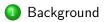
Consumer Decision-making under Uncertainty on Digital Platforms

Yen Ling Tan & Simona Fabrizi


Department of Economics The University of Auckland Microeconomics Workshop Keio University

19 June 2020

Tan & Fabrizi (UoA)

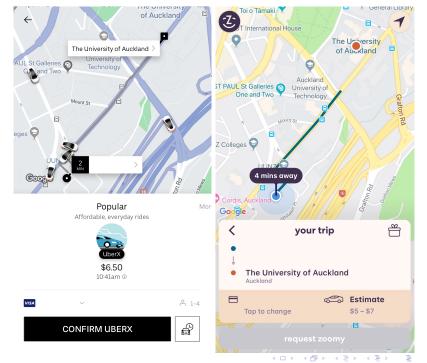
Online Seminar Keio University

19 June 2020 1 / 5

Tan & Fabrizi (UoA)

Online Seminar Keio University

19 June 2020 2 / F


イロト イヨト イヨト イヨト

æ

- Two or multi-sided markets.
- Our research focuses on user multi-homing and competition among ride-sharing platforms.
- Ride-sharing platforms facilitate transactions between riders and drivers.
- In 2018, the global uptake of ride-sharing services was around 11.8% (858 million riders), generating US\$ 150 billion in revenue (Statista, 2019).
- The number of riders is projected to reach 1,500 million by 2023.

- Asymmetric pricing for different sides of the market (Rochet and Tirole, 2003).
- Merchant mode vs two-sided platform mode (Hagiu, 2007).
- Pricing mechanism to overcome competitive bottlenecks (Belleflamme and Peitz, 2019).
 - Users from one side of the market (but not the other) could multi-home.

- Consumers can multi-home easily with free-to-install apps.
 - Low switching costs.
- In New Zealand, consumers can choose between a few ride-sharing platforms.
 - For simplicity, we will focus on Uber and Zoomy.
- Uber and Zoomy offer different pricing options to consumers.
 - Uber offers a fixed price.
 - Zoomy offers an estimated price range.

- Zoomy's pricing scheme based on estimated price range introduces ambiguity to the consumer decision-making process.
- What is ambiguity?
 - Unmeasurable uncertainty.
 - The probability distribution of events related to an individual's decision-making process is unknown.
- The consumer does not know *a priori* the exact price of Zoomy's service.
 - Traffic.
 - Driver's route.
- A consumer's ambiguity attitude can influence whether they choose to accept the service from Uber or Zoomy.

Image: A Image: A

Savage axiom (sure-thing principle)

$$\Omega = \{..., s, ...\}$$
 $\varepsilon = \{..., E, ...\}$ $X = \{..., x, ...\}$

$$F = \{..., f(\cdot), ...\} \quad f : \Omega \to X \quad f(\Omega) = \{x\}$$

For all events E and acts $f(\cdot)$, $g(\cdot)$, $h(\cdot)$ and $h'(\cdot)$, $f_E h \succeq g_E h \Rightarrow f_E h' \succeq g_E h'$.

 f_E h denotes the act with outcome f(s) when $s \in E$; h(s) when $s \in \Omega \setminus E$.

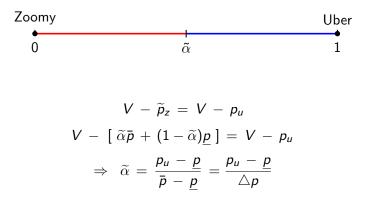
Tan & Fabrizi (UoA)	Tan a	& Fa	brizi	(U	loA)
---------------------	-------	------	-------	----	------

→ ∃ →

- Uncertainty should not change your choice between two acts if that uncertainty does not affect your preference over the two acts.
- Ellsberg Paradox (1961).
 - Violation of sure thing principle.
 - A person prefers to bet in situations for which they know specific odds, rather than in situations for which the odds are ambiguous.

Utility representations under ambiguity

- MaxMin expected utility (EU) model (Gilboa & Schmeidler, 1989).
 - Ambiguity averse.
- MaxMax EU model (Gilboa & Schmeidler, 1989).
 - Ambiguity loving.
- α -MaxMin EU model (Hurwicz, 1951).
 - Parameter for the relative degree of optimism and pessimism, $\alpha \in [0,1].$
- Subjective EU model (Savage, 1954).
 - Ambiguity neutral.
- Prospect theory (Kahneman & Tversky, 1979).
 - Reference points can distort how individuals respond to ambiguity.
 - Loss aversion.


