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1 Introduction

Firms spend considerable time and resources collecting information about the costs

and profitability of entering new markets.1 For a monopolistic firm, the decision to

enter a new market results from a standard optimal stopping problem. The firm

collects information over time and has to decide at which point to enter and stop

collecting additional information. When firms compete, and receive covertly infor-

mation about the profitability and costs of entry on the new market, the problem

is markedly more complex. Firms anticipate that, by entering, they might reveal

information to the other firm, and take into account these informational leakages in

the timing of their entry decision. We study these experimentation and entry deci-

sions making use of two frequent observations. First, firms often enter markets or

introduce technologies before they have learned about their economic and technical

viability, pre-empting their rivals’ entry. Second, in many industries, much of the

entry or the introduction of new technologies occurs at well-defined dates such as

trade fairs or annual product launch events; after which it often takes considerable

time for further competitors, who were working in the same product space, to follow

suit with their entry.2

Building on these two observations, we investigate equilibria in an entry game

between two rival firms which gradually acquire information about the common

entry cost into a new market. The two firms decide at any point in time whether

to enter the market. By entering the market, they incur the fixed entry cost, and

start collecting profits. Because duopoly profits are smaller than monopoly profits,

the expected payoff of a firm depends on the entry decision of the rival firm.

We characterize the equilibria of this entry game and show that a herding equi-

1For new geographical markets, firms commission market studies, investigate distribution chan-
nels and regulatory constraints before deciding whether or not to enter. For markets for new
products, firms engage in research and development, build prototypes, analyze production pro-
cesses and costs before launching operations at a full scale.

2In the mobile electronics industry, for example, new hardware and new services are often
introduced at events, such as the Barcelona Mobile World Congress or the Berlin Internationale
Funkausstellung. These events see the introduction of both, successes and failures. In 2019, for
instance, both Huawei and Samsung launched foldable designs for their smart phones at Mobile
World Congress. Both designs have since been widely considered as premature, but their launch
gave rivals pause to reconsider their own entries. Other competitors, such as Motorola, introduced
their foldable designs only after a considerable delay.
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librium – where uninformed firms never enter, firms that learn that the cost is low

enter and are immediately followed by the other firm – always exist. In the herding

equilibrium, firms collect duopoly profits and start collecting it as soon as one of

the two firms learns that the cost is low.

Under some restrictions on the parameters, we also prove existence of other,

more complex equilibria, which avoid herding. In these equilibria, uninformed firms

coordinate on specific dates at which they enter with positive probability. For this

entry of an uninformed firm to be profitable, it must be that it is not immediately

followed by the other firm, and hence results with positive probability in a period in

which the firm collects monopoly profits. These monopoly profits, in turn, give firms

that learn the entry cost is low before this entry date an incentive to delay entry and

hide under the cover of the entry of the uninformed firms in order to avoid herding.

As waiting entails a cost, there is a maximum delay that an informed firm is willing

to incur before entering. A single-entry equilibrium at date τ is thus characterized

both by an entry probability and a delay for the informed firm.

We first prove that a single-entry equilibrium exists if and only if there exists

an equilibrium in which the two firms enter immediately with positive probability.

Next, we show that, if the equilibrium exists, it is unique: It is characterized by

a unique pair of entry probability and delay. We then analyze the comparative

statics effects of changes in the parameters of the model of the equilibrium entry

probability of uninformed and the entry delay of informed firms. Interestingly, as

the entry date increases and firms become more pessimistic, the equilibrium entry

probability decreases and the equilibrium delay increases. But for the equilibrium to

exist, it must be that entry is not followed by the rival’s entry at the entry date, τ ,

which implies that the fraction of uninformed firms in the pool of firms entering at τ

must be sufficiently large. Hence, for an equilibrium to exist, the entry probability

of uninformed firms must be sufficiently high. As this probability is decreasing over

time, there exists a last entry date for a single-entry equilibrium. We characterize

that last entry date as a solution to a system of three equations.

We next turn our attention to no-herding equilibria with multiple entry dates,

where uninformed firms enter at a finite number of different dates. We first show
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that if a multiple-entry equilibrium exists, a single-entry equilibrium must exist as

well. We further observe that, in a multiple-entry equilibrium, the entry probability

at any date τm depends on the entry probabilities at all other entry dates; that it is

decreasing in the entry probability at earlier dates, τ1, . . . , τm−1; and that an increase

in the entry probability at date τm+1 increases the entry probability that makes the

firm indifferent between entering and waiting at date τm. These comparative statics

effects of changes in p1, . . . , pm−1 and pm+1 on pm are sufficient to prove that, if an

equilibrium exists, it must be unique. We finally investigate the relation between

entry probabilities at different dates for a given equilibrium. Assuming that the

delay between two successive entry dates is small, we show that the equilibrium

entry probabilities are decreasing over time: firms enter with lower probability as

time passes.

The paper builds on the literature on strategic experimentation and social learn-

ing initiated by Chamley and Gale (1994) and Bolton and Harris (1999). The expo-

nential bandit model we use was developed by Keller et al. (2005) and extended to

social learning by Keller and Rady (2010, 2015). As we model the firms’ entry deci-

sions as irreversible, our paper is most closely related to the literature on stopping

games with social learning. Décamps and Mariotti (2004) study a continuous-time

model where two firms choose whether to invest in a project after observing private

signals on the common value of the project and the experience of the rival. They

characterize equilibrium as an extension of the equilibrium of an attrition war. In

Rosenberg et al. (2007), two players receive a sequence of private signals and choose

when to stop depending on their history of private signals and the publicly observed

stopping decision of their rival. They characterize equilibrium in the discrete time

game as cut-off equilibria based on the private beliefs and study the qualitative

properties of equilibrium strategies. Murto and Välimäki (2011) adopt a frame-

work where players receive binary signals about the profitability of an investment.

They give a full characterization of the symmetric Bayesian perfect equilibrium in

the discrete time game where players observe their private signals and the stopping

decisions of other players. They analyze information aggregation in the limiting

equilibrium when the number of players grows large, and show that equilibrium dis-

4



plays “exit waves” with herding. Murto and Välimäki (2013) generalizes the analysis

to a larger class of environments. In two recent papers, Wagner (2018) and Klein

and Wagner (2018) analyze the effect of information exchange, transparency and

disclosure in a model with private signals and irreversible investments.

The paper is also related to the literature on learning in R&D races, where firms

gradually learn the rate of success of innovations, and decide whether to drop out of

the patent race. The first papers in the literature, by Choi (1991) and Malueg and

Tsutsui (1997) analyze patent races where players have common priors, and suc-

cesses and failures are perfectly observed. Moscarini and Squintani (2010) suppose

that the firms initially receive different signals about the common success rate, and

choose their optimal exit time based on their private signals. The equilibrium dis-

plays a “survivor’s curse” as the firm which remains longest may regret not having

exited sooner. Akcigit and Liu (2016) study the incentives to disclose information

in an R&D race with private information about successes and failures of competing

research paths. Halac et al. (2017) analyze optimal contests with experimentation,

where the designer chooses how to allocate the value to different participants and

how much information to disclose. Hence, as opposed to an R&D race where all

the value accrues to the winner, the designer may choose to allocate some value to

the other participants. The analysis shows that experimentation affects the optimal

contest design, and that the optimal contest may either take the form of a winner-

takes-all contest with information leakage or of an equal sharing contest with no

disclosure.

Our model differs from the existing literature on social learning in common values

environments and R&D contest in two dimensions. On the one hand, we consider a

much simpler environment with a binary state variable, perfect signals and discrete

time. On the other hand, we consider a game where the value of the project depends

on the timing of the entry of the rival firm, as firms collect monopoly payoffs as long

as the other firm does not enter, and duopoly payoffs thereafter. This difference

in payoffs generates very different equilibrium structures, as firms may have an

incentive to delay entry to avoid herding, a phenomenon which does not arise in the

existing literature.
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Finally, we relate our paper to two recent papers on market entry timing with

learning. In a previous paper, Bloch et al. (2015), we analyzed entry decisions

when firms learn private values of entry costs. The differences between the private

values and common values models are striking. The common values model offers

the possibility of a new type of equilibria which do not exist in the private values

model. The private values model typically only has one equilibrium with preemption

whereas in the common values model, multiple equilibria can exist, parameterized

by the entry dates on which uninformed firms coordinate. We discuss in detail the

differences between the private values and common value setting in Section 6. Kolb

(2015) studies a different dynamic model, where one firm (the incumbent) has known

cost whereas the other firm (the entrant) has a privately known cost. Public news

about the cost arrives over time following a Brownian process. As in our model,

entry can either occur at time zero, or through “interval equilibria” where both

types of entrants wait until they have received enough news before entering. This

delay allows the weak players to hide under the cover of strong players, making

the incumbent concede rather than fight entry. Hence, the structure of equilibrium

bears some similarity to the equilibria we construct in this paper, but the underlying

mechanisms are different.

The rest of the paper is structured as follows. We describe the model and intro-

duce notations in the next section. Section 3 contains preliminary results on optimal

strategies, beliefs and the no-entry equilibrium. Section 4 contains our analysis of

single-entry equilibria. We extend the analysis to multiple-entry equilibria in Sec-

tion 5. We compare equilibria and discuss the robustness of our results in Section 6

and conclude in Section 7. All proofs are relegated to the Appendix.

2 Model

We consider a model where two potentially rival firms choose whether to enter a

new market. Time is discrete and runs as t = 0, 1, 2, . . . ,∞. We use the notation d

for the difference between two time periods. The two firms share the same discount

factor δ. At the beginning of the game, nature chooses the firm’s common entry

cost, c, which can either be high or low with equal probability. Without lost of
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generality, we normalize the low cost to 0 and denote the high cost by θ > 0 so that

c ∈ {0, θ}. The common entry cost is initially unknown to both firms, which are

assumed to be risk neutral. Therefore, each firm’s ex-ante expected entry cost is

given by c̃ = θ/2.

Firms can learn their common cost over time. Each firm’s belief about the cost

depends on the information arriving gradually through the game. This is the result

of firms experimenting over time to find out the extent of this cost. We capture this

by assuming that, at any time period, each firm receives a potentially informative

signal ζ ∈ {0, 1, 2}, as follows: Pr(ζ = 0|c = 0) = Pr(ζ = 2|c = θ) = µ
2
, Pr(ζ = 1|c =

0) = Pr(ζ = 1|c = θ) = 1 − µ and Pr(ζ = 2|c = 0) = Pr(ζ = 0|c = θ) = 0 where

µ is a commonly known parameter. Hence, with probability 1 − µ, the firm does

not learn the entry cost at a given experimentation period, and with probability µ,

the experimenting firm receives a perfect signal about the entry cost. Signals are

independent across periods and across firms and are privately observed by each firm.

No payoff is collected by a firm during its experimentation phase.

Each period t is divided into two sub-periods, (t.1) and (t.2). First, at t.1, both

firms simultaneously make a binary entry decision, eti ∈ {0, 1}. If eti = 1, firm i

enters the market, pays the entry cost c, stops the experimentation phase and starts

collecting profits. Subsequently, at t.2, if one firm has entered at t.1, the other firm

makes a binary decision, dti ∈ {0, 1}, to follow suit and enter the market immediately.

Hence we allow firms to enter the market immediately after the other firm, before

receiving any additional signal on the entry cost.3 The profit collected by a firm

depends on the entry of the other firm. When both firms are present on the market,

they each collect a duopoly payoff of πd per period. When a single monopolistic

firm operates on the market, it collects the monopoly profit πm every period. We

assume that πm > 2πd. We also define the discounted sum of profits under duopoly

and monopoly as

Πd =
πd

1− δ
, Πm =

πd
1− δ

.

