Experimental Design	Results	Conclusion	Additional Things
Vuong test				

log-likelihood ratio between any two theories i and j is given by

$$\log LR(\bar{p}, p_i, p_j) = \sum_t \left[n\bar{p}_t \log \left(p_{i,t}/p_{j,t} \right) + n(1-\bar{p}_t) \log \left((1-p_{i,t})/(1-p_{j,t}) \right) \right]$$

"true" variance of this log-likelihood is then given by

$$\sum_{t} n p_t (1-p_t) \left[\log \left(p_{i,t}/p_{j,t} \right) - \log \left((1-p_{i,t})/(1-p_{j,t}) \right) \right]^2,$$

estimated by replacing p_t by its maximum likelihood estimator \bar{p}_t for each treatment tVuong statistic (or z-score) given by the log-likelihood divided by the square root of its estimated variance

under the true model, the Vuong statistic is asymptotically standard normally distributed

Introduction	Experimental Design	Results	Conclusion	Additional Things
000000	000	00000000		0000

results of Vuong test, hawk-dove

	NE	NE-RA	LK	СН	CH-RA	QRE	QRE-RA	QLK	QLK-RA	QCH	QCH-RA	NI	NI-RA	RND
NE	0	5.86	4.31	7.98	6.36	7.73	5.19	9.3	2.72	5.76	6.27	6.47	4.67	3.49
NE-RA	-5.86	0	-3.71	-1.21	0.47	-1	-2.26	-1.57	-5.76	-2.05	1.54	-1.43	-3.17	-4.98
LK	-4.31	3.71	0	3.05	5.61	4.35	6.8	1.76	-1.4	6.89	5.63	6.13	5.03	-6.49
CH	-7.98	1.21	-3.05	0	1.77	0.92	-0.25	-1.04	-2.72	-0.82	1.91	0.1	-1.4	-3.77
CH-RA	-6.36	-0.47	-5.61	-1.77	0	-1.63	-3.99	-2.12	-5.56	-3.36	1.34	-2.4	-5.07	-7.11
QRE	-7.73	1	-4.35	-0.92	1.63	0	-0.86	-2.42	-3.01	-2.34	1.8	-1.27	-2.3	-5.05
QRE-RA	-5.19	2.26	-6.8	0.25	3.99	0.86	0	-0.33	-2.92	-0.81	4.54	0.59	-8.93	-11.2
QLK	-9.3	1.57	-1.76	1.04	2.12	2.42	0.33	0	-2.37	0.07	2.21	0.97	-0.62	-2.57
QLK-RA	-2.72	5.76	1.4	2.72	5.56	3.01	2.92	2.37	0	2.5	5.69	2.84	2.17	0.74
QCH	-5.76	2.05	-6.89	0.82	3.36	2.34	0.81	-0.07	-2.5	0	3.46	4.32	-2.11	-7.62
QCH-RA	-6.27	-1.54	-5.63	-1.91	-1.34	-1.8	-4.54	-2.21	-5.69	-3.46	0	-2.55	-5.41	-7.23
NI	-6.47	1.43	-6.13	-0.1	2.4	1.27	-0.59	-0.97	-2.84	-4.32	2.55	0	-2.81	-6.81
NI-RA	-4.67	3.17	-5.03	1.4	5.07	2.3	8.93	0.62	-2.17	2.11	5.41	2.81	0	-12.38
RND	-3.49	4.98	6.49	3.77	7.11	5.05	11.2	2.57	-0.74	7.62	7.23	6.81	12.38	0