★ ∃ ► ★

- How do individuals form decisions when they face different pricing schemes from competing ride-sharing platforms?
- Could platforms offer distinct pricing schemes to serve consumers with different ambiguity attitudes to gain market share?

- Suppose two ambiguity neutral platforms Uber and Zoomy operate in the same market.
- Uber offers a price p_u and Zoomy offers the price range $[\underline{p}, \overline{p}]$ for the same ride.
- Each consumer perceives the price of a Zoomy ride as $\tilde{p}_z \in [p, \overline{p}]$.
- Normalise the mass of consumers in the market to 1.
- Parameter for the relative degree of optimism and pessimism of a consumer, $\alpha \in [0, 1]$.

$$\widetilde{p}_{z} = \left[\alpha \overline{p} + (1 - \alpha) \underline{p} \right]$$

- A consumer's valuation of a ride from Zoomy or Uber is the same, V.
- Denote $\tilde{\alpha}$ as the ambiguity attitude of the indifferent consumer.

Denote f(α) as the pdf for the distribution of the consumers' type (ambiguity attitudes).

Conditional expected perceived price for consumers served by Zoomy $E[\tilde{p}_{z}|\alpha \leq \tilde{\alpha}] = \frac{1}{\int_{0}^{\tilde{\alpha}} f(\alpha) d\alpha} \int_{0}^{\tilde{\alpha}} \left[\alpha \bar{p} + (1-\alpha) \underline{p} \right] f(\alpha) d\alpha$

Assumption

The consumers' attitudes toward ambiguity follow a Beta distribution respectively with probability and cumulative density distributions satisfying

$$f(\alpha; a = 4, b = 2) = 20 \alpha^{a-1} (1 - \alpha)^{b-1} = 20 \alpha^3 (1 - \alpha)$$

and

$$F(\alpha; \mathbf{a} = 4, \mathbf{b} = 2) = 20 \left(\frac{\alpha^4}{4} - \frac{\alpha^5}{5} \right)$$

★ ∃ ► ★

Model

Graphically:

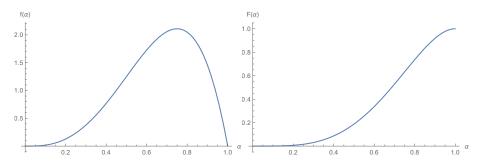


Figure: Beta distributions for the density, $f(\alpha; a = 4, b = 2)$, and cumulative, $F(\alpha; a = 4, b = 2)$, functions of consumers' attitudes toward ambiguity, α , with $0 \le \alpha \le 1$.

Consequently, by using this Beta distribution the conditional expected price Zoomy can charge consumers can be rewritten as follows

$$E[\tilde{p}_{z}|\alpha \leq \tilde{\alpha}] = \frac{1}{\int_{0}^{\tilde{\alpha}} 20 \, \alpha^{3} \, (1-\alpha) d\alpha} \int_{0}^{\tilde{\alpha}} \left[\alpha \bar{p} + (1-\alpha) \underline{p} \right] 20 \, \alpha^{3} \, (1-\alpha) \, d\alpha$$

★ ∃ ▶

- Normalise costs to zero for both Zoomy and Uber.
- The cdf for the mass of consumers served by Zoomy is $F(\tilde{\alpha})$.
- Conversely, the cdf for the mass of consumers served by Uber is $1 F(\tilde{\alpha})$.