Finally we denote by ∆ the difference between the discounted sum of monopoly and

3This modeling assumption clarifies the analysis, without changing the results. In Section 6,
we discuss an alternative model where firms have to wait an extra period before entering.
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duopoly profits, ∆ = Πm − Πd. Notice that, by assumption, ∆ > Πd.

We assume that, if firms faced high entry cost, they would never have an incentive

to enter the market, even if they received monopoly profit. Instead, if firms had low

costs, we assume that they would always make strictly positive profits by entering

the market even if they received duopoly profit. Finally, when entry cost remains

unknown, we suppose that a firm has an incentive to enter as a monopolist but not

as a duopolist. Assumption 1 summarizes these properties.

Assumption 1

0 < Πd <
θ

2
< Πm < θ, (1)

Assumption 1 allows us to concentrate on the interesting cases where (i) firms

never enter when they learn that the cost is high and (ii) do not simultaneously

enter at period 0, and wait to acquire information in equilibrium.

For most of the analysis, in order to simplify computations and obtain exact

derivations, we consider the continuous time limit of the discrete model.4 To this

end, we introduce a constant time interval between periods, Λ, that will be taken

to zero in the limit. We need to redefine the parameters of the model accordingly.

First, we use the greek letter τ to index the dates at which decisions are made, with

the correspondence τ = tΛ. Similarly, we let the difference between two dates be

denoted by a = dΛ. The per period discount factor satisfies δ = e−rΛ where r > 0

is the pure rate of time preference. The rate at which the signal is received by the

firms satisfies µ = λΛ, where λ is interpreted as the parameter of the Poisson process

generating signals in the continuous time limit. Finally, the payoffs per period are

given by πd = vdΛ and πm = vmΛ where vd and vm are interpreted as the flow

duopoly and monopoly payoffs in the continuous time limit.

Given Assumption 1, it is a dominant strategy for a firm that learns the cost is

high at period s to never enter and choose eti = 0 for all t ≥ s. If firm i has learned

that the cost is low, has not yet entered at period t and observes entry of the firm j

at sub-period t.1, we claim that it is a dominant strategy for firm i to enter at t.2.

4In Section 6, we show that the continuous time limit can alternatively be obtained as a game
directly defined in continuous time.
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By choosing dti = 1, the firm obtains Πd, which is assumed to be strictly positive by

Assumption 1 and is higher than any other continuation value of the game, which

would involve a delay in collecting Πd.

Hence, we only need to determine the strategy of firm i at period t in the following

three cases, (i) the entry decision eti when firm i is uninformed, denoted pti, (ii)

the entry decision eti when firm i has learned that the cost is low at some period

s ≤ t denoted qt,si , and (iii) the herding decision dti when firm i is uninformed

and has observed entry in t, denoted uti.
5 These strategies depend on the publicly

observable history of the game, ht which records the past entry decisions of the

firms, ht = ((esi , e
s
j , d

s
i , d

s
j)
t−1
s=1). A strategy for firm i is a mapping from any history

ht to probabilities pti(h
t), qt,si (ht) for any s ≤ t and uti(h

t) in [0, 1]. We also let χti(h
t)

denote firm i’s belief that the cost is high after history ht.

The solution concept we consider is a symmetric Bayesian perfect equilibrium,

where (i) every firm chooses an optimal strategy given her beliefs at any history,

(ii) beliefs are updated according to Bayes’ rule after every history, and (iii) the two

firms select the same strategy if they have identical beliefs at any history.

Given that entry decisions are irreversible, firm i has no further decision to make

after it has entered. Hence, the only relevant histories for firm i are the histories in

which esi = dsi = dti = 0, and we can summarize the relevant histories for player i by

whether firm j has entered or not and, in case firm j has entered, by the period s

at which entry took place.

Consider a history ht where firm j has entered at some period s < t. If firm i

learns that the cost is low at s′ < t, two situations can arise: if s′ ≤ s, then we claim

as above that it is a dominant strategy for firm i to enter at period s.2. If s′ > s,

then we claim again that it is a dominant strategy for firm i to enter at period s′.1.

By entering firm i obtains Πd > 0 and any other strategy would involve a delay and

result in a strictly lower payoff. This shows that the only history after which an

informed firm has to make a nontrivial decision is the history at which firm j has

5Given that firm j has already entered, the herding decision at period s only involves an
individual optimization for firm i. Hence, generically, firm i will not choose an interior probability
uti ∈ (0, 1) but either dti = 0 or dti = 1. If firm i chooses an interior probability, the values of exit
and entering are exactly identical, and the exact decision of firm i is irrelevant.
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not yet entered.

Next, consider an uninformed firm at period t and suppose that firm j has

entered at period s and usi 6= 1. Notice that firm i has not received any additional

information between period s.2 and t, so the beliefs of firm i are the same at period

s.2 and at period t. Hence the optimal entry decision of firm i is the same at period

s.2 and at period t. If firm i chooses not to enter with positive probability at s.2,

it must be an optimal strategy not to enter at period t. This shows that the only

history at which an uninformed firm has to make a nontrivial decision is the history

at which firm j has not yet entered.

Hence a strategy can be summarized by the entry and herding decisions of an

uninformed firm, and the entry decision of a firm that learns that the cost is low

when the other firm has not yet entered at period t. A symmetric Bayesian perfect

equilibrium is thus characterized by a collection pt, qt,s, ut for t = 1, 2, . . . ,∞ and

s < t, determining the probability of entry of the firms (i) when they are uninformed

and no other firm has entered yet, (ii) when they learned that the cost is low at s

and no firm has entered until t and (iii) when a firm is uninformed and the other

firm has just entered at period t.1.

3 Preliminaries

3.1 Optimal Monopoly Strategy

As a benchmark, we first consider the optimal strategy of a monopoly operating

both firms. The monopoly compares two strategies: (i) entering immediately before

learning the cost or (ii) experimenting (using the facilities of both firms) and entering

when it learns that the cost is low. The first strategy yields an expected discounted

payoff

Π1 = Πd + ∆− θ

2
.

The second strategy results in a discounted payoff

Π2 =
∞∑
t=0

δt(1− µ)2t(1− (1− µ)2)
Πd + ∆

2
=
µ(2− µ)(Πd + ∆)

2(1− δ(1− µ)2)
,
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and in the continuous time limit

Π2 =
(Πd + ∆)λ

2λ+ r
.

Hence a monopolist operating both firms has an incentive to wait if and only

if Π1 > Π2, which in the continuous time limit is satisfied whenever the following

condition on the parameters holds

2(λ+ r)Πd < θ + 2∆λ.

3.2 Evolution of beliefs

Consider the common belief χt of an uninformed firm that the entry cost is high

given that no firm has entered up to period t. At period 0, the belief is 1
2
. At period

t, given that no firm has entered, three possibilities arise: (i) the other firm has

learned that the cost is high between periods 0 and periods t, which has probability∑t−1
s=0 µ(1−µ)s 1

2
; (ii) the other firm has learned that the cost was low at some period

s < t but chose not to enter until t, which has probability
∑t−1

s=0 µ(1−µ)s 1
2

∏t−1
s′=s(1−

qs
′,s); and (iii) the other firm has not learned the cost yet and has not entered, which

has probability (1− µ)t
∏t−1

s=0(1− ps).

The conditional belief that the cost of entry is high at period t is thus given by

χt =

∑t−1
s=0 µ(1− µ)s + (1− µ)t

∏t−1
s=0(1− ps)∑t−1

s=0 µ(1− µ)s(1 +
∏t−1

s′=s(1− qs
′,s)) + 2(1− µ)t

∏t−1
s=0(1− ps)

.

Lemma 1 The belief χt is weakly increasing over time, χt+1 ≥ χt.

Hence, given that firms, which learn that the cost is high, never enter, “no

news is bad news” and firms become more pessimistic over time, assigning a higher

probability to the fact that the cost is high. In particular, given that χt ≥ χ0 = 1
2

for all t, an uninformed firm always believes that the cost is more likely to be high

than low.

3.3 Herding equilibrium

We first construct a simple symmetric Bayesian perfect equilibrium, which exists for

all parameter values. In this equilibrium, uninformed firms never enter, firms that
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learn the cost is low enter immediately, and are immediately followed by the other

firm. Formally,

Definition 1 (Herding equilibrium) In a herding equilibrium,

1. pt = 0 for all t

2. qt,s = 1 at s = t and qt,s = 0 for all t > s

3. ut = 1 for all t

Proposition 1 (Existence of the herding equilibrium) A herding equilibrium

exists for all parameter values.

Proposition 1 establishes the existence of a symmetric Bayesian perfect equi-

librium in the entry game. As shown in the proof of Proposition 1, this is the

only equilibrium of the game when uninformed firms do not enter. It results in an

expected payoff for the two firms of

Π =
µ(2− µ)Πd

2(1− δ(1− µ)2)
,

or, in the continuous time limit,

Π =
Πdλ

2λ+ r
.

4 Single-entry equilibrium

We continue the investigation of the Bayesian perfect equilibria of the entry game

by considering equilibria where uninformed firms enter at a single period t (or at

a single date τ in the continuous time limit). Fixing the period t, we first provide

the conditions for the existence of the equilibrium, and derive comparative statics

effects of changes in the parameters of the model on the single-entry equilibrium.

We later compare equilibria for different values of the entry period t.

In a single entry equilibrium at period t, pt > 0 and ps = 0 for all s 6= t. We

claim that this implies that ut = 0 for almost all values of the parameters of the

model. Suppose that ut > 0, then except for a measure zero set of parameters of
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the model, firm i strictly prefers to enter at date t and ut = 1. But then entry

by firm i would be immediately followed and the expected profit would be equal to

Πd−χtθ where the expected value of the cost satisfies χtθ ≥ θ
2
. Because Πd− θ

2
< 0

by Assumption 1, and because firm i can secure a payoff of 0 if it chooses never to

enter, we conclude that an uninformed firm i has an incentive to deviate, proving

that ut = 0.

Next observe that firm i, when it learns that the cost is low at some date s > t,

has no incentive to delay entry as entry will immediately be followed by the rival

firm. So qs,s = 1 and us = 1 for all s > t.

Consider now a period s < t. We first claim that if qt,s > 0 then qt,s
′
> 0 for all

s ≤ s′ ≤ t. Suppose by contradiction that qt,s
′
= 0. Then, firm i when it learns that

its cost is low at s′ enters at some period t′ 6= t where only informed firms enter,

and will be followed by their rival immediately. As firms have no incentive to delay

entry when they are followed immediately, qs
′,s′ = 1 and qt

′,s′ = 0 for all t′ > s′. But

this implies that the firm prefers to enter immediately after learning that the cost

is low, so Πd > δt−s
′
E(Πt) where E(Πt) is the expected profit of a firm, which has

learned that its cost is low given that the other firm is uninformed at time t. As

s′ ≥ s, we also have Πd > δt−sE(Πt), contradicting the fact that the firm waits with

positive probability until period t before entering. We conclude that there exists a

delay d ≤ t (possibly equal to 0) such that a firm that learns that the cost is low at

a period between t− d and t prefers to wait before entering, and all firms that learn

that the cost is low before t − d prefer to enter. As we have argued before, these

firms must enter immediately, and qs,s = 1 and us = 1 for all s < t − d. For any

t− d ≤ s ≤ t, except for a zero measure set of parameters, firm i strictly prefers to

wait and hide the cover of entry of uninformed firms at period t. Finally, we need to

specify the herding behavior of firm i off the equilibrium path, when the other firm

enters at some period t− d ≤ s < t. We specify off-equilibrium path beliefs so that

an uninformed firm prefers to follow immediately when it observes entry during the

delay, us = 1 for s = t− d, . . . , t− 1.