 Introduction
 Experimental Design
 Results
 Conclusion
 Additional Things

 000000
 000
 000
 000
 0000
 0000

results of Vuong test, MP asymmetric

	NE	NE-RA	LK	СН	CH-RA	QRE	QRE-RA	QLK	QLK-RA	QCH	QCH-RA	NI	NI-RA	RND
NE	0	0	13.8	10.12	10.12	8.79	12.95	9.67	9.28	12.76	9.32	11.75	14.05	0
NE-RA	0	0	13.8	10.12	10.12	8.79	12.95	9.67	9.28	12.76	9.32	11.75	14.05	0
LK	-13.8	-13.8	0	9.28	9.28	7.54	11.26	8.47	8.46	9.46	8.53	9.39	9.11	-13.8
CH	-10.12	-10.12	-9.28	0	0	0.55	-5.95	0.61	5.39	-6.67	5.2	-5.06	-8.02	-10.12
CH-RA	-10.12	-10.12	-9.28	0	0	0.55	-5.95	0.61	5.39	-6.67	5.2	-5.06	-8.02	-10.12
QRE	-8.79	-8.79	-7.54	-0.55	-0.55	0	-5.67	-0.23	1.09	-6.65	2.33	-6.05	-7.15	-8.79
QRE-RA	-12.95	-12.95	-11.26	5.95	5.95	5.67	0	6.79	5.99	-10.05	6.61	1.89	-11.54	-12.95
QLK	-9.67	-9.67	-8.47	-0.61	-0.61	0.23	-6.79	0	1.31	-7.69	2.77	-7.19	-8.13	-9.67
QLK-RA	-9.28	-9.28	-8.46	-5.39	-5.39	-1.09	-5.99	-1.31	0	-6.52	3.19	-5.41	-7.51	-9.28
QCH	-12.76	-12.76	-9.46	6.67	6.67	6.65	10.05	7.69	6.52	0	7.04	8.97	-9.58	-12.76
QCH-RA	-9.32	-9.32	-8.53	-5.2	-5.2	-2.33	-6.61	-2.77	-3.19	-7.04	0	-6.17	-7.81	-9.32
NI	-11.75	-11.75	-9.39	5.06	5.06	6.05	-1.89	7.19	5.41	-8.97	6.17	0	-9.29	-11.75
NI-RA	-14.05	-14.05	-9.11	8.02	8.02	7.15	11.54	8.13	7.51	9.58	7.81	9.29	0	-14.05
RND	0	0	13.8	10.12	10.12	8.79	12.95	9.67	9.28	12.76	9.32	11.75	14.05	0

Introduction	Experimental Design	Results	Conclusion	Additional Things
000000		000000000		0000

results of Vuong test, MP symmetric

	NE	NE-RA	LK	СН	CH-RA	QRE	QRE-RA	QLK	QLK-RA	QCH	QCH-RA	NI	NI-RA	RND
NE	0	2.48	-0.37	-0.26	-0.26	-0.3	-0.19	-0.8	2.93	-1.07	0.56	-1.06	-1.05	-1.1
NE-RA	-2.48	0	-5.01	-4.86	-4.86	-5.11	-4.94	-5.61	1.02	-5.9	-3.68	-5.88	-5.87	-5.93
LK	0.37	5.01	0	8.53	8.53	1.35	3.6	-7.99	4.54	-9.36	7.69	-9.32	-9.32	-9.45
CH	0.26	4.86	-8.53	0	0	-0.59	1.52	-8.16	4.42	-9.25	7.57	-9.21	-9.21	-9.32
CH-RA	0.26	4.86	-8.53	0	0	-0.59	1.52	-8.16	4.42	-9.25	7.57	-9.21	-9.21	-9.32
QRE	0.3	5.11	-1.35	0.59	0.59	0	7.16	-8.15	4.37	-8.61	6.4	-8.6	-8.56	-8.63
QRE-RA	0.19	4.94	-3.6	-1.52	-1.52	-7.16	0	-8.7	4.26	-8.95	6.27	-8.95	-8.92	-8.97
QLK	0.8	5.61	7.99	8.16	8.16	8.15	8.7	0	4.96	-9.49	7.94	-9.51	-9.41	-9.48
QLK-RA	-2.93	-1.02	-4.54	-4.42	-4.42	-4.37	-4.26	-4.96	0	-5.27	-3.52	-5.26	-5.25	-5.3
QCH	1.07	5.9	9.36	9.25	9.25	8.61	8.95	9.49	5.27	0	8.41	8.69	10.27	-9.41
QCH-RA	-0.56	3.68	-7.69	-7.57	-7.57	-6.4	-6.27	-7.94	3.52	-8.41	0	-8.39	-8.38	-8.45
NI	1.06	5.88	9.32	9.21	9.21	8.6	8.95	9.51	5.26	-8.69	8.39	0	8.79	-9.21
NI-RA	1.05	5.87	9.32	9.21	9.21	8.56	8.92	9.41	5.25	-10.27	8.38	-8.79	0	-9.87
RND	1.1	5.93	9.45	9.32	9.32	8.63	8.97	9.48	5.3	9.41	8.45	9.21	9.87	0