Zoomy's Profit-Maximization Problem

Zoomy's profit is equal to

$$\pi_{z} = E[\widetilde{p}_{z} | \alpha \leq \widetilde{\alpha}] F(\widetilde{\alpha})$$

By Assumption 1

$$\pi_{z} = \int_{0}^{\tilde{\alpha}} \left[\alpha \bar{p} + (1 - \alpha) \underline{p} \right] 20 \alpha^{3} (1 - \alpha) d\alpha$$

Equal to

$$\pi_z = 20 \, \left(\, \frac{\widetilde{\alpha}^5}{5} \overline{p} - \frac{\widetilde{\alpha}^6}{6} \overline{p} + \frac{\widetilde{\alpha}^4}{4} \underline{p} - \frac{2\widetilde{\alpha}^5}{5} \underline{p} + \frac{\widetilde{\alpha}^6}{6} \underline{p} \right)$$

where

$$\widetilde{\alpha} = \frac{p_u - \underline{p}}{\overline{p} - \underline{p}}$$

Online Seminar Keio University

Uber's Profit-Maximization Problem

Uber's profit is equal to

$$\pi_u = p_u [1 - F(\tilde{\alpha})] \tag{1}$$

By Assumption 1, we can rewrite Uber's profit as

$$\pi_{u} = p_{u} \left(1 - \int_{0}^{\widetilde{\alpha}} 20 \, \alpha^{3} \, (1 - \alpha) d\alpha\right)$$

Solving for the integral, this simplifies to

$$\pi_{u} = p_{u} \left(1 - 5\widetilde{\alpha}^{4} + 4\widetilde{\alpha}^{5}\right)$$

where

$$\widetilde{\alpha} = \frac{p_u - \underline{p}}{\overline{p} - \underline{p}}$$

Tan & Fabrizi (UoA)

Online Seminar Keio University

The following relationship needs to hold for the system to provide a solution consistent with $\underline{p}^* < p_u^* < \bar{p}^*$

$$1 - \left(\frac{p_u^* - \underline{p}^*}{\overline{p}^* - \underline{p}^*}\right)^4 + 20p_u^* \left(\frac{1}{\overline{p}^* - \underline{p}^*}\right) \left(\left(\frac{p_u^* - \underline{p}^*}{\overline{p}^* - \underline{p}^*}\right) - 1\right) \left(\frac{p_u^* - \underline{p}^*}{\overline{p}^* - \underline{p}^*}\right)^3 = 0$$

However, there are infinitely many combinations of \underline{p}^* , \overline{p}^* and p_u^* satisfying this consistency requirement and such that Uber and Zoomy would coexist in equilibrium.

<i>p</i> [*] _{<i>u</i>}	<u>p</u> *	\bar{p}^*	$\widetilde{\alpha}^*$
0.95	0.5	1.5	0.45
1.38	1	2	0.38
1.84	1.5	2.5	0.34
2.31	2	3	0.31
2.79	2.5	3.5	0.29

Table: Equilibrium cut-off for ambiguity loving types and associated optimal pricing in the ride-sharing market for $\bar{p}^* - \underline{p}^* = 1$

p_u^*	<u>p</u> *	$ar{p}^*$	$\widetilde{\alpha}^*$
1.5	0.5	2.5	0.50
1.90	1	3	0.45
2.33	1.5	3.5	0.415
2.77	2	4	0.385
3.23	2.5	4.5	0.365

Table: Optimal pricing in the ride-sharing market for $\bar{p}^*-p^*=2$

Tan & Fabrizi (UoA)

→ < ∃ →</p>

<i>p</i> [*] _{<i>u</i>}	<u>p</u> *	$ar{p}^*$	\widetilde{lpha}^*
3	1	5	0.50
4.5	1.5	7.5	0.50
6	2	10	0.50
7.5	2.5	12.5	0.50
9	3	15	0.50

Table: Optimal pricing in the ride-sharing market for $\underline{p}^* = \frac{1}{5}\bar{p}^*$

A D > A A > A > A

Proposition

Under Assumption 1 competing ride-sharing services exploiting heterogeneous ambiguity attitudes of consumers, could set their respective prices such that $\underline{p}^* < p_u^* < \overline{p}^*$ and $\tilde{\alpha}^* = \frac{1}{2}$, which always holds for $\frac{1}{5}\overline{p}^* = \underline{p}^* < p_u^* = \frac{1}{2}\underline{p}^* + \frac{1}{2}\overline{p}^* < \overline{p}^* = 5\underline{p}^*$.