The previous discussion shows that in a single-entry equilibrium at period t,

generically, the following strategies are chosen:
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1. pt > 0, ps = 0 for all s 6= t,

2. qs,s = 1 for all s < t− d and s > t and qt,s = 1 for all t− d ≤ s ≤ t, and

3. us = 1 for all s 6= t and ut = 0.

We now derive conditions on the parameters under which a single-entry equilib-

rium at period t exists.

Entry of an uninformed firm We first consider the behavior of an uninformed

firm. Recall that Πd <
θ
2

and that χt ≥ 1
2

at any period t, so that we cannot

support an equilibrium where pt = 1. Hence 0 < pt < 1 and the uninformed firm

must be indifferent between entering and waiting at period t. For simplicity, we

drop the index t whenever it is not needed. We compute the expected profit of

an uninformed firm entering and waiting, conditional on the fact that no firm has

entered until period t as ΠE and ΠW . The expected profit from entry is given by

ΠE =
(1− µ)t−d − (1− µ)t

2
Πd +

1− (1− µ)t

2
(Πd + ∆− θ)

+ (1− µ)t
(
p(Πd −

θ

2
) + (1− p)(Πd + ∆− δµ

2(1− δ(1− µ))
∆− θ

2
)

)
.

We decompose the expected profit of entry as follows. With probability (1−µ)t−d−(1−µ)t

2
,

the rival firm has learned the entry cost is low between t− d and t and also enters,

giving a payoff of Πd. With probability 1−(1−µ)t

2
, the rival firm has learned that the

entry cost is high before τ and never enters, giving a payoff of Πm− θ = Πd + ∆− θ.

With probability (1− µ)t, the rival firm has not learned the cost until t and enters

with probability p and waits with probability 1−p. If the rival firm enters, the firm’s

payoff is Πd− θ
2
. If the rival firm does not enter and continues to experiment, then, if

the cost is low, the firm collects monopoly profits until the other firm learns the cost,

and duopoly profits thereafter. If the cost is high, the firm collects monopoly profits

with high entry cost. The expected payoff is given by Πd + ∆ − δµ
2(1−δ(1−µ))

∆ − θ
2
.

We next compute the expected profit from waiting,

ΠW =
(1− µ)t−d − (1− µ)t

2

δµ

1− δ(1− µ)
Πd

+ (1− µ)t
(
p

δµ

2(1− δ(1− µ))
Πd + (1− p) δ(1− (1− µ)2)

2(1− δ(1− µ)2)
Πd

)
.
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With probability (1−µ)t−d−(1−µ)t

2
, the rival firm has learned that the entry cost is

low between t− d and t and enters. In that case, the firm continues to experiment

until it eventually learns the cost is low and also enters, giving a payoff of δµ
1−δ(1−µ)

Πd.

With probability 1−(1−µ)t

2
, the rival firm has learned that the entry cost is high before

t and never enters. The firm continues to experiment until it eventually learns the

cost is high and drops, giving a profit of 0. With probability (1 − µ)t, the rival

firm has not learned the cost until t and enters with probability p and waits with

probability 1− p. If the rival firm enters, the firm continues to experiment until it

eventually learns the cost is low and also enters or until it eventually learns the entry

cost is high and drops from the race, yielding an expected payoff of δµ
2(1−δ(1−µ))

Πd.

If the rival firm does not enter, both firms continue experimenting and enter in the

period in which the first of them learns the entry cost is low or never enter, resulting

in an expected payoff of δ(1−(1−µ)2)
2(1−δ(1−µ)2)

Πd. For an uninformed firm to be indifferent

between entering or not, we must have ΠE = ΠW .

Taking the continuous time limit as the time interval approaches zero, and condi-

tioning on the fact that the firm has not learned the cost until period τ , this equality

results in

e−τλΠE =

(
eaλ − 1

)
2

Πd +
eτλ − 1

2
(Πd + ∆− θ) + p(Πd −

θ

2
) + (1− p)(Πd + ∆− λ

2(λ+ r)
∆− θ

2
)

=

(
eaλ − 1

)
2

λ

λ+ r
Πd + p

λ

2(λ+ r)
Πd + (1− p) λ

2λ+ r
Πd

= e−τλΠW .

This expression highlights the trade-off faced by an uninformed firm contem-

plating entry at date τ . By entering, the firm may discover that the cost is high,

and be locked in a situation where it is a monopoly on the market, and obtains a

negative discounted payoff of Πm < θ. This is the downside of entry when the firms

is uninformed, as by waiting the firm only enters when it learns that the cost is low,

and never faces the possibility of a negative discounted payoff. On the upside, if

the cost is low and the firm enters when its rival does not, it will collect monopoly

profits until the other firm learns that the cost is low. This benefit from entry will

be higher the lower the probability that the other firm enters when it is uninformed.
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Rearranging, we define the entry probability p as a function of the delay a,

p = f(a) = 1 +

1
2

(
eaλ − 1

)
r

λ+r
Πd + 1

2

(
eλτ − 1

)
(∆− θ + Πd) +

(
Πd − θ

2

)
− λΠd

2(λ+r)

λΠd
2(λ+r)

− λΠd
2λ+r

+ ∆(λ+2r)
2(λ+r)

.

Entry of an informed firm We next turn to the strategy of a firm that learns

that its cost is low at a period s < t. If the firm enters at any period different from

t, entry will be followed immediately, and the firm’s profit equal to ΠE = Πd. If the

firm waits t− s periods and enters at period t, it will collect an expected profit of

ΠW = δt−s(1−(1−µ)t−s)Πd+δ
t−s(1−µ)t−s

(
pΠd + (1− p)

(
Πd + ∆− δµ

1− δ(1− µ)
∆

))
With probability (1 − (1 − µ)t−s), the rival firm learns that the entry cost is low

between s and t and also enters yielding a profit Πd. With probability (1−µ)t−s, the

rival firm does not learn the entry cost between s and t. In this case, the rival firm

will enter with probability p and wait with probability 1−p. If the rival firm enters,

the firm’s payoff is Πd. If the rival firm does not enter and continues to experiment,

the firm collects monopoly profits until the rival eventually learns the entry cost is

low and enters, giving an expected payoff of Πd + ∆− δµ
1−δ(1−µ)

∆.

In equilibrium, we require that ΠE ≥ ΠW for s ≥ t − d and ΠE < ΠW for

s < t − d. In the continuous time limit, we define a to be the delay at which an

informed firm is exactly indifferent between entering and waiting,

ΠE = Πd

= e−raΠd + (1− p)e−rae−aλ r

λ+ r
∆

= ΠW .

The trade-off faced by an informed firm is simple: by waiting the firm benefits

from being a monopolist on the market until the other firm learns that the cost is

low. Waiting however entails a cost, as the firm will only be able to collect profits

at a later date. The value of waiting is higher the lower the probability that an

uninformed firm exits at date τ . Equating the payoff of entering and waiting, we

obtain an expression for the entry probability,

p = k(a) = 1− (1− e−ra) Πd

e−(λ+r)a r
λ+r

∆
.
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Herding decision by an uninformed firm We finally turn to the herding de-

cision of uninformed firms. In equilibrium, uninformed firms prefer not to follow an

entering firm at period t. By following suit, it obtains an expected payoff of

ΠE =
(1− µ)t−d − (1− µ)t

2
Πd + p(1− µ)t(Πd −

θ

2
).

With probability (1−µ)t−d−(1−µ)t

2
, the rival firm enters at t after having learned

that the entry cost is low between t−d and t, giving a payoff of Πd. With probability

p(1 − µ)t, the rival firm enters at t without learning the cost, giving an expected

payoff of Πd − θ
2
.

If instead the firm does not follow suit and waits, it obtains an expected payoff

of

ΠW =
(1− µ)t−d − (1− µ)t

2

δµ

1− δ(1− µ)
Πd + p(1− µ)t

δµ

2(1− δ(1− µ))
Πd.

With probability (1−µ)t−d−(1−µ)t

2
, the rival firm enters at t after having learned that

the cost is low between t− d and t. In that case, the firm continues to experiment

until it eventually learns the cost is low and also enters, giving a payoff of δµ
1−δ(1−µ)

Πd.

With probability p(1 − µ)t, the rival firm entered without being informed. In that

case, the firm continues to experiment until it eventually learns that the cost is low

and also enters or until it eventually learns that the entry cost is high and drops

from the race, giving an expected payoff of δµ
2(1−δ(1−µ))

Πd.

In the continuous time limit, conditioning on the fact that the firm is uninformed,

we obtain

e−τλΠE =

(
eaλ − 1

)
2

Πd + p(Πd −
θ

2
)

≤
(
eaλ − 1

)
2

λ

λ+ r
Πd + p

λ

2(λ+ r)
Πd

= e−τλΠW

If the firm follows a rival’s entry without being informed, it risks competing with

the rival when the entry cost is high. By waiting, the firm is guaranteed never to pay

the high entry cost. In order to assess whether it should herd or not, the firm must

take into account the composition of the pool of rivals who may have entered at date

τ . If the probability of entry of uninformed firms, p, is high, the pool will contain
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a large number of uninformed firms, making herding less profitable. Hence for the

equilibrium to exist, the entry probability must be sufficiently high. Formally, we

write the no-herding constraint as

p ≥ g(a) =

(
eaλ − 1

)
r

λ+r
Πd

θ − λ+2r
λ+r

Πd

.

Equilibrium We now summarize the conditions under which an equilibrium ex-

ists in the continuous time limit. Given a fixed date τ , an equilibrium is characterized

by a pair of delay and entry probability (a∗, p∗) such that

1. An uninformed firm is indifferent between entering and waiting at τ , f(a∗) = p∗

2. An informed firm prefers to enter before τ −a∗ and to wait between t−a∗ and

t, k(a∗) = p∗

3. An uninformed firm does not herd at τ : p∗ ≥ g(a∗)

4. The delay cannot be larger than the date: a∗ ≤ τ .

The last condition is an obvious feasibility condition: firms cannot wait longer

than the time which has elapsed before date τ . Taking into account this boundary

condition on the delay a∗, and the fact that f(·) is increasing in a and k(·) is

decreasing in a, two situations may arise:

1. Either the equilibrium is defined by a pair (a∗, p∗) which satisfies the three

conditions f(a∗) = p∗, k(a∗) = p∗ and p∗ ≥ g(a∗)

2. Or the equilibrium is given by (τ, p∗) where f(τ) = p∗, k(τ) > p∗ and p∗ ≥ g(τ).

The exact conditions on the parameters of the model guaranteeing existence of

an equilibrium are not easy to derive. Our first result provides a necessary condition

for existence of a single-entry equilibrium at any date τ .

Proposition 2 (Existence) If a single-entry equilibrium exists, the following con-

dition holds:

θ ≤ λ+ 2r

λ+ r
∆ +

2(λ+ r)

2λ+ r
Πd.
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The condition of Proposition 2 is the necessary and sufficient condition for the

existence of a single-entry equilibrium at date τ = 0. In this immediate entry

equilibrium, the two firms enter at date 0 with positive probability,

p = 1 +
Πd − θ

2
− λ

2(λ+r)
Πd

λ+2r
2(λ+r)

∆ + λ
2(λ+r)

Πd − λ
2λ+r

Πd

.