Introduction	Experimental Design	Results 00000●0000	Conclusion	Additional Things
summary of r	esults, general			

one theory is significantly better (or worse) than another if the z-score for their comparison is less than -2 (greater than +2)

one theory is weakly better (or worse) than another when the z-score for their comparison is negative (positive)

all theories, except Nash equilibrium without risk aversion in hawk dove games and for matching pennies games for the asymmetric player position, are on the whole significantly better than random guessing

all theories have some predictive power (based on simple χ^2 -test, all p-values < 0.000001)

no universally best theory

Nash equilibrium with risk aversion is pretty good

Introduction	Experimental Design	Results 000000●000	Conclusion	Additional Things
summary of re	sults, hawk-dove			

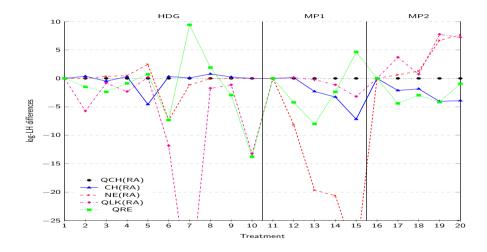
For the ten hawk-dove treatments (T1-T10),

- the overall best theory without considering risk aversion is QRE, which is significantly better than NE, LK, QLK, and QCH (and weakly better than CH and NI);
- Nash equilibrium with risk aversion (NE-RA) is weakly better than QRE and weakly worse only compared to CH-RA and QCH-RA.

Introduction	Experimental Design	Results	Conclusion	Additional Things
000000	000	0000000000		0000
cum month	of reculte matching	poppios asymptot		
Summary	of results, matching	pennies asymmet	.ric	

For the five matching pennies treatments for the asymmetric own payoff player position (T11-T15).

- the two overall best (and essentially equally good) theories without considering risk aversion are QRE and QLK, which are significantly better than NE, LK, QCH, NI (and weakly better than CH):
- 2 the best theory overall is QCH-RA, which is significantly better than all other theories.


Introduction	Experimental Design	Results ○○○○○○○●○	Conclusion	Additional Things
summary of re	sults, matching p	oennies asymmet	ric	

For the five matching pennies treatments for the symmetric own payoff player position (T16-T20).

- the best theory without considering risk aversion is NE, which is, however not significantly better than any other theory without risk aversion:
- 2 Nash equilibrium with risk aversion (NE-RA) is significantly better than all other theories, except QLK-RA, which is weakly better than NE-RA.

Introduction	Experimental Design	Results	Conclusion	Additional Things
000000		000000000		0000

treatment by treatment comparison

Introduction	Experimental Design	Results	Conclusion	Additional Things
000000	000	000000000	•	0000
Conclusion				

"out of treatment" testing methodology

for one-shot games:

no universally best theory

Nash equilibrium with risk aversion is among best theories in two out of three treatment groups only bad in asymmetric player position in matching pennies games

Introduction	Experimental Design	Results 000000000	Conclusion	Additional Things ●○○○
Specific Result	S			

findings agree fairly well with those of Wright and Leyton-Brown (2017): "winning" theories in their meta-analysis: cognitive hierarchy model (CH) and quantal level k model (QLK)

only here with risk aversion!

QRE implicitly incorporates risk aversion

biggest problem for Nash equilibrium with risk aversion is the asymmetric own payoff player position in the matching pennies treatments

Introduction	Experimental Design	Results	Conclusion O	Additional Things ○●○○
Omitted th	eories			

some theories make pure strategy predictions: maximin play, ambiguity aversion according to Eichberger and Kelsey (2011) (that they used to explain the data of Goeree and Holt (2001)), "level-1 with risk aversion" of Fudenberg and Liang (2019)

some theories make predictions identical to those of other theories: Nash equilibrium with a fraction of fairness-minded individuals of Fehr and Schmidt (1999) (with calibrations taken from Fehr and Schmidt (2004)), also Bolton and Ockenfels (2000)