Next, we can use this result to derive the induced optimal conditional expected price offered by Zoomy, which corresponds to

$$E\left[\widetilde{p}_{z}^{*}|\alpha \leq \widetilde{\alpha} = \frac{1}{2}\right] = p_{u}^{*}\frac{23}{27}$$

Corollary 1

Under Assumption 1, for $\tilde{\alpha}^* = \frac{1}{2}$ the optimal prices in the ride-sharing market lead to $\tilde{p}_z^* \in \left[\frac{1}{3}p_u^*, \frac{5}{3}p_u^*\right]$, with $E\left[\tilde{p}_z^* | \alpha \leq \tilde{\alpha}^* = \frac{1}{2}\right] = p_u^* \frac{23}{27}$.

Corollary 2

Under Assumption 1, for $\tilde{\alpha}^* = \frac{1}{2}$ the corresponding market shares of competing ride-sharing services are respectively equal to $F(\tilde{\alpha}) = 0.1875$ and $(1 - F(\tilde{\alpha})) = 0.8125$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Consumer surplus for consumers served by Zoomy

$$CS_z = (V - E[\widetilde{p}_z^*|\alpha \leq \widetilde{\alpha}^*]) F(\widetilde{\alpha}^*)$$

Consumer surplus for consumers served by Uber

(

$$CS_u = (V - p_u^*)(1 - F(\widetilde{\alpha}^*))$$

Tan & Fabrizi (UoA)

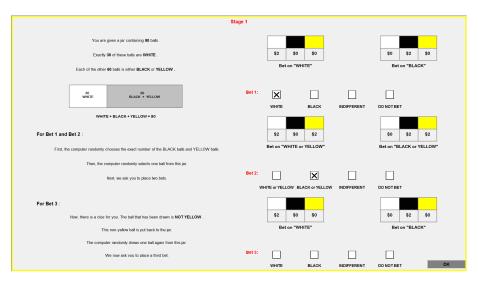
Online Seminar Keio University

19 June 2020

→ ∃ →

Experiment

- We received ethics approval from the University of Auckland Human Participants Ethics Committee (UAHPEC).
- We conducted a preliminary set of experimental sessions at the University of Auckland Laboratory for Business Decision Making (DECIDE) from the 12th to 27th of August 2019.
- We recruited the subjects via ORSEE: Online Recruitment Software for Economic Experiments (Greiner, 2004).
- Overall, a total of 113 subjects took part across six experimental sessions used to calibrate the distribution of consumers' attitudes toward ambiguity.
- In Jan/Feb 2020, we then repeated the same protocol to elicit subjects' attitudes toward ambiguity, before emulating choices in the ride-sharing market via a suitable protocol (Stages 2 and 3) via a computerized experiment implemented via z-Tree: Zurich Toolbox for Ready-made Economic Experiments (Fischbacher, 2007).


Tan & Fabrizi (UoA)

Online Seminar Keio University

19 June 2020 28

- We implement the modified Ellsberg three-colour urn game à la Cohen, Gilboa, Jaffray, and Schmeidler (2000) to elicit each participant's ambiguity attitude.
- Subjects are asked to place three consecutive bets on the colours of a randomly selected ball from a standard three-colour Ellsberg urn.
- Subjects receive NZD 2.00 for each correct bet.
- Subjects do not receive any feedback about the outcome of their bets until the end of the experiment.

Stage 1

STP : For all events E and acts f, g, h and h', $f_E h \succeq g_E h \Rightarrow f_E h' \succeq g_E h'$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

		Bet 1			
		White	Black	Indifferent	Do not bet
2	White or yellow Black or yellow	$\frac{SEU}{\alpha > 1/2}$	$lpha \ < \ 1/2$ SEU	Inconsistent Inconsistent	Inconsistent Inconsistent
Bet	Indifferent	Inconsistent	Inconsistent	SEU or $\alpha=1/2$	Inconsistent
ш	Do not bet	Inconsistent	Inconsistent	Inconsistent	Inconsistent

Table: Ambiguity attitudes

æ

・ロト ・ 日 ト ・ 目 ト ・

- We simulate individual decisions over binary pricing options a fixed price and a price range for 21 subsequent rounds.
- This design emulates the decision-making process of a multi-homing user in the ride-sharing market.
- In each round subjects are given an endowment of NZD 15.00.
- To address order effects, we shuffle the sequence in which the scenarios are presented to the subjects for each experimental session.
- At the end of the experiment, only one of the twenty-one rounds, which is randomly and independently selected by the computer, counts towards a subject's final payoff.