Given that θ ≤ λ+2r
λ+r

∆+ 2(λ+r)
2λ+r

Πd, the probability p is well-defined and belongs to

the interval (0, 1). At date 0, g(0) = 0, as only uninformed firms leave and, hence,

an uninformed firm has no incentive to herd at date 0. At any date τ > 0, the only

firms to enter are firms that learn that the cost is low. They have an incentive to

enter immediately and are immediately followed by uninformed firms.

Proposition 2 thus shows that if a single-entry at date τ exists, there must also

exist an immediate entry equilibrium. The intuition is easy to grasp: as time passes,

firms become more pessimistic – no news is bad news – and the value of entry goes

down. This in turn reduces the probability of entry that makes a firm indifferent

between entering or not. It also encourages informed firms to wait longer, resulting

over time in a lower probability of entry p∗ and a longer delay a∗.6 Recall that the last

condition of the equilibrium – the condition on the herding decision of an uninformed

firm – is independent of the date τ , but only requires the entry probability p∗ to be

sufficiently high. As time passes and p∗ becomes smaller, this condition is less likely

to be satisfied. Hence, if there exists a single-entry equilibrium at a date τ > 0,

there is also a single-entry equilibrium at date 0.

Our second result shows that, for any τ , the two equations defining the entry

probability and delay have a unique solution. Hence, if a single-entry equilibrium

exists at date τ , it must be unique.

Proposition 3 (Uniqueness) Suppose that an equilibrium with single entry at

date τ exists. Then the equilibrium (p∗, a∗) is unique.

Our third result deals with the effect of changes in the parameters Πd,∆ and θ

on the equilibrium values (p∗, a∗).

6In this intuitive interpretation, we focus attention on the case where a∗ < τ . We discuss the
case where a∗ ≥ τ in the proof of Proposition 2.

19



Proposition 4 (Comparative Statics) Suppose that an equilibrium with single-

entry at date τ exists. The following comparative statics hold for all values of the

parameters: (i) ∂a∗/∂θ ≥ 0, (ii) ∂p∗/∂θ < 0, (iii) ∂a∗/∂Πd ≤ 0, (iv) ∂p∗/∂Πd R 0,

(v) ∂a∗/∂∆ R 0, (vi) ∂p∗/∂∆ > 0.

A higher entry cost lowers the probability that makes an uninformed firm indif-

ferent between entering and waiting and has no effect on the decision of an informed

firm. Hence it results in a lower equilibrium entry probability and a higher equilib-

rium delay. An increase in the duopoly profit makes immediate entry more profitable

for an informed firm, and hence lowers the delay during which the firm is willing

to wait. It has ambiguous effects on the entry probabilities, as the value of entry

goes up both for the uninformed and informed firms, resulting in the first case in

a higher probability that makes the uninformed firm indifferent between entering

and waiting, and in the latter case in a lower probability that makes the informed

firm indifferent between entering and waiting. On the other hand, an increase in

the monopoly profit increases the value of waiting both for an uninformed firm and

for an informed firm. For an informed firm, the value of immediate entry does not

depend on the monopoly profit, so that an increase in the monopoly profit must

be matched by an increase in the entry probability of uninformed firms, to keep

the informed firm indifferent between entering and waiting. This increase will have

ambiguous effects on the equilibrium delay, as an increase in the entry probability

results in a higher delay to make an uninformed firm indifferent between entering

and waiting, and a lower delay to make an informed firm indifferent between entering

and waiting.

We next compare single-entry equilibria at different dates τ1 and τ2.

Proposition 5 (Comparison of equilibria across dates) Let (p∗1, a
∗
1) and (p∗2, a

∗
2)

be two single-entry equilibria at dates τ1 < τ2. Then p∗1 > p∗2.

Proposition 5 echoes Proposition 2 by showing that the entry probability p be-

comes smaller when time passes, as uninformed firms become more pessimistic. This,

in turn, lowers the fraction of uninformed firms in the pool of firms, which enter at

the specified entry date, making the existence of a single-entry equilibrium harder.

20



We now show that this implies that there is an upper bound on the date at which

entry of an uninformed firm can occur.

We now treat the date τ as an endogenous variable and consider the system of

three equations in three unknowns given by:

f(a, τ) = p,

g(a) = p,

k(a) = p.

We first argue that this system always has a unique solution satisfying 0 < p < 1,

a > 0 and τ > 0 if θ ≤ λ+2r
λ+r

∆ + 2(λ+r)
2λ+r

Πd. Notice first that g(·) is an increasing

function of a satisfying g(0) = 0 and lima→∞ = +∞ and k(·) is a decreasing function

satisfying k(0) = 1 and lima→∞ k(a) = −∞. This implies that (g − k)(·) is an

increasing function on (0,+∞) with g(0)−k(0) = −1 < 0 and lima→∞ g(a)−k(a) =

+∞, so there is a unique pair (p̂, â) such that p̂ = g(â) = k(â) with a > 0 and

0 < p < 1. Now, notice that limτ→−∞ f(â, τ) = −∞ and limτ→∞ f(â, τ) = +∞.

Hence, there is a unique value of τ (possibly negative) such that f(â, τ̂) = p̂. To

show that τ is positive suppose by contradiction that τ < 0. Because f(·) is strictly

decreasing in τ , this implies that f(a, 0) < 0. Because f is strictly increasing in

a and a > 0, f(0, 0) < f(a, 0) < 0. But if θ ≤ λ+2r
λ+r

∆ + 2(λ+r)
2λ+r

Πd, we must have

f(0, 0) ≥ 0, in contradiction to the previous statement.

We next show that there is no single-entry equilibrium at a date later than τ .

Proposition 6 (Latest entry date) There is no single-entry equilibrium at τ ≥

τ .

The solution (τ , a, p) to the system of equations corresponds to the latest date, for

which the single-entry equilibrium exists, τ , the corresponding equilibrium delay a

(assuming that a < t as otherwise the delay will be equal to τ) and the corresponding

entry probability of uninformed firms, p. For later entry dates, τ > τ , a single-

entry equilibrium does not exist. For τ > τ , all (a, p) pairs that satisfy the no-

herding constraint would violate the waiting constraint and (a, p) pairs that satisfy

the waiting constraint would violate the no-herding constraint.
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Example 1 Let us parametrize our model as follows. Πd = αΠm with α ∈ [0, 1
2
],

∆ = Πm − αΠm = (1− α)Πm, and θ = βΠm with β ∈ [1 + α, 2]. Then

f(a) = 1 +

1
2

(
eaλ − 1

)
r

λ+r
α + 1

2

(
eλτ − 1

)
(1− β) +

(
α− β

2

)
− λ

2(λ+r)
α

λ
2(λ+r)

α− λ
2λ+r

α + (λ+2r)
2(λ+r)

(1− α)

g(a) =

(
eaλ − 1

)
r

λ+r
α

β − λ+2r
λ+r

α

k(a) = 1− (1− e−ra)α
e−(λ+r)a r

λ+r
(1− α)

0 5 10 15 20
a0.0

0.2

0.4

0.6

0.8

1.0
F,G,K

0 5 10 15 20
a0.0

0.2

0.4

0.6

0.8

1.0
F,G,K

0 5 10 15 20
a0.0

0.2

0.4

0.6

0.8

1.0
F,G,K

0 5 10 15 20
a0.0

0.2

0.4

0.6

0.8

1.0
F,G,K

Figure 1: Blue: f(a) entry probability; Green: k(a) waiting constraint; Orange:
g(a) no-copy constraint. Parameters: α = 0.2, β = 1.4, r = 0.5, λ = 0.1. Top left:
τ = 1, top right: τ = 3, bottom left: τ = 6.81604, bottom right: τ = 7.5

For α = 0.2, β = 1.4, r = 0.5, λ = 0.1, we find that the latest equilibrium

entry date for uninformed firms is τ = 6.81604, the corresponding equilibrium delay

is given by a = 2.49351 and the entry probability is given by p = 0.0456762. Any

earlier entry date also corresponds to a single-entry date equilibrium. For example,

τ = 3 corresponds to one, in which a∗ = 2.2537 and p∗ = 0.216038. Similarly,

τ = 1 corresponds to one, in which a = τ = 1 and p∗∗ = 0.266821. In this case,

the intersection of the k(a) and f(a) would have led to an inadmissible delay of
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a∗ = 2.14959 > τ = 1. For τ = 7.5 > τ , the single-entry equilibrium does not exist.

Figure 1 illustrates these four cases.

5 Multiple-entry equilibrium

We now study equilibria, in which uninformed firms enter at a finite number of

periods, t1, t2, . . . , tM . As in a single-entry equilibrium, for entry to be profitable it

must be that the rival firm does not herd, that is, ut = 0 for all t ∈ {t1, . . . , tM}.

An informed firm may delay entry for dm periods before the fixed entry date tm,

qs,s = 1 if s /∈ {tm − dm, . . . , tm − 1} for any m and, if s ∈ {tm − dm, . . . , tm − 1},

qtm,s = 1. Hence a multiple entry equilibrium at periods t1, . . . , tM is characterized

by entry probabilities p1, . . . , pM and delays d1, . . . , dM for each of the entry dates.

We now argue that the entry strategy an informed firm and the herding strategy

of an uninformed firm are identical in a multiple-entry equilibrium and in a single-

entry equilibrium. Fix a period tm. By entering immediately after learning that the

cost is low at s between tm−1 and tm, the firm obtains Πd. If the firm waits until

tm to enter, its entry will not be followed: it will either obtain Πd with probability

pm or, with probability 1 − pm, the rival firm will wait until it learns that the cost

is low before entering. The condition stating that the informed firm prefers to wait

or enter at date tm only depends on the entry probability pm and the delay between

s and tm, as in the case of a single-entry equilibrium. In other words, the function

defining the delay, k(a), remains the same as in the single-entry equilibrium.

Consider the herding strategy of an uninformed firm. By herding at period tm.2,

it obtains Πd if the other firm has learned that the cost is low during the delay

dm and Πd − τ
2

is the rival firm has entered at tm uninformed. By waiting, it will

obtain a duopoly profit when and if it learns that its cost is low, a payoff which only

depends on pm. Hence the herding strategy of the uninformed firm only depends on

the entry probability pm and the delay dm, as in the single-entry equilibrium. The

function defining the entry parameter for which herding occurs, g(a), remains the

same as in the single-entry equilibrium.

By contrast, the entry decision of the uninformed firm at tm, pm, is not the same

in a single-entry equilibrium and in a multiple-entry equilibrium. In a multiple-
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entry equilibrium, the entry of uninformed firms before tm affects the conditional

probability that the rival firm has learned the cost is high. The entry of uninformed

firms after tm affects the expected payoff of an uninformed firm when it decides to

wait as the other firm is also uninformed and does not enter. Hence, the function

defining the entry probability at period tm, fm(a), depends on the entry probabilities

p1, . . . , pm−1 and pm+1, . . . , pM .

Multiple-entry vs. single-entry equilibrium We start by analyzing the entry

probability at the last entry period tM . We introduce some notation on the belief

of firm i on the signal received by firm j. Let ξ(0) be the probability the rival firm

has learned the cost is low between tM − dM and tM , ξ(θ) be the probability the

rival firm has learned the cost is high and ξ(θ̂) the probability the rival firm remains

uninformed at tM . By entering at period tM , the firm obtains an expected profit

ΠE = ξ(0)Πd + ξ(θ)(Πd + ∆− θ)

+ ξ(θ̂)

(
p

(
Πd −

θ

2

)
+ (1− p)

(
Πd + ∆− δµ

2(1− δ(1− µ))
∆− θ

2

))
.