Introduction	Experimental Design	Results 000000000	Conclusion	Additional Things ○○●○
Predictions,	hawk-dove			

	T1	T2	Т3	Τ4	Т5	Т6	Τ7	Т8	Т9	T10
Data	0.55	0.63	0.69	0.69	0.84	0.34	0.58	0.65	0.56	0.41
×	1.00	2.00	3.00	5.00	10.00	3.00	5.00	10.00	10.00	10.00
У	0.00	0.00	0.00	0.00	0.00	2.00	2.00	2.00	3.00	5.00
NE	0.50	0.67	0.75	0.83	0.91	0.50	0.75	0.89	0.88	0.83
NE-RA	0.50	0.57	0.61	0.66	0.73	0.20	0.39	0.57	0.52	0.40
LK	0.50	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
CH	0.50	0.66	0.66	0.66	0.66	0.50	0.66	0.66	0.66	0.66
CH-RA	0.50	0.59	0.60	0.66	0.66	0.34	0.40	0.59	0.59	0.40
QRE	0.50	0.54	0.57	0.62	0.71	0.50	0.57	0.68	0.66	0.62
QRE-RA	0.50	0.53	0.54	0.57	0.60	0.43	0.47	0.52	0.51	0.47
QLK	0.50	0.55	0.59	0.67	0.79	0.50	0.59	0.76	0.74	0.67
QLK-RA	0.50	0.76	0.78	0.78	0.70	0.17	0.21	0.76	0.63	0.22
QCH	0.50	0.52	0.53	0.56	0.62	0.50	0.53	0.60	0.59	0.56
QCH-RA	0.50	0.57	0.61	0.65	0.70	0.31	0.40	0.57	0.52	0.41
NI	0.50	0.52	0.54	0.58	0.66	0.50	0.54	0.63	0.61	0.58
NI-RA	0.50	0.52	0.53	0.54	0.57	0.47	0.48	0.51	0.50	0.49
RND	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50

Dradiction	matching poppios			
				0000
Introduction	Experimental Design	Results	Conclusion	Additional Things

Predictions,	matching	nonnioc
r redictions.	Inducting	Dennes

	T10	T12	T13	T14	T15		T16	T17	T18	T19	T20
Data	0.63	0.67	0.76	0.76	0.84	 Data	0.52	0.33	0.36	0.27	0.27
z	1.00	2.00	3.00	5.00	10.00	z	1.00	2.00	3.00	5.00	10.00
NE	0.50	0.50	0.50	0.50	0.50	NE	0.50	0.33	0.25	0.17	0.09
NE-RA	0.50	0.50	0.50	0.50	0.50	NE-RA	0.50	0.43	0.39	0.34	0.27
LK	0.50	0.53	0.53	0.53	0.53	LK	0.50	0.47	0.47	0.47	0.47
СН	0.50	0.66	0.66	0.66	0.66	CH	0.50	0.47	0.47	0.47	0.47
CH-RA	0.50	0.66	0.66	0.66	0.66	CH-RA	0.50	0.47	0.47	0.47	0.47
QRE	0.50	0.55	0.59	0.67	0.82	QRE	0.50	0.49	0.48	0.47	0.44
QRE-RA	0.50	0.53	0.55	0.59	0.64	QRE-RA	0.50	0.49	0.48	0.46	0.44
QLK	0.50	0.55	0.60	0.67	0.78	QLK	0.50	0.50	0.49	0.49	0.48
QLK-RA	0.50	0.68	0.69	0.69	0.69	QLK-RA	0.50	0.33	0.31	0.31	0.31
QCH	0.50	0.52	0.53	0.56	0.63	QCH	0.50	0.50	0.50	0.50	0.50
QCH-RA	0.50	0.64	0.70	0.72	0.73	QCH-RA	0.50	0.44	0.43	0.43	0.43
NI	0.50	0.52	0.54	0.58	0.68	NI	0.50	0.50	0.50	0.50	0.50
NI-RA	0.50	0.52	0.53	0.55	0.58	NI-RA	0.50	0.50	0.50	0.50	0.50
RND	0.50	0.50	0.50	0.50	0.50	 RND	0.50	0.50	0.50	0.50	0.50