Stage 2 - Price calibrations

Scenarios	p_u^*	<u>P</u> *	\bar{p}^*	$E\left[\widetilde{p}_{z}^{*} \alpha \leq \widetilde{\alpha} = \frac{1}{2}\right] = p_{u}^{*}\frac{23}{27}$
1	3	1	5	$3(\frac{23}{27})$
2	3.30	1.10	5.50	$3.3(\frac{23}{27})$
3	3.60	1.20	6	$3.60(\frac{23}{27})$
4	3.90	1.30	6.5	$3.90(\frac{23}{27})$
5	4.20	1.40	7	4.20(²³ / ₂₇)
6	4.50	1.50	7.5	$4.50(\frac{23}{27})$
7	4.80	1.60	8	$4.80(\frac{23}{27})$
8	5.10	1.70	8.5	$5.10(\frac{23}{27})$
9	5.40	1.80	9	$5.40(\frac{23}{27})$
10	5.70	1.90	9.5	$5.70(\frac{23}{27})$
11	6	2	10	6(²³ / ₂₇)
12	6.30	2.10	10.5	6.30(²³ / ₂₇)
13	6.60	2.20	11	$6.60(\frac{23}{27})$
14	6.90	2.30	11.5	$6.90(\frac{23}{27})$
15	7.20	2.40	12	$7.20(\frac{23}{27})$
16	7.50	2.50	12.5	$7.50(\frac{23}{27})$
17	7.80	2.60	13	$7.80(\frac{23}{27})$
18	8.10	2.70	13.5	8.10(²³ / ₂₇)
19	8.40	2.80	14	8.40(²³ / ₂₇)
20	8.70	2.90	14.5	8.70(²³ / ₂₇)
21	9	3	15	9(²³ / ₂₇)

Tan & Fabrizi (UoA)

10 June 2020 33

イロト イヨト イヨト イヨト

æ

	Remaining tima (Jac) 20
Stage 2 Round 1	
Remember, your endown	nent is \$15
If you select the fixed price, your earning for the	iis round will be: \$15 minus \$7.2
If you select the price range, your earning for this round will	be: \$15 minus a value between \$2.4 and \$12
Fixed price:	Price range:
\$7.2	\$2.4 - \$12
c	c .
OK	

Ξ.

- We propose five scenarios to subjects to assess the effect of framing on the individual's decision-making under pricing-related ambiguity.
- Subjects are informed that one of these scenarios is selected at random to determine their payoffs in this stage.
- In each round subjects are given an endowment of NZD 15.00.
- Subjects are asked to choose between two pricing options: a fixed price and (written description of) a price range.
 - The price range is expressed as the maximum value of a potential discount and the corresponding price cap, "up to 2/3 cheaper and at most 2/3 more expensive than the fixed price".

	Remaining Sine (Jac) – 28			
Stage 3				
Round 2				
Once again, consider your endowment t	io be of \$15			
If you were asked to choose between the following two options, which one would you prefer?				
Fixed price:	Price range:			
\$4.5 Up to 2/	3 cheaper and at most 2/3 more expensive than the fixed price			
r	c			
OK				

Stage 4

Results from Stage 1:	
	Results from Stage 2:
Bet 1 and Bet 2:	
The color of the randomly selected ball was: BLACK	Round 6 has been randomly selected by the computer to calculate your payoff.
	In Round 6 the fixed price was \$6.9 and the price range was \$2.3 - \$11.5.
In Bet 1, your choice was: WHITE	
Thus, your first bet was: Wrong	You selected the Fixed Price option in Round 6.
	Therefore, your total earnings for Stage 2 is \$8.1.
	Results from Stage 3:
In Bet 2, your choice was: BLACK or YELLOW	
Thus, your second bet was: Correct	Round 4 has been randomly selected by the computer to calculate your payoff.
	In Round 4 the fixed price was \$9 and the price range was
Bet 3:	up to 2/3 cheaper and at most 2/3 more expensive than the fixed price .
The color of the randomly selected ball was: YELLOW	
	You selected the Fixed Price option in Round 4.
	Therefore, your total earnings for Stage 3 is \$6.0.
In Bet 3, your choice was: WHITE	
Thus, your third bet was: Wrong	
Therefore, in Stage 1, your total earnings in NZD are:	
\$0.0 from Bet 1 + \$2.0 from Bet 2 + \$0.0 from Bet 3 = \$2.0	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In today's experiment, your final earnings in NZD are: \$2.0 from Stage 1 + \$8.1 from Stage 2 + \$6.0 from Stage 3 + \$10.0 show-up fee = \$26.1