After tM , if both firms are uninformed and wait, they only enter when one of

them discovers that the cost is low as in the single-entry equilibrium. Hence the

expected profit when waiting as in the single-entry case is given by

ΠW = ξ(0)
δµ

1− δ(1− µ)
Πd+ξ(θ̂)

(
p

δµ

2(1− δ(1− µ))
Πd + (1− p) δ(1− (1− µ)2)

2(1− δ(1− µ)2)
Πd

)
.

For an uninformed firm i to be indifferent between entering and waiting, we need

ΠE = ΠW . Taking the continuous time limit and conditioning on the fact that the

rival firm has not entered before τM − aM , this equality results in

ξ(0)Πd+ξ(θ)(Πd+∆−θ)+ξ(θ̂)
(
p

(
Πd −

θ

2

)
+ (1− p)

(
Πd + ∆− λ

2(λ+ r)
∆− θ

2

))
= ξ(0)

λ

λ+ r
Πd + ξ(θ̂)

(
p

λ

2(λ+ r)
Πd + (1− p) λ

2λ+ r
Πd

)
,

yielding an entry probability

pM = fM(a) = 1 +
− ξ(0)

ξ(θ̂)

r
λ+r

Πd + ξ(θ)

ξ(θ̂)
(∆− θ + Πd) +

(
Πd − θ

2

)
− λΠd

2(λ+r)

λΠd
2(λ+r)

− λΠd
2λ+r

+ ∆(λ+2r)
2(λ+r)

.
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Now, we compute

ξ(0) =
1

2

M−1∏
m=1

(1− pm)(e−(τm−am)λ − e−τmλ),

ξ(θ) =
1

2
(1− e−τmλ

M−1∏
m=1

(1− pm))

ξ(θ̂) =
M−1∏
m=1

(1− pm)e−τmλ.

Notice that
ξ(0)

ξ(θ̂)
=

1− e−amλ

2e−amλ
,

is independent of the entry probabilities p1, . . . , pM−1 and of the date τm, while

ξ(θ)

ξ(θ̂)
=

1− e−τmλ
∏M−1

m=1 (1− pm)

2
∏M−1

m=1 (1− pm)e−τmλ

is increasing in each of the values p1, . . . , pM−1 and in the date τm. As more unin-

formed agents enter before date τM , the conditional probability a firm has learned the

cost is high, given it has not yet entered goes up. Hence firms are more pessimistic

in a multi-entry equilibrium with last date τM than in a single-entry equilibrium

at any date τ < τM . We use this insight to provide a necessary condition for the

existence of a multi-entry equilibrium.

Proposition 7 (Existence) If a multiple-entry equilibrium with last entry date τM

exists, then there exists a single-entry equilibrium at date τM − τM−1.

Proposition 7 shows that the range of parameters for which multiple-entry equi-

libria exist is a subset of the set of parameters for which a single-entry equilibrium

exists. Hence it is harder to support multiple-entry equilibria than single-entry equi-

libria, and more stringent conditions are needed to guarantee the existence of these

equilibria. This result also shows that there exists a last-entry date in a multiple-

entry equilibrium, which is at most equal to M times the last-entry date of the

single-entry equilibrium.

Interestingly, the existence of a multiple-entry equilibria with last entry date τM

does not guarantee the existence of a single-entry equilibrium at that date, but at

the earlier date τM−τM−1. Given that, as stated in Proposition 5, entry probabilities
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in a single-entry equilibrium are decreasing over time, the existence of a single-entry

equilibrium at date τM−τM−1 does not imply existence of a single-entry equilibrium

at date τM . The reason why existence of a multiple-entry equilibrium with last entry

date τM only guarantees existence of a single entry equilibrium at date τM − τM−1 is

as follows. Suppose that the delay in the multiple-entry equilibrium is constrained by

the difference between two consecutive entry dates and is exactly equal to τM−τM−1.

Then the number of informed firms entering between τM−τM−1 is bounded, relaxing

the constraint that an uninformed firm does not want to follow entry at date τM .

This implies that the no-herding constraint may be easier to satisfy in a multiple-

entry equilibrium at date τM than in a single-entry at date τM because multiple

entries put a constraint on the delay τM − τM−1. If one considers instead a single-

entry equilibrium at date τM − τM−1 rather than date τM , the constraint on the

delay induced by the entry date is identical in the multiple-entry and single-entry

equilibrium, making this effect disappear.

Uniqueness of multiple-entry equilibria Proposition 3 shows that, for a fixed

entry date τ , the single-entry equilibrium, if it exists, is unique. We now extend this

result to multiple-entry equilibria, fixing the entry dates t1, . . . , tM . Uniqueness of

equilibrium is harder to prove because the entry probability at period tm given by

pm = fm(am) is a function of the entry probabilities at all other entry dates, creating

an inter-dependence between the different entry probabilities which could result in

multiplicity of equilibria. To analyze the problem further, we compute the entry

probability pm at an arbitrary period tm < tM . We observe that, because uninformed

firms will be indifferent between and waiting at further periods tm+1, . . . , tM when no

firm has entered, we can compute the continuation value of a firm waiting at period

tm assuming that it will exit with probability 1 at period tm+1. Using this observation

and the algebraic derivations contained in an Online Appendix, we compute the

entry probability at period tm as:

pm = fm(a) = 1−
Πd − θ

2
− Πdλ

2(λ+r)
− ξ(0)

ξ(θ̂)
Πd

r
λ+r
− ξ(θ)

ξ(θ̂)
(Πd + ∆− θ)(1− e−(λ+r)(τm+1−τm))

Πdλ
2(λ+r)

+ ∆(2r+λ)
2(λ+r)

− A(pm+1)
.

where
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A(pm+1) ≡ 1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)

(
Πd +

∆r

λ+ r
(1− pm+1)e−am+1λ)

)
+e−(r+λ)(τm+1−τm)

[
e−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2
Πd +

(1− e−λ(τm+1−τm))

2
(Πd + ∆− θ)

+e−λ(τm+1−τm)

(
Πd + (1− pm+1)

(2r + λ)∆

2(λ+ r)
− θ

2

)]
.

We need an additional Assumption to verify that the probability fm(a) is well-

defined. As we prove in Proposition 8, if 2r+λ
λ+r

∆ < θ, the equilibrium entry probabil-

ity belongs to the interval (0, 1) and fm(·) is decreasing in p1, . . . , pm−1 and increasing

in pm+1. We use this fact to prove uniqueness of the equilibrium for a sequence of

entry dates t1, . . . , tM .

Proposition 8 (Uniqueness) Suppose that 2r+λ
λ+r

∆ < θ and that an equilibrium

with multiple entry at dates τ1, . . . , τM exists. Then the equilibrium entry probabili-

ties and delays (p∗1, a
∗
1, . . . , p

∗
M , a

∗
M) are unique.

Comparison of entry probabilities We complete the investigation of multiple-

entry equilibria by comparing the entry probabilities p1, . . . , pM at the different entry

dates τ1, . . . , τM when the difference between two successive dates, Dτ , is constant.

Consider again the expected profit of an uninformed firm when it waits at date

τm with m < M . Because the firm is indifferent between entering and waiting

at any later date, we can compute the continuation payoff assuming that the firm

waits at every date τm+1, . . . , τM , leading to an alternative formulation of the entry

probability

pm = fm(a) = 1−
Πd − θ

2
− Πdλ

2(λ+r)
− ξ(0)

ξ(θ̂)
Πd

r
λ+r
− ξ(θ)

ξ(θ̂)
(Πd + ∆− θ)

Πdλ
2(λ+r)

+ ∆(2r+λ)
2(λ+r)

−Wm+1

.

where the continuation value Wm is given by the recursive formula
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Wm =
1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)

(
Πd +

∆r

λ+ r
(1− pm+1)e−am+1λ)

)
+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)Πd

λ

λ+ r
e−am+1λ

+ e−λ(τm+1−τm)

(
pm+1

πdλ

2(λ+ r)
+ (1− pm+1)Wm+1

)
with terminal condition at the last entry date:

WM+1 =
2λ

2λ+ r
Πd.

As we have already argued, ξ(θ)

ξ(θ̂)
increases over time, and for a fixed equilibrium,

is higher at date τm+1 than at date τm. As pm is decreasing in ξ(θ)

ξ(θ̂)
, this effect

suggests, as in Proposition 7, that entry probabilities should be lower at later dates.

However, when one considers entry at dates τm which are not the last entry dates,

a second effect arises, as the continuation value Wm+1 also depends on the date

τm. It is easy to check that the entry probability pm is decreasing in Wm+1. If

the continuation value goes up, the expected profit of waiting also goes up, and the

probability that makes the uninformed firm indifferent between entering and waiting

must go down. Hence, a sufficient condition for the equilibrium entry probabilities

pm to decrease over time is that the continuation value Wm be increasing over time.

We now show that if the difference between two successive entry dates is sufficiently

small, the continuation value increases over time, and the entry probability thus

decreases over time.

Proposition 9 There exists an upper bound Dτ such that, if Dτ < Dτ , the equilib-

rium continuation values are increasing over time, Wm+1 > Wm and the equilibrium

entry probabilities are decreasing over time, pm > pm+1.

Proposition 9 shows that, when the difference between entry dates is sufficiently

small, the continuation value is increasing over time, implying that equilibrium entry

probabilities are smaller for more distant entry dates. The proof relies on the fact

that the interval between two consecutive dates is small, so that, at any date τm,
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the expected profit earned during the next time interval Dτ is small with respect

to the continuation value at τm+1. The continuation value at τm+1 is computed

taking account of two possibilities. If the rival firm enters as an uninformed firm

(with probability pm+1), the firm will only obtain the expected profit of a firm

drawing the signal alone λ
2(λ+r)

, which is the lowest possible continuation payoff. If

instead the rival firm does not enter (with probability 1−pm+1), the firm will collect

the expected continuation payoff Wm+1. At the terminal date, WM+1 = λ
2λ+r

, a

continuation value which is higher than λ
2(λ+r)

, so that the continuation value must

be lower at M than at M + 1. This in turn implies that the entry probability is

higher at date τM−1 than at date τM . An inductive argument then shows that the

continuation value must be lower at m than at m + 1, and the entry probabilities

higher at m than at m+ 1.

6 Interpretation and robustness

Comparison of equilibria The preceding analysis shows that multiple equilibria

may exist in the game. How are equilibria ranked from the point of view of the two

symmetric firms ex ante, before any information is revealed?

In the no-entry equilibrium, the expected payoff in period 0 is given by

Π =
λΠd

2λ+ r
.

Consider a single-entry equilibrium at date τ . The expected payoff in period 0 is

given by

Π = (1− e−(2λ+r)(τ−a))
λ

2λ+ r
Πd

+
e−2λ(τ−a)

2
(1− e−aλ)e−rτ

(
Πd +

∆r

λ+ r
(1− pe−aλ)

)
+e−(r+λ)τ e

−λ(τ−a) − e−λτ

2
Πd

λ

λ+ r
+e−(r+2λ)τ

(
pm+1

πdλ

2(λ+ r)
+ (1− pm+1)

λ

2λ+ r
Πd

)
We compare the two expected profits. In the single-entry equilibrium the firm

benefits from a period in which it collects monopoly profits (when it learns that the

cost is low, enters at τ and is not followed by the rival firm). It also suffers from

the fact that it will be the only firm drawing signals (thereby delaying the date at
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which it starts collecting duopoly profits) when the firm remains uninformed while

the rival firm enters at date τ , and the entry cost is low. The trade-off between

these two effects depends on the parameters. If the monopoly surplus ∆ is high (for

example if firms compete in prices à la Bertrand with identical marginal costs), the

single-entry equilibrium dominates the no-entry equilibrium. If the entry date τ is

small, as in Proposition 9, the expected profit is higher in the no-entry equilibrium

than in the single-entry equilibrium because the firm is unlikely to learn the value

of the cost before the entry date. However, in general, the comparison between the

two profits is ambiguous and the two equilibria cannot be ranked.