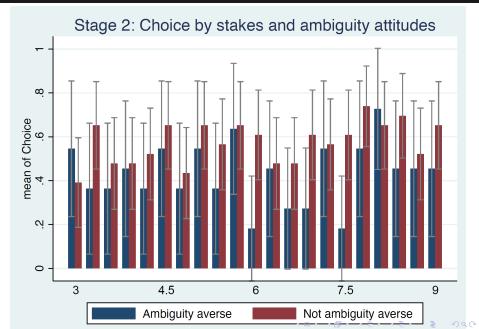
Ambiguity types	Participants	Percentage(%)
Ambiguity averse	11	32.3
SEU	19	55.9
Ambiguity loving	4	11.8

Table: Descriptive Statistics Stage 1

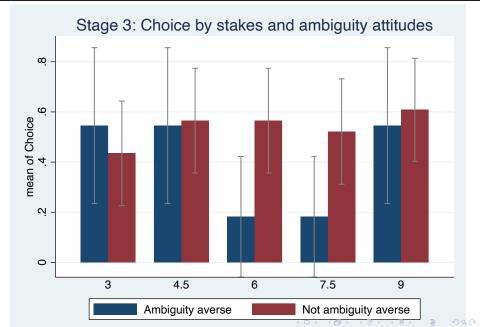
A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

	(1)	(2)	(3)
Variables	Ν	mean	sd
All Choices	714	0.529	0.499
Ambiguity averse Choices	231	0.433	0.497
SEU Choices	399	0.617	0.487
Ambiguity loving Choices	84	0.381	0.489

Table: Descriptive Statistics Stages 1 & 2


• • • • • • • • • • • • •

	(1)	(2)	(3)	
Variables	N	mean	sd	
All Choices	340	0.476	0.500	
Ambiguity averse Choices	110	0.382	0.488	
SEU Choices	190	0.563	0.497	
Ambiguity loving Choices	40	0.325	0.474	


Table: Descriptive Statistics Stage 3

イロト イヨト イヨト イヨト

Preliminary results: Stage 2

Preliminary results: Stage 3

	(1)	(2)	(3)			
Variable	All	Ambiguity averse	Not ambiguity averse			
Stakes	0.0187*	0.00590	0.0248**			
	(0.0103)	(0.0180)	(0.0124)			
Constant	0.416***	0.397***	0.424***			
	(0.0644)	(0.113)	(0.0775)			
Observations	714	231	483			
R-squared	0.005	0.000	0.008			
	Standa	rd errors in parenth	eses			
*** p<0.01, ** p<0.05, * p<0.1						
Table: Stage 2 OLS Regressions						

イロト イヨト イヨト イヨト

	(1)	(2)	(3)			
Variables	All	Ambiguity averse	Not ambiguity averse			
Stakes	0.0294**	0.0182	0.0348**			
	(0.0127)	(0.0220)	(0.0154)			
Constant	0.300***	0.273*	0.313***			
	(0.0809)	(0.140)	(0.0982)			
Observations	340	110	230			
R-squared	0.016	0.006	0.022			
Standard errors in parentheses						
*** p<0.01, ** p<0.05, * p<0.1						
Table: Stage 3 OLS Regressions						

イロト イヨト イヨト イヨト

Some Econometric Analysis: Stage 2 vs Stage 3

	(1)	(2)	(3)				
Variables	ÂÍ	Ambiguity averse	Not ambiguity averse				
Stakes	0.0118	-0.0364	0.0348				
	(0.0179)	(0.0305)	(0.0218)				
Verbal Framing	-0.282*	-0.655**	-0.104				
	(0.161)	(0.274)	(0.196)				
Verbal Framing * Stakes	0.0353	0.109**	0				
	(0.0253)	(0.0431)	(0.0308)				
Constant	0.441***	0.600***	0.365***				
	(0.114)	(0.194)	(0.139)				
Observations	340	110	230				
R-squared	0.026	0.063	0.033				
S	tandard err	ors in parentheses					
*** p<0.01, ** p<0.05, * p<0.1							

Table: OLS regressions Stage 2 vs Stage 3

Tan & Fabrizi (UoA)

Online Seminar Keio University

45/5

Two-sample	e t test w	ith equal var	iances			
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Ambiguit Not ambi	231 483	.4329004 .5755694	.0326708 .0225128	.4965531 .4947687	.3685281 .5313341	.4972727 .6198046
combined	714	.5294118	.0186927	.4994841	.4927124	.5661111
diff		1426689	.0396258		2204663	0648715
	diff = mean(Ambiguit) - mean(Not ambi) t = -3.6004 Ho: diff = 0 degrees of freedom = 712					
	lff < 0 = 0.0002	Pr(Ha: diff != T > t) = (•		iff > 0) = 0.9998

Price Range Choice Stage 2, $p_u^* = 3.3$

. drop if Stakes!=3.3
(680 observations deleted)

encode(AmbiguityAverse), generate(av)

ttest Choice, by(av) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Ambiguit	11	.3636364	.15212	.504525	.0246919	.7025809
Not ambi	23	.6521739	.1015433	.4869848	.4415859	.8627619
combined	34	.5588235	.0864344	.5039947	.3829715	.7346756
diff		2885375	.1828976		6711206	.0940455
diff =	= mean(Amb:	iguit) - mean	(Not ambi)			= -1.5776
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom :	= 19.1673
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff > 0
Pr(T < t)) = 0.0655	Pr(T > t) =	0.1310	Pr(T > t) = 0.9345

Price Range Choice Stage 2, $p_u^* = 6$

. drop if Stakes!=6

(680 observations deleted)

encode(AmbiguityAverse), generate(av)

. ttest Choice, by(av) unequal

Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
11	.1818182	.1219673	.4045199	089942	.4535784
23	.6086957	.104051	.4990109	.3929072	.8244841
34	.4705882	.0868881	.5066404	.293813	.6473634
	4268775	.1603204		757719	0960359
= mean(Amb	iguit) - mear	n(Not ambi)		t:	= -2.6627
= 0		Satterthwai	te's degrees	of freedom :	= 24.0598
iff < 0) = 0.0068	Pr(iff > 0) = 0.9932
	11 23 34 = mean(Amb = 0 iff < 0	11 .1818182 23 .6086957 34 .4705882 4268775 = mean(Ambiguit) - mean = 0 iff < 0	11 .1818182 .1219673 23 .6086957 .104051 34 .4705882 .0868881 4268775 .1603204 = mean(Ambiguit) - mean(Not ambi) = 0 Satterthwai iff < 0	11 .1818182 .1219673 .4045199 23 .6086957 .104051 .4990109 34 .4705882 .0868881 .5066404 4268775 .1603204 = mean(Ambiguit) - mean(Not ambi) = 0 Satterthwaite's degrees iff < 0	11 .1818182 .1219673 .4045199 089942 23 .6086957 .104051 .4990109 .3929072 34 .4705882 .0868881 .5066404 .293813 4268775 .1603204 757719 = mean(Ambiguit) - mean(Not ambi) t = 0 Satterthwaite's degrees of freedom iff < 0

Price Range Choice Stage 2, $p_u^* = 6.9$

. drop if Stakes!=6.9
(680 observations deleted)

encode(AmbiguityAverse), generate(av)

ttest Choice, by(av) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Ambiguit	11	.2727273	.1408358	.4670994	0410744	.5865289
Not ambi	23	.6086957	.104051	.4990109	.3929072	.8244841
combined	34	.5	.0870388	.5075192	.3229182	.6770818
diff		3359684	.1751037		700068	.0281313
diff =	= mean(Ambi	iguit) - mean	(Not ambi)		t:	= -1.9187
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom :	= 21.046
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff > 0
Pr(T < t)) = 0.0343	Pr(T > t) =	0.0687	Pr(T > t) = 0.9657