Common values and private values We have assumed that the two firms face

the same entry cost. In a previous study, Bloch et al. (2015), we analyzed the case

of private values where the entry costs of the two firms are independently drawn

from the same distribution. The differences between the two models are striking.

First, the evolution of beliefs leads to opposite conclusions in the two models.

As time passes, as shown in Lemma 1, the firm believes with higher probability that

the rival firm has learned that the cost is high. In the common values model, this

makes the firm more pessimistic and less likely to enter. In the private values model,

if the rival firm learns that its cost is high, the firm is more optimistic as it becomes

more likely that it will be a monopolist. Hence, firms become more pessimistic over

time, and are less likely to enter when uninformed in the common values model, but

become more optimistic over time and are more likely to enter when uninformed

in the private values model. In fact, in the common values model, as shown in

Proposition 2, if an equilibrium with single entry at date τ exists, there must also

be an equilibrium with immediate entry. In the private values model, as shown in

Bloch et al. (2015), preemption arises at a unique date τ at which one of the two

uninformed firms enters with probability one.

Second, entry by an informed firm in the common values model is immediately

followed by the other firm, whereas entry in the private values model, as shown in

Bloch et al. (2015), leads the other firm to wait until it learns its cost before entering.

Hence for a firm that learns that the cost is low, entry has a negative impact on
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the behavior of the rival firm in the common values model but a positive impact

in the private values model. In the private values model, the informed firm has no

incentive to delay entry whereas in the common values model, the informed firm

may want to delay entry in order to hide under the cover of the entry of uninformed

firms at a specified date τ .

Game in continuous time We model the interaction between the two firms

in discrete time, but then consider the continuous time limit because closed form

expressions are easier to handle. We find the discrete time formulation more sensible

in the entry game because uninformed firms coordinate on a specific entry period,

and it is easier to coordinate on a fixed, discrete period than in a date in continuous

time. Nonetheless, we could have alternatively modeled the entry game in continuous

time and obtained the same formulae for equilibrium entry probabilities and delays.

Consider a closed interval [0, T ] and suppose that time is continuous, τ ∈ [0, T ].

In order to specify outcomes of the game in continuous time, assume, as in Perry

and Reny (1993, 1994), there is an exogenous delay between any two actions of the

players. More specifically, suppose that if pt > 0 then pτ = 0 for all τ ∈ (t, t + ν)

; if qt,s > 0 then qτ,s = 0 for all τ ∈ (t, t + ν) and if rt > 0 then rτ = 0 for all

τ ∈ (t, t+ ν). Under this assumption, and the fact that there exists a final date T ,

the game is well specified. Every firm will only enter at a finite number of dates, and

we can compute equilibrium entry probabilities and delays directly in the continuous

time formulation, instead of analyzing the continuous time limit of a discrete time

game.

Alternative timing In the model we consider, a rival has the opportunity to fol-

low a firm’s entry in the same period. Alternatively, we could consider a model where

the rival has to wait until the next period before entering. Instead of computing the

probability of rival entry at period t, we would need to compute the probability of

entry of an uninformed firm at period t+ 1 after a history where the rival firm has

entered at period t. We claim that the model is equivalent. Assuming that the delay

between periods is small, as we do in the continuous time limit, the incentive of an

uninformed firm to follow at period t or at period t + 1 will be identical, resulting
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in the same equilibrium characterization.

Imperfect signals We suppose that the signals received by the firms are perfectly

informative. If the signals were noisy, the beliefs would evolve in a continuous way,

and we would need to study a firm’s strategy, not as a function of three possible

states (cost is low, high or uninformed), but as a function of a continuous belief

on the value of the cost. This would clearly complicate the analysis of the game,

but we conjecture that it would be possible to define threshold beliefs (where the

thresholds vary over time) such that firms choose to enter whenever their belief that

the cost is high falls below the threshold. We expect the analysis of single-entry

and multiple-entry equilibria could be extended, assuming that firms, whose beliefs

belong to an intermediate range, coordinate on entry at fixed dates. The full study

of the model with imperfect signals remains to be done.

7 Conclusion

We model the interplay of experimentation and entry decisions into a new market

with uncertain common entry costs. Two firms gradually learn about a binary entry

cost and decide whether to enter. We show that an equilibrium where firms enter

immediately when they learn that the cost is low and are immediately followed

always exist. Under certain restrictions on the parameters, we also show existence

of equilibria where uninformed firms coordinate to enter at specific entry dates with

positive probability. They are not followed by the rival firm. Firms that learn that

the cost is low delay to hide under the cover of the entry of uninformed firms. We

show that these equilibria are more likely to exist when the entry date is closer to

zero, that they are unique given the fixed entry date and that the probability of entry

is decreasing over time. We also investigate equilibria where uninformed firms enter

a finite number of times, show that a multiple-entry equilibrium exists if a single-

entry equilibrium exists, that given a distribution of fixed entry dates, equilibrium

is unique when it exists, and that equilibrium probabilities are decreasing over time

when the interval between two successive entries is sufficiently small.

The entry game we consider gives rise to a rich set of equilibria. The equilib-
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rium analysis relies on some simplifying assumptions: the entry cost can only take

two values, firms do not control the level of experimentation, and all signals are

perfect. While these simplifying assumptions proved useful to get our first insights

into the entry game, we believe they could be relaxed in future work to improve our

understanding of dynamic duopoly competition with gradual learning.

Appendix

A Proofs

Proof of Proposition 1. Informed firms: Given that entry will be followed

immediately in each period, delaying is not profitable for informed firms (Πd > δΠd).

Hence qt,s = 1 if and only if s = t.

Uninformed firms: Given that only informed firms enter, delaying to follow

entry by another firm is not profitable (Πd > δΠd) so ut = 1. Given that entry is

followed immediately (ut = 1), entry by uninformed firms is not profitable. Entering

gives an expected profit of Π = Πd − θ
2
< 0, whereas waiting gives a positive value,

equal to Πd
2

(µ+ (1−µ)µ(2−µ)δ
2(1−δ(1−µ)2)

) > 0.

Proof of Lemma 1. Note that we can write the difference in beliefs that the cost

is high and low as

χt − (1− χt) =

∑t−1
s=0 µ(1− µ)s(1−

∏t−1
s′=s(1− qs

′,s))

1−
∑t−1

s=0 µ(1− µ)s
∑t−1

s′=s q
s′,s
∏s′−1

s′′=s(1− qs
′′,s)

.

The denominator is the probability that no firm has entered until t, which is de-

creasing in t. The numerator is the difference between the probability that the firm

has learned that the cost was high and the probability that the firm has learned

that the cost is low, conditional on the fact that the firm has not entered until t.

This difference is increasing in t. Hence 2χt− 1 is increasing in t, implying that the

common belief χt is also increasing in t.

Proof of Proposition 2. Suppose that the condition fails,

θ >
λ+ 2r

λ+ r
∆ +

2(λ+ r)

2λ+ r
Πd.
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We first observe that

λ+ 2r

λ+ r
∆ +

2(λ+ r)

2λ+ r
Πd = ∆ +

r

λ+ r
∆ + Πd +

r

2λ+ r
Πd

> ∆ + Πd + Πd
r(3λ+ r)

(λ+ r)(2λ+ r)
,

> ∆ + Πd + Πd
r

λ+ r
.

Now, consider the entry probability when a = τ : informed firms have been

waiting to enter since the beginning of the game. This entry probability satisfies

p = φ(τ) = 1 +

1
2

(
eτλ − 1

)
r

λ+r
Πd + 1

2

(
eλτ − 1

)
(∆− θ + Πd) +

(
Πd − θ

2

)
− λΠd

2(λ+r)

λΠd
2(λ+r)

− λΠd
2λ+r

+ ∆(λ+2r)
2(λ+r)

.

It is easy to check that the sign of φ′(a) is the same as the sign of

∆− θ + Πd +
r

λ+ r
Πd,

which as we shown is negative. Hence φ(0) > φ(τ) for all τ > 0. Now, suppose by

contradiction that there exists an equilibrium at date τ with delay a ≤ τ . Because

f(·) is increasing in a, f(a) ≤ f(τ) = φ(τ) < φ(0) = f(0). Because the condition

for rival herding does not depend on the date τ and is increasing in a, g(a) > g(0).

Hence we obtain

f(0) > f(a) ≥ g(a) > g(0) = 0,

or

f(0) = 1 +
Πd − θ

2
− λ

2(λ+r)
Πd

λ+2r
2(λ+r)

∆ + λ
2(λ+r)

Πd − λ
2λ+r

Πd

> 0,

in contradiction to the fact that

θ >
λ+ 2r

λ+ r
∆ +

2(λ+ r)

2λ+ r
Πd.

This completes the proof of the Proposition.

Proof of Proposition 3. Define â to solve f(â) = k(â) and assume first f(â) =

k(â) ≥ g(â). Because f(a) is a strictly increasing continuous function and k(a) is a

strictly decreasing continuous function, then if it exists, â is unique. Then if â < τ ,

there is a unique equilibrium delay and entry probability, (a∗, p∗), such that a∗ = â

and p∗ = f(â). If â ≥ τ , the boundary condition constrains the solution. The
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equilibrium delay and entry probability pair is given by (a∗, p∗) = (τ, f(τ)) which is

of course unique.

Proof of Proposition 4. We consider the set of parameters for which â 6= τ .

Suppose first that â < τ so that the equilibrium satisfies a∗ < τ and consider

variations of the parameters which are sufficiently small so that a∗ remains bounded

away from τ . Three equilibrium value of the delay a∗ is given by the solution to

f(a)− k(a) = 0.

To compute the comparative statics effects of a change in any parameter y of

the model, we compute

∂a∗

∂y
= −

∂f
∂y
− ∂k

∂y

∂f
∂a
− ∂k

∂a

.

As ∂f
∂a
− ∂k

∂a
> 0, the sign of ∂a∗

∂y
is the negative of the sign of ∂f

∂y
− ∂k

∂y
.

We now use implicit differentiation of the functions f(a) and k(a) to obtain the

following comparative statics results:

Claim 1 Suppose that 0 < f(a; Πd, r, λ,∆, θ, τ) < 1. Then ∂f/∂a > 0, ∂f/∂Πd >

0, ∂f/∂r > 0, ∂f/∂∆ > 0, ∂f/∂θ < 0, ∂f/∂τ < 0 and ∂f/∂λ R 0.

Claim 2 Suppose that 0 < k(a; Πd, r, λ,∆, θ, τ) < 1. Then ∂k/∂a < 0, ∂k/∂Πd < 0,

∂k/∂r R 0, ∂k/∂λ < 0, ∂k/∂∆ > 0, ∂k/∂θ = 0, ∂k/∂τ = 0.

Using Claims 1 and 2, ∂f
∂θ

< 0 and ∂k
∂θ

= 0. Hence ∂a∗

∂θ
> 0. Because the k(·)

function does not depend on θ, and is decreasing we conclude that p∗ = k(a∗) is

decreasing in θ. We also have ∂f
∂Πd

> 0 and ∂k
∂Πd

< 0, so that ∂a∗

∂Πd
< 0. The effect

of a change in Πd on p∗ is indeterminate. Next, using the fact that f(·) and k(·)

are strictly monotonic, let a = f−1(p) = k−1(p). Now if p − f(a, y) = 0, we have

∂a
∂y

= −
∂f
∂y
∂f
∂a

. Hence, as f is strictly increasing ∂f−1

∂y
has the opposite sign of ∂f

∂y
,

whereas because k is strictly decreasing, the sign of ∂k−1

∂y
is the same as the sign of

∂f
∂y

. We deduce that ∂f−1

∂∆
< 0 and ∂k−1

∂∆
> 0, establishing that ∂p∗

∂∆
> 0.