Price Range Choice Stage 2, $p_u^* = 7.5$

. drop if Stakes!=7.5 (680 observations deleted)

encode(AmbiguityAverse), generate(av)

ttest Choice, by(av) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Ambiguit	11	.1818182	.1219673	.4045199	089942	.4535784
Not ambi	23	.6086957	.104051	.4990109	.3929072	.8244841
combined	34	.4705882	.0868881	.5066404	.293813	.6473634
diff		4268775	.1603204		757719	0960359
diff =	= mean(Ambi	.guit) - mean	(Not ambi)		t:	= -2.6627
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom :	= 24.0598
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff > 0
Pr(T < t)) = 0.0068	Pr(T > t) = (0.0136	Pr(T > t) = 0.9932

Choice Across Stages for Amb. Averse Types, $p_u^* = 3$

drop if Stakes!=3
 (272 observations deleted)

. drop if Averse ==0
(46 observations deleted)

. encode(verbal), generate(verb)

. ttest Choice, by(verbal) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Not verb	11	.5454545	.1574592	.522233	.1946137	.8962954
Verbal	11	.1818182	.1219673	.4045199	089942	.4535784
combined	22	.3636364	.1049728	.492366	.1453335	.5819392
diff		.3636364	.1991718		0534998	.7807725
Ho: diff	= 0		Satterthwai	te's degrees	of freedom :	= 18.8235
Ha: diff < 0		Ha: diff != 0			Ha: diff > 0	
Pr(T < t) = 0.9581	Pr(T > t) = 1	0.0838	Pr(T > t)) = 0.0419

Choice Across Stages for Amb. Averse Types, $p_u^* = 9$

. drop if Stakes!=9

(272 observations deleted)

. drop if Averse ==0
(46 observations deleted)

. encode(verbal), generate(verb)

. ttest Choice, by(verbal) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Not verb	11	.4545455	.1574592	.522233	.1037046	.8053863
Verbal	11	.7272727	.1408358	.4670994	.4134711	1.041074
combined	22	.5909091	.1072903	.5032363	.3677866	.8140316
diff		2727273	.2112536		7137437	.1682891
diff = mean(Not verb) - mean(Verbal) t = -1.2910						
Ho: diff = 0 Satterthwaite's degrees of freedom = 19.75					= 19.7561	
Ha: d:	iff < 0	Ha: diff != 0			Ha: diff > 0	
Pr(T < t) = 0.1058		Pr(T > t) = (0.2116	Pr(T > t) = 0.8942

Choice Across Stages for Non-Amb. Averse Types, $p_u^* = 4.5$

	drop	if	Stakes!=4.5	
--	------	----	-------------	--

(272 observations deleted)

. drop if Averse ==1
(22 observations deleted)

encode(verbal), generate(verb)

ttest Choice, by(verbal) unequal

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Not verb	23	.6086957	.104051	.4990109	.3929072	.8244841
Verbal	23	.3913043	.104051	.4990109	.1755159	.6070928
combined	46	.5	.0745356	.505525	.3498776	.6501224
diff		.2173913	.1471503		0791706	.5139532
diff = mean(Not verb) - mean(Verbal) t = 1.4773						
Ho: diff = 0 Satterthwaite's degrees of freedom = 44						
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0						iff > 0
Pr(T < t)	= 0.9266	Pr(1	「 > t) = (0.1467	Pr(T > t) = 0.0734

・ロト ・日下 ・モート ・モー うへの

Conclusion and Further Research

- First of all, similar to other attempts to model and then test complex human behaviour, we needed to make simplifying assumptions.
 - $\rightarrow\,$ The price calibrations in the experiment are based on the theoretical assumptions that the consumers' ambiguity types in the market follow a Beta distribution, skewed towards ambiguity-averse types.
 - $\rightarrow\,$ This is a convenient, yet realistic, assumption to impose on our model.
- Secondly, the statistical power of our data will depend on the number of observations we will be able to gather from the subject population.
 - $\rightarrow\,$ Only few subjects were identified as ambiguity loving individuals, restricting our ability to infer robust results from available data.
 - $\rightarrow\,$ We were planning more experimental sessions in April/May this year, but COVID–19 meant postponing those to the second half of 2020.
- As an extension of this study, we could direct our attention to the other side of the ride-sharing platform, by modelling the behaviour of multihoming drivers.
- Equally, we could look at more general models of competing mixed price offers (fixed & range) in a variety of mkts (e.g. hotel bookings, labor contracts).

Tan & Fabrizi (UoA)

June 2020 54 / 54