Next suppose that â > τ so that the equilibrium is given by a∗ = τ, p∗ = f(τ).

Then, a∗ is independent of the parameters and an increase in θ results in a decrease

in p∗ whereas an increase in ∆ results in an increase in p∗.

35



Proof of Proposition 5. Suppose first that â1 > τ1 so that a∗1 = τ1. Then, if

a∗2 = τ2, we have p∗1 = φ(τ1) > p∗2 = φ(τ2) as φ, as defined in the proof of Proposition

2, is a decreasing function when the equilibrium exists. Finally, let a∗1 = τ1 and

a∗2 < τ2. Then p∗2 < φ(τ2) < φ(τ1) = p∗1.

Suppose next that â1 < τ1 so that a∗1 < τ1 and k(a∗1) = p∗1. Suppose by con-

tradiction that p∗2 ≥ p∗1. Then as (p∗2, a
∗
2) is an equilibrium, k(a∗2) ≥ p∗2. Hence

k(a∗2) ≥ p∗2 ≥ p∗1 = k(a∗1). Furthermore, as k(·) is strictly decreasing in a, this im-

plies that a∗1 ≥ a∗2. Now recall that f(·) is strictly increasing in a and decreasing

in τ . Hence, p∗1 = f(a∗1, τ1) > f(a∗2, τ2) = p∗2, contradicting the original assumption

p∗2 ≥ p∗1.

Proof of Proposition 6. We first prove the following Claim:

Claim 3 Suppose that θ ≤ λ+2r
λ+r

∆ + 2(λ+r)
2λ+r

Πd. Then f(a)− g(a) is decreasing in a.

Proof of the Claim: The sign of f(a)− g(a) is the same as the sign of

1
λΠd

2(λ+r)
− λΠd

2λ+r
+ ∆(λ+2r)

2(λ+r)

− a

θ − λ+2r
λ+r

Πd

.

A straightforward computation shows that this sign is the same as the sign of

θ − λ+ 2r

λ+ r
∆− 2(λ+ r)

2λ+ r
Πd.

This completes the proof of the claim.

Suppose that τ > 0. Then if a ≤ τ , there is an equilibrium with p∗ = p, a∗ = a.

If a > τ , then by the preceding claim, f(τ) − g(τ) > f(a) − g(a) = 0. So p∗ =

f(τ) > g(t) and p∗ = f(τ), a∗ = τ form an equilibrium.

Now, suppose by contradiction that there exists an equilibrium at τ > τ , denoted

(p∗∗, a∗∗). By Proposition 5, p∗∗ < p∗. We now claim that a∗∗ > a. Suppose by

contradiction that a∗∗ ≤ a. Then, necessarily a∗∗ < τ so p∗∗ = k(a∗∗). But we then

have k(a) ≥ p∗ > p∗∗ = k(a∗∗), where the first inequality is due to the fact that

k(a) = p∗ if a < τ and p∗ = k(τ) > k(a) if a > τ , the second inequality from the

statement that p∗ > p∗∗ and the last equality due to the fact that a∗∗ < τ . Because

k(·) is strictly decreasing, we obtain a∗∗ > a, contradicting the initial assumption.

Now if a∗∗ > a, we have g(a∗∗) > g(a) = k(a) ≥ p∗ > p∗∗, where the first

inequality is due to the fact that g(·) is increasing, the equality by the definition

36



of a, the next inequality because k(a) ≥ p∗ at the equilibrium (p∗, a∗) and the last

inequality by Proposition 5. But notice that g(a∗∗) > p∗∗ contradicts the fact that

(p∗∗, a∗∗) is an equilibrium of the game at τ .

Proof of Proposition 7. We first show that fM(a) > f(a) for all a. To this

end, it suffices to observe that the fraction ξ(θ)
ξ(θ̂)

is always higher in the multiple-entry

equilibrium than in the single-entry equilibrium.

Let (a∗M , p
∗
M) be the equilibrium delay and entry probability in the multi-entry

equilibrium. If a∗M < τM − τM−1, then g(a∗M) ≤ p∗M = fM(a∗M) = k(a∗M). Now

given that the single-entry probability satisfies f(a) ≥ fM(a) for all a, f(a)−k(a) ≥

fM(a)−k(a) for all a. Since f(a) and fM(a) are increasing in a and k(a) is decreasing

in a, there is a unique point a∗∗ such that f(a∗∗) − k(a∗∗) = 0, which must satisfy

a∗∗ < a∗M < τM − τM−1. Now notice that p∗∗ = k(a∗∗) > k(a∗M) = p∗M ≥ g(a∗M) >

g(a∗∗), so that (a∗∗, p∗∗) is a single-entry equilibrium at date τM − τM−1.

Next suppose that a∗M = τM − τM−1, so that g(τM − τM−1) ≤ p∗M = fM(τM −

τM−1) ≤ k(τM − τM−1). Let a∗∗ be the unique delay such that f(a∗∗) − k(a∗∗) =

0. Ifa∗∗ < τM − τM−1 = a∗M , by the Claim of Proposition 6, f(a∗∗) − g(a∗∗) >

f(a∗M) − g(a∗M). And hence f(a∗∗) − g(a∗∗) > f(τM − τM−1) − g(τM − τM−1) >

fM(τM − τM−1)− g(τM − τM−1) ≥ 0, where the second inequality is due to the fact

that f(a) > fM(a) for all a, and the last inequality to the assumption that the

multiple-entry equilibrium exists. Hence we conclude that (a∗∗, p∗∗) is a single-entry

equilibrium at date τM −τM−1. Finally, if a∗∗ ≥ τM −τM−1 then let a∗∗ = τM −τM−1

and p∗∗ = f(τM − τM−1) > fM(τM − τM−1) ≥ g(τM − τM−1). Again, we obtain that

(a∗∗, p∗∗) is a single-entry equilibrium at date τM − τM−1.

Proof of Proposition 8.

We first observe that A(pm+1) is a decreasing function of pm+1 and compute

A(0) =
1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)(Πd +

∆r

λ+ r
e−am+1λ)

+e−(r+λ)(τm+1−τm)

[
e−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2
Πd +

(1− e−λ(τm+1−τm))

2
(Πd + ∆− θ)

+e−λ(τm+1−τm)

(
Πd +

(2r + λ)∆

2(λ+ r)
− θ

2

)]
.
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Now, as

e−λ(τm+1−am+1−τm)(1− e−am+1λ) < 1− e−λ(τm+1−τm),

A(0) < Πd

(
1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r

+e−(r+λ)(τm+1−τm) e
−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2

)
+

(
Πd +

(2r + λ)∆

2(λ+ r)
− θ

2

)(
e−(r+2λ)(τm+1−τm) + e−(r+λ)(τm+1−τm)(1− e−λ(τm+1−τm))

)
.

It is easy to see that 2r+λ
λ+r

∆ < θ is a sufficient condition for A(0) < Πd, so that

Πdλ

2(λ+ r)
+

∆(2r + λ)

2(λ+ r)
− A(pm+1) >

(∆− Πd)(2r + λ)

2(λ+ r)
> 0.

guaranteeing that the entry probability belongs to the interval (0, 1).

We next prove the following Claim.

Claim 4 Suppose that there are two equilibria at date τm, (p∗m, a
∗
m, p

∗∗
m , a

∗∗
m ). Suppose

that p∗m > p∗∗m , then a∗m < a∗∗m .

Proof of the Claim: Suppose by contradiction that a∗∗m < a∗m Then necessarily a∗∗m <

τm − τm−1 and hence p∗∗m = k(a∗∗m ). Now, k(a∗m) ≥ p∗m > p∗∗m = k(a∗∗m ), which implies,

because k(·) is decreasing that a∗∗m > a∗m, contradicting the original hypothesis. This

completes the proof of the Claim.

Now suppose by contradiction that there exist two equilibria with p∗1 6= p∗∗1 .

Without loss of generality, suppose that p∗m > p∗∗1 . We claim that we must have p∗2 >

p∗∗2 . Suppose by contradiction that p∗2 ≤ p∗∗2 . Then because f1(a, p∗2) ≤ f1(a, p∗∗2 ) for

all a, a∗∗1 > a∗1 and f1 is increasing in a and p2, so that p∗1 = f1(a∗1, p
∗
2) < f1(a∗∗1 , p

∗
2) ≤

f1(a∗∗1 , p
∗∗
2 ) = p∗∗1 , contradicting the original assumption p∗1 > p∗∗1 . Hence we have

p∗1 > p∗∗1 and p∗2 > p∗∗2 .

We now claim that this implies that p∗3 > p∗∗3 . Suppose by contradiction that

p∗3 ≤ p∗∗3 . Because f2(a, p1, p3) is increasing in a and p3 and decreasing in p1 and

a∗2 < a∗∗2 by the preceding Claim, we conclude p∗2 = f2(a∗2, p
∗
1, p
∗
3) < f2(a∗∗2 , p

∗
1, p
∗
3) <

f2(a∗∗2 , p
∗∗
1 , p

∗
3) ≤ f2(a∗∗2 , p

∗∗
1 , p

∗∗
3 ) = p∗∗2 , contradicting the original assumption p∗2 >

p∗∗2 . Hence p∗3 > p∗∗3 .
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The same argument can be repeated to show that if p∗1 > p∗∗1 , then p∗m > p∗∗m for

all m = 2, . . . ,M . But then p∗M > p∗∗M and p∗m > p∗∗m for all m < M . Hence, p∗M =

fM(a∗M , p
∗
1, . . . , p

∗
M−1) < fM(a∗∗M , p

∗
1, . . . , pM − 1∗) < fM(a∗∗M , p

∗∗
1 , . . . , pM − 1∗∗) =

p∗∗M , contradicting the fact that p∗M > p∗∗M . This last contradiction shows that we

cannot have p∗1 6= p∗∗1 . Now notice that the same arguments hold if there exist some

m̃ such that p∗m = p∗∗m for all m < m̃ and p∗m̃ 6= p∗∗m̃ . Hence equilibrium must be

unique, concluding the proof of the Proposition.

Proof of Proposition 9. The proof is by induction, starting at the terminal date.

To compute WM+1 we decompose the equilibrium continuation value considering

different possible trajectories of the learning process: (1) Either one of the two firms

learns that the cost is low before τM − aM and both firms receive Πd immediately,

or (2) one of the two firms learns that the cost is low between τM − aM and τM and

the two firms receive an expected payoff equal to Πd + e−a∆τ
Πd+

λΠd+r∆

2(λ+r)

2
at period

τM , or (3) none of the firms learns that the cost is low before τM , the rival enters

with probability pM and the firm waits until it learns that the cost is low and then

collects Πd, or (4) none of the firms learns that the cost is low before τM , the rival

waits with probability 1− pM , and both firms wait until they learnt hat the cost is

low to collected Πd.

If the difference between two entry dates is sufficiently small, e−aM and e−∆τ are

bounded above and there exists ε > 0 such that

WM <
ε

2

2λ

2λ+ r
Πd+

ε

2

(
Πd + ε

λπd
2(λ+ r)

+
r∆

2(λ+ r)

)
+

(
pM

πdλ

2(λ+ r)
+ (1− pM)

λΠd

2λ+ r

)
Now, choosing ε sufficiently small,

WM <

(
pM

πdλ

2(λ+ r)
+ (1− pM)

λΠd

2λ+ r
) <

λΠd

2λ+ r

)
= WM+1.

We now claim that this implies that pM < pM−1. Because WM+1 > WM , fM(a) <

fM−1(a) for all a. Suppose by contradiction that pM−1 ≤ pM . Then we must have

aM−1 < aM since otherwise, if aM−1 ≥ aM , we would have pM−1 = fM−1(aM−1) ≥

fM−1(aM) > fM(aM) = pM , a contradiction. But now, if aM−1 < aM , we have

pM−1 = k(aM−1) > k(aM) ≥ pM , contradicting our original assumption.

Consider then the inductive step. Suppose that for all Wm+1 < Wm+2, and
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pm+1 > pm+2. By the same computation as the terminal step, we have

|Wm −
(
pm+1

πdλ

2(λ+ r)
+ (1− pm+1)Wm+1

)
| < ε as ∆τ →0

Now

Wm =

(
pm+1

πdλ

2(λ+ r)
+ (1− pm+1)Wm+1

)
<

(
pm+2

πdλ

2(λ+ r)
+ (1− pm+2)Wm+1

)
<

(
pm+2

πdλ

2(λ+ r)
+ (1− pm+2)Wm+2

)
= Wm+1

where the first inequality is due to the fact that pm+2 < pm+1 and Wm+1 >
Πdλ

2(λ+r)
,

as the latter is the expected profit if the firm were the only firm to draw a signal,

a lower bound on the expected continuation value, and the second inequality to the

fact that Wm+2 > Wm+1.

By the same argument as for the terminal step, if Wm < Wm+1 then we must

have pm > pm−1, completing the proof of the inductive step.
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Murto, Pauli and Juuso Välimäki (2013), “Delay and information aggregation in

stopping games with private information.” Journal of Economic Theory, 148,

2404–2435.

Perry, Motty and Philip J Reny (1993), “A non-cooperative bargaining model with

strategically timed offers.” Journal of Economic Theory, 59, 50–77.

41



Perry, Motty and Philip J Reny (1994), “A noncooperative view of coalition forma-

tion and the core.” Econometrica: Journal of the Econometric Society, 795–817.

Rosenberg, Dinah, Eilon Solan, and Nicolas Vieille (2007), “Social learning in one-

arm bandit problems.” Econometrica, 75, 1591–1611.

Wagner, Peter A (2018), “Who goes first? strategic delay under information asym-

metry.” Theoretical Economics, 13, 341–375.

42



B Online Appendix (Not for print publication)

This online Appendix contains the derivations for the entry probabilities in a multi-

entry equilibrium. The payoff of an uninformed firm when it enters only depends

on the entry probabilities at dates t1, . . . , tm−1 and is given as before by

ΠE = ξ(0)Πd + ξ(θ)(Πd + ∆− θ)

+ ξ(θ̂)

(
pm

(
Πd −

θ

2

)
+ (1− pm)

(
Πd + ∆− δµ

2(1− δ(1− µ))
∆− θ

2

))
.

In the continuous time limit,

ΠE = ξ(0)Πd + ξ(θ)(Πd + ∆− θ)

+ ξ(θ̂)

(
pm

(
Πd −

θ

2

)
+ (1− pm)

(
Πd + ∆−∆

λ

2(λ+ r)
− θ

2

))
.

The payoff of an uninformed firm when it decides to wait becomes more complex

when there are further entry dates tm+1, . . . , tM . With probability ξ(0) the rival

firm has learned that the cost is low and enters at τm. The firm will then wait until

it learns the value of the cost and enter immediately thereafter. With probability

ξ(θ), the rival firm has learned that the cost is high. The firm will then either learn

the value of the cost and not enter or enter as an informed firm at a future date

tm+1, . . . , tM . With probability ξ(θ̂), the rival firm is uninformed. If the rival firm

enters with probability pm, the firm will wait to learn the value of the cost and enter

immediately after it learns that the cost is low. With probability 1− pm both firms

remain in the game. Different possibilities can arise. Either one of the two firms

learns that the cost is low between tm and tm+1 − dm+1, enters immediately and is

followed by the rival so that both firms receive the duopoly profit. If the firm learns

that the cost is low during the delay, it will delay entry, enter at tm+1, and either be

followed immediately (if the other firm has also learned that the cost is low between

tm+1−dm+1 and tm+1 or enters as uninformed at period tm+1 with probability pm+1)

or receive a monopoly profit and be followed only after the other firm learns that

the cost is low (if the rival firm remains uninformed at tm+1 and does not enter with

probability 1 − pm+1). If the firm learns that the cost is high before tm+1 it does

not to enter. The final situation is the one where the firm remains uninformed at
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period tm+1. In that case, it will consider three different possibilities. First, the

rival firm may have learned the cost is low during the delay between tm+1 − dm+1

and tm+1. Second, the rival firm may have learned the cost is high between tm and

tm+1. Third, the rival firm may not have learned the cost between tm and tm+1. In

all three cases, the firm will enter with probability pm+1 and wait with probability

1− pm+1. If any of the two firm enters, the expected payoff can be computed easily.

If both firms remain in the game at period m+ 1, we let Wm+1 denote the common

continuation value of the game. Formally,

ΠW = ξ(0)
µδ

1− δ(1− µ)
Πd

+ ξ(θ)
M−m∑
s=1

(
δ(1− µ)tm+s−tmpm+s

s−1∏
s′=1

(1− pm+s′)

)
(Πd + ∆− θ)

+ ξ(θ̂)

{
pm

1

2

µδ

1− δ(1− µ)
Πd + (1− pm)

[
tm+1−dm+1−tm∑

s=0

µ(1− µ)2sδsΠd

+

dm+1∑
s=0

1

2
µ(1−µ)s+tm+1−dm+1−tmδtm+1−tm

(
Πd + (1− pm+1)(1− µ)tm+1−tm ∆

1− δ(1− µ)

)
+ (1− µ)tm+1−tmpm+1δ

tm+1−tm
[

(1− µ)tm+1−dm+1 − (1− µ)tm+1−tm

2
Πd

+
1− (1− µ)tm+1−tm

2
(Πd + ∆− θ)

+(1− µ)tm+1−tmpm+1(Πd −
θ

2
) + (1− pm+1)(Πd −

θ

2
+

∆

2
+

∆

2(1− δ(1− µ))

]
+(1−µ)tm+1−tm(1−pm+1)δtm+1−tm

[
(1− µ)tm+1−dm+1 − (1− µ)tm+1−tm

2

Πdµδ

1− δ(1− µ)

+(1− µ)tm+1−tm
(
pm+1

δµΠd

2(1− δ(1− µ))
+ (1− pm+1)Wm+1

)]]}
.
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In the continuous time limit,

ΠW = ξ(0)Πd
λ

λ+ r

+ ξ(θ)(Πd + ∆− θ)
M−m∑
s=1

(
pm+s

s−1∏
s′=1

(1− pm+s′)e
−(r+λ)(τm+s−τm)

)

+ ξ(θ̂)

{
pm

Πdλ

2(λ+ r)
+ (1− pm)

[
1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)

(
Πd +

∆r

λ+ r
(1− pm+1)e−am+1λ)

)
+e−(r+λ)(τm+1−τm)pm+1

[
e−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2
Πd +

(1− e−λ(τm+1−τm))

2
(Πd + ∆− θ)

]
+ e−λ(τm+1−τm)

(
Πd + (1− pm+1)(

2r + λ∆

2(λ+ r)
− θ

2
)

)
+ e−(r+λ)(τm+1−τm)(1− pm+1)

[
e−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2
Πd

λ

λ+ r

+e−λ(τm+1−τm)

(
pm+1

Πdλ

2(λ+ r)
+ (1− pm+1)Wm+1

)]]}
.

We next use the fact that in equilibrium, if no firm has entered at tm+1, an

uninformed firm is indifferent between entering and waiting at that period. This

implies that the expected profit if a firm waits at period tm is the same as the

expected profit it would obtain if it were to enter with probability 1 as an uninformed

firm at period tm+1. We can then rewrite the expected profit of waiting as

ΠW = ξ(0)Πd
λ

λ+ r
+ ξ(θ)(Πd + ∆− θ)pm+1e

−(r+λ)(τm+1−τm)

+ ξ(θ̂)

{
pm

Πdλ

2(λ+ r)
+ (1− pm)

[
1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)

(
Πd +

∆r

λ+ r
(1− pm+1e

−am+1λ)

)
+e−(r+λ)(τm+1−τm)

[
e−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2
Πd +

(1− e−λ(τm+1−τm))

2
(Πd + ∆− θ)

+e−λ(τm+1−τm)

(
Πd + (1− pm+1)

(2r + λ)∆

2(λ+ r)
− θ

2

)]]}
.

Notice that, after this rearrangement, the expected profit ΠW only depends on
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p1, . . . , pm, pm+1 and not on the entry probabilities for periods after pm+1. Let

A(pm+1) ≡ 1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)

(
Πd +

∆r

λ+ r
(1− pm+1)e−am+1λ)

)
+e−(r+λ)(τm+1−τm)

[
e−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2
Πd +

(1− e−λ(τm+1−τm))

2
(Πd + ∆− θ)

+e−λ(τm+1−τm)

(
Πd + (1− pm+1)

(2r + λ)∆

2(λ+ r)
− θ

2

)]
.

Equating ΠE and ΠW , we find the entry probability which makes an uninformed

firm indifferent between entering or waiting at period tm in the multiple-entry equi-

librium:

pm = fm(a) = 1−
Πd − θ

2
− Πdλ

2(λ+r)
− ξ(0)

ξ(θ̂)
Πd

r
λ+r
− ξ(θ)

ξ(θ̂)
(Πd + ∆− θ)(1− e−(λ+r)(τm+1−τm))

Πdλ
2(λ+r)

+ ∆(2r+λ)
2(λ+r)

− A(pm+1)
.

Alternatively, we compute the expected profit if a firm waits at period tm as-

suming that it will wait at any further periods as

ΠW = ξ(0)Πd
λ

λ+ r
+ ξ(θ̂)

{
pm

Πdλ

2(λ+ r)

+ (1− pm)

[
1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)

(
Πd +

∆r

λ+ r
(1− pm+1)e−am+1λ)

)
+ e−(r+λ)(τm+1−τm)

[
e−λ(τm+1−am+1−τm) − e−λ(τm+1−τm)

2
Πd

λ

λ+ r

+e−λ(τm+1−τm)

(
pm+1

πdλ

2(λ+ r)
+ (1− pm+1)Wm+1

)]]}
,

where the continuation value at date τm given that none of the firms has received

the signal at τm, Wm, is given by the recursive formula

Wm =
1− e−(2λ+r)(τm+1−am+1−τm)

2

2λ

2λ+ r
Πd

+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)

(
Πd +

∆r

λ+ r
(1− pm+1)e−am+1λ)

)
+
e−2λ(τm+1−am+1−τm)

2
(1− e−am+1λ)e−r(τm+1−τm)Πd

λ

λ+ r
e−am+1λ

+ e−λ(τm+1−τm)

(
pm+1

πdλ

2(λ+ r)
+ (1− pm+1)Wm+1

)
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with terminal condition at the last entry date:

WM+1 =
2λ

2λ+ r
Πd.

Equating the expected profit of entering and waiting at date τm results in an

entry probability pm given by

pm = fm(a) = 1−
Πd − θ

2
− Πdλ

2(λ+r)
− ξ(0)

ξ(θ̂)
Πd

r
λ+r
− ξ(θ)

ξ(θ̂)
(Πd + ∆− θ)

Πdλ
2(λ+r)

+ ∆(2r+λ)
2(λ+r)

−Wm+1

.
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